xref: /linux/kernel/pid.c (revision 4e0385dd7469d933c4adf84a617f872ca547aa07)
1 /*
2  * Generic pidhash and scalable, time-bounded PID allocator
3  *
4  * (C) 2002-2003 Nadia Yvette Chambers, IBM
5  * (C) 2004 Nadia Yvette Chambers, Oracle
6  * (C) 2002-2004 Ingo Molnar, Red Hat
7  *
8  * pid-structures are backing objects for tasks sharing a given ID to chain
9  * against. There is very little to them aside from hashing them and
10  * parking tasks using given ID's on a list.
11  *
12  * The hash is always changed with the tasklist_lock write-acquired,
13  * and the hash is only accessed with the tasklist_lock at least
14  * read-acquired, so there's no additional SMP locking needed here.
15  *
16  * We have a list of bitmap pages, which bitmaps represent the PID space.
17  * Allocating and freeing PIDs is completely lockless. The worst-case
18  * allocation scenario when all but one out of 1 million PIDs possible are
19  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
21  *
22  * Pid namespaces:
23  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25  *     Many thanks to Oleg Nesterov for comments and help
26  *
27  */
28 
29 #include <linux/mm.h>
30 #include <linux/export.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 
42 #define pid_hashfn(nr, ns)	\
43 	hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
44 static struct hlist_head *pid_hash;
45 static unsigned int pidhash_shift = 4;
46 struct pid init_struct_pid = INIT_STRUCT_PID;
47 
48 int pid_max = PID_MAX_DEFAULT;
49 
50 #define RESERVED_PIDS		300
51 
52 int pid_max_min = RESERVED_PIDS + 1;
53 int pid_max_max = PID_MAX_LIMIT;
54 
55 static inline int mk_pid(struct pid_namespace *pid_ns,
56 		struct pidmap *map, int off)
57 {
58 	return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
59 }
60 
61 #define find_next_offset(map, off)					\
62 		find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
63 
64 /*
65  * PID-map pages start out as NULL, they get allocated upon
66  * first use and are never deallocated. This way a low pid_max
67  * value does not cause lots of bitmaps to be allocated, but
68  * the scheme scales to up to 4 million PIDs, runtime.
69  */
70 struct pid_namespace init_pid_ns = {
71 	.kref = KREF_INIT(2),
72 	.pidmap = {
73 		[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
74 	},
75 	.last_pid = 0,
76 	.nr_hashed = PIDNS_HASH_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86 
87 /*
88  * Note: disable interrupts while the pidmap_lock is held as an
89  * interrupt might come in and do read_lock(&tasklist_lock).
90  *
91  * If we don't disable interrupts there is a nasty deadlock between
92  * detach_pid()->free_pid() and another cpu that does
93  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94  * read_lock(&tasklist_lock);
95  *
96  * After we clean up the tasklist_lock and know there are no
97  * irq handlers that take it we can leave the interrupts enabled.
98  * For now it is easier to be safe than to prove it can't happen.
99  */
100 
101 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102 
103 static void free_pidmap(struct upid *upid)
104 {
105 	int nr = upid->nr;
106 	struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
107 	int offset = nr & BITS_PER_PAGE_MASK;
108 
109 	clear_bit(offset, map->page);
110 	atomic_inc(&map->nr_free);
111 }
112 
113 /*
114  * If we started walking pids at 'base', is 'a' seen before 'b'?
115  */
116 static int pid_before(int base, int a, int b)
117 {
118 	/*
119 	 * This is the same as saying
120 	 *
121 	 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
122 	 * and that mapping orders 'a' and 'b' with respect to 'base'.
123 	 */
124 	return (unsigned)(a - base) < (unsigned)(b - base);
125 }
126 
127 /*
128  * We might be racing with someone else trying to set pid_ns->last_pid
129  * at the pid allocation time (there's also a sysctl for this, but racing
130  * with this one is OK, see comment in kernel/pid_namespace.c about it).
131  * We want the winner to have the "later" value, because if the
132  * "earlier" value prevails, then a pid may get reused immediately.
133  *
134  * Since pids rollover, it is not sufficient to just pick the bigger
135  * value.  We have to consider where we started counting from.
136  *
137  * 'base' is the value of pid_ns->last_pid that we observed when
138  * we started looking for a pid.
139  *
140  * 'pid' is the pid that we eventually found.
141  */
142 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
143 {
144 	int prev;
145 	int last_write = base;
146 	do {
147 		prev = last_write;
148 		last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
149 	} while ((prev != last_write) && (pid_before(base, last_write, pid)));
150 }
151 
152 static int alloc_pidmap(struct pid_namespace *pid_ns)
153 {
154 	int i, offset, max_scan, pid, last = pid_ns->last_pid;
155 	struct pidmap *map;
156 
157 	pid = last + 1;
158 	if (pid >= pid_max)
159 		pid = RESERVED_PIDS;
160 	offset = pid & BITS_PER_PAGE_MASK;
161 	map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
162 	/*
163 	 * If last_pid points into the middle of the map->page we
164 	 * want to scan this bitmap block twice, the second time
165 	 * we start with offset == 0 (or RESERVED_PIDS).
166 	 */
167 	max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
168 	for (i = 0; i <= max_scan; ++i) {
169 		if (unlikely(!map->page)) {
170 			void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
171 			/*
172 			 * Free the page if someone raced with us
173 			 * installing it:
174 			 */
175 			spin_lock_irq(&pidmap_lock);
176 			if (!map->page) {
177 				map->page = page;
178 				page = NULL;
179 			}
180 			spin_unlock_irq(&pidmap_lock);
181 			kfree(page);
182 			if (unlikely(!map->page))
183 				return -ENOMEM;
184 		}
185 		if (likely(atomic_read(&map->nr_free))) {
186 			for ( ; ; ) {
187 				if (!test_and_set_bit(offset, map->page)) {
188 					atomic_dec(&map->nr_free);
189 					set_last_pid(pid_ns, last, pid);
190 					return pid;
191 				}
192 				offset = find_next_offset(map, offset);
193 				if (offset >= BITS_PER_PAGE)
194 					break;
195 				pid = mk_pid(pid_ns, map, offset);
196 				if (pid >= pid_max)
197 					break;
198 			}
199 		}
200 		if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
201 			++map;
202 			offset = 0;
203 		} else {
204 			map = &pid_ns->pidmap[0];
205 			offset = RESERVED_PIDS;
206 			if (unlikely(last == offset))
207 				break;
208 		}
209 		pid = mk_pid(pid_ns, map, offset);
210 	}
211 	return -EAGAIN;
212 }
213 
214 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
215 {
216 	int offset;
217 	struct pidmap *map, *end;
218 
219 	if (last >= PID_MAX_LIMIT)
220 		return -1;
221 
222 	offset = (last + 1) & BITS_PER_PAGE_MASK;
223 	map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
224 	end = &pid_ns->pidmap[PIDMAP_ENTRIES];
225 	for (; map < end; map++, offset = 0) {
226 		if (unlikely(!map->page))
227 			continue;
228 		offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
229 		if (offset < BITS_PER_PAGE)
230 			return mk_pid(pid_ns, map, offset);
231 	}
232 	return -1;
233 }
234 
235 void put_pid(struct pid *pid)
236 {
237 	struct pid_namespace *ns;
238 
239 	if (!pid)
240 		return;
241 
242 	ns = pid->numbers[pid->level].ns;
243 	if ((atomic_read(&pid->count) == 1) ||
244 	     atomic_dec_and_test(&pid->count)) {
245 		kmem_cache_free(ns->pid_cachep, pid);
246 		put_pid_ns(ns);
247 	}
248 }
249 EXPORT_SYMBOL_GPL(put_pid);
250 
251 static void delayed_put_pid(struct rcu_head *rhp)
252 {
253 	struct pid *pid = container_of(rhp, struct pid, rcu);
254 	put_pid(pid);
255 }
256 
257 void free_pid(struct pid *pid)
258 {
259 	/* We can be called with write_lock_irq(&tasklist_lock) held */
260 	int i;
261 	unsigned long flags;
262 
263 	spin_lock_irqsave(&pidmap_lock, flags);
264 	for (i = 0; i <= pid->level; i++) {
265 		struct upid *upid = pid->numbers + i;
266 		struct pid_namespace *ns = upid->ns;
267 		hlist_del_rcu(&upid->pid_chain);
268 		switch(--ns->nr_hashed) {
269 		case 2:
270 		case 1:
271 			/* When all that is left in the pid namespace
272 			 * is the reaper wake up the reaper.  The reaper
273 			 * may be sleeping in zap_pid_ns_processes().
274 			 */
275 			wake_up_process(ns->child_reaper);
276 			break;
277 		case PIDNS_HASH_ADDING:
278 			/* Handle a fork failure of the first process */
279 			WARN_ON(ns->child_reaper);
280 			ns->nr_hashed = 0;
281 			/* fall through */
282 		case 0:
283 			schedule_work(&ns->proc_work);
284 			break;
285 		}
286 	}
287 	spin_unlock_irqrestore(&pidmap_lock, flags);
288 
289 	for (i = 0; i <= pid->level; i++)
290 		free_pidmap(pid->numbers + i);
291 
292 	call_rcu(&pid->rcu, delayed_put_pid);
293 }
294 
295 struct pid *alloc_pid(struct pid_namespace *ns)
296 {
297 	struct pid *pid;
298 	enum pid_type type;
299 	int i, nr;
300 	struct pid_namespace *tmp;
301 	struct upid *upid;
302 	int retval = -ENOMEM;
303 
304 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
305 	if (!pid)
306 		return ERR_PTR(retval);
307 
308 	tmp = ns;
309 	pid->level = ns->level;
310 	for (i = ns->level; i >= 0; i--) {
311 		nr = alloc_pidmap(tmp);
312 		if (nr < 0) {
313 			retval = nr;
314 			goto out_free;
315 		}
316 
317 		pid->numbers[i].nr = nr;
318 		pid->numbers[i].ns = tmp;
319 		tmp = tmp->parent;
320 	}
321 
322 	if (unlikely(is_child_reaper(pid))) {
323 		if (pid_ns_prepare_proc(ns))
324 			goto out_free;
325 	}
326 
327 	get_pid_ns(ns);
328 	atomic_set(&pid->count, 1);
329 	for (type = 0; type < PIDTYPE_MAX; ++type)
330 		INIT_HLIST_HEAD(&pid->tasks[type]);
331 
332 	upid = pid->numbers + ns->level;
333 	spin_lock_irq(&pidmap_lock);
334 	if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
335 		goto out_unlock;
336 	for ( ; upid >= pid->numbers; --upid) {
337 		hlist_add_head_rcu(&upid->pid_chain,
338 				&pid_hash[pid_hashfn(upid->nr, upid->ns)]);
339 		upid->ns->nr_hashed++;
340 	}
341 	spin_unlock_irq(&pidmap_lock);
342 
343 	return pid;
344 
345 out_unlock:
346 	spin_unlock_irq(&pidmap_lock);
347 	put_pid_ns(ns);
348 
349 out_free:
350 	while (++i <= ns->level)
351 		free_pidmap(pid->numbers + i);
352 
353 	kmem_cache_free(ns->pid_cachep, pid);
354 	return ERR_PTR(retval);
355 }
356 
357 void disable_pid_allocation(struct pid_namespace *ns)
358 {
359 	spin_lock_irq(&pidmap_lock);
360 	ns->nr_hashed &= ~PIDNS_HASH_ADDING;
361 	spin_unlock_irq(&pidmap_lock);
362 }
363 
364 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
365 {
366 	struct upid *pnr;
367 
368 	hlist_for_each_entry_rcu(pnr,
369 			&pid_hash[pid_hashfn(nr, ns)], pid_chain)
370 		if (pnr->nr == nr && pnr->ns == ns)
371 			return container_of(pnr, struct pid,
372 					numbers[ns->level]);
373 
374 	return NULL;
375 }
376 EXPORT_SYMBOL_GPL(find_pid_ns);
377 
378 struct pid *find_vpid(int nr)
379 {
380 	return find_pid_ns(nr, task_active_pid_ns(current));
381 }
382 EXPORT_SYMBOL_GPL(find_vpid);
383 
384 /*
385  * attach_pid() must be called with the tasklist_lock write-held.
386  */
387 void attach_pid(struct task_struct *task, enum pid_type type)
388 {
389 	struct pid_link *link = &task->pids[type];
390 	hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
391 }
392 
393 static void __change_pid(struct task_struct *task, enum pid_type type,
394 			struct pid *new)
395 {
396 	struct pid_link *link;
397 	struct pid *pid;
398 	int tmp;
399 
400 	link = &task->pids[type];
401 	pid = link->pid;
402 
403 	hlist_del_rcu(&link->node);
404 	link->pid = new;
405 
406 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
407 		if (!hlist_empty(&pid->tasks[tmp]))
408 			return;
409 
410 	free_pid(pid);
411 }
412 
413 void detach_pid(struct task_struct *task, enum pid_type type)
414 {
415 	__change_pid(task, type, NULL);
416 }
417 
418 void change_pid(struct task_struct *task, enum pid_type type,
419 		struct pid *pid)
420 {
421 	__change_pid(task, type, pid);
422 	attach_pid(task, type);
423 }
424 
425 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
426 void transfer_pid(struct task_struct *old, struct task_struct *new,
427 			   enum pid_type type)
428 {
429 	new->pids[type].pid = old->pids[type].pid;
430 	hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
431 }
432 
433 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
434 {
435 	struct task_struct *result = NULL;
436 	if (pid) {
437 		struct hlist_node *first;
438 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
439 					      lockdep_tasklist_lock_is_held());
440 		if (first)
441 			result = hlist_entry(first, struct task_struct, pids[(type)].node);
442 	}
443 	return result;
444 }
445 EXPORT_SYMBOL(pid_task);
446 
447 /*
448  * Must be called under rcu_read_lock().
449  */
450 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
451 {
452 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
453 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
454 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
455 }
456 
457 struct task_struct *find_task_by_vpid(pid_t vnr)
458 {
459 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
460 }
461 
462 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
463 {
464 	struct pid *pid;
465 	rcu_read_lock();
466 	if (type != PIDTYPE_PID)
467 		task = task->group_leader;
468 	pid = get_pid(rcu_dereference(task->pids[type].pid));
469 	rcu_read_unlock();
470 	return pid;
471 }
472 EXPORT_SYMBOL_GPL(get_task_pid);
473 
474 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
475 {
476 	struct task_struct *result;
477 	rcu_read_lock();
478 	result = pid_task(pid, type);
479 	if (result)
480 		get_task_struct(result);
481 	rcu_read_unlock();
482 	return result;
483 }
484 EXPORT_SYMBOL_GPL(get_pid_task);
485 
486 struct pid *find_get_pid(pid_t nr)
487 {
488 	struct pid *pid;
489 
490 	rcu_read_lock();
491 	pid = get_pid(find_vpid(nr));
492 	rcu_read_unlock();
493 
494 	return pid;
495 }
496 EXPORT_SYMBOL_GPL(find_get_pid);
497 
498 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
499 {
500 	struct upid *upid;
501 	pid_t nr = 0;
502 
503 	if (pid && ns->level <= pid->level) {
504 		upid = &pid->numbers[ns->level];
505 		if (upid->ns == ns)
506 			nr = upid->nr;
507 	}
508 	return nr;
509 }
510 EXPORT_SYMBOL_GPL(pid_nr_ns);
511 
512 pid_t pid_vnr(struct pid *pid)
513 {
514 	return pid_nr_ns(pid, task_active_pid_ns(current));
515 }
516 EXPORT_SYMBOL_GPL(pid_vnr);
517 
518 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
519 			struct pid_namespace *ns)
520 {
521 	pid_t nr = 0;
522 
523 	rcu_read_lock();
524 	if (!ns)
525 		ns = task_active_pid_ns(current);
526 	if (likely(pid_alive(task))) {
527 		if (type != PIDTYPE_PID)
528 			task = task->group_leader;
529 		nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
530 	}
531 	rcu_read_unlock();
532 
533 	return nr;
534 }
535 EXPORT_SYMBOL(__task_pid_nr_ns);
536 
537 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
538 {
539 	return pid_nr_ns(task_tgid(tsk), ns);
540 }
541 EXPORT_SYMBOL(task_tgid_nr_ns);
542 
543 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
544 {
545 	return ns_of_pid(task_pid(tsk));
546 }
547 EXPORT_SYMBOL_GPL(task_active_pid_ns);
548 
549 /*
550  * Used by proc to find the first pid that is greater than or equal to nr.
551  *
552  * If there is a pid at nr this function is exactly the same as find_pid_ns.
553  */
554 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
555 {
556 	struct pid *pid;
557 
558 	do {
559 		pid = find_pid_ns(nr, ns);
560 		if (pid)
561 			break;
562 		nr = next_pidmap(ns, nr);
563 	} while (nr > 0);
564 
565 	return pid;
566 }
567 
568 /*
569  * The pid hash table is scaled according to the amount of memory in the
570  * machine.  From a minimum of 16 slots up to 4096 slots at one gigabyte or
571  * more.
572  */
573 void __init pidhash_init(void)
574 {
575 	unsigned int i, pidhash_size;
576 
577 	pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
578 					   HASH_EARLY | HASH_SMALL,
579 					   &pidhash_shift, NULL,
580 					   0, 4096);
581 	pidhash_size = 1U << pidhash_shift;
582 
583 	for (i = 0; i < pidhash_size; i++)
584 		INIT_HLIST_HEAD(&pid_hash[i]);
585 }
586 
587 void __init pidmap_init(void)
588 {
589 	/* Verify no one has done anything silly: */
590 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
591 
592 	/* bump default and minimum pid_max based on number of cpus */
593 	pid_max = min(pid_max_max, max_t(int, pid_max,
594 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
595 	pid_max_min = max_t(int, pid_max_min,
596 				PIDS_PER_CPU_MIN * num_possible_cpus());
597 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
598 
599 	init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
600 	/* Reserve PID 0. We never call free_pidmap(0) */
601 	set_bit(0, init_pid_ns.pidmap[0].page);
602 	atomic_dec(&init_pid_ns.pidmap[0].nr_free);
603 
604 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
605 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
606 }
607