xref: /linux/kernel/pid.c (revision 55f1b540d893da740a81200450014c45a8103f54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
46 #include <net/sock.h>
47 #include <uapi/linux/pidfd.h>
48 
49 struct pid init_struct_pid = {
50 	.count		= REFCOUNT_INIT(1),
51 	.tasks		= {
52 		{ .first = NULL },
53 		{ .first = NULL },
54 		{ .first = NULL },
55 	},
56 	.level		= 0,
57 	.numbers	= { {
58 		.nr		= 0,
59 		.ns		= &init_pid_ns,
60 	}, }
61 };
62 
63 int pid_max = PID_MAX_DEFAULT;
64 
65 int pid_max_min = RESERVED_PIDS + 1;
66 int pid_max_max = PID_MAX_LIMIT;
67 /*
68  * Pseudo filesystems start inode numbering after one. We use Reserved
69  * PIDs as a natural offset.
70  */
71 static u64 pidfs_ino = RESERVED_PIDS;
72 
73 /*
74  * PID-map pages start out as NULL, they get allocated upon
75  * first use and are never deallocated. This way a low pid_max
76  * value does not cause lots of bitmaps to be allocated, but
77  * the scheme scales to up to 4 million PIDs, runtime.
78  */
79 struct pid_namespace init_pid_ns = {
80 	.ns.count = REFCOUNT_INIT(2),
81 	.idr = IDR_INIT(init_pid_ns.idr),
82 	.pid_allocated = PIDNS_ADDING,
83 	.level = 0,
84 	.child_reaper = &init_task,
85 	.user_ns = &init_user_ns,
86 	.ns.inum = PROC_PID_INIT_INO,
87 #ifdef CONFIG_PID_NS
88 	.ns.ops = &pidns_operations,
89 #endif
90 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
91 	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
92 #endif
93 };
94 EXPORT_SYMBOL_GPL(init_pid_ns);
95 
96 /*
97  * Note: disable interrupts while the pidmap_lock is held as an
98  * interrupt might come in and do read_lock(&tasklist_lock).
99  *
100  * If we don't disable interrupts there is a nasty deadlock between
101  * detach_pid()->free_pid() and another cpu that does
102  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
103  * read_lock(&tasklist_lock);
104  *
105  * After we clean up the tasklist_lock and know there are no
106  * irq handlers that take it we can leave the interrupts enabled.
107  * For now it is easier to be safe than to prove it can't happen.
108  */
109 
110 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
111 
112 void put_pid(struct pid *pid)
113 {
114 	struct pid_namespace *ns;
115 
116 	if (!pid)
117 		return;
118 
119 	ns = pid->numbers[pid->level].ns;
120 	if (refcount_dec_and_test(&pid->count)) {
121 		kmem_cache_free(ns->pid_cachep, pid);
122 		put_pid_ns(ns);
123 	}
124 }
125 EXPORT_SYMBOL_GPL(put_pid);
126 
127 static void delayed_put_pid(struct rcu_head *rhp)
128 {
129 	struct pid *pid = container_of(rhp, struct pid, rcu);
130 	put_pid(pid);
131 }
132 
133 void free_pid(struct pid *pid)
134 {
135 	/* We can be called with write_lock_irq(&tasklist_lock) held */
136 	int i;
137 	unsigned long flags;
138 
139 	spin_lock_irqsave(&pidmap_lock, flags);
140 	for (i = 0; i <= pid->level; i++) {
141 		struct upid *upid = pid->numbers + i;
142 		struct pid_namespace *ns = upid->ns;
143 		switch (--ns->pid_allocated) {
144 		case 2:
145 		case 1:
146 			/* When all that is left in the pid namespace
147 			 * is the reaper wake up the reaper.  The reaper
148 			 * may be sleeping in zap_pid_ns_processes().
149 			 */
150 			wake_up_process(ns->child_reaper);
151 			break;
152 		case PIDNS_ADDING:
153 			/* Handle a fork failure of the first process */
154 			WARN_ON(ns->child_reaper);
155 			ns->pid_allocated = 0;
156 			break;
157 		}
158 
159 		idr_remove(&ns->idr, upid->nr);
160 	}
161 	spin_unlock_irqrestore(&pidmap_lock, flags);
162 
163 	call_rcu(&pid->rcu, delayed_put_pid);
164 }
165 
166 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
167 		      size_t set_tid_size)
168 {
169 	struct pid *pid;
170 	enum pid_type type;
171 	int i, nr;
172 	struct pid_namespace *tmp;
173 	struct upid *upid;
174 	int retval = -ENOMEM;
175 
176 	/*
177 	 * set_tid_size contains the size of the set_tid array. Starting at
178 	 * the most nested currently active PID namespace it tells alloc_pid()
179 	 * which PID to set for a process in that most nested PID namespace
180 	 * up to set_tid_size PID namespaces. It does not have to set the PID
181 	 * for a process in all nested PID namespaces but set_tid_size must
182 	 * never be greater than the current ns->level + 1.
183 	 */
184 	if (set_tid_size > ns->level + 1)
185 		return ERR_PTR(-EINVAL);
186 
187 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
188 	if (!pid)
189 		return ERR_PTR(retval);
190 
191 	tmp = ns;
192 	pid->level = ns->level;
193 
194 	for (i = ns->level; i >= 0; i--) {
195 		int tid = 0;
196 
197 		if (set_tid_size) {
198 			tid = set_tid[ns->level - i];
199 
200 			retval = -EINVAL;
201 			if (tid < 1 || tid >= pid_max)
202 				goto out_free;
203 			/*
204 			 * Also fail if a PID != 1 is requested and
205 			 * no PID 1 exists.
206 			 */
207 			if (tid != 1 && !tmp->child_reaper)
208 				goto out_free;
209 			retval = -EPERM;
210 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
211 				goto out_free;
212 			set_tid_size--;
213 		}
214 
215 		idr_preload(GFP_KERNEL);
216 		spin_lock_irq(&pidmap_lock);
217 
218 		if (tid) {
219 			nr = idr_alloc(&tmp->idr, NULL, tid,
220 				       tid + 1, GFP_ATOMIC);
221 			/*
222 			 * If ENOSPC is returned it means that the PID is
223 			 * alreay in use. Return EEXIST in that case.
224 			 */
225 			if (nr == -ENOSPC)
226 				nr = -EEXIST;
227 		} else {
228 			int pid_min = 1;
229 			/*
230 			 * init really needs pid 1, but after reaching the
231 			 * maximum wrap back to RESERVED_PIDS
232 			 */
233 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
234 				pid_min = RESERVED_PIDS;
235 
236 			/*
237 			 * Store a null pointer so find_pid_ns does not find
238 			 * a partially initialized PID (see below).
239 			 */
240 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
241 					      pid_max, GFP_ATOMIC);
242 		}
243 		spin_unlock_irq(&pidmap_lock);
244 		idr_preload_end();
245 
246 		if (nr < 0) {
247 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
248 			goto out_free;
249 		}
250 
251 		pid->numbers[i].nr = nr;
252 		pid->numbers[i].ns = tmp;
253 		tmp = tmp->parent;
254 	}
255 
256 	/*
257 	 * ENOMEM is not the most obvious choice especially for the case
258 	 * where the child subreaper has already exited and the pid
259 	 * namespace denies the creation of any new processes. But ENOMEM
260 	 * is what we have exposed to userspace for a long time and it is
261 	 * documented behavior for pid namespaces. So we can't easily
262 	 * change it even if there were an error code better suited.
263 	 */
264 	retval = -ENOMEM;
265 
266 	get_pid_ns(ns);
267 	refcount_set(&pid->count, 1);
268 	spin_lock_init(&pid->lock);
269 	for (type = 0; type < PIDTYPE_MAX; ++type)
270 		INIT_HLIST_HEAD(&pid->tasks[type]);
271 
272 	init_waitqueue_head(&pid->wait_pidfd);
273 	INIT_HLIST_HEAD(&pid->inodes);
274 
275 	upid = pid->numbers + ns->level;
276 	spin_lock_irq(&pidmap_lock);
277 	if (!(ns->pid_allocated & PIDNS_ADDING))
278 		goto out_unlock;
279 	pid->stashed = NULL;
280 	pid->ino = ++pidfs_ino;
281 	for ( ; upid >= pid->numbers; --upid) {
282 		/* Make the PID visible to find_pid_ns. */
283 		idr_replace(&upid->ns->idr, pid, upid->nr);
284 		upid->ns->pid_allocated++;
285 	}
286 	spin_unlock_irq(&pidmap_lock);
287 
288 	return pid;
289 
290 out_unlock:
291 	spin_unlock_irq(&pidmap_lock);
292 	put_pid_ns(ns);
293 
294 out_free:
295 	spin_lock_irq(&pidmap_lock);
296 	while (++i <= ns->level) {
297 		upid = pid->numbers + i;
298 		idr_remove(&upid->ns->idr, upid->nr);
299 	}
300 
301 	/* On failure to allocate the first pid, reset the state */
302 	if (ns->pid_allocated == PIDNS_ADDING)
303 		idr_set_cursor(&ns->idr, 0);
304 
305 	spin_unlock_irq(&pidmap_lock);
306 
307 	kmem_cache_free(ns->pid_cachep, pid);
308 	return ERR_PTR(retval);
309 }
310 
311 void disable_pid_allocation(struct pid_namespace *ns)
312 {
313 	spin_lock_irq(&pidmap_lock);
314 	ns->pid_allocated &= ~PIDNS_ADDING;
315 	spin_unlock_irq(&pidmap_lock);
316 }
317 
318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319 {
320 	return idr_find(&ns->idr, nr);
321 }
322 EXPORT_SYMBOL_GPL(find_pid_ns);
323 
324 struct pid *find_vpid(int nr)
325 {
326 	return find_pid_ns(nr, task_active_pid_ns(current));
327 }
328 EXPORT_SYMBOL_GPL(find_vpid);
329 
330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331 {
332 	return (type == PIDTYPE_PID) ?
333 		&task->thread_pid :
334 		&task->signal->pids[type];
335 }
336 
337 /*
338  * attach_pid() must be called with the tasklist_lock write-held.
339  */
340 void attach_pid(struct task_struct *task, enum pid_type type)
341 {
342 	struct pid *pid = *task_pid_ptr(task, type);
343 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
344 }
345 
346 static void __change_pid(struct task_struct *task, enum pid_type type,
347 			struct pid *new)
348 {
349 	struct pid **pid_ptr = task_pid_ptr(task, type);
350 	struct pid *pid;
351 	int tmp;
352 
353 	pid = *pid_ptr;
354 
355 	hlist_del_rcu(&task->pid_links[type]);
356 	*pid_ptr = new;
357 
358 	if (type == PIDTYPE_PID) {
359 		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
360 		wake_up_all(&pid->wait_pidfd);
361 	}
362 
363 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364 		if (pid_has_task(pid, tmp))
365 			return;
366 
367 	free_pid(pid);
368 }
369 
370 void detach_pid(struct task_struct *task, enum pid_type type)
371 {
372 	__change_pid(task, type, NULL);
373 }
374 
375 void change_pid(struct task_struct *task, enum pid_type type,
376 		struct pid *pid)
377 {
378 	__change_pid(task, type, pid);
379 	attach_pid(task, type);
380 }
381 
382 void exchange_tids(struct task_struct *left, struct task_struct *right)
383 {
384 	struct pid *pid1 = left->thread_pid;
385 	struct pid *pid2 = right->thread_pid;
386 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388 
389 	/* Swap the single entry tid lists */
390 	hlists_swap_heads_rcu(head1, head2);
391 
392 	/* Swap the per task_struct pid */
393 	rcu_assign_pointer(left->thread_pid, pid2);
394 	rcu_assign_pointer(right->thread_pid, pid1);
395 
396 	/* Swap the cached value */
397 	WRITE_ONCE(left->pid, pid_nr(pid2));
398 	WRITE_ONCE(right->pid, pid_nr(pid1));
399 }
400 
401 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
402 void transfer_pid(struct task_struct *old, struct task_struct *new,
403 			   enum pid_type type)
404 {
405 	WARN_ON_ONCE(type == PIDTYPE_PID);
406 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407 }
408 
409 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410 {
411 	struct task_struct *result = NULL;
412 	if (pid) {
413 		struct hlist_node *first;
414 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415 					      lockdep_tasklist_lock_is_held());
416 		if (first)
417 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418 	}
419 	return result;
420 }
421 EXPORT_SYMBOL(pid_task);
422 
423 /*
424  * Must be called under rcu_read_lock().
425  */
426 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427 {
428 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
430 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431 }
432 
433 struct task_struct *find_task_by_vpid(pid_t vnr)
434 {
435 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436 }
437 
438 struct task_struct *find_get_task_by_vpid(pid_t nr)
439 {
440 	struct task_struct *task;
441 
442 	rcu_read_lock();
443 	task = find_task_by_vpid(nr);
444 	if (task)
445 		get_task_struct(task);
446 	rcu_read_unlock();
447 
448 	return task;
449 }
450 
451 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
452 {
453 	struct pid *pid;
454 	rcu_read_lock();
455 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
456 	rcu_read_unlock();
457 	return pid;
458 }
459 EXPORT_SYMBOL_GPL(get_task_pid);
460 
461 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462 {
463 	struct task_struct *result;
464 	rcu_read_lock();
465 	result = pid_task(pid, type);
466 	if (result)
467 		get_task_struct(result);
468 	rcu_read_unlock();
469 	return result;
470 }
471 EXPORT_SYMBOL_GPL(get_pid_task);
472 
473 struct pid *find_get_pid(pid_t nr)
474 {
475 	struct pid *pid;
476 
477 	rcu_read_lock();
478 	pid = get_pid(find_vpid(nr));
479 	rcu_read_unlock();
480 
481 	return pid;
482 }
483 EXPORT_SYMBOL_GPL(find_get_pid);
484 
485 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486 {
487 	struct upid *upid;
488 	pid_t nr = 0;
489 
490 	if (pid && ns->level <= pid->level) {
491 		upid = &pid->numbers[ns->level];
492 		if (upid->ns == ns)
493 			nr = upid->nr;
494 	}
495 	return nr;
496 }
497 EXPORT_SYMBOL_GPL(pid_nr_ns);
498 
499 pid_t pid_vnr(struct pid *pid)
500 {
501 	return pid_nr_ns(pid, task_active_pid_ns(current));
502 }
503 EXPORT_SYMBOL_GPL(pid_vnr);
504 
505 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506 			struct pid_namespace *ns)
507 {
508 	pid_t nr = 0;
509 
510 	rcu_read_lock();
511 	if (!ns)
512 		ns = task_active_pid_ns(current);
513 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
514 	rcu_read_unlock();
515 
516 	return nr;
517 }
518 EXPORT_SYMBOL(__task_pid_nr_ns);
519 
520 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
521 {
522 	return ns_of_pid(task_pid(tsk));
523 }
524 EXPORT_SYMBOL_GPL(task_active_pid_ns);
525 
526 /*
527  * Used by proc to find the first pid that is greater than or equal to nr.
528  *
529  * If there is a pid at nr this function is exactly the same as find_pid_ns.
530  */
531 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
532 {
533 	return idr_get_next(&ns->idr, &nr);
534 }
535 EXPORT_SYMBOL_GPL(find_ge_pid);
536 
537 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
538 {
539 	struct fd f;
540 	struct pid *pid;
541 
542 	f = fdget(fd);
543 	if (!fd_file(f))
544 		return ERR_PTR(-EBADF);
545 
546 	pid = pidfd_pid(fd_file(f));
547 	if (!IS_ERR(pid)) {
548 		get_pid(pid);
549 		*flags = fd_file(f)->f_flags;
550 	}
551 
552 	fdput(f);
553 	return pid;
554 }
555 
556 /**
557  * pidfd_get_task() - Get the task associated with a pidfd
558  *
559  * @pidfd: pidfd for which to get the task
560  * @flags: flags associated with this pidfd
561  *
562  * Return the task associated with @pidfd. The function takes a reference on
563  * the returned task. The caller is responsible for releasing that reference.
564  *
565  * Return: On success, the task_struct associated with the pidfd.
566  *	   On error, a negative errno number will be returned.
567  */
568 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
569 {
570 	unsigned int f_flags;
571 	struct pid *pid;
572 	struct task_struct *task;
573 
574 	pid = pidfd_get_pid(pidfd, &f_flags);
575 	if (IS_ERR(pid))
576 		return ERR_CAST(pid);
577 
578 	task = get_pid_task(pid, PIDTYPE_TGID);
579 	put_pid(pid);
580 	if (!task)
581 		return ERR_PTR(-ESRCH);
582 
583 	*flags = f_flags;
584 	return task;
585 }
586 
587 /**
588  * pidfd_create() - Create a new pid file descriptor.
589  *
590  * @pid:   struct pid that the pidfd will reference
591  * @flags: flags to pass
592  *
593  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
594  *
595  * Note, that this function can only be called after the fd table has
596  * been unshared to avoid leaking the pidfd to the new process.
597  *
598  * This symbol should not be explicitly exported to loadable modules.
599  *
600  * Return: On success, a cloexec pidfd is returned.
601  *         On error, a negative errno number will be returned.
602  */
603 static int pidfd_create(struct pid *pid, unsigned int flags)
604 {
605 	int pidfd;
606 	struct file *pidfd_file;
607 
608 	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
609 	if (pidfd < 0)
610 		return pidfd;
611 
612 	fd_install(pidfd, pidfd_file);
613 	return pidfd;
614 }
615 
616 /**
617  * sys_pidfd_open() - Open new pid file descriptor.
618  *
619  * @pid:   pid for which to retrieve a pidfd
620  * @flags: flags to pass
621  *
622  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
623  * the task identified by @pid. Without PIDFD_THREAD flag the target task
624  * must be a thread-group leader.
625  *
626  * Return: On success, a cloexec pidfd is returned.
627  *         On error, a negative errno number will be returned.
628  */
629 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
630 {
631 	int fd;
632 	struct pid *p;
633 
634 	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
635 		return -EINVAL;
636 
637 	if (pid <= 0)
638 		return -EINVAL;
639 
640 	p = find_get_pid(pid);
641 	if (!p)
642 		return -ESRCH;
643 
644 	fd = pidfd_create(p, flags);
645 
646 	put_pid(p);
647 	return fd;
648 }
649 
650 void __init pid_idr_init(void)
651 {
652 	/* Verify no one has done anything silly: */
653 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
654 
655 	/* bump default and minimum pid_max based on number of cpus */
656 	pid_max = min(pid_max_max, max_t(int, pid_max,
657 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
658 	pid_max_min = max_t(int, pid_max_min,
659 				PIDS_PER_CPU_MIN * num_possible_cpus());
660 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
661 
662 	idr_init(&init_pid_ns.idr);
663 
664 	init_pid_ns.pid_cachep = kmem_cache_create("pid",
665 			struct_size_t(struct pid, numbers, 1),
666 			__alignof__(struct pid),
667 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
668 			NULL);
669 }
670 
671 static struct file *__pidfd_fget(struct task_struct *task, int fd)
672 {
673 	struct file *file;
674 	int ret;
675 
676 	ret = down_read_killable(&task->signal->exec_update_lock);
677 	if (ret)
678 		return ERR_PTR(ret);
679 
680 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
681 		file = fget_task(task, fd);
682 	else
683 		file = ERR_PTR(-EPERM);
684 
685 	up_read(&task->signal->exec_update_lock);
686 
687 	if (!file) {
688 		/*
689 		 * It is possible that the target thread is exiting; it can be
690 		 * either:
691 		 * 1. before exit_signals(), which gives a real fd
692 		 * 2. before exit_files() takes the task_lock() gives a real fd
693 		 * 3. after exit_files() releases task_lock(), ->files is NULL;
694 		 *    this has PF_EXITING, since it was set in exit_signals(),
695 		 *    __pidfd_fget() returns EBADF.
696 		 * In case 3 we get EBADF, but that really means ESRCH, since
697 		 * the task is currently exiting and has freed its files
698 		 * struct, so we fix it up.
699 		 */
700 		if (task->flags & PF_EXITING)
701 			file = ERR_PTR(-ESRCH);
702 		else
703 			file = ERR_PTR(-EBADF);
704 	}
705 
706 	return file;
707 }
708 
709 static int pidfd_getfd(struct pid *pid, int fd)
710 {
711 	struct task_struct *task;
712 	struct file *file;
713 	int ret;
714 
715 	task = get_pid_task(pid, PIDTYPE_PID);
716 	if (!task)
717 		return -ESRCH;
718 
719 	file = __pidfd_fget(task, fd);
720 	put_task_struct(task);
721 	if (IS_ERR(file))
722 		return PTR_ERR(file);
723 
724 	ret = receive_fd(file, NULL, O_CLOEXEC);
725 	fput(file);
726 
727 	return ret;
728 }
729 
730 /**
731  * sys_pidfd_getfd() - Get a file descriptor from another process
732  *
733  * @pidfd:	the pidfd file descriptor of the process
734  * @fd:		the file descriptor number to get
735  * @flags:	flags on how to get the fd (reserved)
736  *
737  * This syscall gets a copy of a file descriptor from another process
738  * based on the pidfd, and file descriptor number. It requires that
739  * the calling process has the ability to ptrace the process represented
740  * by the pidfd. The process which is having its file descriptor copied
741  * is otherwise unaffected.
742  *
743  * Return: On success, a cloexec file descriptor is returned.
744  *         On error, a negative errno number will be returned.
745  */
746 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
747 		unsigned int, flags)
748 {
749 	struct pid *pid;
750 	struct fd f;
751 	int ret;
752 
753 	/* flags is currently unused - make sure it's unset */
754 	if (flags)
755 		return -EINVAL;
756 
757 	f = fdget(pidfd);
758 	if (!fd_file(f))
759 		return -EBADF;
760 
761 	pid = pidfd_pid(fd_file(f));
762 	if (IS_ERR(pid))
763 		ret = PTR_ERR(pid);
764 	else
765 		ret = pidfd_getfd(pid, fd);
766 
767 	fdput(f);
768 	return ret;
769 }
770