1 /* 2 * Generic pidhash and scalable, time-bounded PID allocator 3 * 4 * (C) 2002-2003 Nadia Yvette Chambers, IBM 5 * (C) 2004 Nadia Yvette Chambers, Oracle 6 * (C) 2002-2004 Ingo Molnar, Red Hat 7 * 8 * pid-structures are backing objects for tasks sharing a given ID to chain 9 * against. There is very little to them aside from hashing them and 10 * parking tasks using given ID's on a list. 11 * 12 * The hash is always changed with the tasklist_lock write-acquired, 13 * and the hash is only accessed with the tasklist_lock at least 14 * read-acquired, so there's no additional SMP locking needed here. 15 * 16 * We have a list of bitmap pages, which bitmaps represent the PID space. 17 * Allocating and freeing PIDs is completely lockless. The worst-case 18 * allocation scenario when all but one out of 1 million PIDs possible are 19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 21 * 22 * Pid namespaces: 23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 25 * Many thanks to Oleg Nesterov for comments and help 26 * 27 */ 28 29 #include <linux/mm.h> 30 #include <linux/export.h> 31 #include <linux/slab.h> 32 #include <linux/init.h> 33 #include <linux/rculist.h> 34 #include <linux/bootmem.h> 35 #include <linux/hash.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_fs.h> 40 41 #define pid_hashfn(nr, ns) \ 42 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift) 43 static struct hlist_head *pid_hash; 44 static unsigned int pidhash_shift = 4; 45 struct pid init_struct_pid = INIT_STRUCT_PID; 46 47 int pid_max = PID_MAX_DEFAULT; 48 49 #define RESERVED_PIDS 300 50 51 int pid_max_min = RESERVED_PIDS + 1; 52 int pid_max_max = PID_MAX_LIMIT; 53 54 #define BITS_PER_PAGE (PAGE_SIZE*8) 55 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1) 56 57 static inline int mk_pid(struct pid_namespace *pid_ns, 58 struct pidmap *map, int off) 59 { 60 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off; 61 } 62 63 #define find_next_offset(map, off) \ 64 find_next_zero_bit((map)->page, BITS_PER_PAGE, off) 65 66 /* 67 * PID-map pages start out as NULL, they get allocated upon 68 * first use and are never deallocated. This way a low pid_max 69 * value does not cause lots of bitmaps to be allocated, but 70 * the scheme scales to up to 4 million PIDs, runtime. 71 */ 72 struct pid_namespace init_pid_ns = { 73 .kref = { 74 .refcount = ATOMIC_INIT(2), 75 }, 76 .pidmap = { 77 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL } 78 }, 79 .last_pid = 0, 80 .level = 0, 81 .child_reaper = &init_task, 82 .user_ns = &init_user_ns, 83 .proc_inum = PROC_PID_INIT_INO, 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 static void free_pidmap(struct upid *upid) 104 { 105 int nr = upid->nr; 106 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE; 107 int offset = nr & BITS_PER_PAGE_MASK; 108 109 clear_bit(offset, map->page); 110 atomic_inc(&map->nr_free); 111 } 112 113 /* 114 * If we started walking pids at 'base', is 'a' seen before 'b'? 115 */ 116 static int pid_before(int base, int a, int b) 117 { 118 /* 119 * This is the same as saying 120 * 121 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT 122 * and that mapping orders 'a' and 'b' with respect to 'base'. 123 */ 124 return (unsigned)(a - base) < (unsigned)(b - base); 125 } 126 127 /* 128 * We might be racing with someone else trying to set pid_ns->last_pid 129 * at the pid allocation time (there's also a sysctl for this, but racing 130 * with this one is OK, see comment in kernel/pid_namespace.c about it). 131 * We want the winner to have the "later" value, because if the 132 * "earlier" value prevails, then a pid may get reused immediately. 133 * 134 * Since pids rollover, it is not sufficient to just pick the bigger 135 * value. We have to consider where we started counting from. 136 * 137 * 'base' is the value of pid_ns->last_pid that we observed when 138 * we started looking for a pid. 139 * 140 * 'pid' is the pid that we eventually found. 141 */ 142 static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid) 143 { 144 int prev; 145 int last_write = base; 146 do { 147 prev = last_write; 148 last_write = cmpxchg(&pid_ns->last_pid, prev, pid); 149 } while ((prev != last_write) && (pid_before(base, last_write, pid))); 150 } 151 152 static int alloc_pidmap(struct pid_namespace *pid_ns) 153 { 154 int i, offset, max_scan, pid, last = pid_ns->last_pid; 155 struct pidmap *map; 156 157 pid = last + 1; 158 if (pid >= pid_max) 159 pid = RESERVED_PIDS; 160 offset = pid & BITS_PER_PAGE_MASK; 161 map = &pid_ns->pidmap[pid/BITS_PER_PAGE]; 162 /* 163 * If last_pid points into the middle of the map->page we 164 * want to scan this bitmap block twice, the second time 165 * we start with offset == 0 (or RESERVED_PIDS). 166 */ 167 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset; 168 for (i = 0; i <= max_scan; ++i) { 169 if (unlikely(!map->page)) { 170 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL); 171 /* 172 * Free the page if someone raced with us 173 * installing it: 174 */ 175 spin_lock_irq(&pidmap_lock); 176 if (!map->page) { 177 map->page = page; 178 page = NULL; 179 } 180 spin_unlock_irq(&pidmap_lock); 181 kfree(page); 182 if (unlikely(!map->page)) 183 break; 184 } 185 if (likely(atomic_read(&map->nr_free))) { 186 do { 187 if (!test_and_set_bit(offset, map->page)) { 188 atomic_dec(&map->nr_free); 189 set_last_pid(pid_ns, last, pid); 190 return pid; 191 } 192 offset = find_next_offset(map, offset); 193 pid = mk_pid(pid_ns, map, offset); 194 } while (offset < BITS_PER_PAGE && pid < pid_max); 195 } 196 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) { 197 ++map; 198 offset = 0; 199 } else { 200 map = &pid_ns->pidmap[0]; 201 offset = RESERVED_PIDS; 202 if (unlikely(last == offset)) 203 break; 204 } 205 pid = mk_pid(pid_ns, map, offset); 206 } 207 return -1; 208 } 209 210 int next_pidmap(struct pid_namespace *pid_ns, unsigned int last) 211 { 212 int offset; 213 struct pidmap *map, *end; 214 215 if (last >= PID_MAX_LIMIT) 216 return -1; 217 218 offset = (last + 1) & BITS_PER_PAGE_MASK; 219 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE]; 220 end = &pid_ns->pidmap[PIDMAP_ENTRIES]; 221 for (; map < end; map++, offset = 0) { 222 if (unlikely(!map->page)) 223 continue; 224 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset); 225 if (offset < BITS_PER_PAGE) 226 return mk_pid(pid_ns, map, offset); 227 } 228 return -1; 229 } 230 231 void put_pid(struct pid *pid) 232 { 233 struct pid_namespace *ns; 234 235 if (!pid) 236 return; 237 238 ns = pid->numbers[pid->level].ns; 239 if ((atomic_read(&pid->count) == 1) || 240 atomic_dec_and_test(&pid->count)) { 241 kmem_cache_free(ns->pid_cachep, pid); 242 put_pid_ns(ns); 243 } 244 } 245 EXPORT_SYMBOL_GPL(put_pid); 246 247 static void delayed_put_pid(struct rcu_head *rhp) 248 { 249 struct pid *pid = container_of(rhp, struct pid, rcu); 250 put_pid(pid); 251 } 252 253 void free_pid(struct pid *pid) 254 { 255 /* We can be called with write_lock_irq(&tasklist_lock) held */ 256 int i; 257 unsigned long flags; 258 259 spin_lock_irqsave(&pidmap_lock, flags); 260 for (i = 0; i <= pid->level; i++) { 261 struct upid *upid = pid->numbers + i; 262 struct pid_namespace *ns = upid->ns; 263 hlist_del_rcu(&upid->pid_chain); 264 switch(--ns->nr_hashed) { 265 case 1: 266 /* When all that is left in the pid namespace 267 * is the reaper wake up the reaper. The reaper 268 * may be sleeping in zap_pid_ns_processes(). 269 */ 270 wake_up_process(ns->child_reaper); 271 break; 272 case 0: 273 schedule_work(&ns->proc_work); 274 break; 275 } 276 } 277 spin_unlock_irqrestore(&pidmap_lock, flags); 278 279 for (i = 0; i <= pid->level; i++) 280 free_pidmap(pid->numbers + i); 281 282 call_rcu(&pid->rcu, delayed_put_pid); 283 } 284 285 struct pid *alloc_pid(struct pid_namespace *ns) 286 { 287 struct pid *pid; 288 enum pid_type type; 289 int i, nr; 290 struct pid_namespace *tmp; 291 struct upid *upid; 292 293 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 294 if (!pid) 295 goto out; 296 297 tmp = ns; 298 pid->level = ns->level; 299 for (i = ns->level; i >= 0; i--) { 300 nr = alloc_pidmap(tmp); 301 if (nr < 0) 302 goto out_free; 303 304 pid->numbers[i].nr = nr; 305 pid->numbers[i].ns = tmp; 306 tmp = tmp->parent; 307 } 308 309 if (unlikely(is_child_reaper(pid))) { 310 if (pid_ns_prepare_proc(ns)) 311 goto out_free; 312 } 313 314 get_pid_ns(ns); 315 atomic_set(&pid->count, 1); 316 for (type = 0; type < PIDTYPE_MAX; ++type) 317 INIT_HLIST_HEAD(&pid->tasks[type]); 318 319 upid = pid->numbers + ns->level; 320 spin_lock_irq(&pidmap_lock); 321 if (!(ns->nr_hashed & PIDNS_HASH_ADDING)) 322 goto out_unlock; 323 for ( ; upid >= pid->numbers; --upid) { 324 hlist_add_head_rcu(&upid->pid_chain, 325 &pid_hash[pid_hashfn(upid->nr, upid->ns)]); 326 upid->ns->nr_hashed++; 327 } 328 spin_unlock_irq(&pidmap_lock); 329 330 out: 331 return pid; 332 333 out_unlock: 334 spin_unlock(&pidmap_lock); 335 out_free: 336 while (++i <= ns->level) 337 free_pidmap(pid->numbers + i); 338 339 kmem_cache_free(ns->pid_cachep, pid); 340 pid = NULL; 341 goto out; 342 } 343 344 void disable_pid_allocation(struct pid_namespace *ns) 345 { 346 spin_lock_irq(&pidmap_lock); 347 ns->nr_hashed &= ~PIDNS_HASH_ADDING; 348 spin_unlock_irq(&pidmap_lock); 349 } 350 351 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 352 { 353 struct hlist_node *elem; 354 struct upid *pnr; 355 356 hlist_for_each_entry_rcu(pnr, elem, 357 &pid_hash[pid_hashfn(nr, ns)], pid_chain) 358 if (pnr->nr == nr && pnr->ns == ns) 359 return container_of(pnr, struct pid, 360 numbers[ns->level]); 361 362 return NULL; 363 } 364 EXPORT_SYMBOL_GPL(find_pid_ns); 365 366 struct pid *find_vpid(int nr) 367 { 368 return find_pid_ns(nr, task_active_pid_ns(current)); 369 } 370 EXPORT_SYMBOL_GPL(find_vpid); 371 372 /* 373 * attach_pid() must be called with the tasklist_lock write-held. 374 */ 375 void attach_pid(struct task_struct *task, enum pid_type type, 376 struct pid *pid) 377 { 378 struct pid_link *link; 379 380 link = &task->pids[type]; 381 link->pid = pid; 382 hlist_add_head_rcu(&link->node, &pid->tasks[type]); 383 } 384 385 static void __change_pid(struct task_struct *task, enum pid_type type, 386 struct pid *new) 387 { 388 struct pid_link *link; 389 struct pid *pid; 390 int tmp; 391 392 link = &task->pids[type]; 393 pid = link->pid; 394 395 hlist_del_rcu(&link->node); 396 link->pid = new; 397 398 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 399 if (!hlist_empty(&pid->tasks[tmp])) 400 return; 401 402 free_pid(pid); 403 } 404 405 void detach_pid(struct task_struct *task, enum pid_type type) 406 { 407 __change_pid(task, type, NULL); 408 } 409 410 void change_pid(struct task_struct *task, enum pid_type type, 411 struct pid *pid) 412 { 413 __change_pid(task, type, pid); 414 attach_pid(task, type, pid); 415 } 416 417 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 418 void transfer_pid(struct task_struct *old, struct task_struct *new, 419 enum pid_type type) 420 { 421 new->pids[type].pid = old->pids[type].pid; 422 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node); 423 } 424 425 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 426 { 427 struct task_struct *result = NULL; 428 if (pid) { 429 struct hlist_node *first; 430 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 431 lockdep_tasklist_lock_is_held()); 432 if (first) 433 result = hlist_entry(first, struct task_struct, pids[(type)].node); 434 } 435 return result; 436 } 437 EXPORT_SYMBOL(pid_task); 438 439 /* 440 * Must be called under rcu_read_lock(). 441 */ 442 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 443 { 444 rcu_lockdep_assert(rcu_read_lock_held(), 445 "find_task_by_pid_ns() needs rcu_read_lock()" 446 " protection"); 447 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 448 } 449 450 struct task_struct *find_task_by_vpid(pid_t vnr) 451 { 452 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 453 } 454 455 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 456 { 457 struct pid *pid; 458 rcu_read_lock(); 459 if (type != PIDTYPE_PID) 460 task = task->group_leader; 461 pid = get_pid(task->pids[type].pid); 462 rcu_read_unlock(); 463 return pid; 464 } 465 EXPORT_SYMBOL_GPL(get_task_pid); 466 467 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 468 { 469 struct task_struct *result; 470 rcu_read_lock(); 471 result = pid_task(pid, type); 472 if (result) 473 get_task_struct(result); 474 rcu_read_unlock(); 475 return result; 476 } 477 EXPORT_SYMBOL_GPL(get_pid_task); 478 479 struct pid *find_get_pid(pid_t nr) 480 { 481 struct pid *pid; 482 483 rcu_read_lock(); 484 pid = get_pid(find_vpid(nr)); 485 rcu_read_unlock(); 486 487 return pid; 488 } 489 EXPORT_SYMBOL_GPL(find_get_pid); 490 491 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 492 { 493 struct upid *upid; 494 pid_t nr = 0; 495 496 if (pid && ns->level <= pid->level) { 497 upid = &pid->numbers[ns->level]; 498 if (upid->ns == ns) 499 nr = upid->nr; 500 } 501 return nr; 502 } 503 EXPORT_SYMBOL_GPL(pid_nr_ns); 504 505 pid_t pid_vnr(struct pid *pid) 506 { 507 return pid_nr_ns(pid, task_active_pid_ns(current)); 508 } 509 EXPORT_SYMBOL_GPL(pid_vnr); 510 511 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 512 struct pid_namespace *ns) 513 { 514 pid_t nr = 0; 515 516 rcu_read_lock(); 517 if (!ns) 518 ns = task_active_pid_ns(current); 519 if (likely(pid_alive(task))) { 520 if (type != PIDTYPE_PID) 521 task = task->group_leader; 522 nr = pid_nr_ns(task->pids[type].pid, ns); 523 } 524 rcu_read_unlock(); 525 526 return nr; 527 } 528 EXPORT_SYMBOL(__task_pid_nr_ns); 529 530 pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) 531 { 532 return pid_nr_ns(task_tgid(tsk), ns); 533 } 534 EXPORT_SYMBOL(task_tgid_nr_ns); 535 536 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 537 { 538 return ns_of_pid(task_pid(tsk)); 539 } 540 EXPORT_SYMBOL_GPL(task_active_pid_ns); 541 542 /* 543 * Used by proc to find the first pid that is greater than or equal to nr. 544 * 545 * If there is a pid at nr this function is exactly the same as find_pid_ns. 546 */ 547 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 548 { 549 struct pid *pid; 550 551 do { 552 pid = find_pid_ns(nr, ns); 553 if (pid) 554 break; 555 nr = next_pidmap(ns, nr); 556 } while (nr > 0); 557 558 return pid; 559 } 560 561 /* 562 * The pid hash table is scaled according to the amount of memory in the 563 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or 564 * more. 565 */ 566 void __init pidhash_init(void) 567 { 568 unsigned int i, pidhash_size; 569 570 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18, 571 HASH_EARLY | HASH_SMALL, 572 &pidhash_shift, NULL, 573 0, 4096); 574 pidhash_size = 1U << pidhash_shift; 575 576 for (i = 0; i < pidhash_size; i++) 577 INIT_HLIST_HEAD(&pid_hash[i]); 578 } 579 580 void __init pidmap_init(void) 581 { 582 /* Veryify no one has done anything silly */ 583 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING); 584 585 /* bump default and minimum pid_max based on number of cpus */ 586 pid_max = min(pid_max_max, max_t(int, pid_max, 587 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 588 pid_max_min = max_t(int, pid_max_min, 589 PIDS_PER_CPU_MIN * num_possible_cpus()); 590 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 591 592 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL); 593 /* Reserve PID 0. We never call free_pidmap(0) */ 594 set_bit(0, init_pid_ns.pidmap[0].page); 595 atomic_dec(&init_pid_ns.pidmap[0].nr_free); 596 init_pid_ns.nr_hashed = PIDNS_HASH_ADDING; 597 598 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 599 SLAB_HWCACHE_ALIGN | SLAB_PANIC); 600 } 601