xref: /linux/kernel/pid.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/proc_fs.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 
46 struct pid init_struct_pid = {
47 	.count 		= ATOMIC_INIT(1),
48 	.tasks		= {
49 		{ .first = NULL },
50 		{ .first = NULL },
51 		{ .first = NULL },
52 	},
53 	.level		= 0,
54 	.numbers	= { {
55 		.nr		= 0,
56 		.ns		= &init_pid_ns,
57 	}, }
58 };
59 
60 int pid_max = PID_MAX_DEFAULT;
61 
62 #define RESERVED_PIDS		300
63 
64 int pid_max_min = RESERVED_PIDS + 1;
65 int pid_max_max = PID_MAX_LIMIT;
66 
67 /*
68  * PID-map pages start out as NULL, they get allocated upon
69  * first use and are never deallocated. This way a low pid_max
70  * value does not cause lots of bitmaps to be allocated, but
71  * the scheme scales to up to 4 million PIDs, runtime.
72  */
73 struct pid_namespace init_pid_ns = {
74 	.kref = KREF_INIT(2),
75 	.idr = IDR_INIT(init_pid_ns.idr),
76 	.pid_allocated = PIDNS_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86 
87 /*
88  * Note: disable interrupts while the pidmap_lock is held as an
89  * interrupt might come in and do read_lock(&tasklist_lock).
90  *
91  * If we don't disable interrupts there is a nasty deadlock between
92  * detach_pid()->free_pid() and another cpu that does
93  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94  * read_lock(&tasklist_lock);
95  *
96  * After we clean up the tasklist_lock and know there are no
97  * irq handlers that take it we can leave the interrupts enabled.
98  * For now it is easier to be safe than to prove it can't happen.
99  */
100 
101 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102 
103 void put_pid(struct pid *pid)
104 {
105 	struct pid_namespace *ns;
106 
107 	if (!pid)
108 		return;
109 
110 	ns = pid->numbers[pid->level].ns;
111 	if ((atomic_read(&pid->count) == 1) ||
112 	     atomic_dec_and_test(&pid->count)) {
113 		kmem_cache_free(ns->pid_cachep, pid);
114 		put_pid_ns(ns);
115 	}
116 }
117 EXPORT_SYMBOL_GPL(put_pid);
118 
119 static void delayed_put_pid(struct rcu_head *rhp)
120 {
121 	struct pid *pid = container_of(rhp, struct pid, rcu);
122 	put_pid(pid);
123 }
124 
125 void free_pid(struct pid *pid)
126 {
127 	/* We can be called with write_lock_irq(&tasklist_lock) held */
128 	int i;
129 	unsigned long flags;
130 
131 	spin_lock_irqsave(&pidmap_lock, flags);
132 	for (i = 0; i <= pid->level; i++) {
133 		struct upid *upid = pid->numbers + i;
134 		struct pid_namespace *ns = upid->ns;
135 		switch (--ns->pid_allocated) {
136 		case 2:
137 		case 1:
138 			/* When all that is left in the pid namespace
139 			 * is the reaper wake up the reaper.  The reaper
140 			 * may be sleeping in zap_pid_ns_processes().
141 			 */
142 			wake_up_process(ns->child_reaper);
143 			break;
144 		case PIDNS_ADDING:
145 			/* Handle a fork failure of the first process */
146 			WARN_ON(ns->child_reaper);
147 			ns->pid_allocated = 0;
148 			/* fall through */
149 		case 0:
150 			schedule_work(&ns->proc_work);
151 			break;
152 		}
153 
154 		idr_remove(&ns->idr, upid->nr);
155 	}
156 	spin_unlock_irqrestore(&pidmap_lock, flags);
157 
158 	call_rcu(&pid->rcu, delayed_put_pid);
159 }
160 
161 struct pid *alloc_pid(struct pid_namespace *ns)
162 {
163 	struct pid *pid;
164 	enum pid_type type;
165 	int i, nr;
166 	struct pid_namespace *tmp;
167 	struct upid *upid;
168 	int retval = -ENOMEM;
169 
170 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
171 	if (!pid)
172 		return ERR_PTR(retval);
173 
174 	tmp = ns;
175 	pid->level = ns->level;
176 
177 	for (i = ns->level; i >= 0; i--) {
178 		int pid_min = 1;
179 
180 		idr_preload(GFP_KERNEL);
181 		spin_lock_irq(&pidmap_lock);
182 
183 		/*
184 		 * init really needs pid 1, but after reaching the maximum
185 		 * wrap back to RESERVED_PIDS
186 		 */
187 		if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
188 			pid_min = RESERVED_PIDS;
189 
190 		/*
191 		 * Store a null pointer so find_pid_ns does not find
192 		 * a partially initialized PID (see below).
193 		 */
194 		nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
195 				      pid_max, GFP_ATOMIC);
196 		spin_unlock_irq(&pidmap_lock);
197 		idr_preload_end();
198 
199 		if (nr < 0) {
200 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
201 			goto out_free;
202 		}
203 
204 		pid->numbers[i].nr = nr;
205 		pid->numbers[i].ns = tmp;
206 		tmp = tmp->parent;
207 	}
208 
209 	if (unlikely(is_child_reaper(pid))) {
210 		if (pid_ns_prepare_proc(ns))
211 			goto out_free;
212 	}
213 
214 	get_pid_ns(ns);
215 	atomic_set(&pid->count, 1);
216 	for (type = 0; type < PIDTYPE_MAX; ++type)
217 		INIT_HLIST_HEAD(&pid->tasks[type]);
218 
219 	init_waitqueue_head(&pid->wait_pidfd);
220 
221 	upid = pid->numbers + ns->level;
222 	spin_lock_irq(&pidmap_lock);
223 	if (!(ns->pid_allocated & PIDNS_ADDING))
224 		goto out_unlock;
225 	for ( ; upid >= pid->numbers; --upid) {
226 		/* Make the PID visible to find_pid_ns. */
227 		idr_replace(&upid->ns->idr, pid, upid->nr);
228 		upid->ns->pid_allocated++;
229 	}
230 	spin_unlock_irq(&pidmap_lock);
231 
232 	return pid;
233 
234 out_unlock:
235 	spin_unlock_irq(&pidmap_lock);
236 	put_pid_ns(ns);
237 
238 out_free:
239 	spin_lock_irq(&pidmap_lock);
240 	while (++i <= ns->level) {
241 		upid = pid->numbers + i;
242 		idr_remove(&upid->ns->idr, upid->nr);
243 	}
244 
245 	/* On failure to allocate the first pid, reset the state */
246 	if (ns->pid_allocated == PIDNS_ADDING)
247 		idr_set_cursor(&ns->idr, 0);
248 
249 	spin_unlock_irq(&pidmap_lock);
250 
251 	kmem_cache_free(ns->pid_cachep, pid);
252 	return ERR_PTR(retval);
253 }
254 
255 void disable_pid_allocation(struct pid_namespace *ns)
256 {
257 	spin_lock_irq(&pidmap_lock);
258 	ns->pid_allocated &= ~PIDNS_ADDING;
259 	spin_unlock_irq(&pidmap_lock);
260 }
261 
262 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
263 {
264 	return idr_find(&ns->idr, nr);
265 }
266 EXPORT_SYMBOL_GPL(find_pid_ns);
267 
268 struct pid *find_vpid(int nr)
269 {
270 	return find_pid_ns(nr, task_active_pid_ns(current));
271 }
272 EXPORT_SYMBOL_GPL(find_vpid);
273 
274 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
275 {
276 	return (type == PIDTYPE_PID) ?
277 		&task->thread_pid :
278 		&task->signal->pids[type];
279 }
280 
281 /*
282  * attach_pid() must be called with the tasklist_lock write-held.
283  */
284 void attach_pid(struct task_struct *task, enum pid_type type)
285 {
286 	struct pid *pid = *task_pid_ptr(task, type);
287 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
288 }
289 
290 static void __change_pid(struct task_struct *task, enum pid_type type,
291 			struct pid *new)
292 {
293 	struct pid **pid_ptr = task_pid_ptr(task, type);
294 	struct pid *pid;
295 	int tmp;
296 
297 	pid = *pid_ptr;
298 
299 	hlist_del_rcu(&task->pid_links[type]);
300 	*pid_ptr = new;
301 
302 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
303 		if (!hlist_empty(&pid->tasks[tmp]))
304 			return;
305 
306 	free_pid(pid);
307 }
308 
309 void detach_pid(struct task_struct *task, enum pid_type type)
310 {
311 	__change_pid(task, type, NULL);
312 }
313 
314 void change_pid(struct task_struct *task, enum pid_type type,
315 		struct pid *pid)
316 {
317 	__change_pid(task, type, pid);
318 	attach_pid(task, type);
319 }
320 
321 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
322 void transfer_pid(struct task_struct *old, struct task_struct *new,
323 			   enum pid_type type)
324 {
325 	if (type == PIDTYPE_PID)
326 		new->thread_pid = old->thread_pid;
327 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
328 }
329 
330 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
331 {
332 	struct task_struct *result = NULL;
333 	if (pid) {
334 		struct hlist_node *first;
335 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
336 					      lockdep_tasklist_lock_is_held());
337 		if (first)
338 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
339 	}
340 	return result;
341 }
342 EXPORT_SYMBOL(pid_task);
343 
344 /*
345  * Must be called under rcu_read_lock().
346  */
347 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
348 {
349 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
350 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
351 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
352 }
353 
354 struct task_struct *find_task_by_vpid(pid_t vnr)
355 {
356 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
357 }
358 
359 struct task_struct *find_get_task_by_vpid(pid_t nr)
360 {
361 	struct task_struct *task;
362 
363 	rcu_read_lock();
364 	task = find_task_by_vpid(nr);
365 	if (task)
366 		get_task_struct(task);
367 	rcu_read_unlock();
368 
369 	return task;
370 }
371 
372 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
373 {
374 	struct pid *pid;
375 	rcu_read_lock();
376 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
377 	rcu_read_unlock();
378 	return pid;
379 }
380 EXPORT_SYMBOL_GPL(get_task_pid);
381 
382 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
383 {
384 	struct task_struct *result;
385 	rcu_read_lock();
386 	result = pid_task(pid, type);
387 	if (result)
388 		get_task_struct(result);
389 	rcu_read_unlock();
390 	return result;
391 }
392 EXPORT_SYMBOL_GPL(get_pid_task);
393 
394 struct pid *find_get_pid(pid_t nr)
395 {
396 	struct pid *pid;
397 
398 	rcu_read_lock();
399 	pid = get_pid(find_vpid(nr));
400 	rcu_read_unlock();
401 
402 	return pid;
403 }
404 EXPORT_SYMBOL_GPL(find_get_pid);
405 
406 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
407 {
408 	struct upid *upid;
409 	pid_t nr = 0;
410 
411 	if (pid && ns->level <= pid->level) {
412 		upid = &pid->numbers[ns->level];
413 		if (upid->ns == ns)
414 			nr = upid->nr;
415 	}
416 	return nr;
417 }
418 EXPORT_SYMBOL_GPL(pid_nr_ns);
419 
420 pid_t pid_vnr(struct pid *pid)
421 {
422 	return pid_nr_ns(pid, task_active_pid_ns(current));
423 }
424 EXPORT_SYMBOL_GPL(pid_vnr);
425 
426 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
427 			struct pid_namespace *ns)
428 {
429 	pid_t nr = 0;
430 
431 	rcu_read_lock();
432 	if (!ns)
433 		ns = task_active_pid_ns(current);
434 	if (likely(pid_alive(task)))
435 		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
436 	rcu_read_unlock();
437 
438 	return nr;
439 }
440 EXPORT_SYMBOL(__task_pid_nr_ns);
441 
442 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
443 {
444 	return ns_of_pid(task_pid(tsk));
445 }
446 EXPORT_SYMBOL_GPL(task_active_pid_ns);
447 
448 /*
449  * Used by proc to find the first pid that is greater than or equal to nr.
450  *
451  * If there is a pid at nr this function is exactly the same as find_pid_ns.
452  */
453 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
454 {
455 	return idr_get_next(&ns->idr, &nr);
456 }
457 
458 /**
459  * pidfd_create() - Create a new pid file descriptor.
460  *
461  * @pid:  struct pid that the pidfd will reference
462  *
463  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
464  *
465  * Note, that this function can only be called after the fd table has
466  * been unshared to avoid leaking the pidfd to the new process.
467  *
468  * Return: On success, a cloexec pidfd is returned.
469  *         On error, a negative errno number will be returned.
470  */
471 static int pidfd_create(struct pid *pid)
472 {
473 	int fd;
474 
475 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
476 			      O_RDWR | O_CLOEXEC);
477 	if (fd < 0)
478 		put_pid(pid);
479 
480 	return fd;
481 }
482 
483 /**
484  * pidfd_open() - Open new pid file descriptor.
485  *
486  * @pid:   pid for which to retrieve a pidfd
487  * @flags: flags to pass
488  *
489  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
490  * the process identified by @pid. Currently, the process identified by
491  * @pid must be a thread-group leader. This restriction currently exists
492  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
493  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
494  * leaders).
495  *
496  * Return: On success, a cloexec pidfd is returned.
497  *         On error, a negative errno number will be returned.
498  */
499 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
500 {
501 	int fd, ret;
502 	struct pid *p;
503 
504 	if (flags)
505 		return -EINVAL;
506 
507 	if (pid <= 0)
508 		return -EINVAL;
509 
510 	p = find_get_pid(pid);
511 	if (!p)
512 		return -ESRCH;
513 
514 	ret = 0;
515 	rcu_read_lock();
516 	if (!pid_task(p, PIDTYPE_TGID))
517 		ret = -EINVAL;
518 	rcu_read_unlock();
519 
520 	fd = ret ?: pidfd_create(p);
521 	put_pid(p);
522 	return fd;
523 }
524 
525 void __init pid_idr_init(void)
526 {
527 	/* Verify no one has done anything silly: */
528 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
529 
530 	/* bump default and minimum pid_max based on number of cpus */
531 	pid_max = min(pid_max_max, max_t(int, pid_max,
532 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
533 	pid_max_min = max_t(int, pid_max_min,
534 				PIDS_PER_CPU_MIN * num_possible_cpus());
535 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
536 
537 	idr_init(&init_pid_ns.idr);
538 
539 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
540 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
541 }
542