1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/proc_fs.h> 41 42 #define pid_hashfn(nr, ns) \ 43 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 44 static struct hlist_head *pid_hash; 45 static unsigned int pidhash_shift = 4; 46 struct pid init_struct_pid = INIT_STRUCT_PID; 47 48 int pid_max = PID_MAX_DEFAULT; 49 50 #define RESERVED_PIDS 300 51 52 int pid_max_min = RESERVED_PIDS + 1; 53 int pid_max_max = PID_MAX_LIMIT; 54 55 static inline int mk_pid(struct pid_namespace *pid_ns, 56 struct pidmap *map, int off) 57 { 58 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 59 } 60 61 #define find_next_offset(map, off) \ 62 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 63 64 /* 65 * PID-map pages start out as NULL, they get allocated upon 66 * first use and are never deallocated. This way a low pid_max 67 * value does not cause lots of bitmaps to be allocated, but 68 * the scheme scales to up to 4 million PIDs, runtime. 69 */ 70 struct pid_namespace init_pid_ns = { 71 .kref = KREF_INIT(2), 72 .pidmap = { 73 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 74 }, 75 .last_pid = 0, 76 .nr_hashed = PIDNS_HASH_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 static void free_pidmap(struct upid *upid) 104 { 105 int nr = upid->nr; 106 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 107 int offset = nr & BITS_PER_PAGE_MASK; 108 109 clear_bit(offset, map->page); 110 atomic_inc(&map->nr_free); 111 } 112 113 /* 114 * If we started walking pids at 'base', is 'a' seen before 'b'? 115 */ 116 static int pid_before(int base, int a, int b) 117 { 118 /* 119 * This is the same as saying 120 * 121 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 122 * and that mapping orders 'a' and 'b' with respect to 'base'. 123 */ 124 return (unsigned)(a - base) < (unsigned)(b - base); 125 } 126 127 /* 128 * We might be racing with someone else trying to set pid_ns->last_pid 129 * at the pid allocation time (there's also a sysctl for this, but racing 130 * with this one is OK, see comment in kernel/pid_namespace.c about it). 131 * We want the winner to have the "later" value, because if the 132 * "earlier" value prevails, then a pid may get reused immediately. 133 * 134 * Since pids rollover, it is not sufficient to just pick the bigger 135 * value. We have to consider where we started counting from. 136 * 137 * 'base' is the value of pid_ns->last_pid that we observed when 138 * we started looking for a pid. 139 * 140 * 'pid' is the pid that we eventually found. 141 */ 142 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 143 { 144 int prev; 145 int last_write = base; 146 do { 147 prev = last_write; 148 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 149 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 150 } 151 152 static int alloc_pidmap(struct pid_namespace *pid_ns) 153 { 154 int i, offset, max_scan, pid, last = pid_ns->last_pid; 155 struct pidmap *map; 156 157 pid = last + 1; 158 if (pid >= pid_max) 159 pid = RESERVED_PIDS; 160 offset = pid & BITS_PER_PAGE_MASK; 161 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 162 /* 163 * If last_pid points into the middle of the map->page we 164 * want to scan this bitmap block twice, the second time 165 * we start with offset == 0 (or RESERVED_PIDS). 166 */ 167 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 168 for (i = 0; i <= max_scan; ++i) { 169 if (unlikely(!map->page)) { 170 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 171 /* 172 * Free the page if someone raced with us 173 * installing it: 174 */ 175 spin_lock_irq(&pidmap_lock); 176 if (!map->page) { 177 map->page = page; 178 page = NULL; 179 } 180 spin_unlock_irq(&pidmap_lock); 181 kfree(page); 182 if (unlikely(!map->page)) 183 return -ENOMEM; 184 } 185 if (likely(atomic_read(&map->nr_free))) { 186 for ( ; ; ) { 187 if (!test_and_set_bit(offset, map->page)) { 188 atomic_dec(&map->nr_free); 189 set_last_pid(pid_ns, last, pid); 190 return pid; 191 } 192 offset = find_next_offset(map, offset); 193 if (offset >= BITS_PER_PAGE) 194 break; 195 pid = mk_pid(pid_ns, map, offset); 196 if (pid >= pid_max) 197 break; 198 } 199 } 200 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 201 ++map; 202 offset = 0; 203 } else { 204 map = &pid_ns->pidmap[0]; 205 offset = RESERVED_PIDS; 206 if (unlikely(last == offset)) 207 break; 208 } 209 pid = mk_pid(pid_ns, map, offset); 210 } 211 return -EAGAIN; 212 } 213 214 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 215 { 216 int offset; 217 struct pidmap *map, *end; 218 219 if (last >= PID_MAX_LIMIT) 220 return -1; 221 222 offset = (last + 1) & BITS_PER_PAGE_MASK; 223 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 224 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 225 for (; map < end; map++, offset = 0) { 226 if (unlikely(!map->page)) 227 continue; 228 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 229 if (offset < BITS_PER_PAGE) 230 return mk_pid(pid_ns, map, offset); 231 } 232 return -1; 233 } 234 235 void put_pid(struct pid *pid) 236 { 237 struct pid_namespace *ns; 238 239 if (!pid) 240 return; 241 242 ns = pid->numbers[pid->level].ns; 243 if ((atomic_read(&pid->count) == 1) || 244 atomic_dec_and_test(&pid->count)) { 245 kmem_cache_free(ns->pid_cachep, pid); 246 put_pid_ns(ns); 247 } 248 } 249 EXPORT_SYMBOL_GPL(put_pid); 250 251 static void delayed_put_pid(struct rcu_head *rhp) 252 { 253 struct pid *pid = container_of(rhp, struct pid, rcu); 254 put_pid(pid); 255 } 256 257 void free_pid(struct pid *pid) 258 { 259 /* We can be called with write_lock_irq(&tasklist_lock) held */ 260 int i; 261 unsigned long flags; 262 263 spin_lock_irqsave(&pidmap_lock, flags); 264 for (i = 0; i <= pid->level; i++) { 265 struct upid *upid = pid->numbers + i; 266 struct pid_namespace *ns = upid->ns; 267 hlist_del_rcu(&upid->pid_chain); 268 switch(--ns->nr_hashed) { 269 case 2: 270 case 1: 271 /* When all that is left in the pid namespace 272 * is the reaper wake up the reaper. The reaper 273 * may be sleeping in zap_pid_ns_processes(). 274 */ 275 wake_up_process(ns->child_reaper); 276 break; 277 case PIDNS_HASH_ADDING: 278 /* Handle a fork failure of the first process */ 279 WARN_ON(ns->child_reaper); 280 ns->nr_hashed = 0; 281 /* fall through */ 282 case 0: 283 schedule_work(&ns->proc_work); 284 break; 285 } 286 } 287 spin_unlock_irqrestore(&pidmap_lock, flags); 288 289 for (i = 0; i <= pid->level; i++) 290 free_pidmap(pid->numbers + i); 291 292 call_rcu(&pid->rcu, delayed_put_pid); 293 } 294 295 struct pid *alloc_pid(struct pid_namespace *ns) 296 { 297 struct pid *pid; 298 enum pid_type type; 299 int i, nr; 300 struct pid_namespace *tmp; 301 struct upid *upid; 302 int retval = -ENOMEM; 303 304 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 305 if (!pid) 306 return ERR_PTR(retval); 307 308 tmp = ns; 309 pid->level = ns->level; 310 for (i = ns->level; i >= 0; i--) { 311 nr = alloc_pidmap(tmp); 312 if (nr < 0) { 313 retval = nr; 314 goto out_free; 315 } 316 317 pid->numbers[i].nr = nr; 318 pid->numbers[i].ns = tmp; 319 tmp = tmp->parent; 320 } 321 322 if (unlikely(is_child_reaper(pid))) { 323 if (pid_ns_prepare_proc(ns)) 324 goto out_free; 325 } 326 327 get_pid_ns(ns); 328 atomic_set(&pid->count, 1); 329 for (type = 0; type < PIDTYPE_MAX; ++type) 330 INIT_HLIST_HEAD(&pid->tasks[type]); 331 332 upid = pid->numbers + ns->level; 333 spin_lock_irq(&pidmap_lock); 334 if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) 335 goto out_unlock; 336 for ( ; upid >= pid->numbers; --upid) { 337 hlist_add_head_rcu(&upid->pid_chain, 338 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 339 upid->ns->nr_hashed++; 340 } 341 spin_unlock_irq(&pidmap_lock); 342 343 return pid; 344 345 out_unlock: 346 spin_unlock_irq(&pidmap_lock); 347 put_pid_ns(ns); 348 349 out_free: 350 while (++i <= ns->level) 351 free_pidmap(pid->numbers + i); 352 353 kmem_cache_free(ns->pid_cachep, pid); 354 return ERR_PTR(retval); 355 } 356 357 void disable_pid_allocation(struct pid_namespace *ns) 358 { 359 spin_lock_irq(&pidmap_lock); 360 ns->nr_hashed &= ~PIDNS_HASH_ADDING; 361 spin_unlock_irq(&pidmap_lock); 362 } 363 364 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 365 { 366 struct upid *pnr; 367 368 hlist_for_each_entry_rcu(pnr, 369 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 370 if (pnr->nr == nr && pnr->ns == ns) 371 return container_of(pnr, struct pid, 372 numbers[ns->level]); 373 374 return NULL; 375 } 376 EXPORT_SYMBOL_GPL(find_pid_ns); 377 378 struct pid *find_vpid(int nr) 379 { 380 return find_pid_ns(nr, task_active_pid_ns(current)); 381 } 382 EXPORT_SYMBOL_GPL(find_vpid); 383 384 /* 385 * attach_pid() must be called with the tasklist_lock write-held. 386 */ 387 void attach_pid(struct task_struct *task, enum pid_type type) 388 { 389 struct pid_link *link = &task->pids[type]; 390 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]); 391 } 392 393 static void __change_pid(struct task_struct *task, enum pid_type type, 394 struct pid *new) 395 { 396 struct pid_link *link; 397 struct pid *pid; 398 int tmp; 399 400 link = &task->pids[type]; 401 pid = link->pid; 402 403 hlist_del_rcu(&link->node); 404 link->pid = new; 405 406 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 407 if (!hlist_empty(&pid->tasks[tmp])) 408 return; 409 410 free_pid(pid); 411 } 412 413 void detach_pid(struct task_struct *task, enum pid_type type) 414 { 415 __change_pid(task, type, NULL); 416 } 417 418 void change_pid(struct task_struct *task, enum pid_type type, 419 struct pid *pid) 420 { 421 __change_pid(task, type, pid); 422 attach_pid(task, type); 423 } 424 425 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 426 void transfer_pid(struct task_struct *old, struct task_struct *new, 427 enum pid_type type) 428 { 429 new->pids[type].pid = old->pids[type].pid; 430 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 431 } 432 433 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 434 { 435 struct task_struct *result = NULL; 436 if (pid) { 437 struct hlist_node *first; 438 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 439 lockdep_tasklist_lock_is_held()); 440 if (first) 441 result = hlist_entry(first, struct task_struct, pids[(type)].node); 442 } 443 return result; 444 } 445 EXPORT_SYMBOL(pid_task); 446 447 /* 448 * Must be called under rcu_read_lock(). 449 */ 450 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 451 { 452 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 453 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 454 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 455 } 456 457 struct task_struct *find_task_by_vpid(pid_t vnr) 458 { 459 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 460 } 461 462 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 463 { 464 struct pid *pid; 465 rcu_read_lock(); 466 if (type != PIDTYPE_PID) 467 task = task->group_leader; 468 pid = get_pid(rcu_dereference(task->pids[type].pid)); 469 rcu_read_unlock(); 470 return pid; 471 } 472 EXPORT_SYMBOL_GPL(get_task_pid); 473 474 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 475 { 476 struct task_struct *result; 477 rcu_read_lock(); 478 result = pid_task(pid, type); 479 if (result) 480 get_task_struct(result); 481 rcu_read_unlock(); 482 return result; 483 } 484 EXPORT_SYMBOL_GPL(get_pid_task); 485 486 struct pid *find_get_pid(pid_t nr) 487 { 488 struct pid *pid; 489 490 rcu_read_lock(); 491 pid = get_pid(find_vpid(nr)); 492 rcu_read_unlock(); 493 494 return pid; 495 } 496 EXPORT_SYMBOL_GPL(find_get_pid); 497 498 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 499 { 500 struct upid *upid; 501 pid_t nr = 0; 502 503 if (pid && ns->level <= pid->level) { 504 upid = &pid->numbers[ns->level]; 505 if (upid->ns == ns) 506 nr = upid->nr; 507 } 508 return nr; 509 } 510 EXPORT_SYMBOL_GPL(pid_nr_ns); 511 512 pid_t pid_vnr(struct pid *pid) 513 { 514 return pid_nr_ns(pid, task_active_pid_ns(current)); 515 } 516 EXPORT_SYMBOL_GPL(pid_vnr); 517 518 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 519 struct pid_namespace *ns) 520 { 521 pid_t nr = 0; 522 523 rcu_read_lock(); 524 if (!ns) 525 ns = task_active_pid_ns(current); 526 if (likely(pid_alive(task))) { 527 if (type != PIDTYPE_PID) 528 task = task->group_leader; 529 nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns); 530 } 531 rcu_read_unlock(); 532 533 return nr; 534 } 535 EXPORT_SYMBOL(__task_pid_nr_ns); 536 537 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 538 { 539 return pid_nr_ns(task_tgid(tsk), ns); 540 } 541 EXPORT_SYMBOL(task_tgid_nr_ns); 542 543 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 544 { 545 return ns_of_pid(task_pid(tsk)); 546 } 547 EXPORT_SYMBOL_GPL(task_active_pid_ns); 548 549 /* 550 * Used by proc to find the first pid that is greater than or equal to nr. 551 * 552 * If there is a pid at nr this function is exactly the same as find_pid_ns. 553 */ 554 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 555 { 556 struct pid *pid; 557 558 do { 559 pid = find_pid_ns(nr, ns); 560 if (pid) 561 break; 562 nr = next_pidmap(ns, nr); 563 } while (nr > 0); 564 565 return pid; 566 } 567 568 /* 569 * The pid hash table is scaled according to the amount of memory in the 570 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 571 * more. 572 */ 573 void __init pidhash_init(void) 574 { 575 unsigned int i, pidhash_size; 576 577 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 578 HASH_EARLY | HASH_SMALL, 579 &pidhash_shift, NULL, 580 0, 4096); 581 pidhash_size = 1U << pidhash_shift; 582 583 for (i = 0; i < pidhash_size; i++) 584 INIT_HLIST_HEAD(&pid_hash[i]); 585 } 586 587 void __init pidmap_init(void) 588 { 589 /* Verify no one has done anything silly: */ 590 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); 591 592 /* bump default and minimum pid_max based on number of cpus */ 593 pid_max = min(pid_max_max, max_t(int, pid_max, 594 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 595 pid_max_min = max_t(int, pid_max_min, 596 PIDS_PER_CPU_MIN * num_possible_cpus()); 597 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 598 599 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 600 /* Reserve PID 0. We never call free_pidmap(0) */ 601 set_bit(0, init_pid_ns.pidmap[0].page); 602 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 603 604 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 605 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 606 } 607