1 /* 2 * linux/kernel/panic.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * This function is used through-out the kernel (including mm and fs) 9 * to indicate a major problem. 10 */ 11 #include <linux/debug_locks.h> 12 #include <linux/interrupt.h> 13 #include <linux/kmsg_dump.h> 14 #include <linux/kallsyms.h> 15 #include <linux/notifier.h> 16 #include <linux/module.h> 17 #include <linux/random.h> 18 #include <linux/ftrace.h> 19 #include <linux/reboot.h> 20 #include <linux/delay.h> 21 #include <linux/kexec.h> 22 #include <linux/sched.h> 23 #include <linux/sysrq.h> 24 #include <linux/init.h> 25 #include <linux/nmi.h> 26 #include <linux/console.h> 27 28 #define PANIC_TIMER_STEP 100 29 #define PANIC_BLINK_SPD 18 30 31 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 32 static unsigned long tainted_mask; 33 static int pause_on_oops; 34 static int pause_on_oops_flag; 35 static DEFINE_SPINLOCK(pause_on_oops_lock); 36 bool crash_kexec_post_notifiers; 37 int panic_on_warn __read_mostly; 38 39 int panic_timeout = CONFIG_PANIC_TIMEOUT; 40 EXPORT_SYMBOL_GPL(panic_timeout); 41 42 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 43 44 EXPORT_SYMBOL(panic_notifier_list); 45 46 static long no_blink(int state) 47 { 48 return 0; 49 } 50 51 /* Returns how long it waited in ms */ 52 long (*panic_blink)(int state); 53 EXPORT_SYMBOL(panic_blink); 54 55 /* 56 * Stop ourself in panic -- architecture code may override this 57 */ 58 void __weak panic_smp_self_stop(void) 59 { 60 while (1) 61 cpu_relax(); 62 } 63 64 /* 65 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 66 * may override this to prepare for crash dumping, e.g. save regs info. 67 */ 68 void __weak nmi_panic_self_stop(struct pt_regs *regs) 69 { 70 panic_smp_self_stop(); 71 } 72 73 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 74 75 /** 76 * panic - halt the system 77 * @fmt: The text string to print 78 * 79 * Display a message, then perform cleanups. 80 * 81 * This function never returns. 82 */ 83 void panic(const char *fmt, ...) 84 { 85 static char buf[1024]; 86 va_list args; 87 long i, i_next = 0; 88 int state = 0; 89 int old_cpu, this_cpu; 90 91 /* 92 * Disable local interrupts. This will prevent panic_smp_self_stop 93 * from deadlocking the first cpu that invokes the panic, since 94 * there is nothing to prevent an interrupt handler (that runs 95 * after setting panic_cpu) from invoking panic() again. 96 */ 97 local_irq_disable(); 98 99 /* 100 * It's possible to come here directly from a panic-assertion and 101 * not have preempt disabled. Some functions called from here want 102 * preempt to be disabled. No point enabling it later though... 103 * 104 * Only one CPU is allowed to execute the panic code from here. For 105 * multiple parallel invocations of panic, all other CPUs either 106 * stop themself or will wait until they are stopped by the 1st CPU 107 * with smp_send_stop(). 108 * 109 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 110 * comes here, so go ahead. 111 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 112 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 113 */ 114 this_cpu = raw_smp_processor_id(); 115 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 116 117 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 118 panic_smp_self_stop(); 119 120 console_verbose(); 121 bust_spinlocks(1); 122 va_start(args, fmt); 123 vsnprintf(buf, sizeof(buf), fmt, args); 124 va_end(args); 125 pr_emerg("Kernel panic - not syncing: %s\n", buf); 126 #ifdef CONFIG_DEBUG_BUGVERBOSE 127 /* 128 * Avoid nested stack-dumping if a panic occurs during oops processing 129 */ 130 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 131 dump_stack(); 132 #endif 133 134 /* 135 * If we have crashed and we have a crash kernel loaded let it handle 136 * everything else. 137 * If we want to run this after calling panic_notifiers, pass 138 * the "crash_kexec_post_notifiers" option to the kernel. 139 * 140 * Bypass the panic_cpu check and call __crash_kexec directly. 141 */ 142 if (!crash_kexec_post_notifiers) 143 __crash_kexec(NULL); 144 145 /* 146 * Note smp_send_stop is the usual smp shutdown function, which 147 * unfortunately means it may not be hardened to work in a panic 148 * situation. 149 */ 150 smp_send_stop(); 151 152 /* 153 * Run any panic handlers, including those that might need to 154 * add information to the kmsg dump output. 155 */ 156 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 157 158 kmsg_dump(KMSG_DUMP_PANIC); 159 160 /* 161 * If you doubt kdump always works fine in any situation, 162 * "crash_kexec_post_notifiers" offers you a chance to run 163 * panic_notifiers and dumping kmsg before kdump. 164 * Note: since some panic_notifiers can make crashed kernel 165 * more unstable, it can increase risks of the kdump failure too. 166 * 167 * Bypass the panic_cpu check and call __crash_kexec directly. 168 */ 169 if (crash_kexec_post_notifiers) 170 __crash_kexec(NULL); 171 172 bust_spinlocks(0); 173 174 /* 175 * We may have ended up stopping the CPU holding the lock (in 176 * smp_send_stop()) while still having some valuable data in the console 177 * buffer. Try to acquire the lock then release it regardless of the 178 * result. The release will also print the buffers out. Locks debug 179 * should be disabled to avoid reporting bad unlock balance when 180 * panic() is not being callled from OOPS. 181 */ 182 debug_locks_off(); 183 console_flush_on_panic(); 184 185 if (!panic_blink) 186 panic_blink = no_blink; 187 188 if (panic_timeout > 0) { 189 /* 190 * Delay timeout seconds before rebooting the machine. 191 * We can't use the "normal" timers since we just panicked. 192 */ 193 pr_emerg("Rebooting in %d seconds..", panic_timeout); 194 195 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 196 touch_nmi_watchdog(); 197 if (i >= i_next) { 198 i += panic_blink(state ^= 1); 199 i_next = i + 3600 / PANIC_BLINK_SPD; 200 } 201 mdelay(PANIC_TIMER_STEP); 202 } 203 } 204 if (panic_timeout != 0) { 205 /* 206 * This will not be a clean reboot, with everything 207 * shutting down. But if there is a chance of 208 * rebooting the system it will be rebooted. 209 */ 210 emergency_restart(); 211 } 212 #ifdef __sparc__ 213 { 214 extern int stop_a_enabled; 215 /* Make sure the user can actually press Stop-A (L1-A) */ 216 stop_a_enabled = 1; 217 pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n"); 218 } 219 #endif 220 #if defined(CONFIG_S390) 221 { 222 unsigned long caller; 223 224 caller = (unsigned long)__builtin_return_address(0); 225 disabled_wait(caller); 226 } 227 #endif 228 pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf); 229 local_irq_enable(); 230 for (i = 0; ; i += PANIC_TIMER_STEP) { 231 touch_softlockup_watchdog(); 232 if (i >= i_next) { 233 i += panic_blink(state ^= 1); 234 i_next = i + 3600 / PANIC_BLINK_SPD; 235 } 236 mdelay(PANIC_TIMER_STEP); 237 } 238 } 239 240 EXPORT_SYMBOL(panic); 241 242 243 struct tnt { 244 u8 bit; 245 char true; 246 char false; 247 }; 248 249 static const struct tnt tnts[] = { 250 { TAINT_PROPRIETARY_MODULE, 'P', 'G' }, 251 { TAINT_FORCED_MODULE, 'F', ' ' }, 252 { TAINT_CPU_OUT_OF_SPEC, 'S', ' ' }, 253 { TAINT_FORCED_RMMOD, 'R', ' ' }, 254 { TAINT_MACHINE_CHECK, 'M', ' ' }, 255 { TAINT_BAD_PAGE, 'B', ' ' }, 256 { TAINT_USER, 'U', ' ' }, 257 { TAINT_DIE, 'D', ' ' }, 258 { TAINT_OVERRIDDEN_ACPI_TABLE, 'A', ' ' }, 259 { TAINT_WARN, 'W', ' ' }, 260 { TAINT_CRAP, 'C', ' ' }, 261 { TAINT_FIRMWARE_WORKAROUND, 'I', ' ' }, 262 { TAINT_OOT_MODULE, 'O', ' ' }, 263 { TAINT_UNSIGNED_MODULE, 'E', ' ' }, 264 { TAINT_SOFTLOCKUP, 'L', ' ' }, 265 { TAINT_LIVEPATCH, 'K', ' ' }, 266 }; 267 268 /** 269 * print_tainted - return a string to represent the kernel taint state. 270 * 271 * 'P' - Proprietary module has been loaded. 272 * 'F' - Module has been forcibly loaded. 273 * 'S' - SMP with CPUs not designed for SMP. 274 * 'R' - User forced a module unload. 275 * 'M' - System experienced a machine check exception. 276 * 'B' - System has hit bad_page. 277 * 'U' - Userspace-defined naughtiness. 278 * 'D' - Kernel has oopsed before 279 * 'A' - ACPI table overridden. 280 * 'W' - Taint on warning. 281 * 'C' - modules from drivers/staging are loaded. 282 * 'I' - Working around severe firmware bug. 283 * 'O' - Out-of-tree module has been loaded. 284 * 'E' - Unsigned module has been loaded. 285 * 'L' - A soft lockup has previously occurred. 286 * 'K' - Kernel has been live patched. 287 * 288 * The string is overwritten by the next call to print_tainted(). 289 */ 290 const char *print_tainted(void) 291 { 292 static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")]; 293 294 if (tainted_mask) { 295 char *s; 296 int i; 297 298 s = buf + sprintf(buf, "Tainted: "); 299 for (i = 0; i < ARRAY_SIZE(tnts); i++) { 300 const struct tnt *t = &tnts[i]; 301 *s++ = test_bit(t->bit, &tainted_mask) ? 302 t->true : t->false; 303 } 304 *s = 0; 305 } else 306 snprintf(buf, sizeof(buf), "Not tainted"); 307 308 return buf; 309 } 310 311 int test_taint(unsigned flag) 312 { 313 return test_bit(flag, &tainted_mask); 314 } 315 EXPORT_SYMBOL(test_taint); 316 317 unsigned long get_taint(void) 318 { 319 return tainted_mask; 320 } 321 322 /** 323 * add_taint: add a taint flag if not already set. 324 * @flag: one of the TAINT_* constants. 325 * @lockdep_ok: whether lock debugging is still OK. 326 * 327 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 328 * some notewortht-but-not-corrupting cases, it can be set to true. 329 */ 330 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 331 { 332 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 333 pr_warn("Disabling lock debugging due to kernel taint\n"); 334 335 set_bit(flag, &tainted_mask); 336 } 337 EXPORT_SYMBOL(add_taint); 338 339 static void spin_msec(int msecs) 340 { 341 int i; 342 343 for (i = 0; i < msecs; i++) { 344 touch_nmi_watchdog(); 345 mdelay(1); 346 } 347 } 348 349 /* 350 * It just happens that oops_enter() and oops_exit() are identically 351 * implemented... 352 */ 353 static void do_oops_enter_exit(void) 354 { 355 unsigned long flags; 356 static int spin_counter; 357 358 if (!pause_on_oops) 359 return; 360 361 spin_lock_irqsave(&pause_on_oops_lock, flags); 362 if (pause_on_oops_flag == 0) { 363 /* This CPU may now print the oops message */ 364 pause_on_oops_flag = 1; 365 } else { 366 /* We need to stall this CPU */ 367 if (!spin_counter) { 368 /* This CPU gets to do the counting */ 369 spin_counter = pause_on_oops; 370 do { 371 spin_unlock(&pause_on_oops_lock); 372 spin_msec(MSEC_PER_SEC); 373 spin_lock(&pause_on_oops_lock); 374 } while (--spin_counter); 375 pause_on_oops_flag = 0; 376 } else { 377 /* This CPU waits for a different one */ 378 while (spin_counter) { 379 spin_unlock(&pause_on_oops_lock); 380 spin_msec(1); 381 spin_lock(&pause_on_oops_lock); 382 } 383 } 384 } 385 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 386 } 387 388 /* 389 * Return true if the calling CPU is allowed to print oops-related info. 390 * This is a bit racy.. 391 */ 392 int oops_may_print(void) 393 { 394 return pause_on_oops_flag == 0; 395 } 396 397 /* 398 * Called when the architecture enters its oops handler, before it prints 399 * anything. If this is the first CPU to oops, and it's oopsing the first 400 * time then let it proceed. 401 * 402 * This is all enabled by the pause_on_oops kernel boot option. We do all 403 * this to ensure that oopses don't scroll off the screen. It has the 404 * side-effect of preventing later-oopsing CPUs from mucking up the display, 405 * too. 406 * 407 * It turns out that the CPU which is allowed to print ends up pausing for 408 * the right duration, whereas all the other CPUs pause for twice as long: 409 * once in oops_enter(), once in oops_exit(). 410 */ 411 void oops_enter(void) 412 { 413 tracing_off(); 414 /* can't trust the integrity of the kernel anymore: */ 415 debug_locks_off(); 416 do_oops_enter_exit(); 417 } 418 419 /* 420 * 64-bit random ID for oopses: 421 */ 422 static u64 oops_id; 423 424 static int init_oops_id(void) 425 { 426 if (!oops_id) 427 get_random_bytes(&oops_id, sizeof(oops_id)); 428 else 429 oops_id++; 430 431 return 0; 432 } 433 late_initcall(init_oops_id); 434 435 void print_oops_end_marker(void) 436 { 437 init_oops_id(); 438 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 439 } 440 441 /* 442 * Called when the architecture exits its oops handler, after printing 443 * everything. 444 */ 445 void oops_exit(void) 446 { 447 do_oops_enter_exit(); 448 print_oops_end_marker(); 449 kmsg_dump(KMSG_DUMP_OOPS); 450 } 451 452 #ifdef WANT_WARN_ON_SLOWPATH 453 struct slowpath_args { 454 const char *fmt; 455 va_list args; 456 }; 457 458 static void warn_slowpath_common(const char *file, int line, void *caller, 459 unsigned taint, struct slowpath_args *args) 460 { 461 disable_trace_on_warning(); 462 463 pr_warn("------------[ cut here ]------------\n"); 464 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS()\n", 465 raw_smp_processor_id(), current->pid, file, line, caller); 466 467 if (args) 468 vprintk(args->fmt, args->args); 469 470 if (panic_on_warn) { 471 /* 472 * This thread may hit another WARN() in the panic path. 473 * Resetting this prevents additional WARN() from panicking the 474 * system on this thread. Other threads are blocked by the 475 * panic_mutex in panic(). 476 */ 477 panic_on_warn = 0; 478 panic("panic_on_warn set ...\n"); 479 } 480 481 print_modules(); 482 dump_stack(); 483 print_oops_end_marker(); 484 /* Just a warning, don't kill lockdep. */ 485 add_taint(taint, LOCKDEP_STILL_OK); 486 } 487 488 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 489 { 490 struct slowpath_args args; 491 492 args.fmt = fmt; 493 va_start(args.args, fmt); 494 warn_slowpath_common(file, line, __builtin_return_address(0), 495 TAINT_WARN, &args); 496 va_end(args.args); 497 } 498 EXPORT_SYMBOL(warn_slowpath_fmt); 499 500 void warn_slowpath_fmt_taint(const char *file, int line, 501 unsigned taint, const char *fmt, ...) 502 { 503 struct slowpath_args args; 504 505 args.fmt = fmt; 506 va_start(args.args, fmt); 507 warn_slowpath_common(file, line, __builtin_return_address(0), 508 taint, &args); 509 va_end(args.args); 510 } 511 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 512 513 void warn_slowpath_null(const char *file, int line) 514 { 515 warn_slowpath_common(file, line, __builtin_return_address(0), 516 TAINT_WARN, NULL); 517 } 518 EXPORT_SYMBOL(warn_slowpath_null); 519 #endif 520 521 #ifdef CONFIG_CC_STACKPROTECTOR 522 523 /* 524 * Called when gcc's -fstack-protector feature is used, and 525 * gcc detects corruption of the on-stack canary value 526 */ 527 __visible void __stack_chk_fail(void) 528 { 529 panic("stack-protector: Kernel stack is corrupted in: %p\n", 530 __builtin_return_address(0)); 531 } 532 EXPORT_SYMBOL(__stack_chk_fail); 533 534 #endif 535 536 core_param(panic, panic_timeout, int, 0644); 537 core_param(pause_on_oops, pause_on_oops, int, 0644); 538 core_param(panic_on_warn, panic_on_warn, int, 0644); 539 540 static int __init setup_crash_kexec_post_notifiers(char *s) 541 { 542 crash_kexec_post_notifiers = true; 543 return 0; 544 } 545 early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers); 546 547 static int __init oops_setup(char *s) 548 { 549 if (!s) 550 return -EINVAL; 551 if (!strcmp(s, "panic")) 552 panic_on_oops = 1; 553 return 0; 554 } 555 early_param("oops", oops_setup); 556