xref: /linux/kernel/panic.c (revision d4fffba4d04b8d605ff07f1ed987399f6af0ad5b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/panic.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * This function is used through-out the kernel (including mm and fs)
10  * to indicate a major problem.
11  */
12 #include <linux/debug_locks.h>
13 #include <linux/sched/debug.h>
14 #include <linux/interrupt.h>
15 #include <linux/kgdb.h>
16 #include <linux/kmsg_dump.h>
17 #include <linux/kallsyms.h>
18 #include <linux/notifier.h>
19 #include <linux/vt_kern.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/ftrace.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #include <linux/kexec.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/sched.h>
28 #include <linux/string_helpers.h>
29 #include <linux/sysrq.h>
30 #include <linux/init.h>
31 #include <linux/nmi.h>
32 #include <linux/console.h>
33 #include <linux/bug.h>
34 #include <linux/ratelimit.h>
35 #include <linux/debugfs.h>
36 #include <trace/events/error_report.h>
37 #include <asm/sections.h>
38 
39 #define PANIC_TIMER_STEP 100
40 #define PANIC_BLINK_SPD 18
41 
42 #ifdef CONFIG_SMP
43 /*
44  * Should we dump all CPUs backtraces in an oops event?
45  * Defaults to 0, can be changed via sysctl.
46  */
47 static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
48 #else
49 #define sysctl_oops_all_cpu_backtrace 0
50 #endif /* CONFIG_SMP */
51 
52 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
53 static unsigned long tainted_mask =
54 	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
55 static int pause_on_oops;
56 static int pause_on_oops_flag;
57 static DEFINE_SPINLOCK(pause_on_oops_lock);
58 bool crash_kexec_post_notifiers;
59 int panic_on_warn __read_mostly;
60 unsigned long panic_on_taint;
61 bool panic_on_taint_nousertaint = false;
62 
63 int panic_timeout = CONFIG_PANIC_TIMEOUT;
64 EXPORT_SYMBOL_GPL(panic_timeout);
65 
66 #define PANIC_PRINT_TASK_INFO		0x00000001
67 #define PANIC_PRINT_MEM_INFO		0x00000002
68 #define PANIC_PRINT_TIMER_INFO		0x00000004
69 #define PANIC_PRINT_LOCK_INFO		0x00000008
70 #define PANIC_PRINT_FTRACE_INFO		0x00000010
71 #define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
72 #define PANIC_PRINT_ALL_CPU_BT		0x00000040
73 unsigned long panic_print;
74 
75 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
76 
77 EXPORT_SYMBOL(panic_notifier_list);
78 
79 #if defined(CONFIG_SMP) && defined(CONFIG_SYSCTL)
80 static struct ctl_table kern_panic_table[] = {
81 	{
82 		.procname       = "oops_all_cpu_backtrace",
83 		.data           = &sysctl_oops_all_cpu_backtrace,
84 		.maxlen         = sizeof(int),
85 		.mode           = 0644,
86 		.proc_handler   = proc_dointvec_minmax,
87 		.extra1         = SYSCTL_ZERO,
88 		.extra2         = SYSCTL_ONE,
89 	},
90 	{ }
91 };
92 
93 static __init int kernel_panic_sysctls_init(void)
94 {
95 	register_sysctl_init("kernel", kern_panic_table);
96 	return 0;
97 }
98 late_initcall(kernel_panic_sysctls_init);
99 #endif
100 
101 static long no_blink(int state)
102 {
103 	return 0;
104 }
105 
106 /* Returns how long it waited in ms */
107 long (*panic_blink)(int state);
108 EXPORT_SYMBOL(panic_blink);
109 
110 /*
111  * Stop ourself in panic -- architecture code may override this
112  */
113 void __weak panic_smp_self_stop(void)
114 {
115 	while (1)
116 		cpu_relax();
117 }
118 
119 /*
120  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
121  * may override this to prepare for crash dumping, e.g. save regs info.
122  */
123 void __weak nmi_panic_self_stop(struct pt_regs *regs)
124 {
125 	panic_smp_self_stop();
126 }
127 
128 /*
129  * Stop other CPUs in panic.  Architecture dependent code may override this
130  * with more suitable version.  For example, if the architecture supports
131  * crash dump, it should save registers of each stopped CPU and disable
132  * per-CPU features such as virtualization extensions.
133  */
134 void __weak crash_smp_send_stop(void)
135 {
136 	static int cpus_stopped;
137 
138 	/*
139 	 * This function can be called twice in panic path, but obviously
140 	 * we execute this only once.
141 	 */
142 	if (cpus_stopped)
143 		return;
144 
145 	/*
146 	 * Note smp_send_stop is the usual smp shutdown function, which
147 	 * unfortunately means it may not be hardened to work in a panic
148 	 * situation.
149 	 */
150 	smp_send_stop();
151 	cpus_stopped = 1;
152 }
153 
154 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
155 
156 /*
157  * A variant of panic() called from NMI context. We return if we've already
158  * panicked on this CPU. If another CPU already panicked, loop in
159  * nmi_panic_self_stop() which can provide architecture dependent code such
160  * as saving register state for crash dump.
161  */
162 void nmi_panic(struct pt_regs *regs, const char *msg)
163 {
164 	int old_cpu, cpu;
165 
166 	cpu = raw_smp_processor_id();
167 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
168 
169 	if (old_cpu == PANIC_CPU_INVALID)
170 		panic("%s", msg);
171 	else if (old_cpu != cpu)
172 		nmi_panic_self_stop(regs);
173 }
174 EXPORT_SYMBOL(nmi_panic);
175 
176 static void panic_print_sys_info(bool console_flush)
177 {
178 	if (console_flush) {
179 		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
180 			console_flush_on_panic(CONSOLE_REPLAY_ALL);
181 		return;
182 	}
183 
184 	if (panic_print & PANIC_PRINT_ALL_CPU_BT)
185 		trigger_all_cpu_backtrace();
186 
187 	if (panic_print & PANIC_PRINT_TASK_INFO)
188 		show_state();
189 
190 	if (panic_print & PANIC_PRINT_MEM_INFO)
191 		show_mem(0, NULL);
192 
193 	if (panic_print & PANIC_PRINT_TIMER_INFO)
194 		sysrq_timer_list_show();
195 
196 	if (panic_print & PANIC_PRINT_LOCK_INFO)
197 		debug_show_all_locks();
198 
199 	if (panic_print & PANIC_PRINT_FTRACE_INFO)
200 		ftrace_dump(DUMP_ALL);
201 }
202 
203 /**
204  *	panic - halt the system
205  *	@fmt: The text string to print
206  *
207  *	Display a message, then perform cleanups.
208  *
209  *	This function never returns.
210  */
211 void panic(const char *fmt, ...)
212 {
213 	static char buf[1024];
214 	va_list args;
215 	long i, i_next = 0, len;
216 	int state = 0;
217 	int old_cpu, this_cpu;
218 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
219 
220 	if (panic_on_warn) {
221 		/*
222 		 * This thread may hit another WARN() in the panic path.
223 		 * Resetting this prevents additional WARN() from panicking the
224 		 * system on this thread.  Other threads are blocked by the
225 		 * panic_mutex in panic().
226 		 */
227 		panic_on_warn = 0;
228 	}
229 
230 	/*
231 	 * Disable local interrupts. This will prevent panic_smp_self_stop
232 	 * from deadlocking the first cpu that invokes the panic, since
233 	 * there is nothing to prevent an interrupt handler (that runs
234 	 * after setting panic_cpu) from invoking panic() again.
235 	 */
236 	local_irq_disable();
237 	preempt_disable_notrace();
238 
239 	/*
240 	 * It's possible to come here directly from a panic-assertion and
241 	 * not have preempt disabled. Some functions called from here want
242 	 * preempt to be disabled. No point enabling it later though...
243 	 *
244 	 * Only one CPU is allowed to execute the panic code from here. For
245 	 * multiple parallel invocations of panic, all other CPUs either
246 	 * stop themself or will wait until they are stopped by the 1st CPU
247 	 * with smp_send_stop().
248 	 *
249 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
250 	 * comes here, so go ahead.
251 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
252 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
253 	 */
254 	this_cpu = raw_smp_processor_id();
255 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
256 
257 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
258 		panic_smp_self_stop();
259 
260 	console_verbose();
261 	bust_spinlocks(1);
262 	va_start(args, fmt);
263 	len = vscnprintf(buf, sizeof(buf), fmt, args);
264 	va_end(args);
265 
266 	if (len && buf[len - 1] == '\n')
267 		buf[len - 1] = '\0';
268 
269 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
270 #ifdef CONFIG_DEBUG_BUGVERBOSE
271 	/*
272 	 * Avoid nested stack-dumping if a panic occurs during oops processing
273 	 */
274 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
275 		dump_stack();
276 #endif
277 
278 	/*
279 	 * If kgdb is enabled, give it a chance to run before we stop all
280 	 * the other CPUs or else we won't be able to debug processes left
281 	 * running on them.
282 	 */
283 	kgdb_panic(buf);
284 
285 	/*
286 	 * If we have crashed and we have a crash kernel loaded let it handle
287 	 * everything else.
288 	 * If we want to run this after calling panic_notifiers, pass
289 	 * the "crash_kexec_post_notifiers" option to the kernel.
290 	 *
291 	 * Bypass the panic_cpu check and call __crash_kexec directly.
292 	 */
293 	if (!_crash_kexec_post_notifiers) {
294 		__crash_kexec(NULL);
295 
296 		/*
297 		 * Note smp_send_stop is the usual smp shutdown function, which
298 		 * unfortunately means it may not be hardened to work in a
299 		 * panic situation.
300 		 */
301 		smp_send_stop();
302 	} else {
303 		/*
304 		 * If we want to do crash dump after notifier calls and
305 		 * kmsg_dump, we will need architecture dependent extra
306 		 * works in addition to stopping other CPUs.
307 		 */
308 		crash_smp_send_stop();
309 	}
310 
311 	/*
312 	 * Run any panic handlers, including those that might need to
313 	 * add information to the kmsg dump output.
314 	 */
315 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
316 
317 	panic_print_sys_info(false);
318 
319 	kmsg_dump(KMSG_DUMP_PANIC);
320 
321 	/*
322 	 * If you doubt kdump always works fine in any situation,
323 	 * "crash_kexec_post_notifiers" offers you a chance to run
324 	 * panic_notifiers and dumping kmsg before kdump.
325 	 * Note: since some panic_notifiers can make crashed kernel
326 	 * more unstable, it can increase risks of the kdump failure too.
327 	 *
328 	 * Bypass the panic_cpu check and call __crash_kexec directly.
329 	 */
330 	if (_crash_kexec_post_notifiers)
331 		__crash_kexec(NULL);
332 
333 	console_unblank();
334 
335 	/*
336 	 * We may have ended up stopping the CPU holding the lock (in
337 	 * smp_send_stop()) while still having some valuable data in the console
338 	 * buffer.  Try to acquire the lock then release it regardless of the
339 	 * result.  The release will also print the buffers out.  Locks debug
340 	 * should be disabled to avoid reporting bad unlock balance when
341 	 * panic() is not being callled from OOPS.
342 	 */
343 	debug_locks_off();
344 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
345 
346 	panic_print_sys_info(true);
347 
348 	if (!panic_blink)
349 		panic_blink = no_blink;
350 
351 	if (panic_timeout > 0) {
352 		/*
353 		 * Delay timeout seconds before rebooting the machine.
354 		 * We can't use the "normal" timers since we just panicked.
355 		 */
356 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
357 
358 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
359 			touch_nmi_watchdog();
360 			if (i >= i_next) {
361 				i += panic_blink(state ^= 1);
362 				i_next = i + 3600 / PANIC_BLINK_SPD;
363 			}
364 			mdelay(PANIC_TIMER_STEP);
365 		}
366 	}
367 	if (panic_timeout != 0) {
368 		/*
369 		 * This will not be a clean reboot, with everything
370 		 * shutting down.  But if there is a chance of
371 		 * rebooting the system it will be rebooted.
372 		 */
373 		if (panic_reboot_mode != REBOOT_UNDEFINED)
374 			reboot_mode = panic_reboot_mode;
375 		emergency_restart();
376 	}
377 #ifdef __sparc__
378 	{
379 		extern int stop_a_enabled;
380 		/* Make sure the user can actually press Stop-A (L1-A) */
381 		stop_a_enabled = 1;
382 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
383 			 "twice on console to return to the boot prom\n");
384 	}
385 #endif
386 #if defined(CONFIG_S390)
387 	disabled_wait();
388 #endif
389 	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
390 
391 	/* Do not scroll important messages printed above */
392 	suppress_printk = 1;
393 	local_irq_enable();
394 	for (i = 0; ; i += PANIC_TIMER_STEP) {
395 		touch_softlockup_watchdog();
396 		if (i >= i_next) {
397 			i += panic_blink(state ^= 1);
398 			i_next = i + 3600 / PANIC_BLINK_SPD;
399 		}
400 		mdelay(PANIC_TIMER_STEP);
401 	}
402 }
403 
404 EXPORT_SYMBOL(panic);
405 
406 /*
407  * TAINT_FORCED_RMMOD could be a per-module flag but the module
408  * is being removed anyway.
409  */
410 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
411 	[ TAINT_PROPRIETARY_MODULE ]	= { 'P', 'G', true },
412 	[ TAINT_FORCED_MODULE ]		= { 'F', ' ', true },
413 	[ TAINT_CPU_OUT_OF_SPEC ]	= { 'S', ' ', false },
414 	[ TAINT_FORCED_RMMOD ]		= { 'R', ' ', false },
415 	[ TAINT_MACHINE_CHECK ]		= { 'M', ' ', false },
416 	[ TAINT_BAD_PAGE ]		= { 'B', ' ', false },
417 	[ TAINT_USER ]			= { 'U', ' ', false },
418 	[ TAINT_DIE ]			= { 'D', ' ', false },
419 	[ TAINT_OVERRIDDEN_ACPI_TABLE ]	= { 'A', ' ', false },
420 	[ TAINT_WARN ]			= { 'W', ' ', false },
421 	[ TAINT_CRAP ]			= { 'C', ' ', true },
422 	[ TAINT_FIRMWARE_WORKAROUND ]	= { 'I', ' ', false },
423 	[ TAINT_OOT_MODULE ]		= { 'O', ' ', true },
424 	[ TAINT_UNSIGNED_MODULE ]	= { 'E', ' ', true },
425 	[ TAINT_SOFTLOCKUP ]		= { 'L', ' ', false },
426 	[ TAINT_LIVEPATCH ]		= { 'K', ' ', true },
427 	[ TAINT_AUX ]			= { 'X', ' ', true },
428 	[ TAINT_RANDSTRUCT ]		= { 'T', ' ', true },
429 	[ TAINT_TEST ]			= { 'N', ' ', true },
430 };
431 
432 /**
433  * print_tainted - return a string to represent the kernel taint state.
434  *
435  * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
436  *
437  * The string is overwritten by the next call to print_tainted(),
438  * but is always NULL terminated.
439  */
440 const char *print_tainted(void)
441 {
442 	static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")];
443 
444 	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
445 
446 	if (tainted_mask) {
447 		char *s;
448 		int i;
449 
450 		s = buf + sprintf(buf, "Tainted: ");
451 		for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
452 			const struct taint_flag *t = &taint_flags[i];
453 			*s++ = test_bit(i, &tainted_mask) ?
454 					t->c_true : t->c_false;
455 		}
456 		*s = 0;
457 	} else
458 		snprintf(buf, sizeof(buf), "Not tainted");
459 
460 	return buf;
461 }
462 
463 int test_taint(unsigned flag)
464 {
465 	return test_bit(flag, &tainted_mask);
466 }
467 EXPORT_SYMBOL(test_taint);
468 
469 unsigned long get_taint(void)
470 {
471 	return tainted_mask;
472 }
473 
474 /**
475  * add_taint: add a taint flag if not already set.
476  * @flag: one of the TAINT_* constants.
477  * @lockdep_ok: whether lock debugging is still OK.
478  *
479  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
480  * some notewortht-but-not-corrupting cases, it can be set to true.
481  */
482 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
483 {
484 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
485 		pr_warn("Disabling lock debugging due to kernel taint\n");
486 
487 	set_bit(flag, &tainted_mask);
488 
489 	if (tainted_mask & panic_on_taint) {
490 		panic_on_taint = 0;
491 		panic("panic_on_taint set ...");
492 	}
493 }
494 EXPORT_SYMBOL(add_taint);
495 
496 static void spin_msec(int msecs)
497 {
498 	int i;
499 
500 	for (i = 0; i < msecs; i++) {
501 		touch_nmi_watchdog();
502 		mdelay(1);
503 	}
504 }
505 
506 /*
507  * It just happens that oops_enter() and oops_exit() are identically
508  * implemented...
509  */
510 static void do_oops_enter_exit(void)
511 {
512 	unsigned long flags;
513 	static int spin_counter;
514 
515 	if (!pause_on_oops)
516 		return;
517 
518 	spin_lock_irqsave(&pause_on_oops_lock, flags);
519 	if (pause_on_oops_flag == 0) {
520 		/* This CPU may now print the oops message */
521 		pause_on_oops_flag = 1;
522 	} else {
523 		/* We need to stall this CPU */
524 		if (!spin_counter) {
525 			/* This CPU gets to do the counting */
526 			spin_counter = pause_on_oops;
527 			do {
528 				spin_unlock(&pause_on_oops_lock);
529 				spin_msec(MSEC_PER_SEC);
530 				spin_lock(&pause_on_oops_lock);
531 			} while (--spin_counter);
532 			pause_on_oops_flag = 0;
533 		} else {
534 			/* This CPU waits for a different one */
535 			while (spin_counter) {
536 				spin_unlock(&pause_on_oops_lock);
537 				spin_msec(1);
538 				spin_lock(&pause_on_oops_lock);
539 			}
540 		}
541 	}
542 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
543 }
544 
545 /*
546  * Return true if the calling CPU is allowed to print oops-related info.
547  * This is a bit racy..
548  */
549 bool oops_may_print(void)
550 {
551 	return pause_on_oops_flag == 0;
552 }
553 
554 /*
555  * Called when the architecture enters its oops handler, before it prints
556  * anything.  If this is the first CPU to oops, and it's oopsing the first
557  * time then let it proceed.
558  *
559  * This is all enabled by the pause_on_oops kernel boot option.  We do all
560  * this to ensure that oopses don't scroll off the screen.  It has the
561  * side-effect of preventing later-oopsing CPUs from mucking up the display,
562  * too.
563  *
564  * It turns out that the CPU which is allowed to print ends up pausing for
565  * the right duration, whereas all the other CPUs pause for twice as long:
566  * once in oops_enter(), once in oops_exit().
567  */
568 void oops_enter(void)
569 {
570 	tracing_off();
571 	/* can't trust the integrity of the kernel anymore: */
572 	debug_locks_off();
573 	do_oops_enter_exit();
574 
575 	if (sysctl_oops_all_cpu_backtrace)
576 		trigger_all_cpu_backtrace();
577 }
578 
579 static void print_oops_end_marker(void)
580 {
581 	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
582 }
583 
584 /*
585  * Called when the architecture exits its oops handler, after printing
586  * everything.
587  */
588 void oops_exit(void)
589 {
590 	do_oops_enter_exit();
591 	print_oops_end_marker();
592 	kmsg_dump(KMSG_DUMP_OOPS);
593 }
594 
595 struct warn_args {
596 	const char *fmt;
597 	va_list args;
598 };
599 
600 void __warn(const char *file, int line, void *caller, unsigned taint,
601 	    struct pt_regs *regs, struct warn_args *args)
602 {
603 	disable_trace_on_warning();
604 
605 	if (file)
606 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
607 			raw_smp_processor_id(), current->pid, file, line,
608 			caller);
609 	else
610 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
611 			raw_smp_processor_id(), current->pid, caller);
612 
613 	if (args)
614 		vprintk(args->fmt, args->args);
615 
616 	print_modules();
617 
618 	if (regs)
619 		show_regs(regs);
620 
621 	if (panic_on_warn)
622 		panic("panic_on_warn set ...\n");
623 
624 	if (!regs)
625 		dump_stack();
626 
627 	print_irqtrace_events(current);
628 
629 	print_oops_end_marker();
630 	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
631 
632 	/* Just a warning, don't kill lockdep. */
633 	add_taint(taint, LOCKDEP_STILL_OK);
634 }
635 
636 #ifndef __WARN_FLAGS
637 void warn_slowpath_fmt(const char *file, int line, unsigned taint,
638 		       const char *fmt, ...)
639 {
640 	struct warn_args args;
641 
642 	pr_warn(CUT_HERE);
643 
644 	if (!fmt) {
645 		__warn(file, line, __builtin_return_address(0), taint,
646 		       NULL, NULL);
647 		return;
648 	}
649 
650 	args.fmt = fmt;
651 	va_start(args.args, fmt);
652 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
653 	va_end(args.args);
654 }
655 EXPORT_SYMBOL(warn_slowpath_fmt);
656 #else
657 void __warn_printk(const char *fmt, ...)
658 {
659 	va_list args;
660 
661 	pr_warn(CUT_HERE);
662 
663 	va_start(args, fmt);
664 	vprintk(fmt, args);
665 	va_end(args);
666 }
667 EXPORT_SYMBOL(__warn_printk);
668 #endif
669 
670 #ifdef CONFIG_BUG
671 
672 /* Support resetting WARN*_ONCE state */
673 
674 static int clear_warn_once_set(void *data, u64 val)
675 {
676 	generic_bug_clear_once();
677 	memset(__start_once, 0, __end_once - __start_once);
678 	return 0;
679 }
680 
681 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
682 			 "%lld\n");
683 
684 static __init int register_warn_debugfs(void)
685 {
686 	/* Don't care about failure */
687 	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
688 				   &clear_warn_once_fops);
689 	return 0;
690 }
691 
692 device_initcall(register_warn_debugfs);
693 #endif
694 
695 #ifdef CONFIG_STACKPROTECTOR
696 
697 /*
698  * Called when gcc's -fstack-protector feature is used, and
699  * gcc detects corruption of the on-stack canary value
700  */
701 __visible noinstr void __stack_chk_fail(void)
702 {
703 	instrumentation_begin();
704 	panic("stack-protector: Kernel stack is corrupted in: %pB",
705 		__builtin_return_address(0));
706 	instrumentation_end();
707 }
708 EXPORT_SYMBOL(__stack_chk_fail);
709 
710 #endif
711 
712 core_param(panic, panic_timeout, int, 0644);
713 core_param(panic_print, panic_print, ulong, 0644);
714 core_param(pause_on_oops, pause_on_oops, int, 0644);
715 core_param(panic_on_warn, panic_on_warn, int, 0644);
716 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
717 
718 static int __init oops_setup(char *s)
719 {
720 	if (!s)
721 		return -EINVAL;
722 	if (!strcmp(s, "panic"))
723 		panic_on_oops = 1;
724 	return 0;
725 }
726 early_param("oops", oops_setup);
727 
728 static int __init panic_on_taint_setup(char *s)
729 {
730 	char *taint_str;
731 
732 	if (!s)
733 		return -EINVAL;
734 
735 	taint_str = strsep(&s, ",");
736 	if (kstrtoul(taint_str, 16, &panic_on_taint))
737 		return -EINVAL;
738 
739 	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
740 	panic_on_taint &= TAINT_FLAGS_MAX;
741 
742 	if (!panic_on_taint)
743 		return -EINVAL;
744 
745 	if (s && !strcmp(s, "nousertaint"))
746 		panic_on_taint_nousertaint = true;
747 
748 	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
749 		panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
750 
751 	return 0;
752 }
753 early_param("panic_on_taint", panic_on_taint_setup);
754