1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/proc_fs.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 46 struct pid init_struct_pid = { 47 .count = ATOMIC_INIT(1), 48 .tasks = { 49 { .first = NULL }, 50 { .first = NULL }, 51 { .first = NULL }, 52 }, 53 .level = 0, 54 .numbers = { { 55 .nr = 0, 56 .ns = &init_pid_ns, 57 }, } 58 }; 59 60 int pid_max = PID_MAX_DEFAULT; 61 62 #define RESERVED_PIDS 300 63 64 int pid_max_min = RESERVED_PIDS + 1; 65 int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .kref = KREF_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 void put_pid(struct pid *pid) 104 { 105 struct pid_namespace *ns; 106 107 if (!pid) 108 return; 109 110 ns = pid->numbers[pid->level].ns; 111 if ((atomic_read(&pid->count) == 1) || 112 atomic_dec_and_test(&pid->count)) { 113 kmem_cache_free(ns->pid_cachep, pid); 114 put_pid_ns(ns); 115 } 116 } 117 EXPORT_SYMBOL_GPL(put_pid); 118 119 static void delayed_put_pid(struct rcu_head *rhp) 120 { 121 struct pid *pid = container_of(rhp, struct pid, rcu); 122 put_pid(pid); 123 } 124 125 void free_pid(struct pid *pid) 126 { 127 /* We can be called with write_lock_irq(&tasklist_lock) held */ 128 int i; 129 unsigned long flags; 130 131 spin_lock_irqsave(&pidmap_lock, flags); 132 for (i = 0; i <= pid->level; i++) { 133 struct upid *upid = pid->numbers + i; 134 struct pid_namespace *ns = upid->ns; 135 switch (--ns->pid_allocated) { 136 case 2: 137 case 1: 138 /* When all that is left in the pid namespace 139 * is the reaper wake up the reaper. The reaper 140 * may be sleeping in zap_pid_ns_processes(). 141 */ 142 wake_up_process(ns->child_reaper); 143 break; 144 case PIDNS_ADDING: 145 /* Handle a fork failure of the first process */ 146 WARN_ON(ns->child_reaper); 147 ns->pid_allocated = 0; 148 /* fall through */ 149 case 0: 150 schedule_work(&ns->proc_work); 151 break; 152 } 153 154 idr_remove(&ns->idr, upid->nr); 155 } 156 spin_unlock_irqrestore(&pidmap_lock, flags); 157 158 call_rcu(&pid->rcu, delayed_put_pid); 159 } 160 161 struct pid *alloc_pid(struct pid_namespace *ns) 162 { 163 struct pid *pid; 164 enum pid_type type; 165 int i, nr; 166 struct pid_namespace *tmp; 167 struct upid *upid; 168 int retval = -ENOMEM; 169 170 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 171 if (!pid) 172 return ERR_PTR(retval); 173 174 tmp = ns; 175 pid->level = ns->level; 176 177 for (i = ns->level; i >= 0; i--) { 178 int pid_min = 1; 179 180 idr_preload(GFP_KERNEL); 181 spin_lock_irq(&pidmap_lock); 182 183 /* 184 * init really needs pid 1, but after reaching the maximum 185 * wrap back to RESERVED_PIDS 186 */ 187 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 188 pid_min = RESERVED_PIDS; 189 190 /* 191 * Store a null pointer so find_pid_ns does not find 192 * a partially initialized PID (see below). 193 */ 194 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 195 pid_max, GFP_ATOMIC); 196 spin_unlock_irq(&pidmap_lock); 197 idr_preload_end(); 198 199 if (nr < 0) { 200 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 201 goto out_free; 202 } 203 204 pid->numbers[i].nr = nr; 205 pid->numbers[i].ns = tmp; 206 tmp = tmp->parent; 207 } 208 209 if (unlikely(is_child_reaper(pid))) { 210 if (pid_ns_prepare_proc(ns)) 211 goto out_free; 212 } 213 214 get_pid_ns(ns); 215 atomic_set(&pid->count, 1); 216 for (type = 0; type < PIDTYPE_MAX; ++type) 217 INIT_HLIST_HEAD(&pid->tasks[type]); 218 219 init_waitqueue_head(&pid->wait_pidfd); 220 221 upid = pid->numbers + ns->level; 222 spin_lock_irq(&pidmap_lock); 223 if (!(ns->pid_allocated & PIDNS_ADDING)) 224 goto out_unlock; 225 for ( ; upid >= pid->numbers; --upid) { 226 /* Make the PID visible to find_pid_ns. */ 227 idr_replace(&upid->ns->idr, pid, upid->nr); 228 upid->ns->pid_allocated++; 229 } 230 spin_unlock_irq(&pidmap_lock); 231 232 return pid; 233 234 out_unlock: 235 spin_unlock_irq(&pidmap_lock); 236 put_pid_ns(ns); 237 238 out_free: 239 spin_lock_irq(&pidmap_lock); 240 while (++i <= ns->level) { 241 upid = pid->numbers + i; 242 idr_remove(&upid->ns->idr, upid->nr); 243 } 244 245 /* On failure to allocate the first pid, reset the state */ 246 if (ns->pid_allocated == PIDNS_ADDING) 247 idr_set_cursor(&ns->idr, 0); 248 249 spin_unlock_irq(&pidmap_lock); 250 251 kmem_cache_free(ns->pid_cachep, pid); 252 return ERR_PTR(retval); 253 } 254 255 void disable_pid_allocation(struct pid_namespace *ns) 256 { 257 spin_lock_irq(&pidmap_lock); 258 ns->pid_allocated &= ~PIDNS_ADDING; 259 spin_unlock_irq(&pidmap_lock); 260 } 261 262 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 263 { 264 return idr_find(&ns->idr, nr); 265 } 266 EXPORT_SYMBOL_GPL(find_pid_ns); 267 268 struct pid *find_vpid(int nr) 269 { 270 return find_pid_ns(nr, task_active_pid_ns(current)); 271 } 272 EXPORT_SYMBOL_GPL(find_vpid); 273 274 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 275 { 276 return (type == PIDTYPE_PID) ? 277 &task->thread_pid : 278 &task->signal->pids[type]; 279 } 280 281 /* 282 * attach_pid() must be called with the tasklist_lock write-held. 283 */ 284 void attach_pid(struct task_struct *task, enum pid_type type) 285 { 286 struct pid *pid = *task_pid_ptr(task, type); 287 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 288 } 289 290 static void __change_pid(struct task_struct *task, enum pid_type type, 291 struct pid *new) 292 { 293 struct pid **pid_ptr = task_pid_ptr(task, type); 294 struct pid *pid; 295 int tmp; 296 297 pid = *pid_ptr; 298 299 hlist_del_rcu(&task->pid_links[type]); 300 *pid_ptr = new; 301 302 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 303 if (!hlist_empty(&pid->tasks[tmp])) 304 return; 305 306 free_pid(pid); 307 } 308 309 void detach_pid(struct task_struct *task, enum pid_type type) 310 { 311 __change_pid(task, type, NULL); 312 } 313 314 void change_pid(struct task_struct *task, enum pid_type type, 315 struct pid *pid) 316 { 317 __change_pid(task, type, pid); 318 attach_pid(task, type); 319 } 320 321 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 322 void transfer_pid(struct task_struct *old, struct task_struct *new, 323 enum pid_type type) 324 { 325 if (type == PIDTYPE_PID) 326 new->thread_pid = old->thread_pid; 327 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 328 } 329 330 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 331 { 332 struct task_struct *result = NULL; 333 if (pid) { 334 struct hlist_node *first; 335 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 336 lockdep_tasklist_lock_is_held()); 337 if (first) 338 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 339 } 340 return result; 341 } 342 EXPORT_SYMBOL(pid_task); 343 344 /* 345 * Must be called under rcu_read_lock(). 346 */ 347 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 348 { 349 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 350 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 351 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 352 } 353 354 struct task_struct *find_task_by_vpid(pid_t vnr) 355 { 356 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 357 } 358 359 struct task_struct *find_get_task_by_vpid(pid_t nr) 360 { 361 struct task_struct *task; 362 363 rcu_read_lock(); 364 task = find_task_by_vpid(nr); 365 if (task) 366 get_task_struct(task); 367 rcu_read_unlock(); 368 369 return task; 370 } 371 372 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 373 { 374 struct pid *pid; 375 rcu_read_lock(); 376 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 377 rcu_read_unlock(); 378 return pid; 379 } 380 EXPORT_SYMBOL_GPL(get_task_pid); 381 382 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 383 { 384 struct task_struct *result; 385 rcu_read_lock(); 386 result = pid_task(pid, type); 387 if (result) 388 get_task_struct(result); 389 rcu_read_unlock(); 390 return result; 391 } 392 EXPORT_SYMBOL_GPL(get_pid_task); 393 394 struct pid *find_get_pid(pid_t nr) 395 { 396 struct pid *pid; 397 398 rcu_read_lock(); 399 pid = get_pid(find_vpid(nr)); 400 rcu_read_unlock(); 401 402 return pid; 403 } 404 EXPORT_SYMBOL_GPL(find_get_pid); 405 406 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 407 { 408 struct upid *upid; 409 pid_t nr = 0; 410 411 if (pid && ns->level <= pid->level) { 412 upid = &pid->numbers[ns->level]; 413 if (upid->ns == ns) 414 nr = upid->nr; 415 } 416 return nr; 417 } 418 EXPORT_SYMBOL_GPL(pid_nr_ns); 419 420 pid_t pid_vnr(struct pid *pid) 421 { 422 return pid_nr_ns(pid, task_active_pid_ns(current)); 423 } 424 EXPORT_SYMBOL_GPL(pid_vnr); 425 426 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 427 struct pid_namespace *ns) 428 { 429 pid_t nr = 0; 430 431 rcu_read_lock(); 432 if (!ns) 433 ns = task_active_pid_ns(current); 434 if (likely(pid_alive(task))) 435 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 436 rcu_read_unlock(); 437 438 return nr; 439 } 440 EXPORT_SYMBOL(__task_pid_nr_ns); 441 442 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 443 { 444 return ns_of_pid(task_pid(tsk)); 445 } 446 EXPORT_SYMBOL_GPL(task_active_pid_ns); 447 448 /* 449 * Used by proc to find the first pid that is greater than or equal to nr. 450 * 451 * If there is a pid at nr this function is exactly the same as find_pid_ns. 452 */ 453 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 454 { 455 return idr_get_next(&ns->idr, &nr); 456 } 457 458 /** 459 * pidfd_create() - Create a new pid file descriptor. 460 * 461 * @pid: struct pid that the pidfd will reference 462 * 463 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 464 * 465 * Note, that this function can only be called after the fd table has 466 * been unshared to avoid leaking the pidfd to the new process. 467 * 468 * Return: On success, a cloexec pidfd is returned. 469 * On error, a negative errno number will be returned. 470 */ 471 static int pidfd_create(struct pid *pid) 472 { 473 int fd; 474 475 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 476 O_RDWR | O_CLOEXEC); 477 if (fd < 0) 478 put_pid(pid); 479 480 return fd; 481 } 482 483 /** 484 * pidfd_open() - Open new pid file descriptor. 485 * 486 * @pid: pid for which to retrieve a pidfd 487 * @flags: flags to pass 488 * 489 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 490 * the process identified by @pid. Currently, the process identified by 491 * @pid must be a thread-group leader. This restriction currently exists 492 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot 493 * be used with CLONE_THREAD) and pidfd polling (only supports thread group 494 * leaders). 495 * 496 * Return: On success, a cloexec pidfd is returned. 497 * On error, a negative errno number will be returned. 498 */ 499 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 500 { 501 int fd, ret; 502 struct pid *p; 503 504 if (flags) 505 return -EINVAL; 506 507 if (pid <= 0) 508 return -EINVAL; 509 510 p = find_get_pid(pid); 511 if (!p) 512 return -ESRCH; 513 514 ret = 0; 515 rcu_read_lock(); 516 if (!pid_task(p, PIDTYPE_TGID)) 517 ret = -EINVAL; 518 rcu_read_unlock(); 519 520 fd = ret ?: pidfd_create(p); 521 put_pid(p); 522 return fd; 523 } 524 525 void __init pid_idr_init(void) 526 { 527 /* Verify no one has done anything silly: */ 528 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 529 530 /* bump default and minimum pid_max based on number of cpus */ 531 pid_max = min(pid_max_max, max_t(int, pid_max, 532 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 533 pid_max_min = max_t(int, pid_max_min, 534 PIDS_PER_CPU_MIN * num_possible_cpus()); 535 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 536 537 idr_init(&init_pid_ns.idr); 538 539 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 540 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 541 } 542