xref: /linux/kernel/pid.c (revision 06bd48b6cd97ef3889b68c8e09014d81dbc463f1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 
46 struct pid init_struct_pid = {
47 	.count		= REFCOUNT_INIT(1),
48 	.tasks		= {
49 		{ .first = NULL },
50 		{ .first = NULL },
51 		{ .first = NULL },
52 	},
53 	.level		= 0,
54 	.numbers	= { {
55 		.nr		= 0,
56 		.ns		= &init_pid_ns,
57 	}, }
58 };
59 
60 int pid_max = PID_MAX_DEFAULT;
61 
62 #define RESERVED_PIDS		300
63 
64 int pid_max_min = RESERVED_PIDS + 1;
65 int pid_max_max = PID_MAX_LIMIT;
66 
67 /*
68  * PID-map pages start out as NULL, they get allocated upon
69  * first use and are never deallocated. This way a low pid_max
70  * value does not cause lots of bitmaps to be allocated, but
71  * the scheme scales to up to 4 million PIDs, runtime.
72  */
73 struct pid_namespace init_pid_ns = {
74 	.kref = KREF_INIT(2),
75 	.idr = IDR_INIT(init_pid_ns.idr),
76 	.pid_allocated = PIDNS_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 };
85 EXPORT_SYMBOL_GPL(init_pid_ns);
86 
87 /*
88  * Note: disable interrupts while the pidmap_lock is held as an
89  * interrupt might come in and do read_lock(&tasklist_lock).
90  *
91  * If we don't disable interrupts there is a nasty deadlock between
92  * detach_pid()->free_pid() and another cpu that does
93  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
94  * read_lock(&tasklist_lock);
95  *
96  * After we clean up the tasklist_lock and know there are no
97  * irq handlers that take it we can leave the interrupts enabled.
98  * For now it is easier to be safe than to prove it can't happen.
99  */
100 
101 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
102 
103 void put_pid(struct pid *pid)
104 {
105 	struct pid_namespace *ns;
106 
107 	if (!pid)
108 		return;
109 
110 	ns = pid->numbers[pid->level].ns;
111 	if (refcount_dec_and_test(&pid->count)) {
112 		kmem_cache_free(ns->pid_cachep, pid);
113 		put_pid_ns(ns);
114 	}
115 }
116 EXPORT_SYMBOL_GPL(put_pid);
117 
118 static void delayed_put_pid(struct rcu_head *rhp)
119 {
120 	struct pid *pid = container_of(rhp, struct pid, rcu);
121 	put_pid(pid);
122 }
123 
124 void free_pid(struct pid *pid)
125 {
126 	/* We can be called with write_lock_irq(&tasklist_lock) held */
127 	int i;
128 	unsigned long flags;
129 
130 	spin_lock_irqsave(&pidmap_lock, flags);
131 	for (i = 0; i <= pid->level; i++) {
132 		struct upid *upid = pid->numbers + i;
133 		struct pid_namespace *ns = upid->ns;
134 		switch (--ns->pid_allocated) {
135 		case 2:
136 		case 1:
137 			/* When all that is left in the pid namespace
138 			 * is the reaper wake up the reaper.  The reaper
139 			 * may be sleeping in zap_pid_ns_processes().
140 			 */
141 			wake_up_process(ns->child_reaper);
142 			break;
143 		case PIDNS_ADDING:
144 			/* Handle a fork failure of the first process */
145 			WARN_ON(ns->child_reaper);
146 			ns->pid_allocated = 0;
147 			break;
148 		}
149 
150 		idr_remove(&ns->idr, upid->nr);
151 	}
152 	spin_unlock_irqrestore(&pidmap_lock, flags);
153 
154 	call_rcu(&pid->rcu, delayed_put_pid);
155 }
156 
157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
158 		      size_t set_tid_size)
159 {
160 	struct pid *pid;
161 	enum pid_type type;
162 	int i, nr;
163 	struct pid_namespace *tmp;
164 	struct upid *upid;
165 	int retval = -ENOMEM;
166 
167 	/*
168 	 * set_tid_size contains the size of the set_tid array. Starting at
169 	 * the most nested currently active PID namespace it tells alloc_pid()
170 	 * which PID to set for a process in that most nested PID namespace
171 	 * up to set_tid_size PID namespaces. It does not have to set the PID
172 	 * for a process in all nested PID namespaces but set_tid_size must
173 	 * never be greater than the current ns->level + 1.
174 	 */
175 	if (set_tid_size > ns->level + 1)
176 		return ERR_PTR(-EINVAL);
177 
178 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
179 	if (!pid)
180 		return ERR_PTR(retval);
181 
182 	tmp = ns;
183 	pid->level = ns->level;
184 
185 	for (i = ns->level; i >= 0; i--) {
186 		int tid = 0;
187 
188 		if (set_tid_size) {
189 			tid = set_tid[ns->level - i];
190 
191 			retval = -EINVAL;
192 			if (tid < 1 || tid >= pid_max)
193 				goto out_free;
194 			/*
195 			 * Also fail if a PID != 1 is requested and
196 			 * no PID 1 exists.
197 			 */
198 			if (tid != 1 && !tmp->child_reaper)
199 				goto out_free;
200 			retval = -EPERM;
201 			if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN))
202 				goto out_free;
203 			set_tid_size--;
204 		}
205 
206 		idr_preload(GFP_KERNEL);
207 		spin_lock_irq(&pidmap_lock);
208 
209 		if (tid) {
210 			nr = idr_alloc(&tmp->idr, NULL, tid,
211 				       tid + 1, GFP_ATOMIC);
212 			/*
213 			 * If ENOSPC is returned it means that the PID is
214 			 * alreay in use. Return EEXIST in that case.
215 			 */
216 			if (nr == -ENOSPC)
217 				nr = -EEXIST;
218 		} else {
219 			int pid_min = 1;
220 			/*
221 			 * init really needs pid 1, but after reaching the
222 			 * maximum wrap back to RESERVED_PIDS
223 			 */
224 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
225 				pid_min = RESERVED_PIDS;
226 
227 			/*
228 			 * Store a null pointer so find_pid_ns does not find
229 			 * a partially initialized PID (see below).
230 			 */
231 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
232 					      pid_max, GFP_ATOMIC);
233 		}
234 		spin_unlock_irq(&pidmap_lock);
235 		idr_preload_end();
236 
237 		if (nr < 0) {
238 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
239 			goto out_free;
240 		}
241 
242 		pid->numbers[i].nr = nr;
243 		pid->numbers[i].ns = tmp;
244 		tmp = tmp->parent;
245 	}
246 
247 	/*
248 	 * ENOMEM is not the most obvious choice especially for the case
249 	 * where the child subreaper has already exited and the pid
250 	 * namespace denies the creation of any new processes. But ENOMEM
251 	 * is what we have exposed to userspace for a long time and it is
252 	 * documented behavior for pid namespaces. So we can't easily
253 	 * change it even if there were an error code better suited.
254 	 */
255 	retval = -ENOMEM;
256 
257 	get_pid_ns(ns);
258 	refcount_set(&pid->count, 1);
259 	for (type = 0; type < PIDTYPE_MAX; ++type)
260 		INIT_HLIST_HEAD(&pid->tasks[type]);
261 
262 	init_waitqueue_head(&pid->wait_pidfd);
263 	INIT_HLIST_HEAD(&pid->inodes);
264 
265 	upid = pid->numbers + ns->level;
266 	spin_lock_irq(&pidmap_lock);
267 	if (!(ns->pid_allocated & PIDNS_ADDING))
268 		goto out_unlock;
269 	for ( ; upid >= pid->numbers; --upid) {
270 		/* Make the PID visible to find_pid_ns. */
271 		idr_replace(&upid->ns->idr, pid, upid->nr);
272 		upid->ns->pid_allocated++;
273 	}
274 	spin_unlock_irq(&pidmap_lock);
275 
276 	return pid;
277 
278 out_unlock:
279 	spin_unlock_irq(&pidmap_lock);
280 	put_pid_ns(ns);
281 
282 out_free:
283 	spin_lock_irq(&pidmap_lock);
284 	while (++i <= ns->level) {
285 		upid = pid->numbers + i;
286 		idr_remove(&upid->ns->idr, upid->nr);
287 	}
288 
289 	/* On failure to allocate the first pid, reset the state */
290 	if (ns->pid_allocated == PIDNS_ADDING)
291 		idr_set_cursor(&ns->idr, 0);
292 
293 	spin_unlock_irq(&pidmap_lock);
294 
295 	kmem_cache_free(ns->pid_cachep, pid);
296 	return ERR_PTR(retval);
297 }
298 
299 void disable_pid_allocation(struct pid_namespace *ns)
300 {
301 	spin_lock_irq(&pidmap_lock);
302 	ns->pid_allocated &= ~PIDNS_ADDING;
303 	spin_unlock_irq(&pidmap_lock);
304 }
305 
306 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
307 {
308 	return idr_find(&ns->idr, nr);
309 }
310 EXPORT_SYMBOL_GPL(find_pid_ns);
311 
312 struct pid *find_vpid(int nr)
313 {
314 	return find_pid_ns(nr, task_active_pid_ns(current));
315 }
316 EXPORT_SYMBOL_GPL(find_vpid);
317 
318 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
319 {
320 	return (type == PIDTYPE_PID) ?
321 		&task->thread_pid :
322 		&task->signal->pids[type];
323 }
324 
325 /*
326  * attach_pid() must be called with the tasklist_lock write-held.
327  */
328 void attach_pid(struct task_struct *task, enum pid_type type)
329 {
330 	struct pid *pid = *task_pid_ptr(task, type);
331 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
332 }
333 
334 static void __change_pid(struct task_struct *task, enum pid_type type,
335 			struct pid *new)
336 {
337 	struct pid **pid_ptr = task_pid_ptr(task, type);
338 	struct pid *pid;
339 	int tmp;
340 
341 	pid = *pid_ptr;
342 
343 	hlist_del_rcu(&task->pid_links[type]);
344 	*pid_ptr = new;
345 
346 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
347 		if (pid_has_task(pid, tmp))
348 			return;
349 
350 	free_pid(pid);
351 }
352 
353 void detach_pid(struct task_struct *task, enum pid_type type)
354 {
355 	__change_pid(task, type, NULL);
356 }
357 
358 void change_pid(struct task_struct *task, enum pid_type type,
359 		struct pid *pid)
360 {
361 	__change_pid(task, type, pid);
362 	attach_pid(task, type);
363 }
364 
365 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
366 void transfer_pid(struct task_struct *old, struct task_struct *new,
367 			   enum pid_type type)
368 {
369 	if (type == PIDTYPE_PID)
370 		new->thread_pid = old->thread_pid;
371 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
372 }
373 
374 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
375 {
376 	struct task_struct *result = NULL;
377 	if (pid) {
378 		struct hlist_node *first;
379 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
380 					      lockdep_tasklist_lock_is_held());
381 		if (first)
382 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
383 	}
384 	return result;
385 }
386 EXPORT_SYMBOL(pid_task);
387 
388 /*
389  * Must be called under rcu_read_lock().
390  */
391 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
392 {
393 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
394 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
395 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
396 }
397 
398 struct task_struct *find_task_by_vpid(pid_t vnr)
399 {
400 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
401 }
402 
403 struct task_struct *find_get_task_by_vpid(pid_t nr)
404 {
405 	struct task_struct *task;
406 
407 	rcu_read_lock();
408 	task = find_task_by_vpid(nr);
409 	if (task)
410 		get_task_struct(task);
411 	rcu_read_unlock();
412 
413 	return task;
414 }
415 
416 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
417 {
418 	struct pid *pid;
419 	rcu_read_lock();
420 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
421 	rcu_read_unlock();
422 	return pid;
423 }
424 EXPORT_SYMBOL_GPL(get_task_pid);
425 
426 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
427 {
428 	struct task_struct *result;
429 	rcu_read_lock();
430 	result = pid_task(pid, type);
431 	if (result)
432 		get_task_struct(result);
433 	rcu_read_unlock();
434 	return result;
435 }
436 EXPORT_SYMBOL_GPL(get_pid_task);
437 
438 struct pid *find_get_pid(pid_t nr)
439 {
440 	struct pid *pid;
441 
442 	rcu_read_lock();
443 	pid = get_pid(find_vpid(nr));
444 	rcu_read_unlock();
445 
446 	return pid;
447 }
448 EXPORT_SYMBOL_GPL(find_get_pid);
449 
450 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
451 {
452 	struct upid *upid;
453 	pid_t nr = 0;
454 
455 	if (pid && ns->level <= pid->level) {
456 		upid = &pid->numbers[ns->level];
457 		if (upid->ns == ns)
458 			nr = upid->nr;
459 	}
460 	return nr;
461 }
462 EXPORT_SYMBOL_GPL(pid_nr_ns);
463 
464 pid_t pid_vnr(struct pid *pid)
465 {
466 	return pid_nr_ns(pid, task_active_pid_ns(current));
467 }
468 EXPORT_SYMBOL_GPL(pid_vnr);
469 
470 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
471 			struct pid_namespace *ns)
472 {
473 	pid_t nr = 0;
474 
475 	rcu_read_lock();
476 	if (!ns)
477 		ns = task_active_pid_ns(current);
478 	if (likely(pid_alive(task)))
479 		nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
480 	rcu_read_unlock();
481 
482 	return nr;
483 }
484 EXPORT_SYMBOL(__task_pid_nr_ns);
485 
486 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
487 {
488 	return ns_of_pid(task_pid(tsk));
489 }
490 EXPORT_SYMBOL_GPL(task_active_pid_ns);
491 
492 /*
493  * Used by proc to find the first pid that is greater than or equal to nr.
494  *
495  * If there is a pid at nr this function is exactly the same as find_pid_ns.
496  */
497 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
498 {
499 	return idr_get_next(&ns->idr, &nr);
500 }
501 
502 /**
503  * pidfd_create() - Create a new pid file descriptor.
504  *
505  * @pid:  struct pid that the pidfd will reference
506  *
507  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
508  *
509  * Note, that this function can only be called after the fd table has
510  * been unshared to avoid leaking the pidfd to the new process.
511  *
512  * Return: On success, a cloexec pidfd is returned.
513  *         On error, a negative errno number will be returned.
514  */
515 static int pidfd_create(struct pid *pid)
516 {
517 	int fd;
518 
519 	fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
520 			      O_RDWR | O_CLOEXEC);
521 	if (fd < 0)
522 		put_pid(pid);
523 
524 	return fd;
525 }
526 
527 /**
528  * pidfd_open() - Open new pid file descriptor.
529  *
530  * @pid:   pid for which to retrieve a pidfd
531  * @flags: flags to pass
532  *
533  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
534  * the process identified by @pid. Currently, the process identified by
535  * @pid must be a thread-group leader. This restriction currently exists
536  * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
537  * be used with CLONE_THREAD) and pidfd polling (only supports thread group
538  * leaders).
539  *
540  * Return: On success, a cloexec pidfd is returned.
541  *         On error, a negative errno number will be returned.
542  */
543 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
544 {
545 	int fd;
546 	struct pid *p;
547 
548 	if (flags)
549 		return -EINVAL;
550 
551 	if (pid <= 0)
552 		return -EINVAL;
553 
554 	p = find_get_pid(pid);
555 	if (!p)
556 		return -ESRCH;
557 
558 	if (pid_has_task(p, PIDTYPE_TGID))
559 		fd = pidfd_create(p);
560 	else
561 		fd = -EINVAL;
562 
563 	put_pid(p);
564 	return fd;
565 }
566 
567 void __init pid_idr_init(void)
568 {
569 	/* Verify no one has done anything silly: */
570 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
571 
572 	/* bump default and minimum pid_max based on number of cpus */
573 	pid_max = min(pid_max_max, max_t(int, pid_max,
574 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
575 	pid_max_min = max_t(int, pid_max_min,
576 				PIDS_PER_CPU_MIN * num_possible_cpus());
577 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
578 
579 	idr_init(&init_pid_ns.idr);
580 
581 	init_pid_ns.pid_cachep = KMEM_CACHE(pid,
582 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
583 }
584 
585 static struct file *__pidfd_fget(struct task_struct *task, int fd)
586 {
587 	struct file *file;
588 	int ret;
589 
590 	ret = mutex_lock_killable(&task->signal->exec_update_mutex);
591 	if (ret)
592 		return ERR_PTR(ret);
593 
594 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
595 		file = fget_task(task, fd);
596 	else
597 		file = ERR_PTR(-EPERM);
598 
599 	mutex_unlock(&task->signal->exec_update_mutex);
600 
601 	return file ?: ERR_PTR(-EBADF);
602 }
603 
604 static int pidfd_getfd(struct pid *pid, int fd)
605 {
606 	struct task_struct *task;
607 	struct file *file;
608 	int ret;
609 
610 	task = get_pid_task(pid, PIDTYPE_PID);
611 	if (!task)
612 		return -ESRCH;
613 
614 	file = __pidfd_fget(task, fd);
615 	put_task_struct(task);
616 	if (IS_ERR(file))
617 		return PTR_ERR(file);
618 
619 	ret = security_file_receive(file);
620 	if (ret) {
621 		fput(file);
622 		return ret;
623 	}
624 
625 	ret = get_unused_fd_flags(O_CLOEXEC);
626 	if (ret < 0)
627 		fput(file);
628 	else
629 		fd_install(ret, file);
630 
631 	return ret;
632 }
633 
634 /**
635  * sys_pidfd_getfd() - Get a file descriptor from another process
636  *
637  * @pidfd:	the pidfd file descriptor of the process
638  * @fd:		the file descriptor number to get
639  * @flags:	flags on how to get the fd (reserved)
640  *
641  * This syscall gets a copy of a file descriptor from another process
642  * based on the pidfd, and file descriptor number. It requires that
643  * the calling process has the ability to ptrace the process represented
644  * by the pidfd. The process which is having its file descriptor copied
645  * is otherwise unaffected.
646  *
647  * Return: On success, a cloexec file descriptor is returned.
648  *         On error, a negative errno number will be returned.
649  */
650 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
651 		unsigned int, flags)
652 {
653 	struct pid *pid;
654 	struct fd f;
655 	int ret;
656 
657 	/* flags is currently unused - make sure it's unset */
658 	if (flags)
659 		return -EINVAL;
660 
661 	f = fdget(pidfd);
662 	if (!f.file)
663 		return -EBADF;
664 
665 	pid = pidfd_pid(f.file);
666 	if (IS_ERR(pid))
667 		ret = PTR_ERR(pid);
668 	else
669 		ret = pidfd_getfd(pid, fd);
670 
671 	fdput(f);
672 	return ret;
673 }
674