1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/panic.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * This function is used through-out the kernel (including mm and fs) 10 * to indicate a major problem. 11 */ 12 #include <linux/debug_locks.h> 13 #include <linux/sched/debug.h> 14 #include <linux/interrupt.h> 15 #include <linux/kgdb.h> 16 #include <linux/kmsg_dump.h> 17 #include <linux/kallsyms.h> 18 #include <linux/notifier.h> 19 #include <linux/vt_kern.h> 20 #include <linux/module.h> 21 #include <linux/random.h> 22 #include <linux/ftrace.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #include <linux/kexec.h> 26 #include <linux/panic_notifier.h> 27 #include <linux/sched.h> 28 #include <linux/string_helpers.h> 29 #include <linux/sysrq.h> 30 #include <linux/init.h> 31 #include <linux/nmi.h> 32 #include <linux/console.h> 33 #include <linux/bug.h> 34 #include <linux/ratelimit.h> 35 #include <linux/debugfs.h> 36 #include <linux/sysfs.h> 37 #include <linux/context_tracking.h> 38 #include <linux/seq_buf.h> 39 #include <linux/sys_info.h> 40 #include <trace/events/error_report.h> 41 #include <asm/sections.h> 42 43 #define PANIC_TIMER_STEP 100 44 #define PANIC_BLINK_SPD 18 45 46 #ifdef CONFIG_SMP 47 /* 48 * Should we dump all CPUs backtraces in an oops event? 49 * Defaults to 0, can be changed via sysctl. 50 */ 51 static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace; 52 #else 53 #define sysctl_oops_all_cpu_backtrace 0 54 #endif /* CONFIG_SMP */ 55 56 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 57 static unsigned long tainted_mask = 58 IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 59 static int pause_on_oops; 60 static int pause_on_oops_flag; 61 static DEFINE_SPINLOCK(pause_on_oops_lock); 62 bool crash_kexec_post_notifiers; 63 int panic_on_warn __read_mostly; 64 unsigned long panic_on_taint; 65 bool panic_on_taint_nousertaint = false; 66 static unsigned int warn_limit __read_mostly; 67 static bool panic_console_replay; 68 69 bool panic_triggering_all_cpu_backtrace; 70 71 int panic_timeout = CONFIG_PANIC_TIMEOUT; 72 EXPORT_SYMBOL_GPL(panic_timeout); 73 74 unsigned long panic_print; 75 76 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 77 78 EXPORT_SYMBOL(panic_notifier_list); 79 80 #ifdef CONFIG_SYSCTL 81 static int sysctl_panic_print_handler(const struct ctl_table *table, int write, 82 void *buffer, size_t *lenp, loff_t *ppos) 83 { 84 pr_info_once("Kernel: 'panic_print' sysctl interface will be obsoleted by both 'panic_sys_info' and 'panic_console_replay'\n"); 85 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 86 } 87 88 static const struct ctl_table kern_panic_table[] = { 89 #ifdef CONFIG_SMP 90 { 91 .procname = "oops_all_cpu_backtrace", 92 .data = &sysctl_oops_all_cpu_backtrace, 93 .maxlen = sizeof(int), 94 .mode = 0644, 95 .proc_handler = proc_dointvec_minmax, 96 .extra1 = SYSCTL_ZERO, 97 .extra2 = SYSCTL_ONE, 98 }, 99 #endif 100 { 101 .procname = "panic", 102 .data = &panic_timeout, 103 .maxlen = sizeof(int), 104 .mode = 0644, 105 .proc_handler = proc_dointvec, 106 }, 107 { 108 .procname = "panic_on_oops", 109 .data = &panic_on_oops, 110 .maxlen = sizeof(int), 111 .mode = 0644, 112 .proc_handler = proc_dointvec, 113 }, 114 { 115 .procname = "panic_print", 116 .data = &panic_print, 117 .maxlen = sizeof(unsigned long), 118 .mode = 0644, 119 .proc_handler = sysctl_panic_print_handler, 120 }, 121 { 122 .procname = "panic_on_warn", 123 .data = &panic_on_warn, 124 .maxlen = sizeof(int), 125 .mode = 0644, 126 .proc_handler = proc_dointvec_minmax, 127 .extra1 = SYSCTL_ZERO, 128 .extra2 = SYSCTL_ONE, 129 }, 130 { 131 .procname = "warn_limit", 132 .data = &warn_limit, 133 .maxlen = sizeof(warn_limit), 134 .mode = 0644, 135 .proc_handler = proc_douintvec, 136 }, 137 { 138 .procname = "panic_sys_info", 139 .data = &panic_print, 140 .maxlen = sizeof(panic_print), 141 .mode = 0644, 142 .proc_handler = sysctl_sys_info_handler, 143 }, 144 }; 145 146 static __init int kernel_panic_sysctls_init(void) 147 { 148 register_sysctl_init("kernel", kern_panic_table); 149 return 0; 150 } 151 late_initcall(kernel_panic_sysctls_init); 152 #endif 153 154 /* The format is "panic_sys_info=tasks,mem,locks,ftrace,..." */ 155 static int __init setup_panic_sys_info(char *buf) 156 { 157 /* There is no risk of race in kernel boot phase */ 158 panic_print = sys_info_parse_param(buf); 159 return 1; 160 } 161 __setup("panic_sys_info=", setup_panic_sys_info); 162 163 static atomic_t warn_count = ATOMIC_INIT(0); 164 165 #ifdef CONFIG_SYSFS 166 static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr, 167 char *page) 168 { 169 return sysfs_emit(page, "%d\n", atomic_read(&warn_count)); 170 } 171 172 static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count); 173 174 static __init int kernel_panic_sysfs_init(void) 175 { 176 sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL); 177 return 0; 178 } 179 late_initcall(kernel_panic_sysfs_init); 180 #endif 181 182 static long no_blink(int state) 183 { 184 return 0; 185 } 186 187 /* Returns how long it waited in ms */ 188 long (*panic_blink)(int state); 189 EXPORT_SYMBOL(panic_blink); 190 191 /* 192 * Stop ourself in panic -- architecture code may override this 193 */ 194 void __weak __noreturn panic_smp_self_stop(void) 195 { 196 while (1) 197 cpu_relax(); 198 } 199 200 /* 201 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 202 * may override this to prepare for crash dumping, e.g. save regs info. 203 */ 204 void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs) 205 { 206 panic_smp_self_stop(); 207 } 208 209 /* 210 * Stop other CPUs in panic. Architecture dependent code may override this 211 * with more suitable version. For example, if the architecture supports 212 * crash dump, it should save registers of each stopped CPU and disable 213 * per-CPU features such as virtualization extensions. 214 */ 215 void __weak crash_smp_send_stop(void) 216 { 217 static int cpus_stopped; 218 219 /* 220 * This function can be called twice in panic path, but obviously 221 * we execute this only once. 222 */ 223 if (cpus_stopped) 224 return; 225 226 /* 227 * Note smp_send_stop is the usual smp shutdown function, which 228 * unfortunately means it may not be hardened to work in a panic 229 * situation. 230 */ 231 smp_send_stop(); 232 cpus_stopped = 1; 233 } 234 235 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 236 237 /* 238 * A variant of panic() called from NMI context. We return if we've already 239 * panicked on this CPU. If another CPU already panicked, loop in 240 * nmi_panic_self_stop() which can provide architecture dependent code such 241 * as saving register state for crash dump. 242 */ 243 void nmi_panic(struct pt_regs *regs, const char *msg) 244 { 245 int old_cpu, this_cpu; 246 247 old_cpu = PANIC_CPU_INVALID; 248 this_cpu = raw_smp_processor_id(); 249 250 /* atomic_try_cmpxchg updates old_cpu on failure */ 251 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) 252 panic("%s", msg); 253 else if (old_cpu != this_cpu) 254 nmi_panic_self_stop(regs); 255 } 256 EXPORT_SYMBOL(nmi_panic); 257 258 void check_panic_on_warn(const char *origin) 259 { 260 unsigned int limit; 261 262 if (panic_on_warn) 263 panic("%s: panic_on_warn set ...\n", origin); 264 265 limit = READ_ONCE(warn_limit); 266 if (atomic_inc_return(&warn_count) >= limit && limit) 267 panic("%s: system warned too often (kernel.warn_limit is %d)", 268 origin, limit); 269 } 270 271 /* 272 * Helper that triggers the NMI backtrace (if set in panic_print) 273 * and then performs the secondary CPUs shutdown - we cannot have 274 * the NMI backtrace after the CPUs are off! 275 */ 276 static void panic_other_cpus_shutdown(bool crash_kexec) 277 { 278 if (panic_print & SYS_INFO_ALL_CPU_BT) { 279 /* Temporary allow non-panic CPUs to write their backtraces. */ 280 panic_triggering_all_cpu_backtrace = true; 281 trigger_all_cpu_backtrace(); 282 panic_triggering_all_cpu_backtrace = false; 283 } 284 285 /* 286 * Note that smp_send_stop() is the usual SMP shutdown function, 287 * which unfortunately may not be hardened to work in a panic 288 * situation. If we want to do crash dump after notifier calls 289 * and kmsg_dump, we will need architecture dependent extra 290 * bits in addition to stopping other CPUs, hence we rely on 291 * crash_smp_send_stop() for that. 292 */ 293 if (!crash_kexec) 294 smp_send_stop(); 295 else 296 crash_smp_send_stop(); 297 } 298 299 /** 300 * panic - halt the system 301 * @fmt: The text string to print 302 * 303 * Display a message, then perform cleanups. This function never returns. 304 */ 305 void panic(const char *fmt, ...) 306 { 307 static char buf[1024]; 308 va_list args; 309 long i, i_next = 0, len; 310 int state = 0; 311 int old_cpu, this_cpu; 312 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 313 314 if (panic_on_warn) { 315 /* 316 * This thread may hit another WARN() in the panic path. 317 * Resetting this prevents additional WARN() from panicking the 318 * system on this thread. Other threads are blocked by the 319 * panic_mutex in panic(). 320 */ 321 panic_on_warn = 0; 322 } 323 324 /* 325 * Disable local interrupts. This will prevent panic_smp_self_stop 326 * from deadlocking the first cpu that invokes the panic, since 327 * there is nothing to prevent an interrupt handler (that runs 328 * after setting panic_cpu) from invoking panic() again. 329 */ 330 local_irq_disable(); 331 preempt_disable_notrace(); 332 333 /* 334 * It's possible to come here directly from a panic-assertion and 335 * not have preempt disabled. Some functions called from here want 336 * preempt to be disabled. No point enabling it later though... 337 * 338 * Only one CPU is allowed to execute the panic code from here. For 339 * multiple parallel invocations of panic, all other CPUs either 340 * stop themself or will wait until they are stopped by the 1st CPU 341 * with smp_send_stop(). 342 * 343 * cmpxchg success means this is the 1st CPU which comes here, 344 * so go ahead. 345 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 346 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 347 */ 348 old_cpu = PANIC_CPU_INVALID; 349 this_cpu = raw_smp_processor_id(); 350 351 /* atomic_try_cmpxchg updates old_cpu on failure */ 352 if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) { 353 /* go ahead */ 354 } else if (old_cpu != this_cpu) 355 panic_smp_self_stop(); 356 357 console_verbose(); 358 bust_spinlocks(1); 359 va_start(args, fmt); 360 len = vscnprintf(buf, sizeof(buf), fmt, args); 361 va_end(args); 362 363 if (len && buf[len - 1] == '\n') 364 buf[len - 1] = '\0'; 365 366 pr_emerg("Kernel panic - not syncing: %s\n", buf); 367 #ifdef CONFIG_DEBUG_BUGVERBOSE 368 /* 369 * Avoid nested stack-dumping if a panic occurs during oops processing 370 */ 371 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 372 dump_stack(); 373 #endif 374 375 /* 376 * If kgdb is enabled, give it a chance to run before we stop all 377 * the other CPUs or else we won't be able to debug processes left 378 * running on them. 379 */ 380 kgdb_panic(buf); 381 382 /* 383 * If we have crashed and we have a crash kernel loaded let it handle 384 * everything else. 385 * If we want to run this after calling panic_notifiers, pass 386 * the "crash_kexec_post_notifiers" option to the kernel. 387 * 388 * Bypass the panic_cpu check and call __crash_kexec directly. 389 */ 390 if (!_crash_kexec_post_notifiers) 391 __crash_kexec(NULL); 392 393 panic_other_cpus_shutdown(_crash_kexec_post_notifiers); 394 395 printk_legacy_allow_panic_sync(); 396 397 /* 398 * Run any panic handlers, including those that might need to 399 * add information to the kmsg dump output. 400 */ 401 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 402 403 sys_info(panic_print); 404 405 kmsg_dump_desc(KMSG_DUMP_PANIC, buf); 406 407 /* 408 * If you doubt kdump always works fine in any situation, 409 * "crash_kexec_post_notifiers" offers you a chance to run 410 * panic_notifiers and dumping kmsg before kdump. 411 * Note: since some panic_notifiers can make crashed kernel 412 * more unstable, it can increase risks of the kdump failure too. 413 * 414 * Bypass the panic_cpu check and call __crash_kexec directly. 415 */ 416 if (_crash_kexec_post_notifiers) 417 __crash_kexec(NULL); 418 419 console_unblank(); 420 421 /* 422 * We may have ended up stopping the CPU holding the lock (in 423 * smp_send_stop()) while still having some valuable data in the console 424 * buffer. Try to acquire the lock then release it regardless of the 425 * result. The release will also print the buffers out. Locks debug 426 * should be disabled to avoid reporting bad unlock balance when 427 * panic() is not being callled from OOPS. 428 */ 429 debug_locks_off(); 430 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 431 432 if ((panic_print & SYS_INFO_PANIC_CONSOLE_REPLAY) || 433 panic_console_replay) 434 console_flush_on_panic(CONSOLE_REPLAY_ALL); 435 436 if (!panic_blink) 437 panic_blink = no_blink; 438 439 if (panic_timeout > 0) { 440 /* 441 * Delay timeout seconds before rebooting the machine. 442 * We can't use the "normal" timers since we just panicked. 443 */ 444 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 445 446 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 447 touch_nmi_watchdog(); 448 if (i >= i_next) { 449 i += panic_blink(state ^= 1); 450 i_next = i + 3600 / PANIC_BLINK_SPD; 451 } 452 mdelay(PANIC_TIMER_STEP); 453 } 454 } 455 if (panic_timeout != 0) { 456 /* 457 * This will not be a clean reboot, with everything 458 * shutting down. But if there is a chance of 459 * rebooting the system it will be rebooted. 460 */ 461 if (panic_reboot_mode != REBOOT_UNDEFINED) 462 reboot_mode = panic_reboot_mode; 463 emergency_restart(); 464 } 465 #ifdef __sparc__ 466 { 467 extern int stop_a_enabled; 468 /* Make sure the user can actually press Stop-A (L1-A) */ 469 stop_a_enabled = 1; 470 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 471 "twice on console to return to the boot prom\n"); 472 } 473 #endif 474 #if defined(CONFIG_S390) 475 disabled_wait(); 476 #endif 477 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 478 479 /* Do not scroll important messages printed above */ 480 suppress_printk = 1; 481 482 /* 483 * The final messages may not have been printed if in a context that 484 * defers printing (such as NMI) and irq_work is not available. 485 * Explicitly flush the kernel log buffer one last time. 486 */ 487 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 488 nbcon_atomic_flush_unsafe(); 489 490 local_irq_enable(); 491 for (i = 0; ; i += PANIC_TIMER_STEP) { 492 touch_softlockup_watchdog(); 493 if (i >= i_next) { 494 i += panic_blink(state ^= 1); 495 i_next = i + 3600 / PANIC_BLINK_SPD; 496 } 497 mdelay(PANIC_TIMER_STEP); 498 } 499 } 500 501 EXPORT_SYMBOL(panic); 502 503 #define TAINT_FLAG(taint, _c_true, _c_false, _module) \ 504 [ TAINT_##taint ] = { \ 505 .c_true = _c_true, .c_false = _c_false, \ 506 .module = _module, \ 507 .desc = #taint, \ 508 } 509 510 /* 511 * TAINT_FORCED_RMMOD could be a per-module flag but the module 512 * is being removed anyway. 513 */ 514 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 515 TAINT_FLAG(PROPRIETARY_MODULE, 'P', 'G', true), 516 TAINT_FLAG(FORCED_MODULE, 'F', ' ', true), 517 TAINT_FLAG(CPU_OUT_OF_SPEC, 'S', ' ', false), 518 TAINT_FLAG(FORCED_RMMOD, 'R', ' ', false), 519 TAINT_FLAG(MACHINE_CHECK, 'M', ' ', false), 520 TAINT_FLAG(BAD_PAGE, 'B', ' ', false), 521 TAINT_FLAG(USER, 'U', ' ', false), 522 TAINT_FLAG(DIE, 'D', ' ', false), 523 TAINT_FLAG(OVERRIDDEN_ACPI_TABLE, 'A', ' ', false), 524 TAINT_FLAG(WARN, 'W', ' ', false), 525 TAINT_FLAG(CRAP, 'C', ' ', true), 526 TAINT_FLAG(FIRMWARE_WORKAROUND, 'I', ' ', false), 527 TAINT_FLAG(OOT_MODULE, 'O', ' ', true), 528 TAINT_FLAG(UNSIGNED_MODULE, 'E', ' ', true), 529 TAINT_FLAG(SOFTLOCKUP, 'L', ' ', false), 530 TAINT_FLAG(LIVEPATCH, 'K', ' ', true), 531 TAINT_FLAG(AUX, 'X', ' ', true), 532 TAINT_FLAG(RANDSTRUCT, 'T', ' ', true), 533 TAINT_FLAG(TEST, 'N', ' ', true), 534 TAINT_FLAG(FWCTL, 'J', ' ', true), 535 }; 536 537 #undef TAINT_FLAG 538 539 static void print_tainted_seq(struct seq_buf *s, bool verbose) 540 { 541 const char *sep = ""; 542 int i; 543 544 if (!tainted_mask) { 545 seq_buf_puts(s, "Not tainted"); 546 return; 547 } 548 549 seq_buf_printf(s, "Tainted: "); 550 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 551 const struct taint_flag *t = &taint_flags[i]; 552 bool is_set = test_bit(i, &tainted_mask); 553 char c = is_set ? t->c_true : t->c_false; 554 555 if (verbose) { 556 if (is_set) { 557 seq_buf_printf(s, "%s[%c]=%s", sep, c, t->desc); 558 sep = ", "; 559 } 560 } else { 561 seq_buf_putc(s, c); 562 } 563 } 564 } 565 566 static const char *_print_tainted(bool verbose) 567 { 568 /* FIXME: what should the size be? */ 569 static char buf[sizeof(taint_flags)]; 570 struct seq_buf s; 571 572 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 573 574 seq_buf_init(&s, buf, sizeof(buf)); 575 576 print_tainted_seq(&s, verbose); 577 578 return seq_buf_str(&s); 579 } 580 581 /** 582 * print_tainted - return a string to represent the kernel taint state. 583 * 584 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst 585 * 586 * The string is overwritten by the next call to print_tainted(), 587 * but is always NULL terminated. 588 */ 589 const char *print_tainted(void) 590 { 591 return _print_tainted(false); 592 } 593 594 /** 595 * print_tainted_verbose - A more verbose version of print_tainted() 596 */ 597 const char *print_tainted_verbose(void) 598 { 599 return _print_tainted(true); 600 } 601 602 int test_taint(unsigned flag) 603 { 604 return test_bit(flag, &tainted_mask); 605 } 606 EXPORT_SYMBOL(test_taint); 607 608 unsigned long get_taint(void) 609 { 610 return tainted_mask; 611 } 612 613 /** 614 * add_taint: add a taint flag if not already set. 615 * @flag: one of the TAINT_* constants. 616 * @lockdep_ok: whether lock debugging is still OK. 617 * 618 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 619 * some notewortht-but-not-corrupting cases, it can be set to true. 620 */ 621 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 622 { 623 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 624 pr_warn("Disabling lock debugging due to kernel taint\n"); 625 626 set_bit(flag, &tainted_mask); 627 628 if (tainted_mask & panic_on_taint) { 629 panic_on_taint = 0; 630 panic("panic_on_taint set ..."); 631 } 632 } 633 EXPORT_SYMBOL(add_taint); 634 635 static void spin_msec(int msecs) 636 { 637 int i; 638 639 for (i = 0; i < msecs; i++) { 640 touch_nmi_watchdog(); 641 mdelay(1); 642 } 643 } 644 645 /* 646 * It just happens that oops_enter() and oops_exit() are identically 647 * implemented... 648 */ 649 static void do_oops_enter_exit(void) 650 { 651 unsigned long flags; 652 static int spin_counter; 653 654 if (!pause_on_oops) 655 return; 656 657 spin_lock_irqsave(&pause_on_oops_lock, flags); 658 if (pause_on_oops_flag == 0) { 659 /* This CPU may now print the oops message */ 660 pause_on_oops_flag = 1; 661 } else { 662 /* We need to stall this CPU */ 663 if (!spin_counter) { 664 /* This CPU gets to do the counting */ 665 spin_counter = pause_on_oops; 666 do { 667 spin_unlock(&pause_on_oops_lock); 668 spin_msec(MSEC_PER_SEC); 669 spin_lock(&pause_on_oops_lock); 670 } while (--spin_counter); 671 pause_on_oops_flag = 0; 672 } else { 673 /* This CPU waits for a different one */ 674 while (spin_counter) { 675 spin_unlock(&pause_on_oops_lock); 676 spin_msec(1); 677 spin_lock(&pause_on_oops_lock); 678 } 679 } 680 } 681 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 682 } 683 684 /* 685 * Return true if the calling CPU is allowed to print oops-related info. 686 * This is a bit racy.. 687 */ 688 bool oops_may_print(void) 689 { 690 return pause_on_oops_flag == 0; 691 } 692 693 /* 694 * Called when the architecture enters its oops handler, before it prints 695 * anything. If this is the first CPU to oops, and it's oopsing the first 696 * time then let it proceed. 697 * 698 * This is all enabled by the pause_on_oops kernel boot option. We do all 699 * this to ensure that oopses don't scroll off the screen. It has the 700 * side-effect of preventing later-oopsing CPUs from mucking up the display, 701 * too. 702 * 703 * It turns out that the CPU which is allowed to print ends up pausing for 704 * the right duration, whereas all the other CPUs pause for twice as long: 705 * once in oops_enter(), once in oops_exit(). 706 */ 707 void oops_enter(void) 708 { 709 nbcon_cpu_emergency_enter(); 710 tracing_off(); 711 /* can't trust the integrity of the kernel anymore: */ 712 debug_locks_off(); 713 do_oops_enter_exit(); 714 715 if (sysctl_oops_all_cpu_backtrace) 716 trigger_all_cpu_backtrace(); 717 } 718 719 static void print_oops_end_marker(void) 720 { 721 pr_warn("---[ end trace %016llx ]---\n", 0ULL); 722 } 723 724 /* 725 * Called when the architecture exits its oops handler, after printing 726 * everything. 727 */ 728 void oops_exit(void) 729 { 730 do_oops_enter_exit(); 731 print_oops_end_marker(); 732 nbcon_cpu_emergency_exit(); 733 kmsg_dump(KMSG_DUMP_OOPS); 734 } 735 736 struct warn_args { 737 const char *fmt; 738 va_list args; 739 }; 740 741 void __warn(const char *file, int line, void *caller, unsigned taint, 742 struct pt_regs *regs, struct warn_args *args) 743 { 744 nbcon_cpu_emergency_enter(); 745 746 disable_trace_on_warning(); 747 748 if (file) 749 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 750 raw_smp_processor_id(), current->pid, file, line, 751 caller); 752 else 753 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 754 raw_smp_processor_id(), current->pid, caller); 755 756 #pragma GCC diagnostic push 757 #ifndef __clang__ 758 #pragma GCC diagnostic ignored "-Wsuggest-attribute=format" 759 #endif 760 if (args) 761 vprintk(args->fmt, args->args); 762 #pragma GCC diagnostic pop 763 764 print_modules(); 765 766 if (regs) 767 show_regs(regs); 768 769 check_panic_on_warn("kernel"); 770 771 if (!regs) 772 dump_stack(); 773 774 print_irqtrace_events(current); 775 776 print_oops_end_marker(); 777 trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller); 778 779 /* Just a warning, don't kill lockdep. */ 780 add_taint(taint, LOCKDEP_STILL_OK); 781 782 nbcon_cpu_emergency_exit(); 783 } 784 785 #ifdef CONFIG_BUG 786 #ifndef __WARN_FLAGS 787 void warn_slowpath_fmt(const char *file, int line, unsigned taint, 788 const char *fmt, ...) 789 { 790 bool rcu = warn_rcu_enter(); 791 struct warn_args args; 792 793 pr_warn(CUT_HERE); 794 795 if (!fmt) { 796 __warn(file, line, __builtin_return_address(0), taint, 797 NULL, NULL); 798 warn_rcu_exit(rcu); 799 return; 800 } 801 802 args.fmt = fmt; 803 va_start(args.args, fmt); 804 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 805 va_end(args.args); 806 warn_rcu_exit(rcu); 807 } 808 EXPORT_SYMBOL(warn_slowpath_fmt); 809 #else 810 void __warn_printk(const char *fmt, ...) 811 { 812 bool rcu = warn_rcu_enter(); 813 va_list args; 814 815 pr_warn(CUT_HERE); 816 817 va_start(args, fmt); 818 vprintk(fmt, args); 819 va_end(args); 820 warn_rcu_exit(rcu); 821 } 822 EXPORT_SYMBOL(__warn_printk); 823 #endif 824 825 /* Support resetting WARN*_ONCE state */ 826 827 static int clear_warn_once_set(void *data, u64 val) 828 { 829 generic_bug_clear_once(); 830 memset(__start_once, 0, __end_once - __start_once); 831 return 0; 832 } 833 834 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 835 "%lld\n"); 836 837 static __init int register_warn_debugfs(void) 838 { 839 /* Don't care about failure */ 840 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 841 &clear_warn_once_fops); 842 return 0; 843 } 844 845 device_initcall(register_warn_debugfs); 846 #endif 847 848 #ifdef CONFIG_STACKPROTECTOR 849 850 /* 851 * Called when gcc's -fstack-protector feature is used, and 852 * gcc detects corruption of the on-stack canary value 853 */ 854 __visible noinstr void __stack_chk_fail(void) 855 { 856 unsigned long flags; 857 858 instrumentation_begin(); 859 flags = user_access_save(); 860 861 panic("stack-protector: Kernel stack is corrupted in: %pB", 862 __builtin_return_address(0)); 863 864 user_access_restore(flags); 865 instrumentation_end(); 866 } 867 EXPORT_SYMBOL(__stack_chk_fail); 868 869 #endif 870 871 core_param(panic, panic_timeout, int, 0644); 872 core_param(panic_print, panic_print, ulong, 0644); 873 core_param(pause_on_oops, pause_on_oops, int, 0644); 874 core_param(panic_on_warn, panic_on_warn, int, 0644); 875 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 876 core_param(panic_console_replay, panic_console_replay, bool, 0644); 877 878 static int __init oops_setup(char *s) 879 { 880 if (!s) 881 return -EINVAL; 882 if (!strcmp(s, "panic")) 883 panic_on_oops = 1; 884 return 0; 885 } 886 early_param("oops", oops_setup); 887 888 static int __init panic_on_taint_setup(char *s) 889 { 890 char *taint_str; 891 892 if (!s) 893 return -EINVAL; 894 895 taint_str = strsep(&s, ","); 896 if (kstrtoul(taint_str, 16, &panic_on_taint)) 897 return -EINVAL; 898 899 /* make sure panic_on_taint doesn't hold out-of-range TAINT flags */ 900 panic_on_taint &= TAINT_FLAGS_MAX; 901 902 if (!panic_on_taint) 903 return -EINVAL; 904 905 if (s && !strcmp(s, "nousertaint")) 906 panic_on_taint_nousertaint = true; 907 908 pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n", 909 panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint)); 910 911 return 0; 912 } 913 early_param("panic_on_taint", panic_on_taint_setup); 914