1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 46 struct pid init_struct_pid = { 47 .count = REFCOUNT_INIT(1), 48 .tasks = { 49 { .first = NULL }, 50 { .first = NULL }, 51 { .first = NULL }, 52 }, 53 .level = 0, 54 .numbers = { { 55 .nr = 0, 56 .ns = &init_pid_ns, 57 }, } 58 }; 59 60 int pid_max = PID_MAX_DEFAULT; 61 62 #define RESERVED_PIDS 300 63 64 int pid_max_min = RESERVED_PIDS + 1; 65 int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .kref = KREF_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 void put_pid(struct pid *pid) 104 { 105 struct pid_namespace *ns; 106 107 if (!pid) 108 return; 109 110 ns = pid->numbers[pid->level].ns; 111 if (refcount_dec_and_test(&pid->count)) { 112 kmem_cache_free(ns->pid_cachep, pid); 113 put_pid_ns(ns); 114 } 115 } 116 EXPORT_SYMBOL_GPL(put_pid); 117 118 static void delayed_put_pid(struct rcu_head *rhp) 119 { 120 struct pid *pid = container_of(rhp, struct pid, rcu); 121 put_pid(pid); 122 } 123 124 void free_pid(struct pid *pid) 125 { 126 /* We can be called with write_lock_irq(&tasklist_lock) held */ 127 int i; 128 unsigned long flags; 129 130 spin_lock_irqsave(&pidmap_lock, flags); 131 for (i = 0; i <= pid->level; i++) { 132 struct upid *upid = pid->numbers + i; 133 struct pid_namespace *ns = upid->ns; 134 switch (--ns->pid_allocated) { 135 case 2: 136 case 1: 137 /* When all that is left in the pid namespace 138 * is the reaper wake up the reaper. The reaper 139 * may be sleeping in zap_pid_ns_processes(). 140 */ 141 wake_up_process(ns->child_reaper); 142 break; 143 case PIDNS_ADDING: 144 /* Handle a fork failure of the first process */ 145 WARN_ON(ns->child_reaper); 146 ns->pid_allocated = 0; 147 break; 148 } 149 150 idr_remove(&ns->idr, upid->nr); 151 } 152 spin_unlock_irqrestore(&pidmap_lock, flags); 153 154 call_rcu(&pid->rcu, delayed_put_pid); 155 } 156 157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 158 size_t set_tid_size) 159 { 160 struct pid *pid; 161 enum pid_type type; 162 int i, nr; 163 struct pid_namespace *tmp; 164 struct upid *upid; 165 int retval = -ENOMEM; 166 167 /* 168 * set_tid_size contains the size of the set_tid array. Starting at 169 * the most nested currently active PID namespace it tells alloc_pid() 170 * which PID to set for a process in that most nested PID namespace 171 * up to set_tid_size PID namespaces. It does not have to set the PID 172 * for a process in all nested PID namespaces but set_tid_size must 173 * never be greater than the current ns->level + 1. 174 */ 175 if (set_tid_size > ns->level + 1) 176 return ERR_PTR(-EINVAL); 177 178 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 179 if (!pid) 180 return ERR_PTR(retval); 181 182 tmp = ns; 183 pid->level = ns->level; 184 185 for (i = ns->level; i >= 0; i--) { 186 int tid = 0; 187 188 if (set_tid_size) { 189 tid = set_tid[ns->level - i]; 190 191 retval = -EINVAL; 192 if (tid < 1 || tid >= pid_max) 193 goto out_free; 194 /* 195 * Also fail if a PID != 1 is requested and 196 * no PID 1 exists. 197 */ 198 if (tid != 1 && !tmp->child_reaper) 199 goto out_free; 200 retval = -EPERM; 201 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN)) 202 goto out_free; 203 set_tid_size--; 204 } 205 206 idr_preload(GFP_KERNEL); 207 spin_lock_irq(&pidmap_lock); 208 209 if (tid) { 210 nr = idr_alloc(&tmp->idr, NULL, tid, 211 tid + 1, GFP_ATOMIC); 212 /* 213 * If ENOSPC is returned it means that the PID is 214 * alreay in use. Return EEXIST in that case. 215 */ 216 if (nr == -ENOSPC) 217 nr = -EEXIST; 218 } else { 219 int pid_min = 1; 220 /* 221 * init really needs pid 1, but after reaching the 222 * maximum wrap back to RESERVED_PIDS 223 */ 224 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 225 pid_min = RESERVED_PIDS; 226 227 /* 228 * Store a null pointer so find_pid_ns does not find 229 * a partially initialized PID (see below). 230 */ 231 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 232 pid_max, GFP_ATOMIC); 233 } 234 spin_unlock_irq(&pidmap_lock); 235 idr_preload_end(); 236 237 if (nr < 0) { 238 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 239 goto out_free; 240 } 241 242 pid->numbers[i].nr = nr; 243 pid->numbers[i].ns = tmp; 244 tmp = tmp->parent; 245 } 246 247 get_pid_ns(ns); 248 refcount_set(&pid->count, 1); 249 for (type = 0; type < PIDTYPE_MAX; ++type) 250 INIT_HLIST_HEAD(&pid->tasks[type]); 251 252 init_waitqueue_head(&pid->wait_pidfd); 253 INIT_HLIST_HEAD(&pid->inodes); 254 255 upid = pid->numbers + ns->level; 256 spin_lock_irq(&pidmap_lock); 257 if (!(ns->pid_allocated & PIDNS_ADDING)) 258 goto out_unlock; 259 for ( ; upid >= pid->numbers; --upid) { 260 /* Make the PID visible to find_pid_ns. */ 261 idr_replace(&upid->ns->idr, pid, upid->nr); 262 upid->ns->pid_allocated++; 263 } 264 spin_unlock_irq(&pidmap_lock); 265 266 return pid; 267 268 out_unlock: 269 spin_unlock_irq(&pidmap_lock); 270 put_pid_ns(ns); 271 272 out_free: 273 spin_lock_irq(&pidmap_lock); 274 while (++i <= ns->level) { 275 upid = pid->numbers + i; 276 idr_remove(&upid->ns->idr, upid->nr); 277 } 278 279 /* On failure to allocate the first pid, reset the state */ 280 if (ns->pid_allocated == PIDNS_ADDING) 281 idr_set_cursor(&ns->idr, 0); 282 283 spin_unlock_irq(&pidmap_lock); 284 285 kmem_cache_free(ns->pid_cachep, pid); 286 return ERR_PTR(retval); 287 } 288 289 void disable_pid_allocation(struct pid_namespace *ns) 290 { 291 spin_lock_irq(&pidmap_lock); 292 ns->pid_allocated &= ~PIDNS_ADDING; 293 spin_unlock_irq(&pidmap_lock); 294 } 295 296 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 297 { 298 return idr_find(&ns->idr, nr); 299 } 300 EXPORT_SYMBOL_GPL(find_pid_ns); 301 302 struct pid *find_vpid(int nr) 303 { 304 return find_pid_ns(nr, task_active_pid_ns(current)); 305 } 306 EXPORT_SYMBOL_GPL(find_vpid); 307 308 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 309 { 310 return (type == PIDTYPE_PID) ? 311 &task->thread_pid : 312 &task->signal->pids[type]; 313 } 314 315 /* 316 * attach_pid() must be called with the tasklist_lock write-held. 317 */ 318 void attach_pid(struct task_struct *task, enum pid_type type) 319 { 320 struct pid *pid = *task_pid_ptr(task, type); 321 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 322 } 323 324 static void __change_pid(struct task_struct *task, enum pid_type type, 325 struct pid *new) 326 { 327 struct pid **pid_ptr = task_pid_ptr(task, type); 328 struct pid *pid; 329 int tmp; 330 331 pid = *pid_ptr; 332 333 hlist_del_rcu(&task->pid_links[type]); 334 *pid_ptr = new; 335 336 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 337 if (pid_has_task(pid, tmp)) 338 return; 339 340 free_pid(pid); 341 } 342 343 void detach_pid(struct task_struct *task, enum pid_type type) 344 { 345 __change_pid(task, type, NULL); 346 } 347 348 void change_pid(struct task_struct *task, enum pid_type type, 349 struct pid *pid) 350 { 351 __change_pid(task, type, pid); 352 attach_pid(task, type); 353 } 354 355 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 356 void transfer_pid(struct task_struct *old, struct task_struct *new, 357 enum pid_type type) 358 { 359 if (type == PIDTYPE_PID) 360 new->thread_pid = old->thread_pid; 361 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 362 } 363 364 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 365 { 366 struct task_struct *result = NULL; 367 if (pid) { 368 struct hlist_node *first; 369 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 370 lockdep_tasklist_lock_is_held()); 371 if (first) 372 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 373 } 374 return result; 375 } 376 EXPORT_SYMBOL(pid_task); 377 378 /* 379 * Must be called under rcu_read_lock(). 380 */ 381 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 382 { 383 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 384 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 385 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 386 } 387 388 struct task_struct *find_task_by_vpid(pid_t vnr) 389 { 390 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 391 } 392 393 struct task_struct *find_get_task_by_vpid(pid_t nr) 394 { 395 struct task_struct *task; 396 397 rcu_read_lock(); 398 task = find_task_by_vpid(nr); 399 if (task) 400 get_task_struct(task); 401 rcu_read_unlock(); 402 403 return task; 404 } 405 406 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 407 { 408 struct pid *pid; 409 rcu_read_lock(); 410 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 411 rcu_read_unlock(); 412 return pid; 413 } 414 EXPORT_SYMBOL_GPL(get_task_pid); 415 416 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 417 { 418 struct task_struct *result; 419 rcu_read_lock(); 420 result = pid_task(pid, type); 421 if (result) 422 get_task_struct(result); 423 rcu_read_unlock(); 424 return result; 425 } 426 EXPORT_SYMBOL_GPL(get_pid_task); 427 428 struct pid *find_get_pid(pid_t nr) 429 { 430 struct pid *pid; 431 432 rcu_read_lock(); 433 pid = get_pid(find_vpid(nr)); 434 rcu_read_unlock(); 435 436 return pid; 437 } 438 EXPORT_SYMBOL_GPL(find_get_pid); 439 440 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 441 { 442 struct upid *upid; 443 pid_t nr = 0; 444 445 if (pid && ns->level <= pid->level) { 446 upid = &pid->numbers[ns->level]; 447 if (upid->ns == ns) 448 nr = upid->nr; 449 } 450 return nr; 451 } 452 EXPORT_SYMBOL_GPL(pid_nr_ns); 453 454 pid_t pid_vnr(struct pid *pid) 455 { 456 return pid_nr_ns(pid, task_active_pid_ns(current)); 457 } 458 EXPORT_SYMBOL_GPL(pid_vnr); 459 460 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 461 struct pid_namespace *ns) 462 { 463 pid_t nr = 0; 464 465 rcu_read_lock(); 466 if (!ns) 467 ns = task_active_pid_ns(current); 468 if (likely(pid_alive(task))) 469 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 470 rcu_read_unlock(); 471 472 return nr; 473 } 474 EXPORT_SYMBOL(__task_pid_nr_ns); 475 476 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 477 { 478 return ns_of_pid(task_pid(tsk)); 479 } 480 EXPORT_SYMBOL_GPL(task_active_pid_ns); 481 482 /* 483 * Used by proc to find the first pid that is greater than or equal to nr. 484 * 485 * If there is a pid at nr this function is exactly the same as find_pid_ns. 486 */ 487 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 488 { 489 return idr_get_next(&ns->idr, &nr); 490 } 491 492 /** 493 * pidfd_create() - Create a new pid file descriptor. 494 * 495 * @pid: struct pid that the pidfd will reference 496 * 497 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 498 * 499 * Note, that this function can only be called after the fd table has 500 * been unshared to avoid leaking the pidfd to the new process. 501 * 502 * Return: On success, a cloexec pidfd is returned. 503 * On error, a negative errno number will be returned. 504 */ 505 static int pidfd_create(struct pid *pid) 506 { 507 int fd; 508 509 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 510 O_RDWR | O_CLOEXEC); 511 if (fd < 0) 512 put_pid(pid); 513 514 return fd; 515 } 516 517 /** 518 * pidfd_open() - Open new pid file descriptor. 519 * 520 * @pid: pid for which to retrieve a pidfd 521 * @flags: flags to pass 522 * 523 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 524 * the process identified by @pid. Currently, the process identified by 525 * @pid must be a thread-group leader. This restriction currently exists 526 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot 527 * be used with CLONE_THREAD) and pidfd polling (only supports thread group 528 * leaders). 529 * 530 * Return: On success, a cloexec pidfd is returned. 531 * On error, a negative errno number will be returned. 532 */ 533 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 534 { 535 int fd; 536 struct pid *p; 537 538 if (flags) 539 return -EINVAL; 540 541 if (pid <= 0) 542 return -EINVAL; 543 544 p = find_get_pid(pid); 545 if (!p) 546 return -ESRCH; 547 548 if (pid_has_task(p, PIDTYPE_TGID)) 549 fd = pidfd_create(p); 550 else 551 fd = -EINVAL; 552 553 put_pid(p); 554 return fd; 555 } 556 557 void __init pid_idr_init(void) 558 { 559 /* Verify no one has done anything silly: */ 560 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 561 562 /* bump default and minimum pid_max based on number of cpus */ 563 pid_max = min(pid_max_max, max_t(int, pid_max, 564 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 565 pid_max_min = max_t(int, pid_max_min, 566 PIDS_PER_CPU_MIN * num_possible_cpus()); 567 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 568 569 idr_init(&init_pid_ns.idr); 570 571 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 572 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 573 } 574 575 static struct file *__pidfd_fget(struct task_struct *task, int fd) 576 { 577 struct file *file; 578 int ret; 579 580 ret = mutex_lock_killable(&task->signal->cred_guard_mutex); 581 if (ret) 582 return ERR_PTR(ret); 583 584 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 585 file = fget_task(task, fd); 586 else 587 file = ERR_PTR(-EPERM); 588 589 mutex_unlock(&task->signal->cred_guard_mutex); 590 591 return file ?: ERR_PTR(-EBADF); 592 } 593 594 static int pidfd_getfd(struct pid *pid, int fd) 595 { 596 struct task_struct *task; 597 struct file *file; 598 int ret; 599 600 task = get_pid_task(pid, PIDTYPE_PID); 601 if (!task) 602 return -ESRCH; 603 604 file = __pidfd_fget(task, fd); 605 put_task_struct(task); 606 if (IS_ERR(file)) 607 return PTR_ERR(file); 608 609 ret = security_file_receive(file); 610 if (ret) { 611 fput(file); 612 return ret; 613 } 614 615 ret = get_unused_fd_flags(O_CLOEXEC); 616 if (ret < 0) 617 fput(file); 618 else 619 fd_install(ret, file); 620 621 return ret; 622 } 623 624 /** 625 * sys_pidfd_getfd() - Get a file descriptor from another process 626 * 627 * @pidfd: the pidfd file descriptor of the process 628 * @fd: the file descriptor number to get 629 * @flags: flags on how to get the fd (reserved) 630 * 631 * This syscall gets a copy of a file descriptor from another process 632 * based on the pidfd, and file descriptor number. It requires that 633 * the calling process has the ability to ptrace the process represented 634 * by the pidfd. The process which is having its file descriptor copied 635 * is otherwise unaffected. 636 * 637 * Return: On success, a cloexec file descriptor is returned. 638 * On error, a negative errno number will be returned. 639 */ 640 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 641 unsigned int, flags) 642 { 643 struct pid *pid; 644 struct fd f; 645 int ret; 646 647 /* flags is currently unused - make sure it's unset */ 648 if (flags) 649 return -EINVAL; 650 651 f = fdget(pidfd); 652 if (!f.file) 653 return -EBADF; 654 655 pid = pidfd_pid(f.file); 656 if (IS_ERR(pid)) 657 ret = PTR_ERR(pid); 658 else 659 ret = pidfd_getfd(pid, fd); 660 661 fdput(f); 662 return ret; 663 } 664