xref: /linux/kernel/panic.c (revision f5c31bcf604db54470868f3118a60dc4a9ba8813)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/panic.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * This function is used through-out the kernel (including mm and fs)
10  * to indicate a major problem.
11  */
12 #include <linux/debug_locks.h>
13 #include <linux/sched/debug.h>
14 #include <linux/interrupt.h>
15 #include <linux/kgdb.h>
16 #include <linux/kmsg_dump.h>
17 #include <linux/kallsyms.h>
18 #include <linux/notifier.h>
19 #include <linux/vt_kern.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/ftrace.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #include <linux/kexec.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/sched.h>
28 #include <linux/string_helpers.h>
29 #include <linux/sysrq.h>
30 #include <linux/init.h>
31 #include <linux/nmi.h>
32 #include <linux/console.h>
33 #include <linux/bug.h>
34 #include <linux/ratelimit.h>
35 #include <linux/debugfs.h>
36 #include <linux/sysfs.h>
37 #include <linux/context_tracking.h>
38 #include <trace/events/error_report.h>
39 #include <asm/sections.h>
40 
41 #define PANIC_TIMER_STEP 100
42 #define PANIC_BLINK_SPD 18
43 
44 #ifdef CONFIG_SMP
45 /*
46  * Should we dump all CPUs backtraces in an oops event?
47  * Defaults to 0, can be changed via sysctl.
48  */
49 static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
50 #else
51 #define sysctl_oops_all_cpu_backtrace 0
52 #endif /* CONFIG_SMP */
53 
54 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
55 static unsigned long tainted_mask =
56 	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
57 static int pause_on_oops;
58 static int pause_on_oops_flag;
59 static DEFINE_SPINLOCK(pause_on_oops_lock);
60 bool crash_kexec_post_notifiers;
61 int panic_on_warn __read_mostly;
62 unsigned long panic_on_taint;
63 bool panic_on_taint_nousertaint = false;
64 static unsigned int warn_limit __read_mostly;
65 
66 int panic_timeout = CONFIG_PANIC_TIMEOUT;
67 EXPORT_SYMBOL_GPL(panic_timeout);
68 
69 #define PANIC_PRINT_TASK_INFO		0x00000001
70 #define PANIC_PRINT_MEM_INFO		0x00000002
71 #define PANIC_PRINT_TIMER_INFO		0x00000004
72 #define PANIC_PRINT_LOCK_INFO		0x00000008
73 #define PANIC_PRINT_FTRACE_INFO		0x00000010
74 #define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
75 #define PANIC_PRINT_ALL_CPU_BT		0x00000040
76 unsigned long panic_print;
77 
78 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
79 
80 EXPORT_SYMBOL(panic_notifier_list);
81 
82 #ifdef CONFIG_SYSCTL
83 static struct ctl_table kern_panic_table[] = {
84 #ifdef CONFIG_SMP
85 	{
86 		.procname       = "oops_all_cpu_backtrace",
87 		.data           = &sysctl_oops_all_cpu_backtrace,
88 		.maxlen         = sizeof(int),
89 		.mode           = 0644,
90 		.proc_handler   = proc_dointvec_minmax,
91 		.extra1         = SYSCTL_ZERO,
92 		.extra2         = SYSCTL_ONE,
93 	},
94 #endif
95 	{
96 		.procname       = "warn_limit",
97 		.data           = &warn_limit,
98 		.maxlen         = sizeof(warn_limit),
99 		.mode           = 0644,
100 		.proc_handler   = proc_douintvec,
101 	},
102 	{ }
103 };
104 
105 static __init int kernel_panic_sysctls_init(void)
106 {
107 	register_sysctl_init("kernel", kern_panic_table);
108 	return 0;
109 }
110 late_initcall(kernel_panic_sysctls_init);
111 #endif
112 
113 static atomic_t warn_count = ATOMIC_INIT(0);
114 
115 #ifdef CONFIG_SYSFS
116 static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr,
117 			       char *page)
118 {
119 	return sysfs_emit(page, "%d\n", atomic_read(&warn_count));
120 }
121 
122 static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count);
123 
124 static __init int kernel_panic_sysfs_init(void)
125 {
126 	sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL);
127 	return 0;
128 }
129 late_initcall(kernel_panic_sysfs_init);
130 #endif
131 
132 static long no_blink(int state)
133 {
134 	return 0;
135 }
136 
137 /* Returns how long it waited in ms */
138 long (*panic_blink)(int state);
139 EXPORT_SYMBOL(panic_blink);
140 
141 /*
142  * Stop ourself in panic -- architecture code may override this
143  */
144 void __weak __noreturn panic_smp_self_stop(void)
145 {
146 	while (1)
147 		cpu_relax();
148 }
149 
150 /*
151  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
152  * may override this to prepare for crash dumping, e.g. save regs info.
153  */
154 void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs)
155 {
156 	panic_smp_self_stop();
157 }
158 
159 /*
160  * Stop other CPUs in panic.  Architecture dependent code may override this
161  * with more suitable version.  For example, if the architecture supports
162  * crash dump, it should save registers of each stopped CPU and disable
163  * per-CPU features such as virtualization extensions.
164  */
165 void __weak crash_smp_send_stop(void)
166 {
167 	static int cpus_stopped;
168 
169 	/*
170 	 * This function can be called twice in panic path, but obviously
171 	 * we execute this only once.
172 	 */
173 	if (cpus_stopped)
174 		return;
175 
176 	/*
177 	 * Note smp_send_stop is the usual smp shutdown function, which
178 	 * unfortunately means it may not be hardened to work in a panic
179 	 * situation.
180 	 */
181 	smp_send_stop();
182 	cpus_stopped = 1;
183 }
184 
185 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
186 
187 /*
188  * A variant of panic() called from NMI context. We return if we've already
189  * panicked on this CPU. If another CPU already panicked, loop in
190  * nmi_panic_self_stop() which can provide architecture dependent code such
191  * as saving register state for crash dump.
192  */
193 void nmi_panic(struct pt_regs *regs, const char *msg)
194 {
195 	int old_cpu, this_cpu;
196 
197 	old_cpu = PANIC_CPU_INVALID;
198 	this_cpu = raw_smp_processor_id();
199 
200 	/* atomic_try_cmpxchg updates old_cpu on failure */
201 	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu))
202 		panic("%s", msg);
203 	else if (old_cpu != this_cpu)
204 		nmi_panic_self_stop(regs);
205 }
206 EXPORT_SYMBOL(nmi_panic);
207 
208 static void panic_print_sys_info(bool console_flush)
209 {
210 	if (console_flush) {
211 		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
212 			console_flush_on_panic(CONSOLE_REPLAY_ALL);
213 		return;
214 	}
215 
216 	if (panic_print & PANIC_PRINT_TASK_INFO)
217 		show_state();
218 
219 	if (panic_print & PANIC_PRINT_MEM_INFO)
220 		show_mem();
221 
222 	if (panic_print & PANIC_PRINT_TIMER_INFO)
223 		sysrq_timer_list_show();
224 
225 	if (panic_print & PANIC_PRINT_LOCK_INFO)
226 		debug_show_all_locks();
227 
228 	if (panic_print & PANIC_PRINT_FTRACE_INFO)
229 		ftrace_dump(DUMP_ALL);
230 }
231 
232 void check_panic_on_warn(const char *origin)
233 {
234 	unsigned int limit;
235 
236 	if (panic_on_warn)
237 		panic("%s: panic_on_warn set ...\n", origin);
238 
239 	limit = READ_ONCE(warn_limit);
240 	if (atomic_inc_return(&warn_count) >= limit && limit)
241 		panic("%s: system warned too often (kernel.warn_limit is %d)",
242 		      origin, limit);
243 }
244 
245 /*
246  * Helper that triggers the NMI backtrace (if set in panic_print)
247  * and then performs the secondary CPUs shutdown - we cannot have
248  * the NMI backtrace after the CPUs are off!
249  */
250 static void panic_other_cpus_shutdown(bool crash_kexec)
251 {
252 	if (panic_print & PANIC_PRINT_ALL_CPU_BT)
253 		trigger_all_cpu_backtrace();
254 
255 	/*
256 	 * Note that smp_send_stop() is the usual SMP shutdown function,
257 	 * which unfortunately may not be hardened to work in a panic
258 	 * situation. If we want to do crash dump after notifier calls
259 	 * and kmsg_dump, we will need architecture dependent extra
260 	 * bits in addition to stopping other CPUs, hence we rely on
261 	 * crash_smp_send_stop() for that.
262 	 */
263 	if (!crash_kexec)
264 		smp_send_stop();
265 	else
266 		crash_smp_send_stop();
267 }
268 
269 /**
270  *	panic - halt the system
271  *	@fmt: The text string to print
272  *
273  *	Display a message, then perform cleanups.
274  *
275  *	This function never returns.
276  */
277 void panic(const char *fmt, ...)
278 {
279 	static char buf[1024];
280 	va_list args;
281 	long i, i_next = 0, len;
282 	int state = 0;
283 	int old_cpu, this_cpu;
284 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
285 
286 	if (panic_on_warn) {
287 		/*
288 		 * This thread may hit another WARN() in the panic path.
289 		 * Resetting this prevents additional WARN() from panicking the
290 		 * system on this thread.  Other threads are blocked by the
291 		 * panic_mutex in panic().
292 		 */
293 		panic_on_warn = 0;
294 	}
295 
296 	/*
297 	 * Disable local interrupts. This will prevent panic_smp_self_stop
298 	 * from deadlocking the first cpu that invokes the panic, since
299 	 * there is nothing to prevent an interrupt handler (that runs
300 	 * after setting panic_cpu) from invoking panic() again.
301 	 */
302 	local_irq_disable();
303 	preempt_disable_notrace();
304 
305 	/*
306 	 * It's possible to come here directly from a panic-assertion and
307 	 * not have preempt disabled. Some functions called from here want
308 	 * preempt to be disabled. No point enabling it later though...
309 	 *
310 	 * Only one CPU is allowed to execute the panic code from here. For
311 	 * multiple parallel invocations of panic, all other CPUs either
312 	 * stop themself or will wait until they are stopped by the 1st CPU
313 	 * with smp_send_stop().
314 	 *
315 	 * cmpxchg success means this is the 1st CPU which comes here,
316 	 * so go ahead.
317 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
318 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
319 	 */
320 	old_cpu = PANIC_CPU_INVALID;
321 	this_cpu = raw_smp_processor_id();
322 
323 	/* atomic_try_cmpxchg updates old_cpu on failure */
324 	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
325 		/* go ahead */
326 	} else if (old_cpu != this_cpu)
327 		panic_smp_self_stop();
328 
329 	console_verbose();
330 	bust_spinlocks(1);
331 	va_start(args, fmt);
332 	len = vscnprintf(buf, sizeof(buf), fmt, args);
333 	va_end(args);
334 
335 	if (len && buf[len - 1] == '\n')
336 		buf[len - 1] = '\0';
337 
338 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
339 #ifdef CONFIG_DEBUG_BUGVERBOSE
340 	/*
341 	 * Avoid nested stack-dumping if a panic occurs during oops processing
342 	 */
343 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
344 		dump_stack();
345 #endif
346 
347 	/*
348 	 * If kgdb is enabled, give it a chance to run before we stop all
349 	 * the other CPUs or else we won't be able to debug processes left
350 	 * running on them.
351 	 */
352 	kgdb_panic(buf);
353 
354 	/*
355 	 * If we have crashed and we have a crash kernel loaded let it handle
356 	 * everything else.
357 	 * If we want to run this after calling panic_notifiers, pass
358 	 * the "crash_kexec_post_notifiers" option to the kernel.
359 	 *
360 	 * Bypass the panic_cpu check and call __crash_kexec directly.
361 	 */
362 	if (!_crash_kexec_post_notifiers)
363 		__crash_kexec(NULL);
364 
365 	panic_other_cpus_shutdown(_crash_kexec_post_notifiers);
366 
367 	/*
368 	 * Run any panic handlers, including those that might need to
369 	 * add information to the kmsg dump output.
370 	 */
371 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
372 
373 	panic_print_sys_info(false);
374 
375 	kmsg_dump(KMSG_DUMP_PANIC);
376 
377 	/*
378 	 * If you doubt kdump always works fine in any situation,
379 	 * "crash_kexec_post_notifiers" offers you a chance to run
380 	 * panic_notifiers and dumping kmsg before kdump.
381 	 * Note: since some panic_notifiers can make crashed kernel
382 	 * more unstable, it can increase risks of the kdump failure too.
383 	 *
384 	 * Bypass the panic_cpu check and call __crash_kexec directly.
385 	 */
386 	if (_crash_kexec_post_notifiers)
387 		__crash_kexec(NULL);
388 
389 	console_unblank();
390 
391 	/*
392 	 * We may have ended up stopping the CPU holding the lock (in
393 	 * smp_send_stop()) while still having some valuable data in the console
394 	 * buffer.  Try to acquire the lock then release it regardless of the
395 	 * result.  The release will also print the buffers out.  Locks debug
396 	 * should be disabled to avoid reporting bad unlock balance when
397 	 * panic() is not being callled from OOPS.
398 	 */
399 	debug_locks_off();
400 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
401 
402 	panic_print_sys_info(true);
403 
404 	if (!panic_blink)
405 		panic_blink = no_blink;
406 
407 	if (panic_timeout > 0) {
408 		/*
409 		 * Delay timeout seconds before rebooting the machine.
410 		 * We can't use the "normal" timers since we just panicked.
411 		 */
412 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
413 
414 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
415 			touch_nmi_watchdog();
416 			if (i >= i_next) {
417 				i += panic_blink(state ^= 1);
418 				i_next = i + 3600 / PANIC_BLINK_SPD;
419 			}
420 			mdelay(PANIC_TIMER_STEP);
421 		}
422 	}
423 	if (panic_timeout != 0) {
424 		/*
425 		 * This will not be a clean reboot, with everything
426 		 * shutting down.  But if there is a chance of
427 		 * rebooting the system it will be rebooted.
428 		 */
429 		if (panic_reboot_mode != REBOOT_UNDEFINED)
430 			reboot_mode = panic_reboot_mode;
431 		emergency_restart();
432 	}
433 #ifdef __sparc__
434 	{
435 		extern int stop_a_enabled;
436 		/* Make sure the user can actually press Stop-A (L1-A) */
437 		stop_a_enabled = 1;
438 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
439 			 "twice on console to return to the boot prom\n");
440 	}
441 #endif
442 #if defined(CONFIG_S390)
443 	disabled_wait();
444 #endif
445 	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
446 
447 	/* Do not scroll important messages printed above */
448 	suppress_printk = 1;
449 
450 	/*
451 	 * The final messages may not have been printed if in a context that
452 	 * defers printing (such as NMI) and irq_work is not available.
453 	 * Explicitly flush the kernel log buffer one last time.
454 	 */
455 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
456 
457 	local_irq_enable();
458 	for (i = 0; ; i += PANIC_TIMER_STEP) {
459 		touch_softlockup_watchdog();
460 		if (i >= i_next) {
461 			i += panic_blink(state ^= 1);
462 			i_next = i + 3600 / PANIC_BLINK_SPD;
463 		}
464 		mdelay(PANIC_TIMER_STEP);
465 	}
466 }
467 
468 EXPORT_SYMBOL(panic);
469 
470 /*
471  * TAINT_FORCED_RMMOD could be a per-module flag but the module
472  * is being removed anyway.
473  */
474 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
475 	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
476 	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
477 	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
478 	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
479 	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
480 	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
481 	[ TAINT_USER ]			= { 'U', ' ', false },
482 	[ TAINT_DIE ]			= { 'D', ' ', false },
483 	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
484 	[ TAINT_WARN ]			= { 'W', ' ', false },
485 	[ TAINT_CRAP ]			= { 'C', ' ', true },
486 	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
487 	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
488 	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
489 	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
490 	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
491 	[ TAINT_AUX ]			= { 'X', ' ', true },
492 	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
493 	[ TAINT_TEST ]			= { 'N', ' ', true },
494 };
495 
496 /**
497  * print_tainted - return a string to represent the kernel taint state.
498  *
499  * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
500  *
501  * The string is overwritten by the next call to print_tainted(),
502  * but is always NULL terminated.
503  */
504 const char *print_tainted(void)
505 {
506 	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
507 
508 	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
509 
510 	if (tainted_mask) {
511 		char *s;
512 		int i;
513 
514 		s = buf + sprintf(buf, "Tainted: ");
515 		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
516 			const struct taint_flag *t = &taint_flags[i];
517 			*s++ = test_bit(i, &tainted_mask) ?
518 					t->c_true : t->c_false;
519 		}
520 		*s = 0;
521 	} else
522 		snprintf(buf, sizeof(buf), "Not tainted");
523 
524 	return buf;
525 }
526 
527 int test_taint(unsigned flag)
528 {
529 	return test_bit(flag, &tainted_mask);
530 }
531 EXPORT_SYMBOL(test_taint);
532 
533 unsigned long get_taint(void)
534 {
535 	return tainted_mask;
536 }
537 
538 /**
539  * add_taint: add a taint flag if not already set.
540  * @flag: one of the TAINT_* constants.
541  * @lockdep_ok: whether lock debugging is still OK.
542  *
543  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
544  * some notewortht-but-not-corrupting cases, it can be set to true.
545  */
546 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
547 {
548 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
549 		pr_warn("Disabling lock debugging due to kernel taint\n");
550 
551 	set_bit(flag, &tainted_mask);
552 
553 	if (tainted_mask & panic_on_taint) {
554 		panic_on_taint = 0;
555 		panic("panic_on_taint set ...");
556 	}
557 }
558 EXPORT_SYMBOL(add_taint);
559 
560 static void spin_msec(int msecs)
561 {
562 	int i;
563 
564 	for (i = 0; i < msecs; i++) {
565 		touch_nmi_watchdog();
566 		mdelay(1);
567 	}
568 }
569 
570 /*
571  * It just happens that oops_enter() and oops_exit() are identically
572  * implemented...
573  */
574 static void do_oops_enter_exit(void)
575 {
576 	unsigned long flags;
577 	static int spin_counter;
578 
579 	if (!pause_on_oops)
580 		return;
581 
582 	spin_lock_irqsave(&pause_on_oops_lock, flags);
583 	if (pause_on_oops_flag == 0) {
584 		/* This CPU may now print the oops message */
585 		pause_on_oops_flag = 1;
586 	} else {
587 		/* We need to stall this CPU */
588 		if (!spin_counter) {
589 			/* This CPU gets to do the counting */
590 			spin_counter = pause_on_oops;
591 			do {
592 				spin_unlock(&pause_on_oops_lock);
593 				spin_msec(MSEC_PER_SEC);
594 				spin_lock(&pause_on_oops_lock);
595 			} while (--spin_counter);
596 			pause_on_oops_flag = 0;
597 		} else {
598 			/* This CPU waits for a different one */
599 			while (spin_counter) {
600 				spin_unlock(&pause_on_oops_lock);
601 				spin_msec(1);
602 				spin_lock(&pause_on_oops_lock);
603 			}
604 		}
605 	}
606 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
607 }
608 
609 /*
610  * Return true if the calling CPU is allowed to print oops-related info.
611  * This is a bit racy..
612  */
613 bool oops_may_print(void)
614 {
615 	return pause_on_oops_flag == 0;
616 }
617 
618 /*
619  * Called when the architecture enters its oops handler, before it prints
620  * anything.  If this is the first CPU to oops, and it's oopsing the first
621  * time then let it proceed.
622  *
623  * This is all enabled by the pause_on_oops kernel boot option.  We do all
624  * this to ensure that oopses don't scroll off the screen.  It has the
625  * side-effect of preventing later-oopsing CPUs from mucking up the display,
626  * too.
627  *
628  * It turns out that the CPU which is allowed to print ends up pausing for
629  * the right duration, whereas all the other CPUs pause for twice as long:
630  * once in oops_enter(), once in oops_exit().
631  */
632 void oops_enter(void)
633 {
634 	tracing_off();
635 	/* can't trust the integrity of the kernel anymore: */
636 	debug_locks_off();
637 	do_oops_enter_exit();
638 
639 	if (sysctl_oops_all_cpu_backtrace)
640 		trigger_all_cpu_backtrace();
641 }
642 
643 static void print_oops_end_marker(void)
644 {
645 	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
646 }
647 
648 /*
649  * Called when the architecture exits its oops handler, after printing
650  * everything.
651  */
652 void oops_exit(void)
653 {
654 	do_oops_enter_exit();
655 	print_oops_end_marker();
656 	kmsg_dump(KMSG_DUMP_OOPS);
657 }
658 
659 struct warn_args {
660 	const char *fmt;
661 	va_list args;
662 };
663 
664 void __warn(const char *file, int line, void *caller, unsigned taint,
665 	    struct pt_regs *regs, struct warn_args *args)
666 {
667 	disable_trace_on_warning();
668 
669 	if (file)
670 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
671 			raw_smp_processor_id(), current->pid, file, line,
672 			caller);
673 	else
674 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
675 			raw_smp_processor_id(), current->pid, caller);
676 
677 	if (args)
678 		vprintk(args->fmt, args->args);
679 
680 	print_modules();
681 
682 	if (regs)
683 		show_regs(regs);
684 
685 	check_panic_on_warn("kernel");
686 
687 	if (!regs)
688 		dump_stack();
689 
690 	print_irqtrace_events(current);
691 
692 	print_oops_end_marker();
693 	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
694 
695 	/* Just a warning, don't kill lockdep. */
696 	add_taint(taint, LOCKDEP_STILL_OK);
697 }
698 
699 #ifdef CONFIG_BUG
700 #ifndef __WARN_FLAGS
701 void warn_slowpath_fmt(const char *file, int line, unsigned taint,
702 		       const char *fmt, ...)
703 {
704 	bool rcu = warn_rcu_enter();
705 	struct warn_args args;
706 
707 	pr_warn(CUT_HERE);
708 
709 	if (!fmt) {
710 		__warn(file, line, __builtin_return_address(0), taint,
711 		       NULL, NULL);
712 		warn_rcu_exit(rcu);
713 		return;
714 	}
715 
716 	args.fmt = fmt;
717 	va_start(args.args, fmt);
718 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
719 	va_end(args.args);
720 	warn_rcu_exit(rcu);
721 }
722 EXPORT_SYMBOL(warn_slowpath_fmt);
723 #else
724 void __warn_printk(const char *fmt, ...)
725 {
726 	bool rcu = warn_rcu_enter();
727 	va_list args;
728 
729 	pr_warn(CUT_HERE);
730 
731 	va_start(args, fmt);
732 	vprintk(fmt, args);
733 	va_end(args);
734 	warn_rcu_exit(rcu);
735 }
736 EXPORT_SYMBOL(__warn_printk);
737 #endif
738 
739 /* Support resetting WARN*_ONCE state */
740 
741 static int clear_warn_once_set(void *data, u64 val)
742 {
743 	generic_bug_clear_once();
744 	memset(__start_once, 0, __end_once - __start_once);
745 	return 0;
746 }
747 
748 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
749 			 "%lld\n");
750 
751 static __init int register_warn_debugfs(void)
752 {
753 	/* Don't care about failure */
754 	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
755 				   &clear_warn_once_fops);
756 	return 0;
757 }
758 
759 device_initcall(register_warn_debugfs);
760 #endif
761 
762 #ifdef CONFIG_STACKPROTECTOR
763 
764 /*
765  * Called when gcc's -fstack-protector feature is used, and
766  * gcc detects corruption of the on-stack canary value
767  */
768 __visible noinstr void __stack_chk_fail(void)
769 {
770 	instrumentation_begin();
771 	panic("stack-protector: Kernel stack is corrupted in: %pB",
772 		__builtin_return_address(0));
773 	instrumentation_end();
774 }
775 EXPORT_SYMBOL(__stack_chk_fail);
776 
777 #endif
778 
779 core_param(panic, panic_timeout, int, 0644);
780 core_param(panic_print, panic_print, ulong, 0644);
781 core_param(pause_on_oops, pause_on_oops, int, 0644);
782 core_param(panic_on_warn, panic_on_warn, int, 0644);
783 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
784 
785 static int __init oops_setup(char *s)
786 {
787 	if (!s)
788 		return -EINVAL;
789 	if (!strcmp(s, "panic"))
790 		panic_on_oops = 1;
791 	return 0;
792 }
793 early_param("oops", oops_setup);
794 
795 static int __init panic_on_taint_setup(char *s)
796 {
797 	char *taint_str;
798 
799 	if (!s)
800 		return -EINVAL;
801 
802 	taint_str = strsep(&s, ",");
803 	if (kstrtoul(taint_str, 16, &panic_on_taint))
804 		return -EINVAL;
805 
806 	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
807 	panic_on_taint &= TAINT_FLAGS_MAX;
808 
809 	if (!panic_on_taint)
810 		return -EINVAL;
811 
812 	if (s && !strcmp(s, "nousertaint"))
813 		panic_on_taint_nousertaint = true;
814 
815 	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
816 		panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
817 
818 	return 0;
819 }
820 early_param("panic_on_taint", panic_on_taint_setup);
821