1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <linux/seqlock.h> 47 #include <net/sock.h> 48 #include <uapi/linux/pidfd.h> 49 50 struct pid init_struct_pid = { 51 .count = REFCOUNT_INIT(1), 52 .tasks = { 53 { .first = NULL }, 54 { .first = NULL }, 55 { .first = NULL }, 56 }, 57 .level = 0, 58 .numbers = { { 59 .nr = 0, 60 .ns = &init_pid_ns, 61 }, } 62 }; 63 64 static int pid_max_min = RESERVED_PIDS + 1; 65 static int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .ns.__ns_ref = REFCOUNT_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = ns_init_inum(&init_pid_ns), 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 .pid_max = PID_MAX_DEFAULT, 85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 86 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 87 #endif 88 .ns.ns_type = ns_common_type(&init_pid_ns), 89 }; 90 EXPORT_SYMBOL_GPL(init_pid_ns); 91 92 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 93 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock); 94 95 void put_pid(struct pid *pid) 96 { 97 struct pid_namespace *ns; 98 99 if (!pid) 100 return; 101 102 ns = pid->numbers[pid->level].ns; 103 if (refcount_dec_and_test(&pid->count)) { 104 pidfs_free_pid(pid); 105 kmem_cache_free(ns->pid_cachep, pid); 106 put_pid_ns(ns); 107 } 108 } 109 EXPORT_SYMBOL_GPL(put_pid); 110 111 static void delayed_put_pid(struct rcu_head *rhp) 112 { 113 struct pid *pid = container_of(rhp, struct pid, rcu); 114 put_pid(pid); 115 } 116 117 void free_pid(struct pid *pid) 118 { 119 int i; 120 121 lockdep_assert_not_held(&tasklist_lock); 122 123 spin_lock(&pidmap_lock); 124 for (i = 0; i <= pid->level; i++) { 125 struct upid *upid = pid->numbers + i; 126 struct pid_namespace *ns = upid->ns; 127 switch (--ns->pid_allocated) { 128 case 2: 129 case 1: 130 /* When all that is left in the pid namespace 131 * is the reaper wake up the reaper. The reaper 132 * may be sleeping in zap_pid_ns_processes(). 133 */ 134 wake_up_process(ns->child_reaper); 135 break; 136 case PIDNS_ADDING: 137 /* Handle a fork failure of the first process */ 138 WARN_ON(ns->child_reaper); 139 ns->pid_allocated = 0; 140 break; 141 } 142 143 idr_remove(&ns->idr, upid->nr); 144 } 145 pidfs_remove_pid(pid); 146 spin_unlock(&pidmap_lock); 147 148 call_rcu(&pid->rcu, delayed_put_pid); 149 } 150 151 void free_pids(struct pid **pids) 152 { 153 int tmp; 154 155 /* 156 * This can batch pidmap_lock. 157 */ 158 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 159 if (pids[tmp]) 160 free_pid(pids[tmp]); 161 } 162 163 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 164 size_t set_tid_size) 165 { 166 struct pid *pid; 167 enum pid_type type; 168 int i, nr; 169 struct pid_namespace *tmp; 170 struct upid *upid; 171 int retval = -ENOMEM; 172 173 /* 174 * set_tid_size contains the size of the set_tid array. Starting at 175 * the most nested currently active PID namespace it tells alloc_pid() 176 * which PID to set for a process in that most nested PID namespace 177 * up to set_tid_size PID namespaces. It does not have to set the PID 178 * for a process in all nested PID namespaces but set_tid_size must 179 * never be greater than the current ns->level + 1. 180 */ 181 if (set_tid_size > ns->level + 1) 182 return ERR_PTR(-EINVAL); 183 184 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 185 if (!pid) 186 return ERR_PTR(retval); 187 188 tmp = ns; 189 pid->level = ns->level; 190 191 for (i = ns->level; i >= 0; i--) { 192 int tid = 0; 193 int pid_max = READ_ONCE(tmp->pid_max); 194 195 if (set_tid_size) { 196 tid = set_tid[ns->level - i]; 197 198 retval = -EINVAL; 199 if (tid < 1 || tid >= pid_max) 200 goto out_free; 201 /* 202 * Also fail if a PID != 1 is requested and 203 * no PID 1 exists. 204 */ 205 if (tid != 1 && !tmp->child_reaper) 206 goto out_free; 207 retval = -EPERM; 208 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 209 goto out_free; 210 set_tid_size--; 211 } 212 213 idr_preload(GFP_KERNEL); 214 spin_lock(&pidmap_lock); 215 216 if (tid) { 217 nr = idr_alloc(&tmp->idr, NULL, tid, 218 tid + 1, GFP_ATOMIC); 219 /* 220 * If ENOSPC is returned it means that the PID is 221 * alreay in use. Return EEXIST in that case. 222 */ 223 if (nr == -ENOSPC) 224 nr = -EEXIST; 225 } else { 226 int pid_min = 1; 227 /* 228 * init really needs pid 1, but after reaching the 229 * maximum wrap back to RESERVED_PIDS 230 */ 231 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 232 pid_min = RESERVED_PIDS; 233 234 /* 235 * Store a null pointer so find_pid_ns does not find 236 * a partially initialized PID (see below). 237 */ 238 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 239 pid_max, GFP_ATOMIC); 240 } 241 spin_unlock(&pidmap_lock); 242 idr_preload_end(); 243 244 if (nr < 0) { 245 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 246 goto out_free; 247 } 248 249 pid->numbers[i].nr = nr; 250 pid->numbers[i].ns = tmp; 251 tmp = tmp->parent; 252 } 253 254 /* 255 * ENOMEM is not the most obvious choice especially for the case 256 * where the child subreaper has already exited and the pid 257 * namespace denies the creation of any new processes. But ENOMEM 258 * is what we have exposed to userspace for a long time and it is 259 * documented behavior for pid namespaces. So we can't easily 260 * change it even if there were an error code better suited. 261 */ 262 retval = -ENOMEM; 263 264 get_pid_ns(ns); 265 refcount_set(&pid->count, 1); 266 spin_lock_init(&pid->lock); 267 for (type = 0; type < PIDTYPE_MAX; ++type) 268 INIT_HLIST_HEAD(&pid->tasks[type]); 269 270 init_waitqueue_head(&pid->wait_pidfd); 271 INIT_HLIST_HEAD(&pid->inodes); 272 273 upid = pid->numbers + ns->level; 274 idr_preload(GFP_KERNEL); 275 spin_lock(&pidmap_lock); 276 if (!(ns->pid_allocated & PIDNS_ADDING)) 277 goto out_unlock; 278 pidfs_add_pid(pid); 279 for ( ; upid >= pid->numbers; --upid) { 280 /* Make the PID visible to find_pid_ns. */ 281 idr_replace(&upid->ns->idr, pid, upid->nr); 282 upid->ns->pid_allocated++; 283 } 284 spin_unlock(&pidmap_lock); 285 idr_preload_end(); 286 287 return pid; 288 289 out_unlock: 290 spin_unlock(&pidmap_lock); 291 idr_preload_end(); 292 put_pid_ns(ns); 293 294 out_free: 295 spin_lock(&pidmap_lock); 296 while (++i <= ns->level) { 297 upid = pid->numbers + i; 298 idr_remove(&upid->ns->idr, upid->nr); 299 } 300 301 /* On failure to allocate the first pid, reset the state */ 302 if (ns->pid_allocated == PIDNS_ADDING) 303 idr_set_cursor(&ns->idr, 0); 304 305 spin_unlock(&pidmap_lock); 306 307 kmem_cache_free(ns->pid_cachep, pid); 308 return ERR_PTR(retval); 309 } 310 311 void disable_pid_allocation(struct pid_namespace *ns) 312 { 313 spin_lock(&pidmap_lock); 314 ns->pid_allocated &= ~PIDNS_ADDING; 315 spin_unlock(&pidmap_lock); 316 } 317 318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 319 { 320 return idr_find(&ns->idr, nr); 321 } 322 EXPORT_SYMBOL_GPL(find_pid_ns); 323 324 struct pid *find_vpid(int nr) 325 { 326 return find_pid_ns(nr, task_active_pid_ns(current)); 327 } 328 EXPORT_SYMBOL_GPL(find_vpid); 329 330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 331 { 332 return (type == PIDTYPE_PID) ? 333 &task->thread_pid : 334 &task->signal->pids[type]; 335 } 336 337 /* 338 * attach_pid() must be called with the tasklist_lock write-held. 339 */ 340 void attach_pid(struct task_struct *task, enum pid_type type) 341 { 342 struct pid *pid; 343 344 lockdep_assert_held_write(&tasklist_lock); 345 346 pid = *task_pid_ptr(task, type); 347 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 348 } 349 350 static void __change_pid(struct pid **pids, struct task_struct *task, 351 enum pid_type type, struct pid *new) 352 { 353 struct pid **pid_ptr, *pid; 354 int tmp; 355 356 lockdep_assert_held_write(&tasklist_lock); 357 358 pid_ptr = task_pid_ptr(task, type); 359 pid = *pid_ptr; 360 361 hlist_del_rcu(&task->pid_links[type]); 362 *pid_ptr = new; 363 364 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 365 if (pid_has_task(pid, tmp)) 366 return; 367 368 WARN_ON(pids[type]); 369 pids[type] = pid; 370 } 371 372 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type) 373 { 374 __change_pid(pids, task, type, NULL); 375 } 376 377 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type, 378 struct pid *pid) 379 { 380 __change_pid(pids, task, type, pid); 381 attach_pid(task, type); 382 } 383 384 void exchange_tids(struct task_struct *left, struct task_struct *right) 385 { 386 struct pid *pid1 = left->thread_pid; 387 struct pid *pid2 = right->thread_pid; 388 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 389 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 390 391 lockdep_assert_held_write(&tasklist_lock); 392 393 /* Swap the single entry tid lists */ 394 hlists_swap_heads_rcu(head1, head2); 395 396 /* Swap the per task_struct pid */ 397 rcu_assign_pointer(left->thread_pid, pid2); 398 rcu_assign_pointer(right->thread_pid, pid1); 399 400 /* Swap the cached value */ 401 WRITE_ONCE(left->pid, pid_nr(pid2)); 402 WRITE_ONCE(right->pid, pid_nr(pid1)); 403 } 404 405 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 406 void transfer_pid(struct task_struct *old, struct task_struct *new, 407 enum pid_type type) 408 { 409 WARN_ON_ONCE(type == PIDTYPE_PID); 410 lockdep_assert_held_write(&tasklist_lock); 411 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 412 } 413 414 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 415 { 416 struct task_struct *result = NULL; 417 if (pid) { 418 struct hlist_node *first; 419 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 420 lockdep_tasklist_lock_is_held()); 421 if (first) 422 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 423 } 424 return result; 425 } 426 EXPORT_SYMBOL(pid_task); 427 428 /* 429 * Must be called under rcu_read_lock(). 430 */ 431 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 432 { 433 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 434 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 435 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 436 } 437 438 struct task_struct *find_task_by_vpid(pid_t vnr) 439 { 440 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 441 } 442 443 struct task_struct *find_get_task_by_vpid(pid_t nr) 444 { 445 struct task_struct *task; 446 447 rcu_read_lock(); 448 task = find_task_by_vpid(nr); 449 if (task) 450 get_task_struct(task); 451 rcu_read_unlock(); 452 453 return task; 454 } 455 456 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 457 { 458 struct pid *pid; 459 rcu_read_lock(); 460 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 461 rcu_read_unlock(); 462 return pid; 463 } 464 EXPORT_SYMBOL_GPL(get_task_pid); 465 466 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 467 { 468 struct task_struct *result; 469 rcu_read_lock(); 470 result = pid_task(pid, type); 471 if (result) 472 get_task_struct(result); 473 rcu_read_unlock(); 474 return result; 475 } 476 EXPORT_SYMBOL_GPL(get_pid_task); 477 478 struct pid *find_get_pid(pid_t nr) 479 { 480 struct pid *pid; 481 482 rcu_read_lock(); 483 pid = get_pid(find_vpid(nr)); 484 rcu_read_unlock(); 485 486 return pid; 487 } 488 EXPORT_SYMBOL_GPL(find_get_pid); 489 490 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 491 { 492 struct upid *upid; 493 pid_t nr = 0; 494 495 if (pid && ns && ns->level <= pid->level) { 496 upid = &pid->numbers[ns->level]; 497 if (upid->ns == ns) 498 nr = upid->nr; 499 } 500 return nr; 501 } 502 EXPORT_SYMBOL_GPL(pid_nr_ns); 503 504 pid_t pid_vnr(struct pid *pid) 505 { 506 return pid_nr_ns(pid, task_active_pid_ns(current)); 507 } 508 EXPORT_SYMBOL_GPL(pid_vnr); 509 510 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 511 struct pid_namespace *ns) 512 { 513 pid_t nr = 0; 514 515 rcu_read_lock(); 516 if (!ns) 517 ns = task_active_pid_ns(current); 518 if (ns) 519 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 520 rcu_read_unlock(); 521 522 return nr; 523 } 524 EXPORT_SYMBOL(__task_pid_nr_ns); 525 526 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 527 { 528 return ns_of_pid(task_pid(tsk)); 529 } 530 EXPORT_SYMBOL_GPL(task_active_pid_ns); 531 532 /* 533 * Used by proc to find the first pid that is greater than or equal to nr. 534 * 535 * If there is a pid at nr this function is exactly the same as find_pid_ns. 536 */ 537 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 538 { 539 return idr_get_next(&ns->idr, &nr); 540 } 541 EXPORT_SYMBOL_GPL(find_ge_pid); 542 543 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 544 { 545 CLASS(fd, f)(fd); 546 struct pid *pid; 547 548 if (fd_empty(f)) 549 return ERR_PTR(-EBADF); 550 551 pid = pidfd_pid(fd_file(f)); 552 if (!IS_ERR(pid)) { 553 get_pid(pid); 554 *flags = fd_file(f)->f_flags; 555 } 556 return pid; 557 } 558 559 /** 560 * pidfd_get_task() - Get the task associated with a pidfd 561 * 562 * @pidfd: pidfd for which to get the task 563 * @flags: flags associated with this pidfd 564 * 565 * Return the task associated with @pidfd. The function takes a reference on 566 * the returned task. The caller is responsible for releasing that reference. 567 * 568 * Return: On success, the task_struct associated with the pidfd. 569 * On error, a negative errno number will be returned. 570 */ 571 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 572 { 573 unsigned int f_flags = 0; 574 struct pid *pid; 575 struct task_struct *task; 576 enum pid_type type; 577 578 switch (pidfd) { 579 case PIDFD_SELF_THREAD: 580 type = PIDTYPE_PID; 581 pid = get_task_pid(current, type); 582 break; 583 case PIDFD_SELF_THREAD_GROUP: 584 type = PIDTYPE_TGID; 585 pid = get_task_pid(current, type); 586 break; 587 default: 588 pid = pidfd_get_pid(pidfd, &f_flags); 589 if (IS_ERR(pid)) 590 return ERR_CAST(pid); 591 type = PIDTYPE_TGID; 592 break; 593 } 594 595 task = get_pid_task(pid, type); 596 put_pid(pid); 597 if (!task) 598 return ERR_PTR(-ESRCH); 599 600 *flags = f_flags; 601 return task; 602 } 603 604 /** 605 * pidfd_create() - Create a new pid file descriptor. 606 * 607 * @pid: struct pid that the pidfd will reference 608 * @flags: flags to pass 609 * 610 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 611 * 612 * Note, that this function can only be called after the fd table has 613 * been unshared to avoid leaking the pidfd to the new process. 614 * 615 * This symbol should not be explicitly exported to loadable modules. 616 * 617 * Return: On success, a cloexec pidfd is returned. 618 * On error, a negative errno number will be returned. 619 */ 620 static int pidfd_create(struct pid *pid, unsigned int flags) 621 { 622 int pidfd; 623 struct file *pidfd_file; 624 625 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 626 if (pidfd < 0) 627 return pidfd; 628 629 fd_install(pidfd, pidfd_file); 630 return pidfd; 631 } 632 633 /** 634 * sys_pidfd_open() - Open new pid file descriptor. 635 * 636 * @pid: pid for which to retrieve a pidfd 637 * @flags: flags to pass 638 * 639 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 640 * the task identified by @pid. Without PIDFD_THREAD flag the target task 641 * must be a thread-group leader. 642 * 643 * Return: On success, a cloexec pidfd is returned. 644 * On error, a negative errno number will be returned. 645 */ 646 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 647 { 648 int fd; 649 struct pid *p; 650 651 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 652 return -EINVAL; 653 654 if (pid <= 0) 655 return -EINVAL; 656 657 p = find_get_pid(pid); 658 if (!p) 659 return -ESRCH; 660 661 fd = pidfd_create(p, flags); 662 663 put_pid(p); 664 return fd; 665 } 666 667 #ifdef CONFIG_SYSCTL 668 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) 669 { 670 return &task_active_pid_ns(current)->set; 671 } 672 673 static int set_is_seen(struct ctl_table_set *set) 674 { 675 return &task_active_pid_ns(current)->set == set; 676 } 677 678 static int pid_table_root_permissions(struct ctl_table_header *head, 679 const struct ctl_table *table) 680 { 681 struct pid_namespace *pidns = 682 container_of(head->set, struct pid_namespace, set); 683 int mode = table->mode; 684 685 if (ns_capable_noaudit(pidns->user_ns, CAP_SYS_ADMIN) || 686 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) 687 mode = (mode & S_IRWXU) >> 6; 688 else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) 689 mode = (mode & S_IRWXG) >> 3; 690 else 691 mode = mode & S_IROTH; 692 return (mode << 6) | (mode << 3) | mode; 693 } 694 695 static void pid_table_root_set_ownership(struct ctl_table_header *head, 696 kuid_t *uid, kgid_t *gid) 697 { 698 struct pid_namespace *pidns = 699 container_of(head->set, struct pid_namespace, set); 700 kuid_t ns_root_uid; 701 kgid_t ns_root_gid; 702 703 ns_root_uid = make_kuid(pidns->user_ns, 0); 704 if (uid_valid(ns_root_uid)) 705 *uid = ns_root_uid; 706 707 ns_root_gid = make_kgid(pidns->user_ns, 0); 708 if (gid_valid(ns_root_gid)) 709 *gid = ns_root_gid; 710 } 711 712 static struct ctl_table_root pid_table_root = { 713 .lookup = pid_table_root_lookup, 714 .permissions = pid_table_root_permissions, 715 .set_ownership = pid_table_root_set_ownership, 716 }; 717 718 static int proc_do_cad_pid(const struct ctl_table *table, int write, void *buffer, 719 size_t *lenp, loff_t *ppos) 720 { 721 struct pid *new_pid; 722 pid_t tmp_pid; 723 int r; 724 struct ctl_table tmp_table = *table; 725 726 tmp_pid = pid_vnr(cad_pid); 727 tmp_table.data = &tmp_pid; 728 729 r = proc_dointvec(&tmp_table, write, buffer, lenp, ppos); 730 if (r || !write) 731 return r; 732 733 new_pid = find_get_pid(tmp_pid); 734 if (!new_pid) 735 return -ESRCH; 736 737 put_pid(xchg(&cad_pid, new_pid)); 738 return 0; 739 } 740 741 static const struct ctl_table pid_table[] = { 742 { 743 .procname = "pid_max", 744 .data = &init_pid_ns.pid_max, 745 .maxlen = sizeof(int), 746 .mode = 0644, 747 .proc_handler = proc_dointvec_minmax, 748 .extra1 = &pid_max_min, 749 .extra2 = &pid_max_max, 750 }, 751 #ifdef CONFIG_PROC_SYSCTL 752 { 753 .procname = "cad_pid", 754 .maxlen = sizeof(int), 755 .mode = 0600, 756 .proc_handler = proc_do_cad_pid, 757 }, 758 #endif 759 }; 760 #endif 761 762 int register_pidns_sysctls(struct pid_namespace *pidns) 763 { 764 #ifdef CONFIG_SYSCTL 765 struct ctl_table *tbl; 766 767 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); 768 769 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); 770 if (!tbl) 771 return -ENOMEM; 772 tbl->data = &pidns->pid_max; 773 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, 774 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 775 776 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, 777 ARRAY_SIZE(pid_table)); 778 if (!pidns->sysctls) { 779 kfree(tbl); 780 retire_sysctl_set(&pidns->set); 781 return -ENOMEM; 782 } 783 #endif 784 return 0; 785 } 786 787 void unregister_pidns_sysctls(struct pid_namespace *pidns) 788 { 789 #ifdef CONFIG_SYSCTL 790 const struct ctl_table *tbl; 791 792 tbl = pidns->sysctls->ctl_table_arg; 793 unregister_sysctl_table(pidns->sysctls); 794 retire_sysctl_set(&pidns->set); 795 kfree(tbl); 796 #endif 797 } 798 799 void __init pid_idr_init(void) 800 { 801 /* Verify no one has done anything silly: */ 802 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 803 804 /* bump default and minimum pid_max based on number of cpus */ 805 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, 806 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 807 pid_max_min = max_t(int, pid_max_min, 808 PIDS_PER_CPU_MIN * num_possible_cpus()); 809 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); 810 811 idr_init(&init_pid_ns.idr); 812 813 init_pid_ns.pid_cachep = kmem_cache_create("pid", 814 struct_size_t(struct pid, numbers, 1), 815 __alignof__(struct pid), 816 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 817 NULL); 818 } 819 820 static __init int pid_namespace_sysctl_init(void) 821 { 822 #ifdef CONFIG_SYSCTL 823 /* "kernel" directory will have already been initialized. */ 824 BUG_ON(register_pidns_sysctls(&init_pid_ns)); 825 #endif 826 return 0; 827 } 828 subsys_initcall(pid_namespace_sysctl_init); 829 830 static struct file *__pidfd_fget(struct task_struct *task, int fd) 831 { 832 struct file *file; 833 int ret; 834 835 ret = down_read_killable(&task->signal->exec_update_lock); 836 if (ret) 837 return ERR_PTR(ret); 838 839 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 840 file = fget_task(task, fd); 841 else 842 file = ERR_PTR(-EPERM); 843 844 up_read(&task->signal->exec_update_lock); 845 846 if (!file) { 847 /* 848 * It is possible that the target thread is exiting; it can be 849 * either: 850 * 1. before exit_signals(), which gives a real fd 851 * 2. before exit_files() takes the task_lock() gives a real fd 852 * 3. after exit_files() releases task_lock(), ->files is NULL; 853 * this has PF_EXITING, since it was set in exit_signals(), 854 * __pidfd_fget() returns EBADF. 855 * In case 3 we get EBADF, but that really means ESRCH, since 856 * the task is currently exiting and has freed its files 857 * struct, so we fix it up. 858 */ 859 if (task->flags & PF_EXITING) 860 file = ERR_PTR(-ESRCH); 861 else 862 file = ERR_PTR(-EBADF); 863 } 864 865 return file; 866 } 867 868 static int pidfd_getfd(struct pid *pid, int fd) 869 { 870 struct task_struct *task; 871 struct file *file; 872 int ret; 873 874 task = get_pid_task(pid, PIDTYPE_PID); 875 if (!task) 876 return -ESRCH; 877 878 file = __pidfd_fget(task, fd); 879 put_task_struct(task); 880 if (IS_ERR(file)) 881 return PTR_ERR(file); 882 883 ret = receive_fd(file, NULL, O_CLOEXEC); 884 fput(file); 885 886 return ret; 887 } 888 889 /** 890 * sys_pidfd_getfd() - Get a file descriptor from another process 891 * 892 * @pidfd: the pidfd file descriptor of the process 893 * @fd: the file descriptor number to get 894 * @flags: flags on how to get the fd (reserved) 895 * 896 * This syscall gets a copy of a file descriptor from another process 897 * based on the pidfd, and file descriptor number. It requires that 898 * the calling process has the ability to ptrace the process represented 899 * by the pidfd. The process which is having its file descriptor copied 900 * is otherwise unaffected. 901 * 902 * Return: On success, a cloexec file descriptor is returned. 903 * On error, a negative errno number will be returned. 904 */ 905 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 906 unsigned int, flags) 907 { 908 struct pid *pid; 909 910 /* flags is currently unused - make sure it's unset */ 911 if (flags) 912 return -EINVAL; 913 914 CLASS(fd, f)(pidfd); 915 if (fd_empty(f)) 916 return -EBADF; 917 918 pid = pidfd_pid(fd_file(f)); 919 if (IS_ERR(pid)) 920 return PTR_ERR(pid); 921 922 return pidfd_getfd(pid, fd); 923 } 924