1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/panic.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * This function is used through-out the kernel (including mm and fs) 10 * to indicate a major problem. 11 */ 12 #include <linux/debug_locks.h> 13 #include <linux/sched/debug.h> 14 #include <linux/interrupt.h> 15 #include <linux/kgdb.h> 16 #include <linux/kmsg_dump.h> 17 #include <linux/kallsyms.h> 18 #include <linux/notifier.h> 19 #include <linux/vt_kern.h> 20 #include <linux/module.h> 21 #include <linux/random.h> 22 #include <linux/ftrace.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #include <linux/kexec.h> 26 #include <linux/panic_notifier.h> 27 #include <linux/sched.h> 28 #include <linux/sysrq.h> 29 #include <linux/init.h> 30 #include <linux/nmi.h> 31 #include <linux/console.h> 32 #include <linux/bug.h> 33 #include <linux/ratelimit.h> 34 #include <linux/debugfs.h> 35 #include <asm/sections.h> 36 37 #define PANIC_TIMER_STEP 100 38 #define PANIC_BLINK_SPD 18 39 40 #ifdef CONFIG_SMP 41 /* 42 * Should we dump all CPUs backtraces in an oops event? 43 * Defaults to 0, can be changed via sysctl. 44 */ 45 unsigned int __read_mostly sysctl_oops_all_cpu_backtrace; 46 #endif /* CONFIG_SMP */ 47 48 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 49 static unsigned long tainted_mask = 50 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 51 static int pause_on_oops; 52 static int pause_on_oops_flag; 53 static DEFINE_SPINLOCK(pause_on_oops_lock); 54 bool crash_kexec_post_notifiers; 55 int panic_on_warn __read_mostly; 56 unsigned long panic_on_taint; 57 bool panic_on_taint_nousertaint = false; 58 59 int panic_timeout = CONFIG_PANIC_TIMEOUT; 60 EXPORT_SYMBOL_GPL(panic_timeout); 61 62 #define PANIC_PRINT_TASK_INFO 0x00000001 63 #define PANIC_PRINT_MEM_INFO 0x00000002 64 #define PANIC_PRINT_TIMER_INFO 0x00000004 65 #define PANIC_PRINT_LOCK_INFO 0x00000008 66 #define PANIC_PRINT_FTRACE_INFO 0x00000010 67 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020 68 unsigned long panic_print; 69 70 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 71 72 EXPORT_SYMBOL(panic_notifier_list); 73 74 static long no_blink(int state) 75 { 76 return 0; 77 } 78 79 /* Returns how long it waited in ms */ 80 long (*panic_blink)(int state); 81 EXPORT_SYMBOL(panic_blink); 82 83 /* 84 * Stop ourself in panic -- architecture code may override this 85 */ 86 void __weak panic_smp_self_stop(void) 87 { 88 while (1) 89 cpu_relax(); 90 } 91 92 /* 93 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 94 * may override this to prepare for crash dumping, e.g. save regs info. 95 */ 96 void __weak nmi_panic_self_stop(struct pt_regs *regs) 97 { 98 panic_smp_self_stop(); 99 } 100 101 /* 102 * Stop other CPUs in panic. Architecture dependent code may override this 103 * with more suitable version. For example, if the architecture supports 104 * crash dump, it should save registers of each stopped CPU and disable 105 * per-CPU features such as virtualization extensions. 106 */ 107 void __weak crash_smp_send_stop(void) 108 { 109 static int cpus_stopped; 110 111 /* 112 * This function can be called twice in panic path, but obviously 113 * we execute this only once. 114 */ 115 if (cpus_stopped) 116 return; 117 118 /* 119 * Note smp_send_stop is the usual smp shutdown function, which 120 * unfortunately means it may not be hardened to work in a panic 121 * situation. 122 */ 123 smp_send_stop(); 124 cpus_stopped = 1; 125 } 126 127 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 128 129 /* 130 * A variant of panic() called from NMI context. We return if we've already 131 * panicked on this CPU. If another CPU already panicked, loop in 132 * nmi_panic_self_stop() which can provide architecture dependent code such 133 * as saving register state for crash dump. 134 */ 135 void nmi_panic(struct pt_regs *regs, const char *msg) 136 { 137 int old_cpu, cpu; 138 139 cpu = raw_smp_processor_id(); 140 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 141 142 if (old_cpu == PANIC_CPU_INVALID) 143 panic("%s", msg); 144 else if (old_cpu != cpu) 145 nmi_panic_self_stop(regs); 146 } 147 EXPORT_SYMBOL(nmi_panic); 148 149 static void panic_print_sys_info(void) 150 { 151 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG) 152 console_flush_on_panic(CONSOLE_REPLAY_ALL); 153 154 if (panic_print & PANIC_PRINT_TASK_INFO) 155 show_state(); 156 157 if (panic_print & PANIC_PRINT_MEM_INFO) 158 show_mem(0, NULL); 159 160 if (panic_print & PANIC_PRINT_TIMER_INFO) 161 sysrq_timer_list_show(); 162 163 if (panic_print & PANIC_PRINT_LOCK_INFO) 164 debug_show_all_locks(); 165 166 if (panic_print & PANIC_PRINT_FTRACE_INFO) 167 ftrace_dump(DUMP_ALL); 168 } 169 170 /** 171 * panic - halt the system 172 * @fmt: The text string to print 173 * 174 * Display a message, then perform cleanups. 175 * 176 * This function never returns. 177 */ 178 void panic(const char *fmt, ...) 179 { 180 static char buf[1024]; 181 va_list args; 182 long i, i_next = 0, len; 183 int state = 0; 184 int old_cpu, this_cpu; 185 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 186 187 /* 188 * Disable local interrupts. This will prevent panic_smp_self_stop 189 * from deadlocking the first cpu that invokes the panic, since 190 * there is nothing to prevent an interrupt handler (that runs 191 * after setting panic_cpu) from invoking panic() again. 192 */ 193 local_irq_disable(); 194 preempt_disable_notrace(); 195 196 /* 197 * It's possible to come here directly from a panic-assertion and 198 * not have preempt disabled. Some functions called from here want 199 * preempt to be disabled. No point enabling it later though... 200 * 201 * Only one CPU is allowed to execute the panic code from here. For 202 * multiple parallel invocations of panic, all other CPUs either 203 * stop themself or will wait until they are stopped by the 1st CPU 204 * with smp_send_stop(). 205 * 206 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 207 * comes here, so go ahead. 208 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 209 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 210 */ 211 this_cpu = raw_smp_processor_id(); 212 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 213 214 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 215 panic_smp_self_stop(); 216 217 console_verbose(); 218 bust_spinlocks(1); 219 va_start(args, fmt); 220 len = vscnprintf(buf, sizeof(buf), fmt, args); 221 va_end(args); 222 223 if (len && buf[len - 1] == '\n') 224 buf[len - 1] = '\0'; 225 226 pr_emerg("Kernel panic - not syncing: %s\n", buf); 227 #ifdef CONFIG_DEBUG_BUGVERBOSE 228 /* 229 * Avoid nested stack-dumping if a panic occurs during oops processing 230 */ 231 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 232 dump_stack(); 233 #endif 234 235 /* 236 * If kgdb is enabled, give it a chance to run before we stop all 237 * the other CPUs or else we won't be able to debug processes left 238 * running on them. 239 */ 240 kgdb_panic(buf); 241 242 /* 243 * If we have crashed and we have a crash kernel loaded let it handle 244 * everything else. 245 * If we want to run this after calling panic_notifiers, pass 246 * the "crash_kexec_post_notifiers" option to the kernel. 247 * 248 * Bypass the panic_cpu check and call __crash_kexec directly. 249 */ 250 if (!_crash_kexec_post_notifiers) { 251 printk_safe_flush_on_panic(); 252 __crash_kexec(NULL); 253 254 /* 255 * Note smp_send_stop is the usual smp shutdown function, which 256 * unfortunately means it may not be hardened to work in a 257 * panic situation. 258 */ 259 smp_send_stop(); 260 } else { 261 /* 262 * If we want to do crash dump after notifier calls and 263 * kmsg_dump, we will need architecture dependent extra 264 * works in addition to stopping other CPUs. 265 */ 266 crash_smp_send_stop(); 267 } 268 269 /* 270 * Run any panic handlers, including those that might need to 271 * add information to the kmsg dump output. 272 */ 273 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 274 275 /* Call flush even twice. It tries harder with a single online CPU */ 276 printk_safe_flush_on_panic(); 277 kmsg_dump(KMSG_DUMP_PANIC); 278 279 /* 280 * If you doubt kdump always works fine in any situation, 281 * "crash_kexec_post_notifiers" offers you a chance to run 282 * panic_notifiers and dumping kmsg before kdump. 283 * Note: since some panic_notifiers can make crashed kernel 284 * more unstable, it can increase risks of the kdump failure too. 285 * 286 * Bypass the panic_cpu check and call __crash_kexec directly. 287 */ 288 if (_crash_kexec_post_notifiers) 289 __crash_kexec(NULL); 290 291 #ifdef CONFIG_VT 292 unblank_screen(); 293 #endif 294 console_unblank(); 295 296 /* 297 * We may have ended up stopping the CPU holding the lock (in 298 * smp_send_stop()) while still having some valuable data in the console 299 * buffer. Try to acquire the lock then release it regardless of the 300 * result. The release will also print the buffers out. Locks debug 301 * should be disabled to avoid reporting bad unlock balance when 302 * panic() is not being callled from OOPS. 303 */ 304 debug_locks_off(); 305 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 306 307 panic_print_sys_info(); 308 309 if (!panic_blink) 310 panic_blink = no_blink; 311 312 if (panic_timeout > 0) { 313 /* 314 * Delay timeout seconds before rebooting the machine. 315 * We can't use the "normal" timers since we just panicked. 316 */ 317 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 318 319 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 320 touch_nmi_watchdog(); 321 if (i >= i_next) { 322 i += panic_blink(state ^= 1); 323 i_next = i + 3600 / PANIC_BLINK_SPD; 324 } 325 mdelay(PANIC_TIMER_STEP); 326 } 327 } 328 if (panic_timeout != 0) { 329 /* 330 * This will not be a clean reboot, with everything 331 * shutting down. But if there is a chance of 332 * rebooting the system it will be rebooted. 333 */ 334 if (panic_reboot_mode != REBOOT_UNDEFINED) 335 reboot_mode = panic_reboot_mode; 336 emergency_restart(); 337 } 338 #ifdef __sparc__ 339 { 340 extern int stop_a_enabled; 341 /* Make sure the user can actually press Stop-A (L1-A) */ 342 stop_a_enabled = 1; 343 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 344 "twice on console to return to the boot prom\n"); 345 } 346 #endif 347 #if defined(CONFIG_S390) 348 disabled_wait(); 349 #endif 350 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 351 352 /* Do not scroll important messages printed above */ 353 suppress_printk = 1; 354 local_irq_enable(); 355 for (i = 0; ; i += PANIC_TIMER_STEP) { 356 touch_softlockup_watchdog(); 357 if (i >= i_next) { 358 i += panic_blink(state ^= 1); 359 i_next = i + 3600 / PANIC_BLINK_SPD; 360 } 361 mdelay(PANIC_TIMER_STEP); 362 } 363 } 364 365 EXPORT_SYMBOL(panic); 366 367 /* 368 * TAINT_FORCED_RMMOD could be a per-module flag but the module 369 * is being removed anyway. 370 */ 371 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 372 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 373 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 374 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 375 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 376 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 377 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 378 [ TAINT_USER ] = { 'U', ' ', false }, 379 [ TAINT_DIE ] = { 'D', ' ', false }, 380 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 381 [ TAINT_WARN ] = { 'W', ' ', false }, 382 [ TAINT_CRAP ] = { 'C', ' ', true }, 383 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 384 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 385 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 386 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 387 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 388 [ TAINT_AUX ] = { 'X', ' ', true }, 389 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 390 }; 391 392 /** 393 * print_tainted - return a string to represent the kernel taint state. 394 * 395 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst 396 * 397 * The string is overwritten by the next call to print_tainted(), 398 * but is always NULL terminated. 399 */ 400 const char *print_tainted(void) 401 { 402 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 403 404 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 405 406 if (tainted_mask) { 407 char *s; 408 int i; 409 410 s = buf + sprintf(buf, "Tainted: "); 411 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 412 const struct taint_flag *t = &taint_flags[i]; 413 *s++ = test_bit(i, &tainted_mask) ? 414 t->c_true : t->c_false; 415 } 416 *s = 0; 417 } else 418 snprintf(buf, sizeof(buf), "Not tainted"); 419 420 return buf; 421 } 422 423 int test_taint(unsigned flag) 424 { 425 return test_bit(flag, &tainted_mask); 426 } 427 EXPORT_SYMBOL(test_taint); 428 429 unsigned long get_taint(void) 430 { 431 return tainted_mask; 432 } 433 434 /** 435 * add_taint: add a taint flag if not already set. 436 * @flag: one of the TAINT_* constants. 437 * @lockdep_ok: whether lock debugging is still OK. 438 * 439 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 440 * some notewortht-but-not-corrupting cases, it can be set to true. 441 */ 442 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 443 { 444 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 445 pr_warn("Disabling lock debugging due to kernel taint\n"); 446 447 set_bit(flag, &tainted_mask); 448 449 if (tainted_mask & panic_on_taint) { 450 panic_on_taint = 0; 451 panic("panic_on_taint set ..."); 452 } 453 } 454 EXPORT_SYMBOL(add_taint); 455 456 static void spin_msec(int msecs) 457 { 458 int i; 459 460 for (i = 0; i < msecs; i++) { 461 touch_nmi_watchdog(); 462 mdelay(1); 463 } 464 } 465 466 /* 467 * It just happens that oops_enter() and oops_exit() are identically 468 * implemented... 469 */ 470 static void do_oops_enter_exit(void) 471 { 472 unsigned long flags; 473 static int spin_counter; 474 475 if (!pause_on_oops) 476 return; 477 478 spin_lock_irqsave(&pause_on_oops_lock, flags); 479 if (pause_on_oops_flag == 0) { 480 /* This CPU may now print the oops message */ 481 pause_on_oops_flag = 1; 482 } else { 483 /* We need to stall this CPU */ 484 if (!spin_counter) { 485 /* This CPU gets to do the counting */ 486 spin_counter = pause_on_oops; 487 do { 488 spin_unlock(&pause_on_oops_lock); 489 spin_msec(MSEC_PER_SEC); 490 spin_lock(&pause_on_oops_lock); 491 } while (--spin_counter); 492 pause_on_oops_flag = 0; 493 } else { 494 /* This CPU waits for a different one */ 495 while (spin_counter) { 496 spin_unlock(&pause_on_oops_lock); 497 spin_msec(1); 498 spin_lock(&pause_on_oops_lock); 499 } 500 } 501 } 502 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 503 } 504 505 /* 506 * Return true if the calling CPU is allowed to print oops-related info. 507 * This is a bit racy.. 508 */ 509 bool oops_may_print(void) 510 { 511 return pause_on_oops_flag == 0; 512 } 513 514 /* 515 * Called when the architecture enters its oops handler, before it prints 516 * anything. If this is the first CPU to oops, and it's oopsing the first 517 * time then let it proceed. 518 * 519 * This is all enabled by the pause_on_oops kernel boot option. We do all 520 * this to ensure that oopses don't scroll off the screen. It has the 521 * side-effect of preventing later-oopsing CPUs from mucking up the display, 522 * too. 523 * 524 * It turns out that the CPU which is allowed to print ends up pausing for 525 * the right duration, whereas all the other CPUs pause for twice as long: 526 * once in oops_enter(), once in oops_exit(). 527 */ 528 void oops_enter(void) 529 { 530 tracing_off(); 531 /* can't trust the integrity of the kernel anymore: */ 532 debug_locks_off(); 533 do_oops_enter_exit(); 534 535 if (sysctl_oops_all_cpu_backtrace) 536 trigger_all_cpu_backtrace(); 537 } 538 539 /* 540 * 64-bit random ID for oopses: 541 */ 542 static u64 oops_id; 543 544 static int init_oops_id(void) 545 { 546 if (!oops_id) 547 get_random_bytes(&oops_id, sizeof(oops_id)); 548 else 549 oops_id++; 550 551 return 0; 552 } 553 late_initcall(init_oops_id); 554 555 static void print_oops_end_marker(void) 556 { 557 init_oops_id(); 558 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 559 } 560 561 /* 562 * Called when the architecture exits its oops handler, after printing 563 * everything. 564 */ 565 void oops_exit(void) 566 { 567 do_oops_enter_exit(); 568 print_oops_end_marker(); 569 kmsg_dump(KMSG_DUMP_OOPS); 570 } 571 572 struct warn_args { 573 const char *fmt; 574 va_list args; 575 }; 576 577 void __warn(const char *file, int line, void *caller, unsigned taint, 578 struct pt_regs *regs, struct warn_args *args) 579 { 580 disable_trace_on_warning(); 581 582 if (file) 583 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 584 raw_smp_processor_id(), current->pid, file, line, 585 caller); 586 else 587 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 588 raw_smp_processor_id(), current->pid, caller); 589 590 if (args) 591 vprintk(args->fmt, args->args); 592 593 print_modules(); 594 595 if (regs) 596 show_regs(regs); 597 598 if (panic_on_warn) { 599 /* 600 * This thread may hit another WARN() in the panic path. 601 * Resetting this prevents additional WARN() from panicking the 602 * system on this thread. Other threads are blocked by the 603 * panic_mutex in panic(). 604 */ 605 panic_on_warn = 0; 606 panic("panic_on_warn set ...\n"); 607 } 608 609 if (!regs) 610 dump_stack(); 611 612 print_irqtrace_events(current); 613 614 print_oops_end_marker(); 615 616 /* Just a warning, don't kill lockdep. */ 617 add_taint(taint, LOCKDEP_STILL_OK); 618 } 619 620 #ifndef __WARN_FLAGS 621 void warn_slowpath_fmt(const char *file, int line, unsigned taint, 622 const char *fmt, ...) 623 { 624 struct warn_args args; 625 626 pr_warn(CUT_HERE); 627 628 if (!fmt) { 629 __warn(file, line, __builtin_return_address(0), taint, 630 NULL, NULL); 631 return; 632 } 633 634 args.fmt = fmt; 635 va_start(args.args, fmt); 636 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 637 va_end(args.args); 638 } 639 EXPORT_SYMBOL(warn_slowpath_fmt); 640 #else 641 void __warn_printk(const char *fmt, ...) 642 { 643 va_list args; 644 645 pr_warn(CUT_HERE); 646 647 va_start(args, fmt); 648 vprintk(fmt, args); 649 va_end(args); 650 } 651 EXPORT_SYMBOL(__warn_printk); 652 #endif 653 654 #ifdef CONFIG_BUG 655 656 /* Support resetting WARN*_ONCE state */ 657 658 static int clear_warn_once_set(void *data, u64 val) 659 { 660 generic_bug_clear_once(); 661 memset(__start_once, 0, __end_once - __start_once); 662 return 0; 663 } 664 665 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 666 "%lld\n"); 667 668 static __init int register_warn_debugfs(void) 669 { 670 /* Don't care about failure */ 671 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 672 &clear_warn_once_fops); 673 return 0; 674 } 675 676 device_initcall(register_warn_debugfs); 677 #endif 678 679 #ifdef CONFIG_STACKPROTECTOR 680 681 /* 682 * Called when gcc's -fstack-protector feature is used, and 683 * gcc detects corruption of the on-stack canary value 684 */ 685 __visible noinstr void __stack_chk_fail(void) 686 { 687 instrumentation_begin(); 688 panic("stack-protector: Kernel stack is corrupted in: %pB", 689 __builtin_return_address(0)); 690 instrumentation_end(); 691 } 692 EXPORT_SYMBOL(__stack_chk_fail); 693 694 #endif 695 696 core_param(panic, panic_timeout, int, 0644); 697 core_param(panic_print, panic_print, ulong, 0644); 698 core_param(pause_on_oops, pause_on_oops, int, 0644); 699 core_param(panic_on_warn, panic_on_warn, int, 0644); 700 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 701 702 static int __init oops_setup(char *s) 703 { 704 if (!s) 705 return -EINVAL; 706 if (!strcmp(s, "panic")) 707 panic_on_oops = 1; 708 return 0; 709 } 710 early_param("oops", oops_setup); 711 712 static int __init panic_on_taint_setup(char *s) 713 { 714 char *taint_str; 715 716 if (!s) 717 return -EINVAL; 718 719 taint_str = strsep(&s, ","); 720 if (kstrtoul(taint_str, 16, &panic_on_taint)) 721 return -EINVAL; 722 723 /* make sure panic_on_taint doesn't hold out-of-range TAINT flags */ 724 panic_on_taint &= TAINT_FLAGS_MAX; 725 726 if (!panic_on_taint) 727 return -EINVAL; 728 729 if (s && !strcmp(s, "nousertaint")) 730 panic_on_taint_nousertaint = true; 731 732 pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%sabled\n", 733 panic_on_taint, panic_on_taint_nousertaint ? "en" : "dis"); 734 735 return 0; 736 } 737 early_param("panic_on_taint", panic_on_taint_setup); 738