xref: /linux/kernel/panic.c (revision cc4589ebfae6f8dbb5cf880a0a67eedab3416492)
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/kexec.h>
21 #include <linux/sched.h>
22 #include <linux/sysrq.h>
23 #include <linux/init.h>
24 #include <linux/nmi.h>
25 #include <linux/dmi.h>
26 
27 int panic_on_oops;
28 static unsigned long tainted_mask;
29 static int pause_on_oops;
30 static int pause_on_oops_flag;
31 static DEFINE_SPINLOCK(pause_on_oops_lock);
32 
33 int panic_timeout;
34 
35 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
36 
37 EXPORT_SYMBOL(panic_notifier_list);
38 
39 /* Returns how long it waited in ms */
40 long (*panic_blink)(long time);
41 EXPORT_SYMBOL(panic_blink);
42 
43 static void panic_blink_one_second(void)
44 {
45 	static long i = 0, end;
46 
47 	if (panic_blink) {
48 		end = i + MSEC_PER_SEC;
49 
50 		while (i < end) {
51 			i += panic_blink(i);
52 			mdelay(1);
53 			i++;
54 		}
55 	} else {
56 		/*
57 		 * When running under a hypervisor a small mdelay may get
58 		 * rounded up to the hypervisor timeslice. For example, with
59 		 * a 1ms in 10ms hypervisor timeslice we might inflate a
60 		 * mdelay(1) loop by 10x.
61 		 *
62 		 * If we have nothing to blink, spin on 1 second calls to
63 		 * mdelay to avoid this.
64 		 */
65 		mdelay(MSEC_PER_SEC);
66 	}
67 }
68 
69 /**
70  *	panic - halt the system
71  *	@fmt: The text string to print
72  *
73  *	Display a message, then perform cleanups.
74  *
75  *	This function never returns.
76  */
77 NORET_TYPE void panic(const char * fmt, ...)
78 {
79 	static char buf[1024];
80 	va_list args;
81 	long i;
82 
83 	/*
84 	 * It's possible to come here directly from a panic-assertion and
85 	 * not have preempt disabled. Some functions called from here want
86 	 * preempt to be disabled. No point enabling it later though...
87 	 */
88 	preempt_disable();
89 
90 	console_verbose();
91 	bust_spinlocks(1);
92 	va_start(args, fmt);
93 	vsnprintf(buf, sizeof(buf), fmt, args);
94 	va_end(args);
95 	printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf);
96 #ifdef CONFIG_DEBUG_BUGVERBOSE
97 	dump_stack();
98 #endif
99 
100 	/*
101 	 * If we have crashed and we have a crash kernel loaded let it handle
102 	 * everything else.
103 	 * Do we want to call this before we try to display a message?
104 	 */
105 	crash_kexec(NULL);
106 
107 	kmsg_dump(KMSG_DUMP_PANIC);
108 
109 	/*
110 	 * Note smp_send_stop is the usual smp shutdown function, which
111 	 * unfortunately means it may not be hardened to work in a panic
112 	 * situation.
113 	 */
114 	smp_send_stop();
115 
116 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
117 
118 	bust_spinlocks(0);
119 
120 	if (panic_timeout > 0) {
121 		/*
122 		 * Delay timeout seconds before rebooting the machine.
123 		 * We can't use the "normal" timers since we just panicked.
124 		 */
125 		printk(KERN_EMERG "Rebooting in %d seconds..", panic_timeout);
126 
127 		for (i = 0; i < panic_timeout; i++) {
128 			touch_nmi_watchdog();
129 			panic_blink_one_second();
130 		}
131 		/*
132 		 * This will not be a clean reboot, with everything
133 		 * shutting down.  But if there is a chance of
134 		 * rebooting the system it will be rebooted.
135 		 */
136 		emergency_restart();
137 	}
138 #ifdef __sparc__
139 	{
140 		extern int stop_a_enabled;
141 		/* Make sure the user can actually press Stop-A (L1-A) */
142 		stop_a_enabled = 1;
143 		printk(KERN_EMERG "Press Stop-A (L1-A) to return to the boot prom\n");
144 	}
145 #endif
146 #if defined(CONFIG_S390)
147 	{
148 		unsigned long caller;
149 
150 		caller = (unsigned long)__builtin_return_address(0);
151 		disabled_wait(caller);
152 	}
153 #endif
154 	local_irq_enable();
155 	while (1) {
156 		touch_softlockup_watchdog();
157 		panic_blink_one_second();
158 	}
159 }
160 
161 EXPORT_SYMBOL(panic);
162 
163 
164 struct tnt {
165 	u8	bit;
166 	char	true;
167 	char	false;
168 };
169 
170 static const struct tnt tnts[] = {
171 	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
172 	{ TAINT_FORCED_MODULE,		'F', ' ' },
173 	{ TAINT_UNSAFE_SMP,		'S', ' ' },
174 	{ TAINT_FORCED_RMMOD,		'R', ' ' },
175 	{ TAINT_MACHINE_CHECK,		'M', ' ' },
176 	{ TAINT_BAD_PAGE,		'B', ' ' },
177 	{ TAINT_USER,			'U', ' ' },
178 	{ TAINT_DIE,			'D', ' ' },
179 	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
180 	{ TAINT_WARN,			'W', ' ' },
181 	{ TAINT_CRAP,			'C', ' ' },
182 	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
183 };
184 
185 /**
186  *	print_tainted - return a string to represent the kernel taint state.
187  *
188  *  'P' - Proprietary module has been loaded.
189  *  'F' - Module has been forcibly loaded.
190  *  'S' - SMP with CPUs not designed for SMP.
191  *  'R' - User forced a module unload.
192  *  'M' - System experienced a machine check exception.
193  *  'B' - System has hit bad_page.
194  *  'U' - Userspace-defined naughtiness.
195  *  'D' - Kernel has oopsed before
196  *  'A' - ACPI table overridden.
197  *  'W' - Taint on warning.
198  *  'C' - modules from drivers/staging are loaded.
199  *  'I' - Working around severe firmware bug.
200  *
201  *	The string is overwritten by the next call to print_tainted().
202  */
203 const char *print_tainted(void)
204 {
205 	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ") + 1];
206 
207 	if (tainted_mask) {
208 		char *s;
209 		int i;
210 
211 		s = buf + sprintf(buf, "Tainted: ");
212 		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
213 			const struct tnt *t = &tnts[i];
214 			*s++ = test_bit(t->bit, &tainted_mask) ?
215 					t->true : t->false;
216 		}
217 		*s = 0;
218 	} else
219 		snprintf(buf, sizeof(buf), "Not tainted");
220 
221 	return buf;
222 }
223 
224 int test_taint(unsigned flag)
225 {
226 	return test_bit(flag, &tainted_mask);
227 }
228 EXPORT_SYMBOL(test_taint);
229 
230 unsigned long get_taint(void)
231 {
232 	return tainted_mask;
233 }
234 
235 void add_taint(unsigned flag)
236 {
237 	/*
238 	 * Can't trust the integrity of the kernel anymore.
239 	 * We don't call directly debug_locks_off() because the issue
240 	 * is not necessarily serious enough to set oops_in_progress to 1
241 	 * Also we want to keep up lockdep for staging development and
242 	 * post-warning case.
243 	 */
244 	if (flag != TAINT_CRAP && flag != TAINT_WARN && __debug_locks_off())
245 		printk(KERN_WARNING "Disabling lock debugging due to kernel taint\n");
246 
247 	set_bit(flag, &tainted_mask);
248 }
249 EXPORT_SYMBOL(add_taint);
250 
251 static void spin_msec(int msecs)
252 {
253 	int i;
254 
255 	for (i = 0; i < msecs; i++) {
256 		touch_nmi_watchdog();
257 		mdelay(1);
258 	}
259 }
260 
261 /*
262  * It just happens that oops_enter() and oops_exit() are identically
263  * implemented...
264  */
265 static void do_oops_enter_exit(void)
266 {
267 	unsigned long flags;
268 	static int spin_counter;
269 
270 	if (!pause_on_oops)
271 		return;
272 
273 	spin_lock_irqsave(&pause_on_oops_lock, flags);
274 	if (pause_on_oops_flag == 0) {
275 		/* This CPU may now print the oops message */
276 		pause_on_oops_flag = 1;
277 	} else {
278 		/* We need to stall this CPU */
279 		if (!spin_counter) {
280 			/* This CPU gets to do the counting */
281 			spin_counter = pause_on_oops;
282 			do {
283 				spin_unlock(&pause_on_oops_lock);
284 				spin_msec(MSEC_PER_SEC);
285 				spin_lock(&pause_on_oops_lock);
286 			} while (--spin_counter);
287 			pause_on_oops_flag = 0;
288 		} else {
289 			/* This CPU waits for a different one */
290 			while (spin_counter) {
291 				spin_unlock(&pause_on_oops_lock);
292 				spin_msec(1);
293 				spin_lock(&pause_on_oops_lock);
294 			}
295 		}
296 	}
297 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
298 }
299 
300 /*
301  * Return true if the calling CPU is allowed to print oops-related info.
302  * This is a bit racy..
303  */
304 int oops_may_print(void)
305 {
306 	return pause_on_oops_flag == 0;
307 }
308 
309 /*
310  * Called when the architecture enters its oops handler, before it prints
311  * anything.  If this is the first CPU to oops, and it's oopsing the first
312  * time then let it proceed.
313  *
314  * This is all enabled by the pause_on_oops kernel boot option.  We do all
315  * this to ensure that oopses don't scroll off the screen.  It has the
316  * side-effect of preventing later-oopsing CPUs from mucking up the display,
317  * too.
318  *
319  * It turns out that the CPU which is allowed to print ends up pausing for
320  * the right duration, whereas all the other CPUs pause for twice as long:
321  * once in oops_enter(), once in oops_exit().
322  */
323 void oops_enter(void)
324 {
325 	tracing_off();
326 	/* can't trust the integrity of the kernel anymore: */
327 	debug_locks_off();
328 	do_oops_enter_exit();
329 }
330 
331 /*
332  * 64-bit random ID for oopses:
333  */
334 static u64 oops_id;
335 
336 static int init_oops_id(void)
337 {
338 	if (!oops_id)
339 		get_random_bytes(&oops_id, sizeof(oops_id));
340 	else
341 		oops_id++;
342 
343 	return 0;
344 }
345 late_initcall(init_oops_id);
346 
347 static void print_oops_end_marker(void)
348 {
349 	init_oops_id();
350 	printk(KERN_WARNING "---[ end trace %016llx ]---\n",
351 		(unsigned long long)oops_id);
352 }
353 
354 /*
355  * Called when the architecture exits its oops handler, after printing
356  * everything.
357  */
358 void oops_exit(void)
359 {
360 	do_oops_enter_exit();
361 	print_oops_end_marker();
362 	kmsg_dump(KMSG_DUMP_OOPS);
363 }
364 
365 #ifdef WANT_WARN_ON_SLOWPATH
366 struct slowpath_args {
367 	const char *fmt;
368 	va_list args;
369 };
370 
371 static void warn_slowpath_common(const char *file, int line, void *caller,
372 				 unsigned taint, struct slowpath_args *args)
373 {
374 	const char *board;
375 
376 	printk(KERN_WARNING "------------[ cut here ]------------\n");
377 	printk(KERN_WARNING "WARNING: at %s:%d %pS()\n", file, line, caller);
378 	board = dmi_get_system_info(DMI_PRODUCT_NAME);
379 	if (board)
380 		printk(KERN_WARNING "Hardware name: %s\n", board);
381 
382 	if (args)
383 		vprintk(args->fmt, args->args);
384 
385 	print_modules();
386 	dump_stack();
387 	print_oops_end_marker();
388 	add_taint(taint);
389 }
390 
391 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
392 {
393 	struct slowpath_args args;
394 
395 	args.fmt = fmt;
396 	va_start(args.args, fmt);
397 	warn_slowpath_common(file, line, __builtin_return_address(0),
398 			     TAINT_WARN, &args);
399 	va_end(args.args);
400 }
401 EXPORT_SYMBOL(warn_slowpath_fmt);
402 
403 void warn_slowpath_fmt_taint(const char *file, int line,
404 			     unsigned taint, const char *fmt, ...)
405 {
406 	struct slowpath_args args;
407 
408 	args.fmt = fmt;
409 	va_start(args.args, fmt);
410 	warn_slowpath_common(file, line, __builtin_return_address(0),
411 			     taint, &args);
412 	va_end(args.args);
413 }
414 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
415 
416 void warn_slowpath_null(const char *file, int line)
417 {
418 	warn_slowpath_common(file, line, __builtin_return_address(0),
419 			     TAINT_WARN, NULL);
420 }
421 EXPORT_SYMBOL(warn_slowpath_null);
422 #endif
423 
424 #ifdef CONFIG_CC_STACKPROTECTOR
425 
426 /*
427  * Called when gcc's -fstack-protector feature is used, and
428  * gcc detects corruption of the on-stack canary value
429  */
430 void __stack_chk_fail(void)
431 {
432 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
433 		__builtin_return_address(0));
434 }
435 EXPORT_SYMBOL(__stack_chk_fail);
436 
437 #endif
438 
439 core_param(panic, panic_timeout, int, 0644);
440 core_param(pause_on_oops, pause_on_oops, int, 0644);
441