1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2006 IBM Corporation 4 * 5 * Author: Serge Hallyn <serue@us.ibm.com> 6 * 7 * Jun 2006 - namespaces support 8 * OpenVZ, SWsoft Inc. 9 * Pavel Emelianov <xemul@openvz.org> 10 */ 11 12 #include <linux/slab.h> 13 #include <linux/export.h> 14 #include <linux/nsproxy.h> 15 #include <linux/init_task.h> 16 #include <linux/mnt_namespace.h> 17 #include <linux/utsname.h> 18 #include <linux/pid_namespace.h> 19 #include <net/net_namespace.h> 20 #include <linux/ipc_namespace.h> 21 #include <linux/time_namespace.h> 22 #include <linux/fs_struct.h> 23 #include <linux/proc_fs.h> 24 #include <linux/proc_ns.h> 25 #include <linux/file.h> 26 #include <linux/syscalls.h> 27 #include <linux/cgroup.h> 28 #include <linux/perf_event.h> 29 #include <linux/nstree.h> 30 31 static struct kmem_cache *nsproxy_cachep; 32 33 struct nsproxy init_nsproxy = { 34 .count = REFCOUNT_INIT(1), 35 .uts_ns = &init_uts_ns, 36 #if defined(CONFIG_POSIX_MQUEUE) || defined(CONFIG_SYSVIPC) 37 .ipc_ns = &init_ipc_ns, 38 #endif 39 .mnt_ns = NULL, 40 .pid_ns_for_children = &init_pid_ns, 41 #ifdef CONFIG_NET 42 .net_ns = &init_net, 43 #endif 44 #ifdef CONFIG_CGROUPS 45 .cgroup_ns = &init_cgroup_ns, 46 #endif 47 #ifdef CONFIG_TIME_NS 48 .time_ns = &init_time_ns, 49 .time_ns_for_children = &init_time_ns, 50 #endif 51 }; 52 53 static inline struct nsproxy *create_nsproxy(void) 54 { 55 struct nsproxy *nsproxy; 56 57 nsproxy = kmem_cache_alloc(nsproxy_cachep, GFP_KERNEL); 58 if (nsproxy) 59 refcount_set(&nsproxy->count, 1); 60 return nsproxy; 61 } 62 63 /* 64 * Create new nsproxy and all of its the associated namespaces. 65 * Return the newly created nsproxy. Do not attach this to the task, 66 * leave it to the caller to do proper locking and attach it to task. 67 */ 68 static struct nsproxy *create_new_namespaces(u64 flags, 69 struct task_struct *tsk, struct user_namespace *user_ns, 70 struct fs_struct *new_fs) 71 { 72 struct nsproxy *new_nsp; 73 int err; 74 75 new_nsp = create_nsproxy(); 76 if (!new_nsp) 77 return ERR_PTR(-ENOMEM); 78 79 new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, user_ns, new_fs); 80 if (IS_ERR(new_nsp->mnt_ns)) { 81 err = PTR_ERR(new_nsp->mnt_ns); 82 goto out_ns; 83 } 84 85 new_nsp->uts_ns = copy_utsname(flags, user_ns, tsk->nsproxy->uts_ns); 86 if (IS_ERR(new_nsp->uts_ns)) { 87 err = PTR_ERR(new_nsp->uts_ns); 88 goto out_uts; 89 } 90 91 new_nsp->ipc_ns = copy_ipcs(flags, user_ns, tsk->nsproxy->ipc_ns); 92 if (IS_ERR(new_nsp->ipc_ns)) { 93 err = PTR_ERR(new_nsp->ipc_ns); 94 goto out_ipc; 95 } 96 97 new_nsp->pid_ns_for_children = 98 copy_pid_ns(flags, user_ns, tsk->nsproxy->pid_ns_for_children); 99 if (IS_ERR(new_nsp->pid_ns_for_children)) { 100 err = PTR_ERR(new_nsp->pid_ns_for_children); 101 goto out_pid; 102 } 103 104 new_nsp->cgroup_ns = copy_cgroup_ns(flags, user_ns, 105 tsk->nsproxy->cgroup_ns); 106 if (IS_ERR(new_nsp->cgroup_ns)) { 107 err = PTR_ERR(new_nsp->cgroup_ns); 108 goto out_cgroup; 109 } 110 111 new_nsp->net_ns = copy_net_ns(flags, user_ns, tsk->nsproxy->net_ns); 112 if (IS_ERR(new_nsp->net_ns)) { 113 err = PTR_ERR(new_nsp->net_ns); 114 goto out_net; 115 } 116 117 new_nsp->time_ns_for_children = copy_time_ns(flags, user_ns, 118 tsk->nsproxy->time_ns_for_children); 119 if (IS_ERR(new_nsp->time_ns_for_children)) { 120 err = PTR_ERR(new_nsp->time_ns_for_children); 121 goto out_time; 122 } 123 new_nsp->time_ns = get_time_ns(tsk->nsproxy->time_ns); 124 125 return new_nsp; 126 127 out_time: 128 put_net(new_nsp->net_ns); 129 out_net: 130 put_cgroup_ns(new_nsp->cgroup_ns); 131 out_cgroup: 132 put_pid_ns(new_nsp->pid_ns_for_children); 133 out_pid: 134 put_ipc_ns(new_nsp->ipc_ns); 135 out_ipc: 136 put_uts_ns(new_nsp->uts_ns); 137 out_uts: 138 put_mnt_ns(new_nsp->mnt_ns); 139 out_ns: 140 kmem_cache_free(nsproxy_cachep, new_nsp); 141 return ERR_PTR(err); 142 } 143 144 /* 145 * called from clone. This now handles copy for nsproxy and all 146 * namespaces therein. 147 */ 148 int copy_namespaces(u64 flags, struct task_struct *tsk) 149 { 150 struct nsproxy *old_ns = tsk->nsproxy; 151 struct user_namespace *user_ns = task_cred_xxx(tsk, user_ns); 152 struct nsproxy *new_ns; 153 154 if (likely(!(flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | 155 CLONE_NEWPID | CLONE_NEWNET | 156 CLONE_NEWCGROUP | CLONE_NEWTIME)))) { 157 if ((flags & CLONE_VM) || 158 likely(old_ns->time_ns_for_children == old_ns->time_ns)) { 159 get_nsproxy(old_ns); 160 return 0; 161 } 162 } else if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 163 return -EPERM; 164 165 /* 166 * CLONE_NEWIPC must detach from the undolist: after switching 167 * to a new ipc namespace, the semaphore arrays from the old 168 * namespace are unreachable. In clone parlance, CLONE_SYSVSEM 169 * means share undolist with parent, so we must forbid using 170 * it along with CLONE_NEWIPC. 171 */ 172 if ((flags & (CLONE_NEWIPC | CLONE_SYSVSEM)) == 173 (CLONE_NEWIPC | CLONE_SYSVSEM)) 174 return -EINVAL; 175 176 new_ns = create_new_namespaces(flags, tsk, user_ns, tsk->fs); 177 if (IS_ERR(new_ns)) 178 return PTR_ERR(new_ns); 179 180 if ((flags & CLONE_VM) == 0) 181 timens_on_fork(new_ns, tsk); 182 183 nsproxy_ns_active_get(new_ns); 184 tsk->nsproxy = new_ns; 185 return 0; 186 } 187 188 void free_nsproxy(struct nsproxy *ns) 189 { 190 nsproxy_ns_active_put(ns); 191 192 put_mnt_ns(ns->mnt_ns); 193 put_uts_ns(ns->uts_ns); 194 put_ipc_ns(ns->ipc_ns); 195 put_pid_ns(ns->pid_ns_for_children); 196 put_time_ns(ns->time_ns); 197 put_time_ns(ns->time_ns_for_children); 198 put_cgroup_ns(ns->cgroup_ns); 199 put_net(ns->net_ns); 200 kmem_cache_free(nsproxy_cachep, ns); 201 } 202 203 /* 204 * Called from unshare. Unshare all the namespaces part of nsproxy. 205 * On success, returns the new nsproxy. 206 */ 207 int unshare_nsproxy_namespaces(unsigned long unshare_flags, 208 struct nsproxy **new_nsp, struct cred *new_cred, struct fs_struct *new_fs) 209 { 210 struct user_namespace *user_ns; 211 int err = 0; 212 213 if (!(unshare_flags & (CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | 214 CLONE_NEWNET | CLONE_NEWPID | CLONE_NEWCGROUP | 215 CLONE_NEWTIME))) 216 return 0; 217 218 user_ns = new_cred ? new_cred->user_ns : current_user_ns(); 219 if (!ns_capable(user_ns, CAP_SYS_ADMIN)) 220 return -EPERM; 221 222 *new_nsp = create_new_namespaces(unshare_flags, current, user_ns, 223 new_fs ? new_fs : current->fs); 224 if (IS_ERR(*new_nsp)) { 225 err = PTR_ERR(*new_nsp); 226 goto out; 227 } 228 229 out: 230 return err; 231 } 232 233 void switch_task_namespaces(struct task_struct *p, struct nsproxy *new) 234 { 235 struct nsproxy *ns; 236 237 might_sleep(); 238 239 if (new) 240 nsproxy_ns_active_get(new); 241 242 task_lock(p); 243 ns = p->nsproxy; 244 p->nsproxy = new; 245 task_unlock(p); 246 247 if (ns) 248 put_nsproxy(ns); 249 } 250 251 void exit_nsproxy_namespaces(struct task_struct *p) 252 { 253 switch_task_namespaces(p, NULL); 254 } 255 256 void switch_cred_namespaces(const struct cred *old, const struct cred *new) 257 { 258 ns_ref_active_get(new->user_ns); 259 ns_ref_active_put(old->user_ns); 260 } 261 262 void get_cred_namespaces(struct task_struct *tsk) 263 { 264 ns_ref_active_get(tsk->real_cred->user_ns); 265 } 266 267 void exit_cred_namespaces(struct task_struct *tsk) 268 { 269 ns_ref_active_put(tsk->real_cred->user_ns); 270 } 271 272 int exec_task_namespaces(void) 273 { 274 struct task_struct *tsk = current; 275 struct nsproxy *new; 276 277 if (tsk->nsproxy->time_ns_for_children == tsk->nsproxy->time_ns) 278 return 0; 279 280 new = create_new_namespaces(0, tsk, current_user_ns(), tsk->fs); 281 if (IS_ERR(new)) 282 return PTR_ERR(new); 283 284 timens_on_fork(new, tsk); 285 switch_task_namespaces(tsk, new); 286 return 0; 287 } 288 289 static int check_setns_flags(unsigned long flags) 290 { 291 if (!flags || (flags & ~(CLONE_NEWNS | CLONE_NEWUTS | CLONE_NEWIPC | 292 CLONE_NEWNET | CLONE_NEWTIME | CLONE_NEWUSER | 293 CLONE_NEWPID | CLONE_NEWCGROUP))) 294 return -EINVAL; 295 296 #ifndef CONFIG_USER_NS 297 if (flags & CLONE_NEWUSER) 298 return -EINVAL; 299 #endif 300 #ifndef CONFIG_PID_NS 301 if (flags & CLONE_NEWPID) 302 return -EINVAL; 303 #endif 304 #ifndef CONFIG_UTS_NS 305 if (flags & CLONE_NEWUTS) 306 return -EINVAL; 307 #endif 308 #ifndef CONFIG_IPC_NS 309 if (flags & CLONE_NEWIPC) 310 return -EINVAL; 311 #endif 312 #ifndef CONFIG_CGROUPS 313 if (flags & CLONE_NEWCGROUP) 314 return -EINVAL; 315 #endif 316 #ifndef CONFIG_NET_NS 317 if (flags & CLONE_NEWNET) 318 return -EINVAL; 319 #endif 320 #ifndef CONFIG_TIME_NS 321 if (flags & CLONE_NEWTIME) 322 return -EINVAL; 323 #endif 324 325 return 0; 326 } 327 328 static void put_nsset(struct nsset *nsset) 329 { 330 unsigned flags = nsset->flags; 331 332 if (flags & CLONE_NEWUSER) 333 put_cred(nsset_cred(nsset)); 334 /* 335 * We only created a temporary copy if we attached to more than just 336 * the mount namespace. 337 */ 338 if (nsset->fs && (flags & CLONE_NEWNS) && (flags & ~CLONE_NEWNS)) 339 free_fs_struct(nsset->fs); 340 if (nsset->nsproxy) 341 free_nsproxy(nsset->nsproxy); 342 } 343 344 static int prepare_nsset(unsigned flags, struct nsset *nsset) 345 { 346 struct task_struct *me = current; 347 348 nsset->nsproxy = create_new_namespaces(0, me, current_user_ns(), me->fs); 349 if (IS_ERR(nsset->nsproxy)) 350 return PTR_ERR(nsset->nsproxy); 351 352 if (flags & CLONE_NEWUSER) 353 nsset->cred = prepare_creds(); 354 else 355 nsset->cred = current_cred(); 356 if (!nsset->cred) 357 goto out; 358 359 /* Only create a temporary copy of fs_struct if we really need to. */ 360 if (flags == CLONE_NEWNS) { 361 nsset->fs = me->fs; 362 } else if (flags & CLONE_NEWNS) { 363 nsset->fs = copy_fs_struct(me->fs); 364 if (!nsset->fs) 365 goto out; 366 } 367 368 nsset->flags = flags; 369 return 0; 370 371 out: 372 put_nsset(nsset); 373 return -ENOMEM; 374 } 375 376 static inline int validate_ns(struct nsset *nsset, struct ns_common *ns) 377 { 378 return ns->ops->install(nsset, ns); 379 } 380 381 /* 382 * This is the inverse operation to unshare(). 383 * Ordering is equivalent to the standard ordering used everywhere else 384 * during unshare and process creation. The switch to the new set of 385 * namespaces occurs at the point of no return after installation of 386 * all requested namespaces was successful in commit_nsset(). 387 */ 388 static int validate_nsset(struct nsset *nsset, struct pid *pid) 389 { 390 int ret = 0; 391 unsigned flags = nsset->flags; 392 struct user_namespace *user_ns = NULL; 393 struct pid_namespace *pid_ns = NULL; 394 struct nsproxy *nsp; 395 struct task_struct *tsk; 396 397 /* Take a "snapshot" of the target task's namespaces. */ 398 rcu_read_lock(); 399 tsk = pid_task(pid, PIDTYPE_PID); 400 if (!tsk) { 401 rcu_read_unlock(); 402 return -ESRCH; 403 } 404 405 if (!ptrace_may_access(tsk, PTRACE_MODE_READ_REALCREDS)) { 406 rcu_read_unlock(); 407 return -EPERM; 408 } 409 410 task_lock(tsk); 411 nsp = tsk->nsproxy; 412 if (nsp) 413 get_nsproxy(nsp); 414 task_unlock(tsk); 415 if (!nsp) { 416 rcu_read_unlock(); 417 return -ESRCH; 418 } 419 420 #ifdef CONFIG_PID_NS 421 if (flags & CLONE_NEWPID) { 422 pid_ns = task_active_pid_ns(tsk); 423 if (unlikely(!pid_ns)) { 424 rcu_read_unlock(); 425 ret = -ESRCH; 426 goto out; 427 } 428 get_pid_ns(pid_ns); 429 } 430 #endif 431 432 #ifdef CONFIG_USER_NS 433 if (flags & CLONE_NEWUSER) 434 user_ns = get_user_ns(__task_cred(tsk)->user_ns); 435 #endif 436 rcu_read_unlock(); 437 438 /* 439 * Install requested namespaces. The caller will have 440 * verified earlier that the requested namespaces are 441 * supported on this kernel. We don't report errors here 442 * if a namespace is requested that isn't supported. 443 */ 444 #ifdef CONFIG_USER_NS 445 if (flags & CLONE_NEWUSER) { 446 ret = validate_ns(nsset, &user_ns->ns); 447 if (ret) 448 goto out; 449 } 450 #endif 451 452 if (flags & CLONE_NEWNS) { 453 ret = validate_ns(nsset, from_mnt_ns(nsp->mnt_ns)); 454 if (ret) 455 goto out; 456 } 457 458 #ifdef CONFIG_UTS_NS 459 if (flags & CLONE_NEWUTS) { 460 ret = validate_ns(nsset, &nsp->uts_ns->ns); 461 if (ret) 462 goto out; 463 } 464 #endif 465 466 #ifdef CONFIG_IPC_NS 467 if (flags & CLONE_NEWIPC) { 468 ret = validate_ns(nsset, &nsp->ipc_ns->ns); 469 if (ret) 470 goto out; 471 } 472 #endif 473 474 #ifdef CONFIG_PID_NS 475 if (flags & CLONE_NEWPID) { 476 ret = validate_ns(nsset, &pid_ns->ns); 477 if (ret) 478 goto out; 479 } 480 #endif 481 482 #ifdef CONFIG_CGROUPS 483 if (flags & CLONE_NEWCGROUP) { 484 ret = validate_ns(nsset, &nsp->cgroup_ns->ns); 485 if (ret) 486 goto out; 487 } 488 #endif 489 490 #ifdef CONFIG_NET_NS 491 if (flags & CLONE_NEWNET) { 492 ret = validate_ns(nsset, &nsp->net_ns->ns); 493 if (ret) 494 goto out; 495 } 496 #endif 497 498 #ifdef CONFIG_TIME_NS 499 if (flags & CLONE_NEWTIME) { 500 ret = validate_ns(nsset, &nsp->time_ns->ns); 501 if (ret) 502 goto out; 503 } 504 #endif 505 506 out: 507 if (pid_ns) 508 put_pid_ns(pid_ns); 509 if (nsp) 510 put_nsproxy(nsp); 511 put_user_ns(user_ns); 512 513 return ret; 514 } 515 516 /* 517 * This is the point of no return. There are just a few namespaces 518 * that do some actual work here and it's sufficiently minimal that 519 * a separate ns_common operation seems unnecessary for now. 520 * Unshare is doing the same thing. If we'll end up needing to do 521 * more in a given namespace or a helper here is ultimately not 522 * exported anymore a simple commit handler for each namespace 523 * should be added to ns_common. 524 */ 525 static void commit_nsset(struct nsset *nsset) 526 { 527 unsigned flags = nsset->flags; 528 struct task_struct *me = current; 529 530 #ifdef CONFIG_USER_NS 531 if (flags & CLONE_NEWUSER) { 532 /* transfer ownership */ 533 commit_creds(nsset_cred(nsset)); 534 nsset->cred = NULL; 535 } 536 #endif 537 538 /* We only need to commit if we have used a temporary fs_struct. */ 539 if ((flags & CLONE_NEWNS) && (flags & ~CLONE_NEWNS)) { 540 set_fs_root(me->fs, &nsset->fs->root); 541 set_fs_pwd(me->fs, &nsset->fs->pwd); 542 } 543 544 #ifdef CONFIG_IPC_NS 545 if (flags & CLONE_NEWIPC) 546 exit_sem(me); 547 #endif 548 549 #ifdef CONFIG_TIME_NS 550 if (flags & CLONE_NEWTIME) 551 timens_commit(me, nsset->nsproxy->time_ns); 552 #endif 553 554 /* transfer ownership */ 555 switch_task_namespaces(me, nsset->nsproxy); 556 nsset->nsproxy = NULL; 557 } 558 559 SYSCALL_DEFINE2(setns, int, fd, int, flags) 560 { 561 CLASS(fd, f)(fd); 562 struct ns_common *ns = NULL; 563 struct nsset nsset = {}; 564 int err = 0; 565 566 if (fd_empty(f)) 567 return -EBADF; 568 569 if (proc_ns_file(fd_file(f))) { 570 ns = get_proc_ns(file_inode(fd_file(f))); 571 if (flags && (ns->ns_type != flags)) 572 err = -EINVAL; 573 flags = ns->ns_type; 574 } else if (!IS_ERR(pidfd_pid(fd_file(f)))) { 575 err = check_setns_flags(flags); 576 } else { 577 err = -EINVAL; 578 } 579 if (err) 580 goto out; 581 582 err = prepare_nsset(flags, &nsset); 583 if (err) 584 goto out; 585 586 if (proc_ns_file(fd_file(f))) 587 err = validate_ns(&nsset, ns); 588 else 589 err = validate_nsset(&nsset, pidfd_pid(fd_file(f))); 590 if (!err) { 591 commit_nsset(&nsset); 592 perf_event_namespaces(current); 593 } 594 put_nsset(&nsset); 595 out: 596 return err; 597 } 598 599 int __init nsproxy_cache_init(void) 600 { 601 nsproxy_cachep = KMEM_CACHE(nsproxy, SLAB_PANIC|SLAB_ACCOUNT); 602 return 0; 603 } 604