1 /* 2 * linux/kernel/panic.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 /* 8 * This function is used through-out the kernel (including mm and fs) 9 * to indicate a major problem. 10 */ 11 #include <linux/debug_locks.h> 12 #include <linux/sched/debug.h> 13 #include <linux/interrupt.h> 14 #include <linux/kmsg_dump.h> 15 #include <linux/kallsyms.h> 16 #include <linux/notifier.h> 17 #include <linux/vt_kern.h> 18 #include <linux/module.h> 19 #include <linux/random.h> 20 #include <linux/ftrace.h> 21 #include <linux/reboot.h> 22 #include <linux/delay.h> 23 #include <linux/kexec.h> 24 #include <linux/sched.h> 25 #include <linux/sysrq.h> 26 #include <linux/init.h> 27 #include <linux/nmi.h> 28 #include <linux/console.h> 29 #include <linux/bug.h> 30 #include <linux/ratelimit.h> 31 #include <linux/debugfs.h> 32 #include <asm/sections.h> 33 34 #define PANIC_TIMER_STEP 100 35 #define PANIC_BLINK_SPD 18 36 37 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 38 static unsigned long tainted_mask = 39 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 40 static int pause_on_oops; 41 static int pause_on_oops_flag; 42 static DEFINE_SPINLOCK(pause_on_oops_lock); 43 bool crash_kexec_post_notifiers; 44 int panic_on_warn __read_mostly; 45 46 int panic_timeout = CONFIG_PANIC_TIMEOUT; 47 EXPORT_SYMBOL_GPL(panic_timeout); 48 49 #define PANIC_PRINT_TASK_INFO 0x00000001 50 #define PANIC_PRINT_MEM_INFO 0x00000002 51 #define PANIC_PRINT_TIMER_INFO 0x00000004 52 #define PANIC_PRINT_LOCK_INFO 0x00000008 53 #define PANIC_PRINT_FTRACE_INFO 0x00000010 54 unsigned long panic_print; 55 56 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 57 58 EXPORT_SYMBOL(panic_notifier_list); 59 60 static long no_blink(int state) 61 { 62 return 0; 63 } 64 65 /* Returns how long it waited in ms */ 66 long (*panic_blink)(int state); 67 EXPORT_SYMBOL(panic_blink); 68 69 /* 70 * Stop ourself in panic -- architecture code may override this 71 */ 72 void __weak panic_smp_self_stop(void) 73 { 74 while (1) 75 cpu_relax(); 76 } 77 78 /* 79 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 80 * may override this to prepare for crash dumping, e.g. save regs info. 81 */ 82 void __weak nmi_panic_self_stop(struct pt_regs *regs) 83 { 84 panic_smp_self_stop(); 85 } 86 87 /* 88 * Stop other CPUs in panic. Architecture dependent code may override this 89 * with more suitable version. For example, if the architecture supports 90 * crash dump, it should save registers of each stopped CPU and disable 91 * per-CPU features such as virtualization extensions. 92 */ 93 void __weak crash_smp_send_stop(void) 94 { 95 static int cpus_stopped; 96 97 /* 98 * This function can be called twice in panic path, but obviously 99 * we execute this only once. 100 */ 101 if (cpus_stopped) 102 return; 103 104 /* 105 * Note smp_send_stop is the usual smp shutdown function, which 106 * unfortunately means it may not be hardened to work in a panic 107 * situation. 108 */ 109 smp_send_stop(); 110 cpus_stopped = 1; 111 } 112 113 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 114 115 /* 116 * A variant of panic() called from NMI context. We return if we've already 117 * panicked on this CPU. If another CPU already panicked, loop in 118 * nmi_panic_self_stop() which can provide architecture dependent code such 119 * as saving register state for crash dump. 120 */ 121 void nmi_panic(struct pt_regs *regs, const char *msg) 122 { 123 int old_cpu, cpu; 124 125 cpu = raw_smp_processor_id(); 126 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 127 128 if (old_cpu == PANIC_CPU_INVALID) 129 panic("%s", msg); 130 else if (old_cpu != cpu) 131 nmi_panic_self_stop(regs); 132 } 133 EXPORT_SYMBOL(nmi_panic); 134 135 static void panic_print_sys_info(void) 136 { 137 if (panic_print & PANIC_PRINT_TASK_INFO) 138 show_state(); 139 140 if (panic_print & PANIC_PRINT_MEM_INFO) 141 show_mem(0, NULL); 142 143 if (panic_print & PANIC_PRINT_TIMER_INFO) 144 sysrq_timer_list_show(); 145 146 if (panic_print & PANIC_PRINT_LOCK_INFO) 147 debug_show_all_locks(); 148 149 if (panic_print & PANIC_PRINT_FTRACE_INFO) 150 ftrace_dump(DUMP_ALL); 151 } 152 153 /** 154 * panic - halt the system 155 * @fmt: The text string to print 156 * 157 * Display a message, then perform cleanups. 158 * 159 * This function never returns. 160 */ 161 void panic(const char *fmt, ...) 162 { 163 static char buf[1024]; 164 va_list args; 165 long i, i_next = 0, len; 166 int state = 0; 167 int old_cpu, this_cpu; 168 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 169 170 /* 171 * Disable local interrupts. This will prevent panic_smp_self_stop 172 * from deadlocking the first cpu that invokes the panic, since 173 * there is nothing to prevent an interrupt handler (that runs 174 * after setting panic_cpu) from invoking panic() again. 175 */ 176 local_irq_disable(); 177 178 /* 179 * It's possible to come here directly from a panic-assertion and 180 * not have preempt disabled. Some functions called from here want 181 * preempt to be disabled. No point enabling it later though... 182 * 183 * Only one CPU is allowed to execute the panic code from here. For 184 * multiple parallel invocations of panic, all other CPUs either 185 * stop themself or will wait until they are stopped by the 1st CPU 186 * with smp_send_stop(). 187 * 188 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 189 * comes here, so go ahead. 190 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 191 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 192 */ 193 this_cpu = raw_smp_processor_id(); 194 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 195 196 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 197 panic_smp_self_stop(); 198 199 console_verbose(); 200 bust_spinlocks(1); 201 va_start(args, fmt); 202 len = vscnprintf(buf, sizeof(buf), fmt, args); 203 va_end(args); 204 205 if (len && buf[len - 1] == '\n') 206 buf[len - 1] = '\0'; 207 208 pr_emerg("Kernel panic - not syncing: %s\n", buf); 209 #ifdef CONFIG_DEBUG_BUGVERBOSE 210 /* 211 * Avoid nested stack-dumping if a panic occurs during oops processing 212 */ 213 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 214 dump_stack(); 215 #endif 216 217 /* 218 * If we have crashed and we have a crash kernel loaded let it handle 219 * everything else. 220 * If we want to run this after calling panic_notifiers, pass 221 * the "crash_kexec_post_notifiers" option to the kernel. 222 * 223 * Bypass the panic_cpu check and call __crash_kexec directly. 224 */ 225 if (!_crash_kexec_post_notifiers) { 226 printk_safe_flush_on_panic(); 227 __crash_kexec(NULL); 228 229 /* 230 * Note smp_send_stop is the usual smp shutdown function, which 231 * unfortunately means it may not be hardened to work in a 232 * panic situation. 233 */ 234 smp_send_stop(); 235 } else { 236 /* 237 * If we want to do crash dump after notifier calls and 238 * kmsg_dump, we will need architecture dependent extra 239 * works in addition to stopping other CPUs. 240 */ 241 crash_smp_send_stop(); 242 } 243 244 /* 245 * Run any panic handlers, including those that might need to 246 * add information to the kmsg dump output. 247 */ 248 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 249 250 /* Call flush even twice. It tries harder with a single online CPU */ 251 printk_safe_flush_on_panic(); 252 kmsg_dump(KMSG_DUMP_PANIC); 253 254 /* 255 * If you doubt kdump always works fine in any situation, 256 * "crash_kexec_post_notifiers" offers you a chance to run 257 * panic_notifiers and dumping kmsg before kdump. 258 * Note: since some panic_notifiers can make crashed kernel 259 * more unstable, it can increase risks of the kdump failure too. 260 * 261 * Bypass the panic_cpu check and call __crash_kexec directly. 262 */ 263 if (_crash_kexec_post_notifiers) 264 __crash_kexec(NULL); 265 266 #ifdef CONFIG_VT 267 unblank_screen(); 268 #endif 269 console_unblank(); 270 271 /* 272 * We may have ended up stopping the CPU holding the lock (in 273 * smp_send_stop()) while still having some valuable data in the console 274 * buffer. Try to acquire the lock then release it regardless of the 275 * result. The release will also print the buffers out. Locks debug 276 * should be disabled to avoid reporting bad unlock balance when 277 * panic() is not being callled from OOPS. 278 */ 279 debug_locks_off(); 280 console_flush_on_panic(); 281 282 panic_print_sys_info(); 283 284 if (!panic_blink) 285 panic_blink = no_blink; 286 287 if (panic_timeout > 0) { 288 /* 289 * Delay timeout seconds before rebooting the machine. 290 * We can't use the "normal" timers since we just panicked. 291 */ 292 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 293 294 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 295 touch_nmi_watchdog(); 296 if (i >= i_next) { 297 i += panic_blink(state ^= 1); 298 i_next = i + 3600 / PANIC_BLINK_SPD; 299 } 300 mdelay(PANIC_TIMER_STEP); 301 } 302 } 303 if (panic_timeout != 0) { 304 /* 305 * This will not be a clean reboot, with everything 306 * shutting down. But if there is a chance of 307 * rebooting the system it will be rebooted. 308 */ 309 emergency_restart(); 310 } 311 #ifdef __sparc__ 312 { 313 extern int stop_a_enabled; 314 /* Make sure the user can actually press Stop-A (L1-A) */ 315 stop_a_enabled = 1; 316 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 317 "twice on console to return to the boot prom\n"); 318 } 319 #endif 320 #if defined(CONFIG_S390) 321 { 322 unsigned long caller; 323 324 caller = (unsigned long)__builtin_return_address(0); 325 disabled_wait(caller); 326 } 327 #endif 328 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 329 local_irq_enable(); 330 for (i = 0; ; i += PANIC_TIMER_STEP) { 331 touch_softlockup_watchdog(); 332 if (i >= i_next) { 333 i += panic_blink(state ^= 1); 334 i_next = i + 3600 / PANIC_BLINK_SPD; 335 } 336 mdelay(PANIC_TIMER_STEP); 337 } 338 } 339 340 EXPORT_SYMBOL(panic); 341 342 /* 343 * TAINT_FORCED_RMMOD could be a per-module flag but the module 344 * is being removed anyway. 345 */ 346 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 347 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 348 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 349 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 350 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 351 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 352 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 353 [ TAINT_USER ] = { 'U', ' ', false }, 354 [ TAINT_DIE ] = { 'D', ' ', false }, 355 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 356 [ TAINT_WARN ] = { 'W', ' ', false }, 357 [ TAINT_CRAP ] = { 'C', ' ', true }, 358 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 359 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 360 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 361 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 362 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 363 [ TAINT_AUX ] = { 'X', ' ', true }, 364 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 365 }; 366 367 /** 368 * print_tainted - return a string to represent the kernel taint state. 369 * 370 * For individual taint flag meanings, see Documentation/sysctl/kernel.txt 371 * 372 * The string is overwritten by the next call to print_tainted(), 373 * but is always NULL terminated. 374 */ 375 const char *print_tainted(void) 376 { 377 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 378 379 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 380 381 if (tainted_mask) { 382 char *s; 383 int i; 384 385 s = buf + sprintf(buf, "Tainted: "); 386 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 387 const struct taint_flag *t = &taint_flags[i]; 388 *s++ = test_bit(i, &tainted_mask) ? 389 t->c_true : t->c_false; 390 } 391 *s = 0; 392 } else 393 snprintf(buf, sizeof(buf), "Not tainted"); 394 395 return buf; 396 } 397 398 int test_taint(unsigned flag) 399 { 400 return test_bit(flag, &tainted_mask); 401 } 402 EXPORT_SYMBOL(test_taint); 403 404 unsigned long get_taint(void) 405 { 406 return tainted_mask; 407 } 408 409 /** 410 * add_taint: add a taint flag if not already set. 411 * @flag: one of the TAINT_* constants. 412 * @lockdep_ok: whether lock debugging is still OK. 413 * 414 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 415 * some notewortht-but-not-corrupting cases, it can be set to true. 416 */ 417 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 418 { 419 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 420 pr_warn("Disabling lock debugging due to kernel taint\n"); 421 422 set_bit(flag, &tainted_mask); 423 } 424 EXPORT_SYMBOL(add_taint); 425 426 static void spin_msec(int msecs) 427 { 428 int i; 429 430 for (i = 0; i < msecs; i++) { 431 touch_nmi_watchdog(); 432 mdelay(1); 433 } 434 } 435 436 /* 437 * It just happens that oops_enter() and oops_exit() are identically 438 * implemented... 439 */ 440 static void do_oops_enter_exit(void) 441 { 442 unsigned long flags; 443 static int spin_counter; 444 445 if (!pause_on_oops) 446 return; 447 448 spin_lock_irqsave(&pause_on_oops_lock, flags); 449 if (pause_on_oops_flag == 0) { 450 /* This CPU may now print the oops message */ 451 pause_on_oops_flag = 1; 452 } else { 453 /* We need to stall this CPU */ 454 if (!spin_counter) { 455 /* This CPU gets to do the counting */ 456 spin_counter = pause_on_oops; 457 do { 458 spin_unlock(&pause_on_oops_lock); 459 spin_msec(MSEC_PER_SEC); 460 spin_lock(&pause_on_oops_lock); 461 } while (--spin_counter); 462 pause_on_oops_flag = 0; 463 } else { 464 /* This CPU waits for a different one */ 465 while (spin_counter) { 466 spin_unlock(&pause_on_oops_lock); 467 spin_msec(1); 468 spin_lock(&pause_on_oops_lock); 469 } 470 } 471 } 472 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 473 } 474 475 /* 476 * Return true if the calling CPU is allowed to print oops-related info. 477 * This is a bit racy.. 478 */ 479 int oops_may_print(void) 480 { 481 return pause_on_oops_flag == 0; 482 } 483 484 /* 485 * Called when the architecture enters its oops handler, before it prints 486 * anything. If this is the first CPU to oops, and it's oopsing the first 487 * time then let it proceed. 488 * 489 * This is all enabled by the pause_on_oops kernel boot option. We do all 490 * this to ensure that oopses don't scroll off the screen. It has the 491 * side-effect of preventing later-oopsing CPUs from mucking up the display, 492 * too. 493 * 494 * It turns out that the CPU which is allowed to print ends up pausing for 495 * the right duration, whereas all the other CPUs pause for twice as long: 496 * once in oops_enter(), once in oops_exit(). 497 */ 498 void oops_enter(void) 499 { 500 tracing_off(); 501 /* can't trust the integrity of the kernel anymore: */ 502 debug_locks_off(); 503 do_oops_enter_exit(); 504 } 505 506 /* 507 * 64-bit random ID for oopses: 508 */ 509 static u64 oops_id; 510 511 static int init_oops_id(void) 512 { 513 if (!oops_id) 514 get_random_bytes(&oops_id, sizeof(oops_id)); 515 else 516 oops_id++; 517 518 return 0; 519 } 520 late_initcall(init_oops_id); 521 522 void print_oops_end_marker(void) 523 { 524 init_oops_id(); 525 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 526 } 527 528 /* 529 * Called when the architecture exits its oops handler, after printing 530 * everything. 531 */ 532 void oops_exit(void) 533 { 534 do_oops_enter_exit(); 535 print_oops_end_marker(); 536 kmsg_dump(KMSG_DUMP_OOPS); 537 } 538 539 struct warn_args { 540 const char *fmt; 541 va_list args; 542 }; 543 544 void __warn(const char *file, int line, void *caller, unsigned taint, 545 struct pt_regs *regs, struct warn_args *args) 546 { 547 disable_trace_on_warning(); 548 549 if (args) 550 pr_warn(CUT_HERE); 551 552 if (file) 553 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 554 raw_smp_processor_id(), current->pid, file, line, 555 caller); 556 else 557 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 558 raw_smp_processor_id(), current->pid, caller); 559 560 if (args) 561 vprintk(args->fmt, args->args); 562 563 if (panic_on_warn) { 564 /* 565 * This thread may hit another WARN() in the panic path. 566 * Resetting this prevents additional WARN() from panicking the 567 * system on this thread. Other threads are blocked by the 568 * panic_mutex in panic(). 569 */ 570 panic_on_warn = 0; 571 panic("panic_on_warn set ...\n"); 572 } 573 574 print_modules(); 575 576 if (regs) 577 show_regs(regs); 578 else 579 dump_stack(); 580 581 print_irqtrace_events(current); 582 583 print_oops_end_marker(); 584 585 /* Just a warning, don't kill lockdep. */ 586 add_taint(taint, LOCKDEP_STILL_OK); 587 } 588 589 #ifdef WANT_WARN_ON_SLOWPATH 590 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...) 591 { 592 struct warn_args args; 593 594 args.fmt = fmt; 595 va_start(args.args, fmt); 596 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, 597 &args); 598 va_end(args.args); 599 } 600 EXPORT_SYMBOL(warn_slowpath_fmt); 601 602 void warn_slowpath_fmt_taint(const char *file, int line, 603 unsigned taint, const char *fmt, ...) 604 { 605 struct warn_args args; 606 607 args.fmt = fmt; 608 va_start(args.args, fmt); 609 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 610 va_end(args.args); 611 } 612 EXPORT_SYMBOL(warn_slowpath_fmt_taint); 613 614 void warn_slowpath_null(const char *file, int line) 615 { 616 pr_warn(CUT_HERE); 617 __warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL); 618 } 619 EXPORT_SYMBOL(warn_slowpath_null); 620 #else 621 void __warn_printk(const char *fmt, ...) 622 { 623 va_list args; 624 625 pr_warn(CUT_HERE); 626 627 va_start(args, fmt); 628 vprintk(fmt, args); 629 va_end(args); 630 } 631 EXPORT_SYMBOL(__warn_printk); 632 #endif 633 634 #ifdef CONFIG_BUG 635 636 /* Support resetting WARN*_ONCE state */ 637 638 static int clear_warn_once_set(void *data, u64 val) 639 { 640 generic_bug_clear_once(); 641 memset(__start_once, 0, __end_once - __start_once); 642 return 0; 643 } 644 645 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 646 "%lld\n"); 647 648 static __init int register_warn_debugfs(void) 649 { 650 /* Don't care about failure */ 651 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 652 &clear_warn_once_fops); 653 return 0; 654 } 655 656 device_initcall(register_warn_debugfs); 657 #endif 658 659 #ifdef CONFIG_STACKPROTECTOR 660 661 /* 662 * Called when gcc's -fstack-protector feature is used, and 663 * gcc detects corruption of the on-stack canary value 664 */ 665 __visible void __stack_chk_fail(void) 666 { 667 panic("stack-protector: Kernel stack is corrupted in: %pB", 668 __builtin_return_address(0)); 669 } 670 EXPORT_SYMBOL(__stack_chk_fail); 671 672 #endif 673 674 #ifdef CONFIG_ARCH_HAS_REFCOUNT 675 void refcount_error_report(struct pt_regs *regs, const char *err) 676 { 677 WARN_RATELIMIT(1, "refcount_t %s at %pB in %s[%d], uid/euid: %u/%u\n", 678 err, (void *)instruction_pointer(regs), 679 current->comm, task_pid_nr(current), 680 from_kuid_munged(&init_user_ns, current_uid()), 681 from_kuid_munged(&init_user_ns, current_euid())); 682 } 683 #endif 684 685 core_param(panic, panic_timeout, int, 0644); 686 core_param(panic_print, panic_print, ulong, 0644); 687 core_param(pause_on_oops, pause_on_oops, int, 0644); 688 core_param(panic_on_warn, panic_on_warn, int, 0644); 689 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 690 691 static int __init oops_setup(char *s) 692 { 693 if (!s) 694 return -EINVAL; 695 if (!strcmp(s, "panic")) 696 panic_on_oops = 1; 697 return 0; 698 } 699 early_param("oops", oops_setup); 700