1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 46 struct pid init_struct_pid = { 47 .count = REFCOUNT_INIT(1), 48 .tasks = { 49 { .first = NULL }, 50 { .first = NULL }, 51 { .first = NULL }, 52 }, 53 .level = 0, 54 .numbers = { { 55 .nr = 0, 56 .ns = &init_pid_ns, 57 }, } 58 }; 59 60 int pid_max = PID_MAX_DEFAULT; 61 62 #define RESERVED_PIDS 300 63 64 int pid_max_min = RESERVED_PIDS + 1; 65 int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .kref = KREF_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 }; 85 EXPORT_SYMBOL_GPL(init_pid_ns); 86 87 /* 88 * Note: disable interrupts while the pidmap_lock is held as an 89 * interrupt might come in and do read_lock(&tasklist_lock). 90 * 91 * If we don't disable interrupts there is a nasty deadlock between 92 * detach_pid()->free_pid() and another cpu that does 93 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 94 * read_lock(&tasklist_lock); 95 * 96 * After we clean up the tasklist_lock and know there are no 97 * irq handlers that take it we can leave the interrupts enabled. 98 * For now it is easier to be safe than to prove it can't happen. 99 */ 100 101 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 102 103 void put_pid(struct pid *pid) 104 { 105 struct pid_namespace *ns; 106 107 if (!pid) 108 return; 109 110 ns = pid->numbers[pid->level].ns; 111 if (refcount_dec_and_test(&pid->count)) { 112 kmem_cache_free(ns->pid_cachep, pid); 113 put_pid_ns(ns); 114 } 115 } 116 EXPORT_SYMBOL_GPL(put_pid); 117 118 static void delayed_put_pid(struct rcu_head *rhp) 119 { 120 struct pid *pid = container_of(rhp, struct pid, rcu); 121 put_pid(pid); 122 } 123 124 void free_pid(struct pid *pid) 125 { 126 /* We can be called with write_lock_irq(&tasklist_lock) held */ 127 int i; 128 unsigned long flags; 129 130 spin_lock_irqsave(&pidmap_lock, flags); 131 for (i = 0; i <= pid->level; i++) { 132 struct upid *upid = pid->numbers + i; 133 struct pid_namespace *ns = upid->ns; 134 switch (--ns->pid_allocated) { 135 case 2: 136 case 1: 137 /* When all that is left in the pid namespace 138 * is the reaper wake up the reaper. The reaper 139 * may be sleeping in zap_pid_ns_processes(). 140 */ 141 wake_up_process(ns->child_reaper); 142 break; 143 case PIDNS_ADDING: 144 /* Handle a fork failure of the first process */ 145 WARN_ON(ns->child_reaper); 146 ns->pid_allocated = 0; 147 break; 148 } 149 150 idr_remove(&ns->idr, upid->nr); 151 } 152 spin_unlock_irqrestore(&pidmap_lock, flags); 153 154 call_rcu(&pid->rcu, delayed_put_pid); 155 } 156 157 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 158 size_t set_tid_size) 159 { 160 struct pid *pid; 161 enum pid_type type; 162 int i, nr; 163 struct pid_namespace *tmp; 164 struct upid *upid; 165 int retval = -ENOMEM; 166 167 /* 168 * set_tid_size contains the size of the set_tid array. Starting at 169 * the most nested currently active PID namespace it tells alloc_pid() 170 * which PID to set for a process in that most nested PID namespace 171 * up to set_tid_size PID namespaces. It does not have to set the PID 172 * for a process in all nested PID namespaces but set_tid_size must 173 * never be greater than the current ns->level + 1. 174 */ 175 if (set_tid_size > ns->level + 1) 176 return ERR_PTR(-EINVAL); 177 178 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 179 if (!pid) 180 return ERR_PTR(retval); 181 182 tmp = ns; 183 pid->level = ns->level; 184 185 for (i = ns->level; i >= 0; i--) { 186 int tid = 0; 187 188 if (set_tid_size) { 189 tid = set_tid[ns->level - i]; 190 191 retval = -EINVAL; 192 if (tid < 1 || tid >= pid_max) 193 goto out_free; 194 /* 195 * Also fail if a PID != 1 is requested and 196 * no PID 1 exists. 197 */ 198 if (tid != 1 && !tmp->child_reaper) 199 goto out_free; 200 retval = -EPERM; 201 if (!ns_capable(tmp->user_ns, CAP_SYS_ADMIN)) 202 goto out_free; 203 set_tid_size--; 204 } 205 206 idr_preload(GFP_KERNEL); 207 spin_lock_irq(&pidmap_lock); 208 209 if (tid) { 210 nr = idr_alloc(&tmp->idr, NULL, tid, 211 tid + 1, GFP_ATOMIC); 212 /* 213 * If ENOSPC is returned it means that the PID is 214 * alreay in use. Return EEXIST in that case. 215 */ 216 if (nr == -ENOSPC) 217 nr = -EEXIST; 218 } else { 219 int pid_min = 1; 220 /* 221 * init really needs pid 1, but after reaching the 222 * maximum wrap back to RESERVED_PIDS 223 */ 224 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 225 pid_min = RESERVED_PIDS; 226 227 /* 228 * Store a null pointer so find_pid_ns does not find 229 * a partially initialized PID (see below). 230 */ 231 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 232 pid_max, GFP_ATOMIC); 233 } 234 spin_unlock_irq(&pidmap_lock); 235 idr_preload_end(); 236 237 if (nr < 0) { 238 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 239 goto out_free; 240 } 241 242 pid->numbers[i].nr = nr; 243 pid->numbers[i].ns = tmp; 244 tmp = tmp->parent; 245 } 246 247 /* 248 * ENOMEM is not the most obvious choice especially for the case 249 * where the child subreaper has already exited and the pid 250 * namespace denies the creation of any new processes. But ENOMEM 251 * is what we have exposed to userspace for a long time and it is 252 * documented behavior for pid namespaces. So we can't easily 253 * change it even if there were an error code better suited. 254 */ 255 retval = -ENOMEM; 256 257 get_pid_ns(ns); 258 refcount_set(&pid->count, 1); 259 for (type = 0; type < PIDTYPE_MAX; ++type) 260 INIT_HLIST_HEAD(&pid->tasks[type]); 261 262 init_waitqueue_head(&pid->wait_pidfd); 263 INIT_HLIST_HEAD(&pid->inodes); 264 265 upid = pid->numbers + ns->level; 266 spin_lock_irq(&pidmap_lock); 267 if (!(ns->pid_allocated & PIDNS_ADDING)) 268 goto out_unlock; 269 for ( ; upid >= pid->numbers; --upid) { 270 /* Make the PID visible to find_pid_ns. */ 271 idr_replace(&upid->ns->idr, pid, upid->nr); 272 upid->ns->pid_allocated++; 273 } 274 spin_unlock_irq(&pidmap_lock); 275 276 return pid; 277 278 out_unlock: 279 spin_unlock_irq(&pidmap_lock); 280 put_pid_ns(ns); 281 282 out_free: 283 spin_lock_irq(&pidmap_lock); 284 while (++i <= ns->level) { 285 upid = pid->numbers + i; 286 idr_remove(&upid->ns->idr, upid->nr); 287 } 288 289 /* On failure to allocate the first pid, reset the state */ 290 if (ns->pid_allocated == PIDNS_ADDING) 291 idr_set_cursor(&ns->idr, 0); 292 293 spin_unlock_irq(&pidmap_lock); 294 295 kmem_cache_free(ns->pid_cachep, pid); 296 return ERR_PTR(retval); 297 } 298 299 void disable_pid_allocation(struct pid_namespace *ns) 300 { 301 spin_lock_irq(&pidmap_lock); 302 ns->pid_allocated &= ~PIDNS_ADDING; 303 spin_unlock_irq(&pidmap_lock); 304 } 305 306 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 307 { 308 return idr_find(&ns->idr, nr); 309 } 310 EXPORT_SYMBOL_GPL(find_pid_ns); 311 312 struct pid *find_vpid(int nr) 313 { 314 return find_pid_ns(nr, task_active_pid_ns(current)); 315 } 316 EXPORT_SYMBOL_GPL(find_vpid); 317 318 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 319 { 320 return (type == PIDTYPE_PID) ? 321 &task->thread_pid : 322 &task->signal->pids[type]; 323 } 324 325 /* 326 * attach_pid() must be called with the tasklist_lock write-held. 327 */ 328 void attach_pid(struct task_struct *task, enum pid_type type) 329 { 330 struct pid *pid = *task_pid_ptr(task, type); 331 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 332 } 333 334 static void __change_pid(struct task_struct *task, enum pid_type type, 335 struct pid *new) 336 { 337 struct pid **pid_ptr = task_pid_ptr(task, type); 338 struct pid *pid; 339 int tmp; 340 341 pid = *pid_ptr; 342 343 hlist_del_rcu(&task->pid_links[type]); 344 *pid_ptr = new; 345 346 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 347 if (pid_has_task(pid, tmp)) 348 return; 349 350 free_pid(pid); 351 } 352 353 void detach_pid(struct task_struct *task, enum pid_type type) 354 { 355 __change_pid(task, type, NULL); 356 } 357 358 void change_pid(struct task_struct *task, enum pid_type type, 359 struct pid *pid) 360 { 361 __change_pid(task, type, pid); 362 attach_pid(task, type); 363 } 364 365 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 366 void transfer_pid(struct task_struct *old, struct task_struct *new, 367 enum pid_type type) 368 { 369 if (type == PIDTYPE_PID) 370 new->thread_pid = old->thread_pid; 371 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 372 } 373 374 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 375 { 376 struct task_struct *result = NULL; 377 if (pid) { 378 struct hlist_node *first; 379 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 380 lockdep_tasklist_lock_is_held()); 381 if (first) 382 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 383 } 384 return result; 385 } 386 EXPORT_SYMBOL(pid_task); 387 388 /* 389 * Must be called under rcu_read_lock(). 390 */ 391 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 392 { 393 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 394 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 395 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 396 } 397 398 struct task_struct *find_task_by_vpid(pid_t vnr) 399 { 400 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 401 } 402 403 struct task_struct *find_get_task_by_vpid(pid_t nr) 404 { 405 struct task_struct *task; 406 407 rcu_read_lock(); 408 task = find_task_by_vpid(nr); 409 if (task) 410 get_task_struct(task); 411 rcu_read_unlock(); 412 413 return task; 414 } 415 416 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 417 { 418 struct pid *pid; 419 rcu_read_lock(); 420 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 421 rcu_read_unlock(); 422 return pid; 423 } 424 EXPORT_SYMBOL_GPL(get_task_pid); 425 426 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 427 { 428 struct task_struct *result; 429 rcu_read_lock(); 430 result = pid_task(pid, type); 431 if (result) 432 get_task_struct(result); 433 rcu_read_unlock(); 434 return result; 435 } 436 EXPORT_SYMBOL_GPL(get_pid_task); 437 438 struct pid *find_get_pid(pid_t nr) 439 { 440 struct pid *pid; 441 442 rcu_read_lock(); 443 pid = get_pid(find_vpid(nr)); 444 rcu_read_unlock(); 445 446 return pid; 447 } 448 EXPORT_SYMBOL_GPL(find_get_pid); 449 450 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 451 { 452 struct upid *upid; 453 pid_t nr = 0; 454 455 if (pid && ns->level <= pid->level) { 456 upid = &pid->numbers[ns->level]; 457 if (upid->ns == ns) 458 nr = upid->nr; 459 } 460 return nr; 461 } 462 EXPORT_SYMBOL_GPL(pid_nr_ns); 463 464 pid_t pid_vnr(struct pid *pid) 465 { 466 return pid_nr_ns(pid, task_active_pid_ns(current)); 467 } 468 EXPORT_SYMBOL_GPL(pid_vnr); 469 470 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 471 struct pid_namespace *ns) 472 { 473 pid_t nr = 0; 474 475 rcu_read_lock(); 476 if (!ns) 477 ns = task_active_pid_ns(current); 478 if (likely(pid_alive(task))) 479 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 480 rcu_read_unlock(); 481 482 return nr; 483 } 484 EXPORT_SYMBOL(__task_pid_nr_ns); 485 486 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 487 { 488 return ns_of_pid(task_pid(tsk)); 489 } 490 EXPORT_SYMBOL_GPL(task_active_pid_ns); 491 492 /* 493 * Used by proc to find the first pid that is greater than or equal to nr. 494 * 495 * If there is a pid at nr this function is exactly the same as find_pid_ns. 496 */ 497 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 498 { 499 return idr_get_next(&ns->idr, &nr); 500 } 501 502 /** 503 * pidfd_create() - Create a new pid file descriptor. 504 * 505 * @pid: struct pid that the pidfd will reference 506 * 507 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 508 * 509 * Note, that this function can only be called after the fd table has 510 * been unshared to avoid leaking the pidfd to the new process. 511 * 512 * Return: On success, a cloexec pidfd is returned. 513 * On error, a negative errno number will be returned. 514 */ 515 static int pidfd_create(struct pid *pid) 516 { 517 int fd; 518 519 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid), 520 O_RDWR | O_CLOEXEC); 521 if (fd < 0) 522 put_pid(pid); 523 524 return fd; 525 } 526 527 /** 528 * pidfd_open() - Open new pid file descriptor. 529 * 530 * @pid: pid for which to retrieve a pidfd 531 * @flags: flags to pass 532 * 533 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 534 * the process identified by @pid. Currently, the process identified by 535 * @pid must be a thread-group leader. This restriction currently exists 536 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot 537 * be used with CLONE_THREAD) and pidfd polling (only supports thread group 538 * leaders). 539 * 540 * Return: On success, a cloexec pidfd is returned. 541 * On error, a negative errno number will be returned. 542 */ 543 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 544 { 545 int fd; 546 struct pid *p; 547 548 if (flags) 549 return -EINVAL; 550 551 if (pid <= 0) 552 return -EINVAL; 553 554 p = find_get_pid(pid); 555 if (!p) 556 return -ESRCH; 557 558 if (pid_has_task(p, PIDTYPE_TGID)) 559 fd = pidfd_create(p); 560 else 561 fd = -EINVAL; 562 563 put_pid(p); 564 return fd; 565 } 566 567 void __init pid_idr_init(void) 568 { 569 /* Verify no one has done anything silly: */ 570 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 571 572 /* bump default and minimum pid_max based on number of cpus */ 573 pid_max = min(pid_max_max, max_t(int, pid_max, 574 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 575 pid_max_min = max_t(int, pid_max_min, 576 PIDS_PER_CPU_MIN * num_possible_cpus()); 577 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 578 579 idr_init(&init_pid_ns.idr); 580 581 init_pid_ns.pid_cachep = KMEM_CACHE(pid, 582 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT); 583 } 584 585 static struct file *__pidfd_fget(struct task_struct *task, int fd) 586 { 587 struct file *file; 588 int ret; 589 590 ret = mutex_lock_killable(&task->signal->exec_update_mutex); 591 if (ret) 592 return ERR_PTR(ret); 593 594 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 595 file = fget_task(task, fd); 596 else 597 file = ERR_PTR(-EPERM); 598 599 mutex_unlock(&task->signal->exec_update_mutex); 600 601 return file ?: ERR_PTR(-EBADF); 602 } 603 604 static int pidfd_getfd(struct pid *pid, int fd) 605 { 606 struct task_struct *task; 607 struct file *file; 608 int ret; 609 610 task = get_pid_task(pid, PIDTYPE_PID); 611 if (!task) 612 return -ESRCH; 613 614 file = __pidfd_fget(task, fd); 615 put_task_struct(task); 616 if (IS_ERR(file)) 617 return PTR_ERR(file); 618 619 ret = security_file_receive(file); 620 if (ret) { 621 fput(file); 622 return ret; 623 } 624 625 ret = get_unused_fd_flags(O_CLOEXEC); 626 if (ret < 0) 627 fput(file); 628 else 629 fd_install(ret, file); 630 631 return ret; 632 } 633 634 /** 635 * sys_pidfd_getfd() - Get a file descriptor from another process 636 * 637 * @pidfd: the pidfd file descriptor of the process 638 * @fd: the file descriptor number to get 639 * @flags: flags on how to get the fd (reserved) 640 * 641 * This syscall gets a copy of a file descriptor from another process 642 * based on the pidfd, and file descriptor number. It requires that 643 * the calling process has the ability to ptrace the process represented 644 * by the pidfd. The process which is having its file descriptor copied 645 * is otherwise unaffected. 646 * 647 * Return: On success, a cloexec file descriptor is returned. 648 * On error, a negative errno number will be returned. 649 */ 650 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 651 unsigned int, flags) 652 { 653 struct pid *pid; 654 struct fd f; 655 int ret; 656 657 /* flags is currently unused - make sure it's unset */ 658 if (flags) 659 return -EINVAL; 660 661 f = fdget(pidfd); 662 if (!f.file) 663 return -EBADF; 664 665 pid = pidfd_pid(f.file); 666 if (IS_ERR(pid)) 667 ret = PTR_ERR(pid); 668 else 669 ret = pidfd_getfd(pid, fd); 670 671 fdput(f); 672 return ret; 673 } 674