xref: /linux/kernel/panic.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/ftrace.h>
19 #include <linux/reboot.h>
20 #include <linux/delay.h>
21 #include <linux/kexec.h>
22 #include <linux/sched.h>
23 #include <linux/sysrq.h>
24 #include <linux/init.h>
25 #include <linux/nmi.h>
26 #include <linux/console.h>
27 #include <linux/bug.h>
28 
29 #define PANIC_TIMER_STEP 100
30 #define PANIC_BLINK_SPD 18
31 
32 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE;
33 static unsigned long tainted_mask;
34 static int pause_on_oops;
35 static int pause_on_oops_flag;
36 static DEFINE_SPINLOCK(pause_on_oops_lock);
37 bool crash_kexec_post_notifiers;
38 int panic_on_warn __read_mostly;
39 
40 int panic_timeout = CONFIG_PANIC_TIMEOUT;
41 EXPORT_SYMBOL_GPL(panic_timeout);
42 
43 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
44 
45 EXPORT_SYMBOL(panic_notifier_list);
46 
47 static long no_blink(int state)
48 {
49 	return 0;
50 }
51 
52 /* Returns how long it waited in ms */
53 long (*panic_blink)(int state);
54 EXPORT_SYMBOL(panic_blink);
55 
56 /*
57  * Stop ourself in panic -- architecture code may override this
58  */
59 void __weak panic_smp_self_stop(void)
60 {
61 	while (1)
62 		cpu_relax();
63 }
64 
65 /*
66  * Stop ourselves in NMI context if another CPU has already panicked. Arch code
67  * may override this to prepare for crash dumping, e.g. save regs info.
68  */
69 void __weak nmi_panic_self_stop(struct pt_regs *regs)
70 {
71 	panic_smp_self_stop();
72 }
73 
74 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID);
75 
76 /*
77  * A variant of panic() called from NMI context. We return if we've already
78  * panicked on this CPU. If another CPU already panicked, loop in
79  * nmi_panic_self_stop() which can provide architecture dependent code such
80  * as saving register state for crash dump.
81  */
82 void nmi_panic(struct pt_regs *regs, const char *msg)
83 {
84 	int old_cpu, cpu;
85 
86 	cpu = raw_smp_processor_id();
87 	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu);
88 
89 	if (old_cpu == PANIC_CPU_INVALID)
90 		panic("%s", msg);
91 	else if (old_cpu != cpu)
92 		nmi_panic_self_stop(regs);
93 }
94 EXPORT_SYMBOL(nmi_panic);
95 
96 /**
97  *	panic - halt the system
98  *	@fmt: The text string to print
99  *
100  *	Display a message, then perform cleanups.
101  *
102  *	This function never returns.
103  */
104 void panic(const char *fmt, ...)
105 {
106 	static char buf[1024];
107 	va_list args;
108 	long i, i_next = 0;
109 	int state = 0;
110 	int old_cpu, this_cpu;
111 
112 	/*
113 	 * Disable local interrupts. This will prevent panic_smp_self_stop
114 	 * from deadlocking the first cpu that invokes the panic, since
115 	 * there is nothing to prevent an interrupt handler (that runs
116 	 * after setting panic_cpu) from invoking panic() again.
117 	 */
118 	local_irq_disable();
119 
120 	/*
121 	 * It's possible to come here directly from a panic-assertion and
122 	 * not have preempt disabled. Some functions called from here want
123 	 * preempt to be disabled. No point enabling it later though...
124 	 *
125 	 * Only one CPU is allowed to execute the panic code from here. For
126 	 * multiple parallel invocations of panic, all other CPUs either
127 	 * stop themself or will wait until they are stopped by the 1st CPU
128 	 * with smp_send_stop().
129 	 *
130 	 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which
131 	 * comes here, so go ahead.
132 	 * `old_cpu == this_cpu' means we came from nmi_panic() which sets
133 	 * panic_cpu to this CPU.  In this case, this is also the 1st CPU.
134 	 */
135 	this_cpu = raw_smp_processor_id();
136 	old_cpu  = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
137 
138 	if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu)
139 		panic_smp_self_stop();
140 
141 	console_verbose();
142 	bust_spinlocks(1);
143 	va_start(args, fmt);
144 	vsnprintf(buf, sizeof(buf), fmt, args);
145 	va_end(args);
146 	pr_emerg("Kernel panic - not syncing: %s\n", buf);
147 #ifdef CONFIG_DEBUG_BUGVERBOSE
148 	/*
149 	 * Avoid nested stack-dumping if a panic occurs during oops processing
150 	 */
151 	if (!test_taint(TAINT_DIE) && oops_in_progress <= 1)
152 		dump_stack();
153 #endif
154 
155 	/*
156 	 * If we have crashed and we have a crash kernel loaded let it handle
157 	 * everything else.
158 	 * If we want to run this after calling panic_notifiers, pass
159 	 * the "crash_kexec_post_notifiers" option to the kernel.
160 	 *
161 	 * Bypass the panic_cpu check and call __crash_kexec directly.
162 	 */
163 	if (!crash_kexec_post_notifiers) {
164 		printk_nmi_flush_on_panic();
165 		__crash_kexec(NULL);
166 	}
167 
168 	/*
169 	 * Note smp_send_stop is the usual smp shutdown function, which
170 	 * unfortunately means it may not be hardened to work in a panic
171 	 * situation.
172 	 */
173 	smp_send_stop();
174 
175 	/*
176 	 * Run any panic handlers, including those that might need to
177 	 * add information to the kmsg dump output.
178 	 */
179 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
180 
181 	/* Call flush even twice. It tries harder with a single online CPU */
182 	printk_nmi_flush_on_panic();
183 	kmsg_dump(KMSG_DUMP_PANIC);
184 
185 	/*
186 	 * If you doubt kdump always works fine in any situation,
187 	 * "crash_kexec_post_notifiers" offers you a chance to run
188 	 * panic_notifiers and dumping kmsg before kdump.
189 	 * Note: since some panic_notifiers can make crashed kernel
190 	 * more unstable, it can increase risks of the kdump failure too.
191 	 *
192 	 * Bypass the panic_cpu check and call __crash_kexec directly.
193 	 */
194 	if (crash_kexec_post_notifiers)
195 		__crash_kexec(NULL);
196 
197 	bust_spinlocks(0);
198 
199 	/*
200 	 * We may have ended up stopping the CPU holding the lock (in
201 	 * smp_send_stop()) while still having some valuable data in the console
202 	 * buffer.  Try to acquire the lock then release it regardless of the
203 	 * result.  The release will also print the buffers out.  Locks debug
204 	 * should be disabled to avoid reporting bad unlock balance when
205 	 * panic() is not being callled from OOPS.
206 	 */
207 	debug_locks_off();
208 	console_flush_on_panic();
209 
210 	if (!panic_blink)
211 		panic_blink = no_blink;
212 
213 	if (panic_timeout > 0) {
214 		/*
215 		 * Delay timeout seconds before rebooting the machine.
216 		 * We can't use the "normal" timers since we just panicked.
217 		 */
218 		pr_emerg("Rebooting in %d seconds..", panic_timeout);
219 
220 		for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) {
221 			touch_nmi_watchdog();
222 			if (i >= i_next) {
223 				i += panic_blink(state ^= 1);
224 				i_next = i + 3600 / PANIC_BLINK_SPD;
225 			}
226 			mdelay(PANIC_TIMER_STEP);
227 		}
228 	}
229 	if (panic_timeout != 0) {
230 		/*
231 		 * This will not be a clean reboot, with everything
232 		 * shutting down.  But if there is a chance of
233 		 * rebooting the system it will be rebooted.
234 		 */
235 		emergency_restart();
236 	}
237 #ifdef __sparc__
238 	{
239 		extern int stop_a_enabled;
240 		/* Make sure the user can actually press Stop-A (L1-A) */
241 		stop_a_enabled = 1;
242 		pr_emerg("Press Stop-A (L1-A) to return to the boot prom\n");
243 	}
244 #endif
245 #if defined(CONFIG_S390)
246 	{
247 		unsigned long caller;
248 
249 		caller = (unsigned long)__builtin_return_address(0);
250 		disabled_wait(caller);
251 	}
252 #endif
253 	pr_emerg("---[ end Kernel panic - not syncing: %s\n", buf);
254 	local_irq_enable();
255 	for (i = 0; ; i += PANIC_TIMER_STEP) {
256 		touch_softlockup_watchdog();
257 		if (i >= i_next) {
258 			i += panic_blink(state ^= 1);
259 			i_next = i + 3600 / PANIC_BLINK_SPD;
260 		}
261 		mdelay(PANIC_TIMER_STEP);
262 	}
263 }
264 
265 EXPORT_SYMBOL(panic);
266 
267 
268 struct tnt {
269 	u8	bit;
270 	char	true;
271 	char	false;
272 };
273 
274 static const struct tnt tnts[] = {
275 	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
276 	{ TAINT_FORCED_MODULE,		'F', ' ' },
277 	{ TAINT_CPU_OUT_OF_SPEC,	'S', ' ' },
278 	{ TAINT_FORCED_RMMOD,		'R', ' ' },
279 	{ TAINT_MACHINE_CHECK,		'M', ' ' },
280 	{ TAINT_BAD_PAGE,		'B', ' ' },
281 	{ TAINT_USER,			'U', ' ' },
282 	{ TAINT_DIE,			'D', ' ' },
283 	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
284 	{ TAINT_WARN,			'W', ' ' },
285 	{ TAINT_CRAP,			'C', ' ' },
286 	{ TAINT_FIRMWARE_WORKAROUND,	'I', ' ' },
287 	{ TAINT_OOT_MODULE,		'O', ' ' },
288 	{ TAINT_UNSIGNED_MODULE,	'E', ' ' },
289 	{ TAINT_SOFTLOCKUP,		'L', ' ' },
290 	{ TAINT_LIVEPATCH,		'K', ' ' },
291 };
292 
293 /**
294  *	print_tainted - return a string to represent the kernel taint state.
295  *
296  *  'P' - Proprietary module has been loaded.
297  *  'F' - Module has been forcibly loaded.
298  *  'S' - SMP with CPUs not designed for SMP.
299  *  'R' - User forced a module unload.
300  *  'M' - System experienced a machine check exception.
301  *  'B' - System has hit bad_page.
302  *  'U' - Userspace-defined naughtiness.
303  *  'D' - Kernel has oopsed before
304  *  'A' - ACPI table overridden.
305  *  'W' - Taint on warning.
306  *  'C' - modules from drivers/staging are loaded.
307  *  'I' - Working around severe firmware bug.
308  *  'O' - Out-of-tree module has been loaded.
309  *  'E' - Unsigned module has been loaded.
310  *  'L' - A soft lockup has previously occurred.
311  *  'K' - Kernel has been live patched.
312  *
313  *	The string is overwritten by the next call to print_tainted().
314  */
315 const char *print_tainted(void)
316 {
317 	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ")];
318 
319 	if (tainted_mask) {
320 		char *s;
321 		int i;
322 
323 		s = buf + sprintf(buf, "Tainted: ");
324 		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
325 			const struct tnt *t = &tnts[i];
326 			*s++ = test_bit(t->bit, &tainted_mask) ?
327 					t->true : t->false;
328 		}
329 		*s = 0;
330 	} else
331 		snprintf(buf, sizeof(buf), "Not tainted");
332 
333 	return buf;
334 }
335 
336 int test_taint(unsigned flag)
337 {
338 	return test_bit(flag, &tainted_mask);
339 }
340 EXPORT_SYMBOL(test_taint);
341 
342 unsigned long get_taint(void)
343 {
344 	return tainted_mask;
345 }
346 
347 /**
348  * add_taint: add a taint flag if not already set.
349  * @flag: one of the TAINT_* constants.
350  * @lockdep_ok: whether lock debugging is still OK.
351  *
352  * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for
353  * some notewortht-but-not-corrupting cases, it can be set to true.
354  */
355 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)
356 {
357 	if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off())
358 		pr_warn("Disabling lock debugging due to kernel taint\n");
359 
360 	set_bit(flag, &tainted_mask);
361 }
362 EXPORT_SYMBOL(add_taint);
363 
364 static void spin_msec(int msecs)
365 {
366 	int i;
367 
368 	for (i = 0; i < msecs; i++) {
369 		touch_nmi_watchdog();
370 		mdelay(1);
371 	}
372 }
373 
374 /*
375  * It just happens that oops_enter() and oops_exit() are identically
376  * implemented...
377  */
378 static void do_oops_enter_exit(void)
379 {
380 	unsigned long flags;
381 	static int spin_counter;
382 
383 	if (!pause_on_oops)
384 		return;
385 
386 	spin_lock_irqsave(&pause_on_oops_lock, flags);
387 	if (pause_on_oops_flag == 0) {
388 		/* This CPU may now print the oops message */
389 		pause_on_oops_flag = 1;
390 	} else {
391 		/* We need to stall this CPU */
392 		if (!spin_counter) {
393 			/* This CPU gets to do the counting */
394 			spin_counter = pause_on_oops;
395 			do {
396 				spin_unlock(&pause_on_oops_lock);
397 				spin_msec(MSEC_PER_SEC);
398 				spin_lock(&pause_on_oops_lock);
399 			} while (--spin_counter);
400 			pause_on_oops_flag = 0;
401 		} else {
402 			/* This CPU waits for a different one */
403 			while (spin_counter) {
404 				spin_unlock(&pause_on_oops_lock);
405 				spin_msec(1);
406 				spin_lock(&pause_on_oops_lock);
407 			}
408 		}
409 	}
410 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
411 }
412 
413 /*
414  * Return true if the calling CPU is allowed to print oops-related info.
415  * This is a bit racy..
416  */
417 int oops_may_print(void)
418 {
419 	return pause_on_oops_flag == 0;
420 }
421 
422 /*
423  * Called when the architecture enters its oops handler, before it prints
424  * anything.  If this is the first CPU to oops, and it's oopsing the first
425  * time then let it proceed.
426  *
427  * This is all enabled by the pause_on_oops kernel boot option.  We do all
428  * this to ensure that oopses don't scroll off the screen.  It has the
429  * side-effect of preventing later-oopsing CPUs from mucking up the display,
430  * too.
431  *
432  * It turns out that the CPU which is allowed to print ends up pausing for
433  * the right duration, whereas all the other CPUs pause for twice as long:
434  * once in oops_enter(), once in oops_exit().
435  */
436 void oops_enter(void)
437 {
438 	tracing_off();
439 	/* can't trust the integrity of the kernel anymore: */
440 	debug_locks_off();
441 	do_oops_enter_exit();
442 }
443 
444 /*
445  * 64-bit random ID for oopses:
446  */
447 static u64 oops_id;
448 
449 static int init_oops_id(void)
450 {
451 	if (!oops_id)
452 		get_random_bytes(&oops_id, sizeof(oops_id));
453 	else
454 		oops_id++;
455 
456 	return 0;
457 }
458 late_initcall(init_oops_id);
459 
460 void print_oops_end_marker(void)
461 {
462 	init_oops_id();
463 	pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id);
464 }
465 
466 /*
467  * Called when the architecture exits its oops handler, after printing
468  * everything.
469  */
470 void oops_exit(void)
471 {
472 	do_oops_enter_exit();
473 	print_oops_end_marker();
474 	kmsg_dump(KMSG_DUMP_OOPS);
475 }
476 
477 struct warn_args {
478 	const char *fmt;
479 	va_list args;
480 };
481 
482 void __warn(const char *file, int line, void *caller, unsigned taint,
483 	    struct pt_regs *regs, struct warn_args *args)
484 {
485 	disable_trace_on_warning();
486 
487 	pr_warn("------------[ cut here ]------------\n");
488 
489 	if (file)
490 		pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n",
491 			raw_smp_processor_id(), current->pid, file, line,
492 			caller);
493 	else
494 		pr_warn("WARNING: CPU: %d PID: %d at %pS\n",
495 			raw_smp_processor_id(), current->pid, caller);
496 
497 	if (args)
498 		vprintk(args->fmt, args->args);
499 
500 	if (panic_on_warn) {
501 		/*
502 		 * This thread may hit another WARN() in the panic path.
503 		 * Resetting this prevents additional WARN() from panicking the
504 		 * system on this thread.  Other threads are blocked by the
505 		 * panic_mutex in panic().
506 		 */
507 		panic_on_warn = 0;
508 		panic("panic_on_warn set ...\n");
509 	}
510 
511 	print_modules();
512 
513 	if (regs)
514 		show_regs(regs);
515 	else
516 		dump_stack();
517 
518 	print_oops_end_marker();
519 
520 	/* Just a warning, don't kill lockdep. */
521 	add_taint(taint, LOCKDEP_STILL_OK);
522 }
523 
524 #ifdef WANT_WARN_ON_SLOWPATH
525 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
526 {
527 	struct warn_args args;
528 
529 	args.fmt = fmt;
530 	va_start(args.args, fmt);
531 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL,
532 	       &args);
533 	va_end(args.args);
534 }
535 EXPORT_SYMBOL(warn_slowpath_fmt);
536 
537 void warn_slowpath_fmt_taint(const char *file, int line,
538 			     unsigned taint, const char *fmt, ...)
539 {
540 	struct warn_args args;
541 
542 	args.fmt = fmt;
543 	va_start(args.args, fmt);
544 	__warn(file, line, __builtin_return_address(0), taint, NULL, &args);
545 	va_end(args.args);
546 }
547 EXPORT_SYMBOL(warn_slowpath_fmt_taint);
548 
549 void warn_slowpath_null(const char *file, int line)
550 {
551 	__warn(file, line, __builtin_return_address(0), TAINT_WARN, NULL, NULL);
552 }
553 EXPORT_SYMBOL(warn_slowpath_null);
554 #endif
555 
556 #ifdef CONFIG_CC_STACKPROTECTOR
557 
558 /*
559  * Called when gcc's -fstack-protector feature is used, and
560  * gcc detects corruption of the on-stack canary value
561  */
562 __visible void __stack_chk_fail(void)
563 {
564 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
565 		__builtin_return_address(0));
566 }
567 EXPORT_SYMBOL(__stack_chk_fail);
568 
569 #endif
570 
571 core_param(panic, panic_timeout, int, 0644);
572 core_param(pause_on_oops, pause_on_oops, int, 0644);
573 core_param(panic_on_warn, panic_on_warn, int, 0644);
574 
575 static int __init setup_crash_kexec_post_notifiers(char *s)
576 {
577 	crash_kexec_post_notifiers = true;
578 	return 0;
579 }
580 early_param("crash_kexec_post_notifiers", setup_crash_kexec_post_notifiers);
581 
582 static int __init oops_setup(char *s)
583 {
584 	if (!s)
585 		return -EINVAL;
586 	if (!strcmp(s, "panic"))
587 		panic_on_oops = 1;
588 	return 0;
589 }
590 early_param("oops", oops_setup);
591