xref: /linux/kernel/panic.c (revision 170aafe35cb98e0f3fbacb446ea86389fbce22ea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/panic.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * This function is used through-out the kernel (including mm and fs)
10  * to indicate a major problem.
11  */
12 #include <linux/debug_locks.h>
13 #include <linux/sched/debug.h>
14 #include <linux/interrupt.h>
15 #include <linux/kgdb.h>
16 #include <linux/kmsg_dump.h>
17 #include <linux/kallsyms.h>
18 #include <linux/notifier.h>
19 #include <linux/vt_kern.h>
20 #include <linux/module.h>
21 #include <linux/random.h>
22 #include <linux/ftrace.h>
23 #include <linux/reboot.h>
24 #include <linux/delay.h>
25 #include <linux/kexec.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/sched.h>
28 #include <linux/string_helpers.h>
29 #include <linux/sysrq.h>
30 #include <linux/init.h>
31 #include <linux/nmi.h>
32 #include <linux/console.h>
33 #include <linux/bug.h>
34 #include <linux/ratelimit.h>
35 #include <linux/debugfs.h>
36 #include <linux/sysfs.h>
37 #include <linux/context_tracking.h>
38 #include <linux/seq_buf.h>
39 #include <trace/events/error_report.h>
40 #include <asm/sections.h>
41 
42 #define PANIC_TIMER_STEP 100
43 #define PANIC_BLINK_SPD 18
44 
45 #ifdef CONFIG_SMP
46 /*
47  * Should we dump all CPUs backtraces in an oops event?
48  * Defaults to 0, can be changed via sysctl.
49  */
50 static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace;
51 #else
52 #define sysctl_oops_all_cpu_backtrace 0
53 #endif /* CONFIG_SMP */
54 
55 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
56 static unsigned long tainted_mask =
57 	IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0;
58 static int pause_on_oops;
59 static int pause_on_oops_flag;
60 static DEFINE_SPINLOCK(pause_on_oops_lock);
61 bool crash_kexec_post_notifiers;
62 int panic_on_warn __read_mostly;
63 unsigned long panic_on_taint;
64 bool panic_on_taint_nousertaint = false;
65 static unsigned int warn_limit __read_mostly;
66 
67 bool panic_triggering_all_cpu_backtrace;
68 
69 int panic_timeout = CONFIG_PANIC_TIMEOUT;
70 EXPORT_SYMBOL_GPL(panic_timeout);
71 
72 #define PANIC_PRINT_TASK_INFO		0x00000001
73 #define PANIC_PRINT_MEM_INFO		0x00000002
74 #define PANIC_PRINT_TIMER_INFO		0x00000004
75 #define PANIC_PRINT_LOCK_INFO		0x00000008
76 #define PANIC_PRINT_FTRACE_INFO		0x00000010
77 #define PANIC_PRINT_ALL_PRINTK_MSG	0x00000020
78 #define PANIC_PRINT_ALL_CPU_BT		0x00000040
79 #define PANIC_PRINT_BLOCKED_TASKS	0x00000080
80 unsigned long panic_print;
81 
82 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
83 
84 EXPORT_SYMBOL(panic_notifier_list);
85 
86 #ifdef CONFIG_SYSCTL
87 static struct ctl_table kern_panic_table[] = {
88 #ifdef CONFIG_SMP
89 	{
90 		.procname       = "oops_all_cpu_backtrace",
91 		.data           = &sysctl_oops_all_cpu_backtrace,
92 		.maxlen         = sizeof(int),
93 		.mode           = 0644,
94 		.proc_handler   = proc_dointvec_minmax,
95 		.extra1         = SYSCTL_ZERO,
96 		.extra2         = SYSCTL_ONE,
97 	},
98 #endif
99 	{
100 		.procname       = "warn_limit",
101 		.data           = &warn_limit,
102 		.maxlen         = sizeof(warn_limit),
103 		.mode           = 0644,
104 		.proc_handler   = proc_douintvec,
105 	},
106 };
107 
108 static __init int kernel_panic_sysctls_init(void)
109 {
110 	register_sysctl_init("kernel", kern_panic_table);
111 	return 0;
112 }
113 late_initcall(kernel_panic_sysctls_init);
114 #endif
115 
116 static atomic_t warn_count = ATOMIC_INIT(0);
117 
118 #ifdef CONFIG_SYSFS
119 static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr,
120 			       char *page)
121 {
122 	return sysfs_emit(page, "%d\n", atomic_read(&warn_count));
123 }
124 
125 static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count);
126 
127 static __init int kernel_panic_sysfs_init(void)
128 {
129 	sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL);
130 	return 0;
131 }
132 late_initcall(kernel_panic_sysfs_init);
133 #endif
134 
135 static long no_blink(int state)
136 {
137 	return 0;
138 }
139 
140 /* Returns how long it waited in ms */
141 long (*panic_blink)(int state);
142 EXPORT_SYMBOL(panic_blink);
143 
144 /*
145  * Stop ourself in panic -- architecture code may override this
146  */
147 void __weak __noreturn panic_smp_self_stop(void)
148 {
149 	while (1)
150 		cpu_relax();
151 }
152 
153 /*
154  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
155  * may override this to prepare for crash dumping, e.g. save regs info.
156  */
157 void __weak __noreturn nmi_panic_self_stop(struct pt_regs *regs)
158 {
159 	panic_smp_self_stop();
160 }
161 
162 /*
163  * Stop other CPUs in panic.  Architecture dependent code may override this
164  * with more suitable version.  For example, if the architecture supports
165  * crash dump, it should save registers of each stopped CPU and disable
166  * per-CPU features such as virtualization extensions.
167  */
168 void __weak crash_smp_send_stop(void)
169 {
170 	static int cpus_stopped;
171 
172 	/*
173 	 * This function can be called twice in panic path, but obviously
174 	 * we execute this only once.
175 	 */
176 	if (cpus_stopped)
177 		return;
178 
179 	/*
180 	 * Note smp_send_stop is the usual smp shutdown function, which
181 	 * unfortunately means it may not be hardened to work in a panic
182 	 * situation.
183 	 */
184 	smp_send_stop();
185 	cpus_stopped = 1;
186 }
187 
188 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
189 
190 /*
191  * A variant of panic() called from NMI context. We return if we've already
192  * panicked on this CPU. If another CPU already panicked, loop in
193  * nmi_panic_self_stop() which can provide architecture dependent code such
194  * as saving register state for crash dump.
195  */
196 void nmi_panic(struct pt_regs *regs, const char *msg)
197 {
198 	int old_cpu, this_cpu;
199 
200 	old_cpu = PANIC_CPU_INVALID;
201 	this_cpu = raw_smp_processor_id();
202 
203 	/* atomic_try_cmpxchg updates old_cpu on failure */
204 	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu))
205 		panic("%s", msg);
206 	else if (old_cpu != this_cpu)
207 		nmi_panic_self_stop(regs);
208 }
209 EXPORT_SYMBOL(nmi_panic);
210 
211 static void panic_print_sys_info(bool console_flush)
212 {
213 	if (console_flush) {
214 		if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG)
215 			console_flush_on_panic(CONSOLE_REPLAY_ALL);
216 		return;
217 	}
218 
219 	if (panic_print & PANIC_PRINT_TASK_INFO)
220 		show_state();
221 
222 	if (panic_print & PANIC_PRINT_MEM_INFO)
223 		show_mem();
224 
225 	if (panic_print & PANIC_PRINT_TIMER_INFO)
226 		sysrq_timer_list_show();
227 
228 	if (panic_print & PANIC_PRINT_LOCK_INFO)
229 		debug_show_all_locks();
230 
231 	if (panic_print & PANIC_PRINT_FTRACE_INFO)
232 		ftrace_dump(DUMP_ALL);
233 
234 	if (panic_print & PANIC_PRINT_BLOCKED_TASKS)
235 		show_state_filter(TASK_UNINTERRUPTIBLE);
236 }
237 
238 void check_panic_on_warn(const char *origin)
239 {
240 	unsigned int limit;
241 
242 	if (panic_on_warn)
243 		panic("%s: panic_on_warn set ...\n", origin);
244 
245 	limit = READ_ONCE(warn_limit);
246 	if (atomic_inc_return(&warn_count) >= limit && limit)
247 		panic("%s: system warned too often (kernel.warn_limit is %d)",
248 		      origin, limit);
249 }
250 
251 /*
252  * Helper that triggers the NMI backtrace (if set in panic_print)
253  * and then performs the secondary CPUs shutdown - we cannot have
254  * the NMI backtrace after the CPUs are off!
255  */
256 static void panic_other_cpus_shutdown(bool crash_kexec)
257 {
258 	if (panic_print & PANIC_PRINT_ALL_CPU_BT) {
259 		/* Temporary allow non-panic CPUs to write their backtraces. */
260 		panic_triggering_all_cpu_backtrace = true;
261 		trigger_all_cpu_backtrace();
262 		panic_triggering_all_cpu_backtrace = false;
263 	}
264 
265 	/*
266 	 * Note that smp_send_stop() is the usual SMP shutdown function,
267 	 * which unfortunately may not be hardened to work in a panic
268 	 * situation. If we want to do crash dump after notifier calls
269 	 * and kmsg_dump, we will need architecture dependent extra
270 	 * bits in addition to stopping other CPUs, hence we rely on
271 	 * crash_smp_send_stop() for that.
272 	 */
273 	if (!crash_kexec)
274 		smp_send_stop();
275 	else
276 		crash_smp_send_stop();
277 }
278 
279 /**
280  *	panic - halt the system
281  *	@fmt: The text string to print
282  *
283  *	Display a message, then perform cleanups.
284  *
285  *	This function never returns.
286  */
287 void panic(const char *fmt, ...)
288 {
289 	static char buf[1024];
290 	va_list args;
291 	long i, i_next = 0, len;
292 	int state = 0;
293 	int old_cpu, this_cpu;
294 	bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers;
295 
296 	if (panic_on_warn) {
297 		/*
298 		 * This thread may hit another WARN() in the panic path.
299 		 * Resetting this prevents additional WARN() from panicking the
300 		 * system on this thread.  Other threads are blocked by the
301 		 * panic_mutex in panic().
302 		 */
303 		panic_on_warn = 0;
304 	}
305 
306 	/*
307 	 * Disable local interrupts. This will prevent panic_smp_self_stop
308 	 * from deadlocking the first cpu that invokes the panic, since
309 	 * there is nothing to prevent an interrupt handler (that runs
310 	 * after setting panic_cpu) from invoking panic() again.
311 	 */
312 	local_irq_disable();
313 	preempt_disable_notrace();
314 
315 	/*
316 	 * It's possible to come here directly from a panic-assertion and
317 	 * not have preempt disabled. Some functions called from here want
318 	 * preempt to be disabled. No point enabling it later though...
319 	 *
320 	 * Only one CPU is allowed to execute the panic code from here. For
321 	 * multiple parallel invocations of panic, all other CPUs either
322 	 * stop themself or will wait until they are stopped by the 1st CPU
323 	 * with smp_send_stop().
324 	 *
325 	 * cmpxchg success means this is the 1st CPU which comes here,
326 	 * so go ahead.
327 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
328 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
329 	 */
330 	old_cpu = PANIC_CPU_INVALID;
331 	this_cpu = raw_smp_processor_id();
332 
333 	/* atomic_try_cmpxchg updates old_cpu on failure */
334 	if (atomic_try_cmpxchg(&panic_cpu, &old_cpu, this_cpu)) {
335 		/* go ahead */
336 	} else if (old_cpu != this_cpu)
337 		panic_smp_self_stop();
338 
339 	console_verbose();
340 	bust_spinlocks(1);
341 	va_start(args, fmt);
342 	len = vscnprintf(buf, sizeof(buf), fmt, args);
343 	va_end(args);
344 
345 	if (len && buf[len - 1] == '\n')
346 		buf[len - 1] = '\0';
347 
348 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
349 #ifdef CONFIG_DEBUG_BUGVERBOSE
350 	/*
351 	 * Avoid nested stack-dumping if a panic occurs during oops processing
352 	 */
353 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
354 		dump_stack();
355 #endif
356 
357 	/*
358 	 * If kgdb is enabled, give it a chance to run before we stop all
359 	 * the other CPUs or else we won't be able to debug processes left
360 	 * running on them.
361 	 */
362 	kgdb_panic(buf);
363 
364 	/*
365 	 * If we have crashed and we have a crash kernel loaded let it handle
366 	 * everything else.
367 	 * If we want to run this after calling panic_notifiers, pass
368 	 * the "crash_kexec_post_notifiers" option to the kernel.
369 	 *
370 	 * Bypass the panic_cpu check and call __crash_kexec directly.
371 	 */
372 	if (!_crash_kexec_post_notifiers)
373 		__crash_kexec(NULL);
374 
375 	panic_other_cpus_shutdown(_crash_kexec_post_notifiers);
376 
377 	/*
378 	 * Run any panic handlers, including those that might need to
379 	 * add information to the kmsg dump output.
380 	 */
381 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
382 
383 	panic_print_sys_info(false);
384 
385 	kmsg_dump(KMSG_DUMP_PANIC);
386 
387 	/*
388 	 * If you doubt kdump always works fine in any situation,
389 	 * "crash_kexec_post_notifiers" offers you a chance to run
390 	 * panic_notifiers and dumping kmsg before kdump.
391 	 * Note: since some panic_notifiers can make crashed kernel
392 	 * more unstable, it can increase risks of the kdump failure too.
393 	 *
394 	 * Bypass the panic_cpu check and call __crash_kexec directly.
395 	 */
396 	if (_crash_kexec_post_notifiers)
397 		__crash_kexec(NULL);
398 
399 	console_unblank();
400 
401 	/*
402 	 * We may have ended up stopping the CPU holding the lock (in
403 	 * smp_send_stop()) while still having some valuable data in the console
404 	 * buffer.  Try to acquire the lock then release it regardless of the
405 	 * result.  The release will also print the buffers out.  Locks debug
406 	 * should be disabled to avoid reporting bad unlock balance when
407 	 * panic() is not being callled from OOPS.
408 	 */
409 	debug_locks_off();
410 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
411 
412 	panic_print_sys_info(true);
413 
414 	if (!panic_blink)
415 		panic_blink = no_blink;
416 
417 	if (panic_timeout > 0) {
418 		/*
419 		 * Delay timeout seconds before rebooting the machine.
420 		 * We can't use the "normal" timers since we just panicked.
421 		 */
422 		pr_emerg("Rebooting in %d seconds..\n", panic_timeout);
423 
424 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
425 			touch_nmi_watchdog();
426 			if (i >= i_next) {
427 				i += panic_blink(state ^= 1);
428 				i_next = i + 3600 / PANIC_BLINK_SPD;
429 			}
430 			mdelay(PANIC_TIMER_STEP);
431 		}
432 	}
433 	if (panic_timeout != 0) {
434 		/*
435 		 * This will not be a clean reboot, with everything
436 		 * shutting down.  But if there is a chance of
437 		 * rebooting the system it will be rebooted.
438 		 */
439 		if (panic_reboot_mode != REBOOT_UNDEFINED)
440 			reboot_mode = panic_reboot_mode;
441 		emergency_restart();
442 	}
443 #ifdef __sparc__
444 	{
445 		extern int stop_a_enabled;
446 		/* Make sure the user can actually press Stop-A (L1-A) */
447 		stop_a_enabled = 1;
448 		pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n"
449 			 "twice on console to return to the boot prom\n");
450 	}
451 #endif
452 #if defined(CONFIG_S390)
453 	disabled_wait();
454 #endif
455 	pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf);
456 
457 	/* Do not scroll important messages printed above */
458 	suppress_printk = 1;
459 
460 	/*
461 	 * The final messages may not have been printed if in a context that
462 	 * defers printing (such as NMI) and irq_work is not available.
463 	 * Explicitly flush the kernel log buffer one last time.
464 	 */
465 	console_flush_on_panic(CONSOLE_FLUSH_PENDING);
466 
467 	local_irq_enable();
468 	for (i = 0; ; i += PANIC_TIMER_STEP) {
469 		touch_softlockup_watchdog();
470 		if (i >= i_next) {
471 			i += panic_blink(state ^= 1);
472 			i_next = i + 3600 / PANIC_BLINK_SPD;
473 		}
474 		mdelay(PANIC_TIMER_STEP);
475 	}
476 }
477 
478 EXPORT_SYMBOL(panic);
479 
480 #define TAINT_FLAG(taint, _c_true, _c_false, _module)			\
481 	[ TAINT_##taint ] = {						\
482 		.c_true = _c_true, .c_false = _c_false,			\
483 		.module = _module,					\
484 		.desc = #taint,						\
485 	}
486 
487 /*
488  * TAINT_FORCED_RMMOD could be a per-module flag but the module
489  * is being removed anyway.
490  */
491 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = {
492 	TAINT_FLAG(PROPRIETARY_MODULE,		'P', 'G', true),
493 	TAINT_FLAG(FORCED_MODULE,		'F', ' ', true),
494 	TAINT_FLAG(CPU_OUT_OF_SPEC,		'S', ' ', false),
495 	TAINT_FLAG(FORCED_RMMOD,		'R', ' ', false),
496 	TAINT_FLAG(MACHINE_CHECK,		'M', ' ', false),
497 	TAINT_FLAG(BAD_PAGE,			'B', ' ', false),
498 	TAINT_FLAG(USER,			'U', ' ', false),
499 	TAINT_FLAG(DIE,				'D', ' ', false),
500 	TAINT_FLAG(OVERRIDDEN_ACPI_TABLE,	'A', ' ', false),
501 	TAINT_FLAG(WARN,			'W', ' ', false),
502 	TAINT_FLAG(CRAP,			'C', ' ', true),
503 	TAINT_FLAG(FIRMWARE_WORKAROUND,		'I', ' ', false),
504 	TAINT_FLAG(OOT_MODULE,			'O', ' ', true),
505 	TAINT_FLAG(UNSIGNED_MODULE,		'E', ' ', true),
506 	TAINT_FLAG(SOFTLOCKUP,			'L', ' ', false),
507 	TAINT_FLAG(LIVEPATCH,			'K', ' ', true),
508 	TAINT_FLAG(AUX,				'X', ' ', true),
509 	TAINT_FLAG(RANDSTRUCT,			'T', ' ', true),
510 	TAINT_FLAG(TEST,			'N', ' ', true),
511 };
512 
513 #undef TAINT_FLAG
514 
515 static void print_tainted_seq(struct seq_buf *s, bool verbose)
516 {
517 	const char *sep = "";
518 	int i;
519 
520 	if (!tainted_mask) {
521 		seq_buf_puts(s, "Not tainted");
522 		return;
523 	}
524 
525 	seq_buf_printf(s, "Tainted: ");
526 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
527 		const struct taint_flag *t = &taint_flags[i];
528 		bool is_set = test_bit(i, &tainted_mask);
529 		char c = is_set ? t->c_true : t->c_false;
530 
531 		if (verbose) {
532 			if (is_set) {
533 				seq_buf_printf(s, "%s[%c]=%s", sep, c, t->desc);
534 				sep = ", ";
535 			}
536 		} else {
537 			seq_buf_putc(s, c);
538 		}
539 	}
540 }
541 
542 static const char *_print_tainted(bool verbose)
543 {
544 	/* FIXME: what should the size be? */
545 	static char buf[sizeof(taint_flags)];
546 	struct seq_buf s;
547 
548 	BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT);
549 
550 	seq_buf_init(&s, buf, sizeof(buf));
551 
552 	print_tainted_seq(&s, verbose);
553 
554 	return seq_buf_str(&s);
555 }
556 
557 /**
558  * print_tainted - return a string to represent the kernel taint state.
559  *
560  * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst
561  *
562  * The string is overwritten by the next call to print_tainted(),
563  * but is always NULL terminated.
564  */
565 const char *print_tainted(void)
566 {
567 	return _print_tainted(false);
568 }
569 
570 /**
571  * print_tainted_verbose - A more verbose version of print_tainted()
572  */
573 const char *print_tainted_verbose(void)
574 {
575 	return _print_tainted(true);
576 }
577 
578 int test_taint(unsigned flag)
579 {
580 	return test_bit(flag, &tainted_mask);
581 }
582 EXPORT_SYMBOL(test_taint);
583 
584 unsigned long get_taint(void)
585 {
586 	return tainted_mask;
587 }
588 
589 /**
590  * add_taint: add a taint flag if not already set.
591  * @flag: one of the TAINT_* constants.
592  * @lockdep_ok: whether lock debugging is still OK.
593  *
594  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
595  * some notewortht-but-not-corrupting cases, it can be set to true.
596  */
597 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
598 {
599 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
600 		pr_warn("Disabling lock debugging due to kernel taint\n");
601 
602 	set_bit(flag, &tainted_mask);
603 
604 	if (tainted_mask & panic_on_taint) {
605 		panic_on_taint = 0;
606 		panic("panic_on_taint set ...");
607 	}
608 }
609 EXPORT_SYMBOL(add_taint);
610 
611 static void spin_msec(int msecs)
612 {
613 	int i;
614 
615 	for (i = 0; i < msecs; i++) {
616 		touch_nmi_watchdog();
617 		mdelay(1);
618 	}
619 }
620 
621 /*
622  * It just happens that oops_enter() and oops_exit() are identically
623  * implemented...
624  */
625 static void do_oops_enter_exit(void)
626 {
627 	unsigned long flags;
628 	static int spin_counter;
629 
630 	if (!pause_on_oops)
631 		return;
632 
633 	spin_lock_irqsave(&pause_on_oops_lock, flags);
634 	if (pause_on_oops_flag == 0) {
635 		/* This CPU may now print the oops message */
636 		pause_on_oops_flag = 1;
637 	} else {
638 		/* We need to stall this CPU */
639 		if (!spin_counter) {
640 			/* This CPU gets to do the counting */
641 			spin_counter = pause_on_oops;
642 			do {
643 				spin_unlock(&pause_on_oops_lock);
644 				spin_msec(MSEC_PER_SEC);
645 				spin_lock(&pause_on_oops_lock);
646 			} while (--spin_counter);
647 			pause_on_oops_flag = 0;
648 		} else {
649 			/* This CPU waits for a different one */
650 			while (spin_counter) {
651 				spin_unlock(&pause_on_oops_lock);
652 				spin_msec(1);
653 				spin_lock(&pause_on_oops_lock);
654 			}
655 		}
656 	}
657 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
658 }
659 
660 /*
661  * Return true if the calling CPU is allowed to print oops-related info.
662  * This is a bit racy..
663  */
664 bool oops_may_print(void)
665 {
666 	return pause_on_oops_flag == 0;
667 }
668 
669 /*
670  * Called when the architecture enters its oops handler, before it prints
671  * anything.  If this is the first CPU to oops, and it's oopsing the first
672  * time then let it proceed.
673  *
674  * This is all enabled by the pause_on_oops kernel boot option.  We do all
675  * this to ensure that oopses don't scroll off the screen.  It has the
676  * side-effect of preventing later-oopsing CPUs from mucking up the display,
677  * too.
678  *
679  * It turns out that the CPU which is allowed to print ends up pausing for
680  * the right duration, whereas all the other CPUs pause for twice as long:
681  * once in oops_enter(), once in oops_exit().
682  */
683 void oops_enter(void)
684 {
685 	tracing_off();
686 	/* can't trust the integrity of the kernel anymore: */
687 	debug_locks_off();
688 	do_oops_enter_exit();
689 
690 	if (sysctl_oops_all_cpu_backtrace)
691 		trigger_all_cpu_backtrace();
692 }
693 
694 static void print_oops_end_marker(void)
695 {
696 	pr_warn("---[ end trace %016llx ]---\n", 0ULL);
697 }
698 
699 /*
700  * Called when the architecture exits its oops handler, after printing
701  * everything.
702  */
703 void oops_exit(void)
704 {
705 	do_oops_enter_exit();
706 	print_oops_end_marker();
707 	kmsg_dump(KMSG_DUMP_OOPS);
708 }
709 
710 struct warn_args {
711 	const char *fmt;
712 	va_list args;
713 };
714 
715 void __warn(const char *file, int line, void *caller, unsigned taint,
716 	    struct pt_regs *regs, struct warn_args *args)
717 {
718 	disable_trace_on_warning();
719 
720 	if (file)
721 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
722 			raw_smp_processor_id(), current->pid, file, line,
723 			caller);
724 	else
725 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
726 			raw_smp_processor_id(), current->pid, caller);
727 
728 #pragma GCC diagnostic push
729 #ifndef __clang__
730 #pragma GCC diagnostic ignored "-Wsuggest-attribute=format"
731 #endif
732 	if (args)
733 		vprintk(args->fmt, args->args);
734 #pragma GCC diagnostic pop
735 
736 	print_modules();
737 
738 	if (regs)
739 		show_regs(regs);
740 
741 	check_panic_on_warn("kernel");
742 
743 	if (!regs)
744 		dump_stack();
745 
746 	print_irqtrace_events(current);
747 
748 	print_oops_end_marker();
749 	trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller);
750 
751 	/* Just a warning, don't kill lockdep. */
752 	add_taint(taint, LOCKDEP_STILL_OK);
753 }
754 
755 #ifdef CONFIG_BUG
756 #ifndef __WARN_FLAGS
757 void warn_slowpath_fmt(const char *file, int line, unsigned taint,
758 		       const char *fmt, ...)
759 {
760 	bool rcu = warn_rcu_enter();
761 	struct warn_args args;
762 
763 	pr_warn(CUT_HERE);
764 
765 	if (!fmt) {
766 		__warn(file, line, __builtin_return_address(0), taint,
767 		       NULL, NULL);
768 		warn_rcu_exit(rcu);
769 		return;
770 	}
771 
772 	args.fmt = fmt;
773 	va_start(args.args, fmt);
774 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
775 	va_end(args.args);
776 	warn_rcu_exit(rcu);
777 }
778 EXPORT_SYMBOL(warn_slowpath_fmt);
779 #else
780 void __warn_printk(const char *fmt, ...)
781 {
782 	bool rcu = warn_rcu_enter();
783 	va_list args;
784 
785 	pr_warn(CUT_HERE);
786 
787 	va_start(args, fmt);
788 	vprintk(fmt, args);
789 	va_end(args);
790 	warn_rcu_exit(rcu);
791 }
792 EXPORT_SYMBOL(__warn_printk);
793 #endif
794 
795 /* Support resetting WARN*_ONCE state */
796 
797 static int clear_warn_once_set(void *data, u64 val)
798 {
799 	generic_bug_clear_once();
800 	memset(__start_once, 0, __end_once - __start_once);
801 	return 0;
802 }
803 
804 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set,
805 			 "%lld\n");
806 
807 static __init int register_warn_debugfs(void)
808 {
809 	/* Don't care about failure */
810 	debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL,
811 				   &clear_warn_once_fops);
812 	return 0;
813 }
814 
815 device_initcall(register_warn_debugfs);
816 #endif
817 
818 #ifdef CONFIG_STACKPROTECTOR
819 
820 /*
821  * Called when gcc's -fstack-protector feature is used, and
822  * gcc detects corruption of the on-stack canary value
823  */
824 __visible noinstr void __stack_chk_fail(void)
825 {
826 	instrumentation_begin();
827 	panic("stack-protector: Kernel stack is corrupted in: %pB",
828 		__builtin_return_address(0));
829 	instrumentation_end();
830 }
831 EXPORT_SYMBOL(__stack_chk_fail);
832 
833 #endif
834 
835 core_param(panic, panic_timeout, int, 0644);
836 core_param(panic_print, panic_print, ulong, 0644);
837 core_param(pause_on_oops, pause_on_oops, int, 0644);
838 core_param(panic_on_warn, panic_on_warn, int, 0644);
839 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644);
840 
841 static int __init oops_setup(char *s)
842 {
843 	if (!s)
844 		return -EINVAL;
845 	if (!strcmp(s, "panic"))
846 		panic_on_oops = 1;
847 	return 0;
848 }
849 early_param("oops", oops_setup);
850 
851 static int __init panic_on_taint_setup(char *s)
852 {
853 	char *taint_str;
854 
855 	if (!s)
856 		return -EINVAL;
857 
858 	taint_str = strsep(&s, ",");
859 	if (kstrtoul(taint_str, 16, &panic_on_taint))
860 		return -EINVAL;
861 
862 	/* make sure panic_on_taint doesn't hold out-of-range TAINT flags */
863 	panic_on_taint &= TAINT_FLAGS_MAX;
864 
865 	if (!panic_on_taint)
866 		return -EINVAL;
867 
868 	if (s && !strcmp(s, "nousertaint"))
869 		panic_on_taint_nousertaint = true;
870 
871 	pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%s\n",
872 		panic_on_taint, str_enabled_disabled(panic_on_taint_nousertaint));
873 
874 	return 0;
875 }
876 early_param("panic_on_taint", panic_on_taint_setup);
877