1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable within RCU read section), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * Like strncmp(), except s/-/_/g as per scripts/Makefile.lib:name-fix-token rule. 174 */ 175 static int mod_strncmp(const char *str_a, const char *str_b, size_t n) 176 { 177 for (int i = 0; i < n; i++) { 178 char a = str_a[i]; 179 char b = str_b[i]; 180 int d; 181 182 if (a == '-') a = '_'; 183 if (b == '-') b = '_'; 184 185 d = a - b; 186 if (d) 187 return d; 188 189 if (!a) 190 break; 191 } 192 193 return 0; 194 } 195 196 /* 197 * A thread that wants to hold a reference to a module only while it 198 * is running can call this to safely exit. 199 */ 200 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 201 { 202 module_put(mod); 203 kthread_exit(code); 204 } 205 EXPORT_SYMBOL(__module_put_and_kthread_exit); 206 207 /* Find a module section: 0 means not found. */ 208 static unsigned int find_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int i; 211 212 for (i = 1; i < info->hdr->e_shnum; i++) { 213 Elf_Shdr *shdr = &info->sechdrs[i]; 214 /* Alloc bit cleared means "ignore it." */ 215 if ((shdr->sh_flags & SHF_ALLOC) 216 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 217 return i; 218 } 219 return 0; 220 } 221 222 /** 223 * find_any_unique_sec() - Find a unique section index by name 224 * @info: Load info for the module to scan 225 * @name: Name of the section we're looking for 226 * 227 * Locates a unique section by name. Ignores SHF_ALLOC. 228 * 229 * Return: Section index if found uniquely, zero if absent, negative count 230 * of total instances if multiple were found. 231 */ 232 static int find_any_unique_sec(const struct load_info *info, const char *name) 233 { 234 unsigned int idx; 235 unsigned int count = 0; 236 int i; 237 238 for (i = 1; i < info->hdr->e_shnum; i++) { 239 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 240 name) == 0) { 241 count++; 242 idx = i; 243 } 244 } 245 if (count == 1) { 246 return idx; 247 } else if (count == 0) { 248 return 0; 249 } else { 250 return -count; 251 } 252 } 253 254 /* Find a module section, or NULL. */ 255 static void *section_addr(const struct load_info *info, const char *name) 256 { 257 /* Section 0 has sh_addr 0. */ 258 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 259 } 260 261 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 262 static void *section_objs(const struct load_info *info, 263 const char *name, 264 size_t object_size, 265 unsigned int *num) 266 { 267 unsigned int sec = find_sec(info, name); 268 269 /* Section 0 has sh_addr 0 and sh_size 0. */ 270 *num = info->sechdrs[sec].sh_size / object_size; 271 return (void *)info->sechdrs[sec].sh_addr; 272 } 273 274 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 275 static unsigned int find_any_sec(const struct load_info *info, const char *name) 276 { 277 unsigned int i; 278 279 for (i = 1; i < info->hdr->e_shnum; i++) { 280 Elf_Shdr *shdr = &info->sechdrs[i]; 281 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 282 return i; 283 } 284 return 0; 285 } 286 287 /* 288 * Find a module section, or NULL. Fill in number of "objects" in section. 289 * Ignores SHF_ALLOC flag. 290 */ 291 static __maybe_unused void *any_section_objs(const struct load_info *info, 292 const char *name, 293 size_t object_size, 294 unsigned int *num) 295 { 296 unsigned int sec = find_any_sec(info, name); 297 298 /* Section 0 has sh_addr 0 and sh_size 0. */ 299 *num = info->sechdrs[sec].sh_size / object_size; 300 return (void *)info->sechdrs[sec].sh_addr; 301 } 302 303 #ifndef CONFIG_MODVERSIONS 304 #define symversion(base, idx) NULL 305 #else 306 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 307 #endif 308 309 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 310 { 311 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 312 return offset_to_ptr(&sym->name_offset); 313 #else 314 return sym->name; 315 #endif 316 } 317 318 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 319 { 320 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 321 if (!sym->namespace_offset) 322 return NULL; 323 return offset_to_ptr(&sym->namespace_offset); 324 #else 325 return sym->namespace; 326 #endif 327 } 328 329 int cmp_name(const void *name, const void *sym) 330 { 331 return strcmp(name, kernel_symbol_name(sym)); 332 } 333 334 static bool find_exported_symbol_in_section(const struct symsearch *syms, 335 struct module *owner, 336 struct find_symbol_arg *fsa) 337 { 338 struct kernel_symbol *sym; 339 340 if (!fsa->gplok && syms->license == GPL_ONLY) 341 return false; 342 343 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 344 sizeof(struct kernel_symbol), cmp_name); 345 if (!sym) 346 return false; 347 348 fsa->owner = owner; 349 fsa->crc = symversion(syms->crcs, sym - syms->start); 350 fsa->sym = sym; 351 fsa->license = syms->license; 352 353 return true; 354 } 355 356 /* 357 * Find an exported symbol and return it, along with, (optional) crc and 358 * (optional) module which owns it. Needs RCU or module_mutex. 359 */ 360 bool find_symbol(struct find_symbol_arg *fsa) 361 { 362 static const struct symsearch arr[] = { 363 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 364 NOT_GPL_ONLY }, 365 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 366 __start___kcrctab_gpl, 367 GPL_ONLY }, 368 }; 369 struct module *mod; 370 unsigned int i; 371 372 for (i = 0; i < ARRAY_SIZE(arr); i++) 373 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 374 return true; 375 376 list_for_each_entry_rcu(mod, &modules, list, 377 lockdep_is_held(&module_mutex)) { 378 struct symsearch arr[] = { 379 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 380 NOT_GPL_ONLY }, 381 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 382 mod->gpl_crcs, 383 GPL_ONLY }, 384 }; 385 386 if (mod->state == MODULE_STATE_UNFORMED) 387 continue; 388 389 for (i = 0; i < ARRAY_SIZE(arr); i++) 390 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 391 return true; 392 } 393 394 pr_debug("Failed to find symbol %s\n", fsa->name); 395 return false; 396 } 397 398 /* 399 * Search for module by name: must hold module_mutex (or RCU for read-only 400 * access). 401 */ 402 struct module *find_module_all(const char *name, size_t len, 403 bool even_unformed) 404 { 405 struct module *mod; 406 407 list_for_each_entry_rcu(mod, &modules, list, 408 lockdep_is_held(&module_mutex)) { 409 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 410 continue; 411 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 412 return mod; 413 } 414 return NULL; 415 } 416 417 struct module *find_module(const char *name) 418 { 419 return find_module_all(name, strlen(name), false); 420 } 421 422 #ifdef CONFIG_SMP 423 424 static inline void __percpu *mod_percpu(struct module *mod) 425 { 426 return mod->percpu; 427 } 428 429 static int percpu_modalloc(struct module *mod, struct load_info *info) 430 { 431 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 432 unsigned long align = pcpusec->sh_addralign; 433 434 if (!pcpusec->sh_size) 435 return 0; 436 437 if (align > PAGE_SIZE) { 438 pr_warn("%s: per-cpu alignment %li > %li\n", 439 mod->name, align, PAGE_SIZE); 440 align = PAGE_SIZE; 441 } 442 443 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 444 if (!mod->percpu) { 445 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 446 mod->name, (unsigned long)pcpusec->sh_size); 447 return -ENOMEM; 448 } 449 mod->percpu_size = pcpusec->sh_size; 450 return 0; 451 } 452 453 static void percpu_modfree(struct module *mod) 454 { 455 free_percpu(mod->percpu); 456 } 457 458 static unsigned int find_pcpusec(struct load_info *info) 459 { 460 return find_sec(info, ".data..percpu"); 461 } 462 463 static void percpu_modcopy(struct module *mod, 464 const void *from, unsigned long size) 465 { 466 int cpu; 467 468 for_each_possible_cpu(cpu) 469 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 470 } 471 472 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 473 { 474 struct module *mod; 475 unsigned int cpu; 476 477 guard(rcu)(); 478 list_for_each_entry_rcu(mod, &modules, list) { 479 if (mod->state == MODULE_STATE_UNFORMED) 480 continue; 481 if (!mod->percpu_size) 482 continue; 483 for_each_possible_cpu(cpu) { 484 void *start = per_cpu_ptr(mod->percpu, cpu); 485 void *va = (void *)addr; 486 487 if (va >= start && va < start + mod->percpu_size) { 488 if (can_addr) { 489 *can_addr = (unsigned long) (va - start); 490 *can_addr += (unsigned long) 491 per_cpu_ptr(mod->percpu, 492 get_boot_cpu_id()); 493 } 494 return true; 495 } 496 } 497 } 498 return false; 499 } 500 501 /** 502 * is_module_percpu_address() - test whether address is from module static percpu 503 * @addr: address to test 504 * 505 * Test whether @addr belongs to module static percpu area. 506 * 507 * Return: %true if @addr is from module static percpu area 508 */ 509 bool is_module_percpu_address(unsigned long addr) 510 { 511 return __is_module_percpu_address(addr, NULL); 512 } 513 514 #else /* ... !CONFIG_SMP */ 515 516 static inline void __percpu *mod_percpu(struct module *mod) 517 { 518 return NULL; 519 } 520 static int percpu_modalloc(struct module *mod, struct load_info *info) 521 { 522 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 523 if (info->sechdrs[info->index.pcpu].sh_size != 0) 524 return -ENOMEM; 525 return 0; 526 } 527 static inline void percpu_modfree(struct module *mod) 528 { 529 } 530 static unsigned int find_pcpusec(struct load_info *info) 531 { 532 return 0; 533 } 534 static inline void percpu_modcopy(struct module *mod, 535 const void *from, unsigned long size) 536 { 537 /* pcpusec should be 0, and size of that section should be 0. */ 538 BUG_ON(size != 0); 539 } 540 bool is_module_percpu_address(unsigned long addr) 541 { 542 return false; 543 } 544 545 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 546 { 547 return false; 548 } 549 550 #endif /* CONFIG_SMP */ 551 552 #define MODINFO_ATTR(field) \ 553 static void setup_modinfo_##field(struct module *mod, const char *s) \ 554 { \ 555 mod->field = kstrdup(s, GFP_KERNEL); \ 556 } \ 557 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 558 struct module_kobject *mk, char *buffer) \ 559 { \ 560 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 561 } \ 562 static int modinfo_##field##_exists(struct module *mod) \ 563 { \ 564 return mod->field != NULL; \ 565 } \ 566 static void free_modinfo_##field(struct module *mod) \ 567 { \ 568 kfree(mod->field); \ 569 mod->field = NULL; \ 570 } \ 571 static const struct module_attribute modinfo_##field = { \ 572 .attr = { .name = __stringify(field), .mode = 0444 }, \ 573 .show = show_modinfo_##field, \ 574 .setup = setup_modinfo_##field, \ 575 .test = modinfo_##field##_exists, \ 576 .free = free_modinfo_##field, \ 577 }; 578 579 MODINFO_ATTR(version); 580 MODINFO_ATTR(srcversion); 581 582 static struct { 583 char name[MODULE_NAME_LEN + 1]; 584 char taints[MODULE_FLAGS_BUF_SIZE]; 585 } last_unloaded_module; 586 587 #ifdef CONFIG_MODULE_UNLOAD 588 589 EXPORT_TRACEPOINT_SYMBOL(module_get); 590 591 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 592 #define MODULE_REF_BASE 1 593 594 /* Init the unload section of the module. */ 595 static int module_unload_init(struct module *mod) 596 { 597 /* 598 * Initialize reference counter to MODULE_REF_BASE. 599 * refcnt == 0 means module is going. 600 */ 601 atomic_set(&mod->refcnt, MODULE_REF_BASE); 602 603 INIT_LIST_HEAD(&mod->source_list); 604 INIT_LIST_HEAD(&mod->target_list); 605 606 /* Hold reference count during initialization. */ 607 atomic_inc(&mod->refcnt); 608 609 return 0; 610 } 611 612 /* Does a already use b? */ 613 static int already_uses(struct module *a, struct module *b) 614 { 615 struct module_use *use; 616 617 list_for_each_entry(use, &b->source_list, source_list) { 618 if (use->source == a) 619 return 1; 620 } 621 pr_debug("%s does not use %s!\n", a->name, b->name); 622 return 0; 623 } 624 625 /* 626 * Module a uses b 627 * - we add 'a' as a "source", 'b' as a "target" of module use 628 * - the module_use is added to the list of 'b' sources (so 629 * 'b' can walk the list to see who sourced them), and of 'a' 630 * targets (so 'a' can see what modules it targets). 631 */ 632 static int add_module_usage(struct module *a, struct module *b) 633 { 634 struct module_use *use; 635 636 pr_debug("Allocating new usage for %s.\n", a->name); 637 use = kmalloc(sizeof(*use), GFP_ATOMIC); 638 if (!use) 639 return -ENOMEM; 640 641 use->source = a; 642 use->target = b; 643 list_add(&use->source_list, &b->source_list); 644 list_add(&use->target_list, &a->target_list); 645 return 0; 646 } 647 648 /* Module a uses b: caller needs module_mutex() */ 649 static int ref_module(struct module *a, struct module *b) 650 { 651 int err; 652 653 if (b == NULL || already_uses(a, b)) 654 return 0; 655 656 /* If module isn't available, we fail. */ 657 err = strong_try_module_get(b); 658 if (err) 659 return err; 660 661 err = add_module_usage(a, b); 662 if (err) { 663 module_put(b); 664 return err; 665 } 666 return 0; 667 } 668 669 /* Clear the unload stuff of the module. */ 670 static void module_unload_free(struct module *mod) 671 { 672 struct module_use *use, *tmp; 673 674 mutex_lock(&module_mutex); 675 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 676 struct module *i = use->target; 677 pr_debug("%s unusing %s\n", mod->name, i->name); 678 module_put(i); 679 list_del(&use->source_list); 680 list_del(&use->target_list); 681 kfree(use); 682 } 683 mutex_unlock(&module_mutex); 684 } 685 686 #ifdef CONFIG_MODULE_FORCE_UNLOAD 687 static inline int try_force_unload(unsigned int flags) 688 { 689 int ret = (flags & O_TRUNC); 690 if (ret) 691 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 692 return ret; 693 } 694 #else 695 static inline int try_force_unload(unsigned int flags) 696 { 697 return 0; 698 } 699 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 700 701 /* Try to release refcount of module, 0 means success. */ 702 static int try_release_module_ref(struct module *mod) 703 { 704 int ret; 705 706 /* Try to decrement refcnt which we set at loading */ 707 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 708 BUG_ON(ret < 0); 709 if (ret) 710 /* Someone can put this right now, recover with checking */ 711 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 712 713 return ret; 714 } 715 716 static int try_stop_module(struct module *mod, int flags, int *forced) 717 { 718 /* If it's not unused, quit unless we're forcing. */ 719 if (try_release_module_ref(mod) != 0) { 720 *forced = try_force_unload(flags); 721 if (!(*forced)) 722 return -EWOULDBLOCK; 723 } 724 725 /* Mark it as dying. */ 726 mod->state = MODULE_STATE_GOING; 727 728 return 0; 729 } 730 731 /** 732 * module_refcount() - return the refcount or -1 if unloading 733 * @mod: the module we're checking 734 * 735 * Return: 736 * -1 if the module is in the process of unloading 737 * otherwise the number of references in the kernel to the module 738 */ 739 int module_refcount(struct module *mod) 740 { 741 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 742 } 743 EXPORT_SYMBOL(module_refcount); 744 745 /* This exists whether we can unload or not */ 746 static void free_module(struct module *mod); 747 748 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 749 unsigned int, flags) 750 { 751 struct module *mod; 752 char name[MODULE_NAME_LEN]; 753 char buf[MODULE_FLAGS_BUF_SIZE]; 754 int ret, forced = 0; 755 756 if (!capable(CAP_SYS_MODULE) || modules_disabled) 757 return -EPERM; 758 759 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 760 return -EFAULT; 761 name[MODULE_NAME_LEN-1] = '\0'; 762 763 audit_log_kern_module(name); 764 765 if (mutex_lock_interruptible(&module_mutex) != 0) 766 return -EINTR; 767 768 mod = find_module(name); 769 if (!mod) { 770 ret = -ENOENT; 771 goto out; 772 } 773 774 if (!list_empty(&mod->source_list)) { 775 /* Other modules depend on us: get rid of them first. */ 776 ret = -EWOULDBLOCK; 777 goto out; 778 } 779 780 /* Doing init or already dying? */ 781 if (mod->state != MODULE_STATE_LIVE) { 782 /* FIXME: if (force), slam module count damn the torpedoes */ 783 pr_debug("%s already dying\n", mod->name); 784 ret = -EBUSY; 785 goto out; 786 } 787 788 /* If it has an init func, it must have an exit func to unload */ 789 if (mod->init && !mod->exit) { 790 forced = try_force_unload(flags); 791 if (!forced) { 792 /* This module can't be removed */ 793 ret = -EBUSY; 794 goto out; 795 } 796 } 797 798 ret = try_stop_module(mod, flags, &forced); 799 if (ret != 0) 800 goto out; 801 802 mutex_unlock(&module_mutex); 803 /* Final destruction now no one is using it. */ 804 if (mod->exit != NULL) 805 mod->exit(); 806 blocking_notifier_call_chain(&module_notify_list, 807 MODULE_STATE_GOING, mod); 808 klp_module_going(mod); 809 ftrace_release_mod(mod); 810 811 async_synchronize_full(); 812 813 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 814 strscpy(last_unloaded_module.name, mod->name); 815 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false)); 816 817 free_module(mod); 818 /* someone could wait for the module in add_unformed_module() */ 819 wake_up_all(&module_wq); 820 return 0; 821 out: 822 mutex_unlock(&module_mutex); 823 return ret; 824 } 825 826 void __symbol_put(const char *symbol) 827 { 828 struct find_symbol_arg fsa = { 829 .name = symbol, 830 .gplok = true, 831 }; 832 833 guard(rcu)(); 834 BUG_ON(!find_symbol(&fsa)); 835 module_put(fsa.owner); 836 } 837 EXPORT_SYMBOL(__symbol_put); 838 839 /* Note this assumes addr is a function, which it currently always is. */ 840 void symbol_put_addr(void *addr) 841 { 842 struct module *modaddr; 843 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 844 845 if (core_kernel_text(a)) 846 return; 847 848 /* 849 * Even though we hold a reference on the module; we still need to 850 * RCU read section in order to safely traverse the data structure. 851 */ 852 guard(rcu)(); 853 modaddr = __module_text_address(a); 854 BUG_ON(!modaddr); 855 module_put(modaddr); 856 } 857 EXPORT_SYMBOL_GPL(symbol_put_addr); 858 859 static ssize_t show_refcnt(const struct module_attribute *mattr, 860 struct module_kobject *mk, char *buffer) 861 { 862 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 863 } 864 865 static const struct module_attribute modinfo_refcnt = 866 __ATTR(refcnt, 0444, show_refcnt, NULL); 867 868 void __module_get(struct module *module) 869 { 870 if (module) { 871 atomic_inc(&module->refcnt); 872 trace_module_get(module, _RET_IP_); 873 } 874 } 875 EXPORT_SYMBOL(__module_get); 876 877 bool try_module_get(struct module *module) 878 { 879 bool ret = true; 880 881 if (module) { 882 /* Note: here, we can fail to get a reference */ 883 if (likely(module_is_live(module) && 884 atomic_inc_not_zero(&module->refcnt) != 0)) 885 trace_module_get(module, _RET_IP_); 886 else 887 ret = false; 888 } 889 return ret; 890 } 891 EXPORT_SYMBOL(try_module_get); 892 893 void module_put(struct module *module) 894 { 895 int ret; 896 897 if (module) { 898 ret = atomic_dec_if_positive(&module->refcnt); 899 WARN_ON(ret < 0); /* Failed to put refcount */ 900 trace_module_put(module, _RET_IP_); 901 } 902 } 903 EXPORT_SYMBOL(module_put); 904 905 #else /* !CONFIG_MODULE_UNLOAD */ 906 static inline void module_unload_free(struct module *mod) 907 { 908 } 909 910 static int ref_module(struct module *a, struct module *b) 911 { 912 return strong_try_module_get(b); 913 } 914 915 static inline int module_unload_init(struct module *mod) 916 { 917 return 0; 918 } 919 #endif /* CONFIG_MODULE_UNLOAD */ 920 921 size_t module_flags_taint(unsigned long taints, char *buf) 922 { 923 size_t l = 0; 924 int i; 925 926 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 927 if (taint_flags[i].module && test_bit(i, &taints)) 928 buf[l++] = taint_flags[i].c_true; 929 } 930 931 return l; 932 } 933 934 static ssize_t show_initstate(const struct module_attribute *mattr, 935 struct module_kobject *mk, char *buffer) 936 { 937 const char *state = "unknown"; 938 939 switch (mk->mod->state) { 940 case MODULE_STATE_LIVE: 941 state = "live"; 942 break; 943 case MODULE_STATE_COMING: 944 state = "coming"; 945 break; 946 case MODULE_STATE_GOING: 947 state = "going"; 948 break; 949 default: 950 BUG(); 951 } 952 return sprintf(buffer, "%s\n", state); 953 } 954 955 static const struct module_attribute modinfo_initstate = 956 __ATTR(initstate, 0444, show_initstate, NULL); 957 958 static ssize_t store_uevent(const struct module_attribute *mattr, 959 struct module_kobject *mk, 960 const char *buffer, size_t count) 961 { 962 int rc; 963 964 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 965 return rc ? rc : count; 966 } 967 968 const struct module_attribute module_uevent = 969 __ATTR(uevent, 0200, NULL, store_uevent); 970 971 static ssize_t show_coresize(const struct module_attribute *mattr, 972 struct module_kobject *mk, char *buffer) 973 { 974 unsigned int size = mk->mod->mem[MOD_TEXT].size; 975 976 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 977 for_class_mod_mem_type(type, core_data) 978 size += mk->mod->mem[type].size; 979 } 980 return sprintf(buffer, "%u\n", size); 981 } 982 983 static const struct module_attribute modinfo_coresize = 984 __ATTR(coresize, 0444, show_coresize, NULL); 985 986 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 987 static ssize_t show_datasize(const struct module_attribute *mattr, 988 struct module_kobject *mk, char *buffer) 989 { 990 unsigned int size = 0; 991 992 for_class_mod_mem_type(type, core_data) 993 size += mk->mod->mem[type].size; 994 return sprintf(buffer, "%u\n", size); 995 } 996 997 static const struct module_attribute modinfo_datasize = 998 __ATTR(datasize, 0444, show_datasize, NULL); 999 #endif 1000 1001 static ssize_t show_initsize(const struct module_attribute *mattr, 1002 struct module_kobject *mk, char *buffer) 1003 { 1004 unsigned int size = 0; 1005 1006 for_class_mod_mem_type(type, init) 1007 size += mk->mod->mem[type].size; 1008 return sprintf(buffer, "%u\n", size); 1009 } 1010 1011 static const struct module_attribute modinfo_initsize = 1012 __ATTR(initsize, 0444, show_initsize, NULL); 1013 1014 static ssize_t show_taint(const struct module_attribute *mattr, 1015 struct module_kobject *mk, char *buffer) 1016 { 1017 size_t l; 1018 1019 l = module_flags_taint(mk->mod->taints, buffer); 1020 buffer[l++] = '\n'; 1021 return l; 1022 } 1023 1024 static const struct module_attribute modinfo_taint = 1025 __ATTR(taint, 0444, show_taint, NULL); 1026 1027 const struct module_attribute *const modinfo_attrs[] = { 1028 &module_uevent, 1029 &modinfo_version, 1030 &modinfo_srcversion, 1031 &modinfo_initstate, 1032 &modinfo_coresize, 1033 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1034 &modinfo_datasize, 1035 #endif 1036 &modinfo_initsize, 1037 &modinfo_taint, 1038 #ifdef CONFIG_MODULE_UNLOAD 1039 &modinfo_refcnt, 1040 #endif 1041 NULL, 1042 }; 1043 1044 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1045 1046 static const char vermagic[] = VERMAGIC_STRING; 1047 1048 int try_to_force_load(struct module *mod, const char *reason) 1049 { 1050 #ifdef CONFIG_MODULE_FORCE_LOAD 1051 if (!test_taint(TAINT_FORCED_MODULE)) 1052 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1053 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1054 return 0; 1055 #else 1056 return -ENOEXEC; 1057 #endif 1058 } 1059 1060 /* Parse tag=value strings from .modinfo section */ 1061 char *module_next_tag_pair(char *string, unsigned long *secsize) 1062 { 1063 /* Skip non-zero chars */ 1064 while (string[0]) { 1065 string++; 1066 if ((*secsize)-- <= 1) 1067 return NULL; 1068 } 1069 1070 /* Skip any zero padding. */ 1071 while (!string[0]) { 1072 string++; 1073 if ((*secsize)-- <= 1) 1074 return NULL; 1075 } 1076 return string; 1077 } 1078 1079 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1080 char *prev) 1081 { 1082 char *p; 1083 unsigned int taglen = strlen(tag); 1084 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1085 unsigned long size = infosec->sh_size; 1086 1087 /* 1088 * get_modinfo() calls made before rewrite_section_headers() 1089 * must use sh_offset, as sh_addr isn't set! 1090 */ 1091 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1092 1093 if (prev) { 1094 size -= prev - modinfo; 1095 modinfo = module_next_tag_pair(prev, &size); 1096 } 1097 1098 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1099 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1100 return p + taglen + 1; 1101 } 1102 return NULL; 1103 } 1104 1105 static char *get_modinfo(const struct load_info *info, const char *tag) 1106 { 1107 return get_next_modinfo(info, tag, NULL); 1108 } 1109 1110 /** 1111 * verify_module_namespace() - does @modname have access to this symbol's @namespace 1112 * @namespace: export symbol namespace 1113 * @modname: module name 1114 * 1115 * If @namespace is prefixed with "module:" to indicate it is a module namespace 1116 * then test if @modname matches any of the comma separated patterns. 1117 * 1118 * The patterns only support tail-glob. 1119 */ 1120 static bool verify_module_namespace(const char *namespace, const char *modname) 1121 { 1122 size_t len, modlen = strlen(modname); 1123 const char *prefix = "module:"; 1124 const char *sep; 1125 bool glob; 1126 1127 if (!strstarts(namespace, prefix)) 1128 return false; 1129 1130 for (namespace += strlen(prefix); *namespace; namespace = sep) { 1131 sep = strchrnul(namespace, ','); 1132 len = sep - namespace; 1133 1134 glob = false; 1135 if (sep[-1] == '*') { 1136 len--; 1137 glob = true; 1138 } 1139 1140 if (*sep) 1141 sep++; 1142 1143 if (mod_strncmp(namespace, modname, len) == 0 && (glob || len == modlen)) 1144 return true; 1145 } 1146 1147 return false; 1148 } 1149 1150 static int verify_namespace_is_imported(const struct load_info *info, 1151 const struct kernel_symbol *sym, 1152 struct module *mod) 1153 { 1154 const char *namespace; 1155 char *imported_namespace; 1156 1157 namespace = kernel_symbol_namespace(sym); 1158 if (namespace && namespace[0]) { 1159 1160 if (verify_module_namespace(namespace, mod->name)) 1161 return 0; 1162 1163 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1164 if (strcmp(namespace, imported_namespace) == 0) 1165 return 0; 1166 } 1167 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1168 pr_warn( 1169 #else 1170 pr_err( 1171 #endif 1172 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1173 mod->name, kernel_symbol_name(sym), namespace); 1174 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1175 return -EINVAL; 1176 #endif 1177 } 1178 return 0; 1179 } 1180 1181 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1182 { 1183 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1184 return true; 1185 1186 if (mod->using_gplonly_symbols) { 1187 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1188 mod->name, name, owner->name); 1189 return false; 1190 } 1191 1192 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1193 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1194 mod->name, name, owner->name); 1195 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1196 } 1197 return true; 1198 } 1199 1200 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1201 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1202 const struct load_info *info, 1203 const char *name, 1204 char ownername[]) 1205 { 1206 struct find_symbol_arg fsa = { 1207 .name = name, 1208 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1209 .warn = true, 1210 }; 1211 int err; 1212 1213 /* 1214 * The module_mutex should not be a heavily contended lock; 1215 * if we get the occasional sleep here, we'll go an extra iteration 1216 * in the wait_event_interruptible(), which is harmless. 1217 */ 1218 sched_annotate_sleep(); 1219 mutex_lock(&module_mutex); 1220 if (!find_symbol(&fsa)) 1221 goto unlock; 1222 1223 if (fsa.license == GPL_ONLY) 1224 mod->using_gplonly_symbols = true; 1225 1226 if (!inherit_taint(mod, fsa.owner, name)) { 1227 fsa.sym = NULL; 1228 goto getname; 1229 } 1230 1231 if (!check_version(info, name, mod, fsa.crc)) { 1232 fsa.sym = ERR_PTR(-EINVAL); 1233 goto getname; 1234 } 1235 1236 err = verify_namespace_is_imported(info, fsa.sym, mod); 1237 if (err) { 1238 fsa.sym = ERR_PTR(err); 1239 goto getname; 1240 } 1241 1242 err = ref_module(mod, fsa.owner); 1243 if (err) { 1244 fsa.sym = ERR_PTR(err); 1245 goto getname; 1246 } 1247 1248 getname: 1249 /* We must make copy under the lock if we failed to get ref. */ 1250 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1251 unlock: 1252 mutex_unlock(&module_mutex); 1253 return fsa.sym; 1254 } 1255 1256 static const struct kernel_symbol * 1257 resolve_symbol_wait(struct module *mod, 1258 const struct load_info *info, 1259 const char *name) 1260 { 1261 const struct kernel_symbol *ksym; 1262 char owner[MODULE_NAME_LEN]; 1263 1264 if (wait_event_interruptible_timeout(module_wq, 1265 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1266 || PTR_ERR(ksym) != -EBUSY, 1267 30 * HZ) <= 0) { 1268 pr_warn("%s: gave up waiting for init of module %s.\n", 1269 mod->name, owner); 1270 } 1271 return ksym; 1272 } 1273 1274 void __weak module_arch_cleanup(struct module *mod) 1275 { 1276 } 1277 1278 void __weak module_arch_freeing_init(struct module *mod) 1279 { 1280 } 1281 1282 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1283 { 1284 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1285 enum execmem_type execmem_type; 1286 void *ptr; 1287 1288 mod->mem[type].size = size; 1289 1290 if (mod_mem_type_is_data(type)) 1291 execmem_type = EXECMEM_MODULE_DATA; 1292 else 1293 execmem_type = EXECMEM_MODULE_TEXT; 1294 1295 ptr = execmem_alloc(execmem_type, size); 1296 if (!ptr) 1297 return -ENOMEM; 1298 1299 if (execmem_is_rox(execmem_type)) { 1300 int err = execmem_make_temp_rw(ptr, size); 1301 1302 if (err) { 1303 execmem_free(ptr); 1304 return -ENOMEM; 1305 } 1306 1307 mod->mem[type].is_rox = true; 1308 } 1309 1310 /* 1311 * The pointer to these blocks of memory are stored on the module 1312 * structure and we keep that around so long as the module is 1313 * around. We only free that memory when we unload the module. 1314 * Just mark them as not being a leak then. The .init* ELF 1315 * sections *do* get freed after boot so we *could* treat them 1316 * slightly differently with kmemleak_ignore() and only grey 1317 * them out as they work as typical memory allocations which 1318 * *do* eventually get freed, but let's just keep things simple 1319 * and avoid *any* false positives. 1320 */ 1321 if (!mod->mem[type].is_rox) 1322 kmemleak_not_leak(ptr); 1323 1324 memset(ptr, 0, size); 1325 mod->mem[type].base = ptr; 1326 1327 return 0; 1328 } 1329 1330 static void module_memory_restore_rox(struct module *mod) 1331 { 1332 for_class_mod_mem_type(type, text) { 1333 struct module_memory *mem = &mod->mem[type]; 1334 1335 if (mem->is_rox) 1336 execmem_restore_rox(mem->base, mem->size); 1337 } 1338 } 1339 1340 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1341 { 1342 struct module_memory *mem = &mod->mem[type]; 1343 1344 execmem_free(mem->base); 1345 } 1346 1347 static void free_mod_mem(struct module *mod) 1348 { 1349 for_each_mod_mem_type(type) { 1350 struct module_memory *mod_mem = &mod->mem[type]; 1351 1352 if (type == MOD_DATA) 1353 continue; 1354 1355 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1356 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1357 if (mod_mem->size) 1358 module_memory_free(mod, type); 1359 } 1360 1361 /* MOD_DATA hosts mod, so free it at last */ 1362 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1363 module_memory_free(mod, MOD_DATA); 1364 } 1365 1366 /* Free a module, remove from lists, etc. */ 1367 static void free_module(struct module *mod) 1368 { 1369 trace_module_free(mod); 1370 1371 codetag_unload_module(mod); 1372 1373 mod_sysfs_teardown(mod); 1374 1375 /* 1376 * We leave it in list to prevent duplicate loads, but make sure 1377 * that noone uses it while it's being deconstructed. 1378 */ 1379 mutex_lock(&module_mutex); 1380 mod->state = MODULE_STATE_UNFORMED; 1381 mutex_unlock(&module_mutex); 1382 1383 /* Arch-specific cleanup. */ 1384 module_arch_cleanup(mod); 1385 1386 /* Module unload stuff */ 1387 module_unload_free(mod); 1388 1389 /* Free any allocated parameters. */ 1390 destroy_params(mod->kp, mod->num_kp); 1391 1392 if (is_livepatch_module(mod)) 1393 free_module_elf(mod); 1394 1395 /* Now we can delete it from the lists */ 1396 mutex_lock(&module_mutex); 1397 /* Unlink carefully: kallsyms could be walking list. */ 1398 list_del_rcu(&mod->list); 1399 mod_tree_remove(mod); 1400 /* Remove this module from bug list, this uses list_del_rcu */ 1401 module_bug_cleanup(mod); 1402 /* Wait for RCU synchronizing before releasing mod->list and buglist. */ 1403 synchronize_rcu(); 1404 if (try_add_tainted_module(mod)) 1405 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1406 mod->name); 1407 mutex_unlock(&module_mutex); 1408 1409 /* This may be empty, but that's OK */ 1410 module_arch_freeing_init(mod); 1411 kfree(mod->args); 1412 percpu_modfree(mod); 1413 1414 free_mod_mem(mod); 1415 } 1416 1417 void *__symbol_get(const char *symbol) 1418 { 1419 struct find_symbol_arg fsa = { 1420 .name = symbol, 1421 .gplok = true, 1422 .warn = true, 1423 }; 1424 1425 scoped_guard(rcu) { 1426 if (!find_symbol(&fsa)) 1427 return NULL; 1428 if (fsa.license != GPL_ONLY) { 1429 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1430 symbol); 1431 return NULL; 1432 } 1433 if (strong_try_module_get(fsa.owner)) 1434 return NULL; 1435 } 1436 return (void *)kernel_symbol_value(fsa.sym); 1437 } 1438 EXPORT_SYMBOL_GPL(__symbol_get); 1439 1440 /* 1441 * Ensure that an exported symbol [global namespace] does not already exist 1442 * in the kernel or in some other module's exported symbol table. 1443 * 1444 * You must hold the module_mutex. 1445 */ 1446 static int verify_exported_symbols(struct module *mod) 1447 { 1448 unsigned int i; 1449 const struct kernel_symbol *s; 1450 struct { 1451 const struct kernel_symbol *sym; 1452 unsigned int num; 1453 } arr[] = { 1454 { mod->syms, mod->num_syms }, 1455 { mod->gpl_syms, mod->num_gpl_syms }, 1456 }; 1457 1458 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1459 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1460 struct find_symbol_arg fsa = { 1461 .name = kernel_symbol_name(s), 1462 .gplok = true, 1463 }; 1464 if (find_symbol(&fsa)) { 1465 pr_err("%s: exports duplicate symbol %s" 1466 " (owned by %s)\n", 1467 mod->name, kernel_symbol_name(s), 1468 module_name(fsa.owner)); 1469 return -ENOEXEC; 1470 } 1471 } 1472 } 1473 return 0; 1474 } 1475 1476 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1477 { 1478 /* 1479 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1480 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1481 * i386 has a similar problem but may not deserve a fix. 1482 * 1483 * If we ever have to ignore many symbols, consider refactoring the code to 1484 * only warn if referenced by a relocation. 1485 */ 1486 if (emachine == EM_386 || emachine == EM_X86_64) 1487 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1488 return false; 1489 } 1490 1491 /* Change all symbols so that st_value encodes the pointer directly. */ 1492 static int simplify_symbols(struct module *mod, const struct load_info *info) 1493 { 1494 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1495 Elf_Sym *sym = (void *)symsec->sh_addr; 1496 unsigned long secbase; 1497 unsigned int i; 1498 int ret = 0; 1499 const struct kernel_symbol *ksym; 1500 1501 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1502 const char *name = info->strtab + sym[i].st_name; 1503 1504 switch (sym[i].st_shndx) { 1505 case SHN_COMMON: 1506 /* Ignore common symbols */ 1507 if (!strncmp(name, "__gnu_lto", 9)) 1508 break; 1509 1510 /* 1511 * We compiled with -fno-common. These are not 1512 * supposed to happen. 1513 */ 1514 pr_debug("Common symbol: %s\n", name); 1515 pr_warn("%s: please compile with -fno-common\n", 1516 mod->name); 1517 ret = -ENOEXEC; 1518 break; 1519 1520 case SHN_ABS: 1521 /* Don't need to do anything */ 1522 pr_debug("Absolute symbol: 0x%08lx %s\n", 1523 (long)sym[i].st_value, name); 1524 break; 1525 1526 case SHN_LIVEPATCH: 1527 /* Livepatch symbols are resolved by livepatch */ 1528 break; 1529 1530 case SHN_UNDEF: 1531 ksym = resolve_symbol_wait(mod, info, name); 1532 /* Ok if resolved. */ 1533 if (ksym && !IS_ERR(ksym)) { 1534 sym[i].st_value = kernel_symbol_value(ksym); 1535 break; 1536 } 1537 1538 /* Ok if weak or ignored. */ 1539 if (!ksym && 1540 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1541 ignore_undef_symbol(info->hdr->e_machine, name))) 1542 break; 1543 1544 ret = PTR_ERR(ksym) ?: -ENOENT; 1545 pr_warn("%s: Unknown symbol %s (err %d)\n", 1546 mod->name, name, ret); 1547 break; 1548 1549 default: 1550 /* Divert to percpu allocation if a percpu var. */ 1551 if (sym[i].st_shndx == info->index.pcpu) 1552 secbase = (unsigned long)mod_percpu(mod); 1553 else 1554 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1555 sym[i].st_value += secbase; 1556 break; 1557 } 1558 } 1559 1560 return ret; 1561 } 1562 1563 static int apply_relocations(struct module *mod, const struct load_info *info) 1564 { 1565 unsigned int i; 1566 int err = 0; 1567 1568 /* Now do relocations. */ 1569 for (i = 1; i < info->hdr->e_shnum; i++) { 1570 unsigned int infosec = info->sechdrs[i].sh_info; 1571 1572 /* Not a valid relocation section? */ 1573 if (infosec >= info->hdr->e_shnum) 1574 continue; 1575 1576 /* 1577 * Don't bother with non-allocated sections. 1578 * An exception is the percpu section, which has separate allocations 1579 * for individual CPUs. We relocate the percpu section in the initial 1580 * ELF template and subsequently copy it to the per-CPU destinations. 1581 */ 1582 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC) && 1583 (!infosec || infosec != info->index.pcpu)) 1584 continue; 1585 1586 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1587 err = klp_apply_section_relocs(mod, info->sechdrs, 1588 info->secstrings, 1589 info->strtab, 1590 info->index.sym, i, 1591 NULL); 1592 else if (info->sechdrs[i].sh_type == SHT_REL) 1593 err = apply_relocate(info->sechdrs, info->strtab, 1594 info->index.sym, i, mod); 1595 else if (info->sechdrs[i].sh_type == SHT_RELA) 1596 err = apply_relocate_add(info->sechdrs, info->strtab, 1597 info->index.sym, i, mod); 1598 if (err < 0) 1599 break; 1600 } 1601 return err; 1602 } 1603 1604 /* Additional bytes needed by arch in front of individual sections */ 1605 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1606 unsigned int section) 1607 { 1608 /* default implementation just returns zero */ 1609 return 0; 1610 } 1611 1612 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1613 Elf_Shdr *sechdr, unsigned int section) 1614 { 1615 long offset; 1616 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1617 1618 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1619 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1620 mod->mem[type].size = offset + sechdr->sh_size; 1621 1622 WARN_ON_ONCE(offset & mask); 1623 return offset | mask; 1624 } 1625 1626 bool module_init_layout_section(const char *sname) 1627 { 1628 #ifndef CONFIG_MODULE_UNLOAD 1629 if (module_exit_section(sname)) 1630 return true; 1631 #endif 1632 return module_init_section(sname); 1633 } 1634 1635 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1636 { 1637 unsigned int m, i; 1638 1639 /* 1640 * { Mask of required section header flags, 1641 * Mask of excluded section header flags } 1642 */ 1643 static const unsigned long masks[][2] = { 1644 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1645 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1646 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1647 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1648 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1649 }; 1650 static const int core_m_to_mem_type[] = { 1651 MOD_TEXT, 1652 MOD_RODATA, 1653 MOD_RO_AFTER_INIT, 1654 MOD_DATA, 1655 MOD_DATA, 1656 }; 1657 static const int init_m_to_mem_type[] = { 1658 MOD_INIT_TEXT, 1659 MOD_INIT_RODATA, 1660 MOD_INVALID, 1661 MOD_INIT_DATA, 1662 MOD_INIT_DATA, 1663 }; 1664 1665 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1666 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1667 1668 for (i = 0; i < info->hdr->e_shnum; ++i) { 1669 Elf_Shdr *s = &info->sechdrs[i]; 1670 const char *sname = info->secstrings + s->sh_name; 1671 1672 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1673 || (s->sh_flags & masks[m][1]) 1674 || s->sh_entsize != ~0UL 1675 || is_init != module_init_layout_section(sname)) 1676 continue; 1677 1678 if (WARN_ON_ONCE(type == MOD_INVALID)) 1679 continue; 1680 1681 /* 1682 * Do not allocate codetag memory as we load it into 1683 * preallocated contiguous memory. 1684 */ 1685 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1686 /* 1687 * s->sh_entsize won't be used but populate the 1688 * type field to avoid confusion. 1689 */ 1690 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1691 << SH_ENTSIZE_TYPE_SHIFT; 1692 continue; 1693 } 1694 1695 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1696 pr_debug("\t%s\n", sname); 1697 } 1698 } 1699 } 1700 1701 /* 1702 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1703 * might -- code, read-only data, read-write data, small data. Tally 1704 * sizes, and place the offsets into sh_entsize fields: high bit means it 1705 * belongs in init. 1706 */ 1707 static void layout_sections(struct module *mod, struct load_info *info) 1708 { 1709 unsigned int i; 1710 1711 for (i = 0; i < info->hdr->e_shnum; i++) 1712 info->sechdrs[i].sh_entsize = ~0UL; 1713 1714 pr_debug("Core section allocation order for %s:\n", mod->name); 1715 __layout_sections(mod, info, false); 1716 1717 pr_debug("Init section allocation order for %s:\n", mod->name); 1718 __layout_sections(mod, info, true); 1719 } 1720 1721 static void module_license_taint_check(struct module *mod, const char *license) 1722 { 1723 if (!license) 1724 license = "unspecified"; 1725 1726 if (!license_is_gpl_compatible(license)) { 1727 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1728 pr_warn("%s: module license '%s' taints kernel.\n", 1729 mod->name, license); 1730 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1731 LOCKDEP_NOW_UNRELIABLE); 1732 } 1733 } 1734 1735 static int setup_modinfo(struct module *mod, struct load_info *info) 1736 { 1737 const struct module_attribute *attr; 1738 char *imported_namespace; 1739 int i; 1740 1741 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1742 if (attr->setup) 1743 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1744 } 1745 1746 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1747 /* 1748 * 'module:' prefixed namespaces are implicit, disallow 1749 * explicit imports. 1750 */ 1751 if (strstarts(imported_namespace, "module:")) { 1752 pr_err("%s: module tries to import module namespace: %s\n", 1753 mod->name, imported_namespace); 1754 return -EPERM; 1755 } 1756 } 1757 1758 return 0; 1759 } 1760 1761 static void free_modinfo(struct module *mod) 1762 { 1763 const struct module_attribute *attr; 1764 int i; 1765 1766 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1767 if (attr->free) 1768 attr->free(mod); 1769 } 1770 } 1771 1772 bool __weak module_init_section(const char *name) 1773 { 1774 return strstarts(name, ".init"); 1775 } 1776 1777 bool __weak module_exit_section(const char *name) 1778 { 1779 return strstarts(name, ".exit"); 1780 } 1781 1782 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1783 { 1784 #if defined(CONFIG_64BIT) 1785 unsigned long long secend; 1786 #else 1787 unsigned long secend; 1788 #endif 1789 1790 /* 1791 * Check for both overflow and offset/size being 1792 * too large. 1793 */ 1794 secend = shdr->sh_offset + shdr->sh_size; 1795 if (secend < shdr->sh_offset || secend > info->len) 1796 return -ENOEXEC; 1797 1798 return 0; 1799 } 1800 1801 /** 1802 * elf_validity_ehdr() - Checks an ELF header for module validity 1803 * @info: Load info containing the ELF header to check 1804 * 1805 * Checks whether an ELF header could belong to a valid module. Checks: 1806 * 1807 * * ELF header is within the data the user provided 1808 * * ELF magic is present 1809 * * It is relocatable (not final linked, not core file, etc.) 1810 * * The header's machine type matches what the architecture expects. 1811 * * Optional arch-specific hook for other properties 1812 * - module_elf_check_arch() is currently only used by PPC to check 1813 * ELF ABI version, but may be used by others in the future. 1814 * 1815 * Return: %0 if valid, %-ENOEXEC on failure. 1816 */ 1817 static int elf_validity_ehdr(const struct load_info *info) 1818 { 1819 if (info->len < sizeof(*(info->hdr))) { 1820 pr_err("Invalid ELF header len %lu\n", info->len); 1821 return -ENOEXEC; 1822 } 1823 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1824 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1825 return -ENOEXEC; 1826 } 1827 if (info->hdr->e_type != ET_REL) { 1828 pr_err("Invalid ELF header type: %u != %u\n", 1829 info->hdr->e_type, ET_REL); 1830 return -ENOEXEC; 1831 } 1832 if (!elf_check_arch(info->hdr)) { 1833 pr_err("Invalid architecture in ELF header: %u\n", 1834 info->hdr->e_machine); 1835 return -ENOEXEC; 1836 } 1837 if (!module_elf_check_arch(info->hdr)) { 1838 pr_err("Invalid module architecture in ELF header: %u\n", 1839 info->hdr->e_machine); 1840 return -ENOEXEC; 1841 } 1842 return 0; 1843 } 1844 1845 /** 1846 * elf_validity_cache_sechdrs() - Cache section headers if valid 1847 * @info: Load info to compute section headers from 1848 * 1849 * Checks: 1850 * 1851 * * ELF header is valid (see elf_validity_ehdr()) 1852 * * Section headers are the size we expect 1853 * * Section array fits in the user provided data 1854 * * Section index 0 is NULL 1855 * * Section contents are inbounds 1856 * 1857 * Then updates @info with a &load_info->sechdrs pointer if valid. 1858 * 1859 * Return: %0 if valid, negative error code if validation failed. 1860 */ 1861 static int elf_validity_cache_sechdrs(struct load_info *info) 1862 { 1863 Elf_Shdr *sechdrs; 1864 Elf_Shdr *shdr; 1865 int i; 1866 int err; 1867 1868 err = elf_validity_ehdr(info); 1869 if (err < 0) 1870 return err; 1871 1872 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1873 pr_err("Invalid ELF section header size\n"); 1874 return -ENOEXEC; 1875 } 1876 1877 /* 1878 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1879 * known and small. So e_shnum * sizeof(Elf_Shdr) 1880 * will not overflow unsigned long on any platform. 1881 */ 1882 if (info->hdr->e_shoff >= info->len 1883 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1884 info->len - info->hdr->e_shoff)) { 1885 pr_err("Invalid ELF section header overflow\n"); 1886 return -ENOEXEC; 1887 } 1888 1889 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1890 1891 /* 1892 * The code assumes that section 0 has a length of zero and 1893 * an addr of zero, so check for it. 1894 */ 1895 if (sechdrs[0].sh_type != SHT_NULL 1896 || sechdrs[0].sh_size != 0 1897 || sechdrs[0].sh_addr != 0) { 1898 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1899 sechdrs[0].sh_type); 1900 return -ENOEXEC; 1901 } 1902 1903 /* Validate contents are inbounds */ 1904 for (i = 1; i < info->hdr->e_shnum; i++) { 1905 shdr = &sechdrs[i]; 1906 switch (shdr->sh_type) { 1907 case SHT_NULL: 1908 case SHT_NOBITS: 1909 /* No contents, offset/size don't mean anything */ 1910 continue; 1911 default: 1912 err = validate_section_offset(info, shdr); 1913 if (err < 0) { 1914 pr_err("Invalid ELF section in module (section %u type %u)\n", 1915 i, shdr->sh_type); 1916 return err; 1917 } 1918 } 1919 } 1920 1921 info->sechdrs = sechdrs; 1922 1923 return 0; 1924 } 1925 1926 /** 1927 * elf_validity_cache_secstrings() - Caches section names if valid 1928 * @info: Load info to cache section names from. Must have valid sechdrs. 1929 * 1930 * Specifically checks: 1931 * 1932 * * Section name table index is inbounds of section headers 1933 * * Section name table is not empty 1934 * * Section name table is NUL terminated 1935 * * All section name offsets are inbounds of the section 1936 * 1937 * Then updates @info with a &load_info->secstrings pointer if valid. 1938 * 1939 * Return: %0 if valid, negative error code if validation failed. 1940 */ 1941 static int elf_validity_cache_secstrings(struct load_info *info) 1942 { 1943 Elf_Shdr *strhdr, *shdr; 1944 char *secstrings; 1945 int i; 1946 1947 /* 1948 * Verify if the section name table index is valid. 1949 */ 1950 if (info->hdr->e_shstrndx == SHN_UNDEF 1951 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1952 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1953 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1954 info->hdr->e_shnum); 1955 return -ENOEXEC; 1956 } 1957 1958 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1959 1960 /* 1961 * The section name table must be NUL-terminated, as required 1962 * by the spec. This makes strcmp and pr_* calls that access 1963 * strings in the section safe. 1964 */ 1965 secstrings = (void *)info->hdr + strhdr->sh_offset; 1966 if (strhdr->sh_size == 0) { 1967 pr_err("empty section name table\n"); 1968 return -ENOEXEC; 1969 } 1970 if (secstrings[strhdr->sh_size - 1] != '\0') { 1971 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1972 return -ENOEXEC; 1973 } 1974 1975 for (i = 0; i < info->hdr->e_shnum; i++) { 1976 shdr = &info->sechdrs[i]; 1977 /* SHT_NULL means sh_name has an undefined value */ 1978 if (shdr->sh_type == SHT_NULL) 1979 continue; 1980 if (shdr->sh_name >= strhdr->sh_size) { 1981 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1982 i, shdr->sh_type); 1983 return -ENOEXEC; 1984 } 1985 } 1986 1987 info->secstrings = secstrings; 1988 return 0; 1989 } 1990 1991 /** 1992 * elf_validity_cache_index_info() - Validate and cache modinfo section 1993 * @info: Load info to populate the modinfo index on. 1994 * Must have &load_info->sechdrs and &load_info->secstrings populated 1995 * 1996 * Checks that if there is a .modinfo section, it is unique. 1997 * Then, it caches its index in &load_info->index.info. 1998 * Finally, it tries to populate the name to improve error messages. 1999 * 2000 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 2001 */ 2002 static int elf_validity_cache_index_info(struct load_info *info) 2003 { 2004 int info_idx; 2005 2006 info_idx = find_any_unique_sec(info, ".modinfo"); 2007 2008 if (info_idx == 0) 2009 /* Early return, no .modinfo */ 2010 return 0; 2011 2012 if (info_idx < 0) { 2013 pr_err("Only one .modinfo section must exist.\n"); 2014 return -ENOEXEC; 2015 } 2016 2017 info->index.info = info_idx; 2018 /* Try to find a name early so we can log errors with a module name */ 2019 info->name = get_modinfo(info, "name"); 2020 2021 return 0; 2022 } 2023 2024 /** 2025 * elf_validity_cache_index_mod() - Validates and caches this_module section 2026 * @info: Load info to cache this_module on. 2027 * Must have &load_info->sechdrs and &load_info->secstrings populated 2028 * 2029 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 2030 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 2031 * to &__this_module properly. The kernel's modpost declares it on each 2032 * modules's *.mod.c file. If the struct module of the kernel changes a full 2033 * kernel rebuild is required. 2034 * 2035 * We have a few expectations for this special section, this function 2036 * validates all this for us: 2037 * 2038 * * The section has contents 2039 * * The section is unique 2040 * * We expect the kernel to always have to allocate it: SHF_ALLOC 2041 * * The section size must match the kernel's run time's struct module 2042 * size 2043 * 2044 * If all checks pass, the index will be cached in &load_info->index.mod 2045 * 2046 * Return: %0 on validation success, %-ENOEXEC on failure 2047 */ 2048 static int elf_validity_cache_index_mod(struct load_info *info) 2049 { 2050 Elf_Shdr *shdr; 2051 int mod_idx; 2052 2053 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 2054 if (mod_idx <= 0) { 2055 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 2056 info->name ?: "(missing .modinfo section or name field)"); 2057 return -ENOEXEC; 2058 } 2059 2060 shdr = &info->sechdrs[mod_idx]; 2061 2062 if (shdr->sh_type == SHT_NOBITS) { 2063 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 2064 info->name ?: "(missing .modinfo section or name field)"); 2065 return -ENOEXEC; 2066 } 2067 2068 if (!(shdr->sh_flags & SHF_ALLOC)) { 2069 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 2070 info->name ?: "(missing .modinfo section or name field)"); 2071 return -ENOEXEC; 2072 } 2073 2074 if (shdr->sh_size != sizeof(struct module)) { 2075 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 2076 info->name ?: "(missing .modinfo section or name field)"); 2077 return -ENOEXEC; 2078 } 2079 2080 info->index.mod = mod_idx; 2081 2082 return 0; 2083 } 2084 2085 /** 2086 * elf_validity_cache_index_sym() - Validate and cache symtab index 2087 * @info: Load info to cache symtab index in. 2088 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2089 * 2090 * Checks that there is exactly one symbol table, then caches its index in 2091 * &load_info->index.sym. 2092 * 2093 * Return: %0 if valid, %-ENOEXEC on failure. 2094 */ 2095 static int elf_validity_cache_index_sym(struct load_info *info) 2096 { 2097 unsigned int sym_idx; 2098 unsigned int num_sym_secs = 0; 2099 int i; 2100 2101 for (i = 1; i < info->hdr->e_shnum; i++) { 2102 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2103 num_sym_secs++; 2104 sym_idx = i; 2105 } 2106 } 2107 2108 if (num_sym_secs != 1) { 2109 pr_warn("%s: module has no symbols (stripped?)\n", 2110 info->name ?: "(missing .modinfo section or name field)"); 2111 return -ENOEXEC; 2112 } 2113 2114 info->index.sym = sym_idx; 2115 2116 return 0; 2117 } 2118 2119 /** 2120 * elf_validity_cache_index_str() - Validate and cache strtab index 2121 * @info: Load info to cache strtab index in. 2122 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2123 * Must have &load_info->index.sym populated. 2124 * 2125 * Looks at the symbol table's associated string table, makes sure it is 2126 * in-bounds, and caches it. 2127 * 2128 * Return: %0 if valid, %-ENOEXEC on failure. 2129 */ 2130 static int elf_validity_cache_index_str(struct load_info *info) 2131 { 2132 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2133 2134 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2135 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2136 str_idx, str_idx, info->hdr->e_shnum); 2137 return -ENOEXEC; 2138 } 2139 2140 info->index.str = str_idx; 2141 return 0; 2142 } 2143 2144 /** 2145 * elf_validity_cache_index_versions() - Validate and cache version indices 2146 * @info: Load info to cache version indices in. 2147 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2148 * @flags: Load flags, relevant to suppress version loading, see 2149 * uapi/linux/module.h 2150 * 2151 * If we're ignoring modversions based on @flags, zero all version indices 2152 * and return validity. Othewrise check: 2153 * 2154 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2155 * * There is a name present for every crc 2156 * 2157 * Then populate: 2158 * 2159 * * &load_info->index.vers 2160 * * &load_info->index.vers_ext_crc 2161 * * &load_info->index.vers_ext_names 2162 * 2163 * if present. 2164 * 2165 * Return: %0 if valid, %-ENOEXEC on failure. 2166 */ 2167 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2168 { 2169 unsigned int vers_ext_crc; 2170 unsigned int vers_ext_name; 2171 size_t crc_count; 2172 size_t remaining_len; 2173 size_t name_size; 2174 char *name; 2175 2176 /* If modversions were suppressed, pretend we didn't find any */ 2177 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2178 info->index.vers = 0; 2179 info->index.vers_ext_crc = 0; 2180 info->index.vers_ext_name = 0; 2181 return 0; 2182 } 2183 2184 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2185 vers_ext_name = find_sec(info, "__version_ext_names"); 2186 2187 /* If we have one field, we must have the other */ 2188 if (!!vers_ext_crc != !!vers_ext_name) { 2189 pr_err("extended version crc+name presence does not match"); 2190 return -ENOEXEC; 2191 } 2192 2193 /* 2194 * If we have extended version information, we should have the same 2195 * number of entries in every section. 2196 */ 2197 if (vers_ext_crc) { 2198 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2199 name = (void *)info->hdr + 2200 info->sechdrs[vers_ext_name].sh_offset; 2201 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2202 2203 while (crc_count--) { 2204 name_size = strnlen(name, remaining_len) + 1; 2205 if (name_size > remaining_len) { 2206 pr_err("more extended version crcs than names"); 2207 return -ENOEXEC; 2208 } 2209 remaining_len -= name_size; 2210 name += name_size; 2211 } 2212 } 2213 2214 info->index.vers = find_sec(info, "__versions"); 2215 info->index.vers_ext_crc = vers_ext_crc; 2216 info->index.vers_ext_name = vers_ext_name; 2217 return 0; 2218 } 2219 2220 /** 2221 * elf_validity_cache_index() - Resolve, validate, cache section indices 2222 * @info: Load info to read from and update. 2223 * &load_info->sechdrs and &load_info->secstrings must be populated. 2224 * @flags: Load flags, relevant to suppress version loading, see 2225 * uapi/linux/module.h 2226 * 2227 * Populates &load_info->index, validating as it goes. 2228 * See child functions for per-field validation: 2229 * 2230 * * elf_validity_cache_index_info() 2231 * * elf_validity_cache_index_mod() 2232 * * elf_validity_cache_index_sym() 2233 * * elf_validity_cache_index_str() 2234 * * elf_validity_cache_index_versions() 2235 * 2236 * If CONFIG_SMP is enabled, load the percpu section by name with no 2237 * validation. 2238 * 2239 * Return: 0 on success, negative error code if an index failed validation. 2240 */ 2241 static int elf_validity_cache_index(struct load_info *info, int flags) 2242 { 2243 int err; 2244 2245 err = elf_validity_cache_index_info(info); 2246 if (err < 0) 2247 return err; 2248 err = elf_validity_cache_index_mod(info); 2249 if (err < 0) 2250 return err; 2251 err = elf_validity_cache_index_sym(info); 2252 if (err < 0) 2253 return err; 2254 err = elf_validity_cache_index_str(info); 2255 if (err < 0) 2256 return err; 2257 err = elf_validity_cache_index_versions(info, flags); 2258 if (err < 0) 2259 return err; 2260 2261 info->index.pcpu = find_pcpusec(info); 2262 2263 return 0; 2264 } 2265 2266 /** 2267 * elf_validity_cache_strtab() - Validate and cache symbol string table 2268 * @info: Load info to read from and update. 2269 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2270 * Must have &load_info->index populated. 2271 * 2272 * Checks: 2273 * 2274 * * The string table is not empty. 2275 * * The string table starts and ends with NUL (required by ELF spec). 2276 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2277 * string table. 2278 * 2279 * And caches the pointer as &load_info->strtab in @info. 2280 * 2281 * Return: 0 on success, negative error code if a check failed. 2282 */ 2283 static int elf_validity_cache_strtab(struct load_info *info) 2284 { 2285 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2286 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2287 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2288 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2289 int i; 2290 2291 if (str_shdr->sh_size == 0) { 2292 pr_err("empty symbol string table\n"); 2293 return -ENOEXEC; 2294 } 2295 if (strtab[0] != '\0') { 2296 pr_err("symbol string table missing leading NUL\n"); 2297 return -ENOEXEC; 2298 } 2299 if (strtab[str_shdr->sh_size - 1] != '\0') { 2300 pr_err("symbol string table isn't NUL terminated\n"); 2301 return -ENOEXEC; 2302 } 2303 2304 /* 2305 * Now that we know strtab is correctly structured, check symbol 2306 * starts are inbounds before they're used later. 2307 */ 2308 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2309 if (syms[i].st_name >= str_shdr->sh_size) { 2310 pr_err("symbol name out of bounds in string table"); 2311 return -ENOEXEC; 2312 } 2313 } 2314 2315 info->strtab = strtab; 2316 return 0; 2317 } 2318 2319 /* 2320 * Check userspace passed ELF module against our expectations, and cache 2321 * useful variables for further processing as we go. 2322 * 2323 * This does basic validity checks against section offsets and sizes, the 2324 * section name string table, and the indices used for it (sh_name). 2325 * 2326 * As a last step, since we're already checking the ELF sections we cache 2327 * useful variables which will be used later for our convenience: 2328 * 2329 * o pointers to section headers 2330 * o cache the modinfo symbol section 2331 * o cache the string symbol section 2332 * o cache the module section 2333 * 2334 * As a last step we set info->mod to the temporary copy of the module in 2335 * info->hdr. The final one will be allocated in move_module(). Any 2336 * modifications we make to our copy of the module will be carried over 2337 * to the final minted module. 2338 */ 2339 static int elf_validity_cache_copy(struct load_info *info, int flags) 2340 { 2341 int err; 2342 2343 err = elf_validity_cache_sechdrs(info); 2344 if (err < 0) 2345 return err; 2346 err = elf_validity_cache_secstrings(info); 2347 if (err < 0) 2348 return err; 2349 err = elf_validity_cache_index(info, flags); 2350 if (err < 0) 2351 return err; 2352 err = elf_validity_cache_strtab(info); 2353 if (err < 0) 2354 return err; 2355 2356 /* This is temporary: point mod into copy of data. */ 2357 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2358 2359 /* 2360 * If we didn't load the .modinfo 'name' field earlier, fall back to 2361 * on-disk struct mod 'name' field. 2362 */ 2363 if (!info->name) 2364 info->name = info->mod->name; 2365 2366 return 0; 2367 } 2368 2369 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2370 2371 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2372 { 2373 do { 2374 unsigned long n = min(len, COPY_CHUNK_SIZE); 2375 2376 if (copy_from_user(dst, usrc, n) != 0) 2377 return -EFAULT; 2378 cond_resched(); 2379 dst += n; 2380 usrc += n; 2381 len -= n; 2382 } while (len); 2383 return 0; 2384 } 2385 2386 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2387 { 2388 if (!get_modinfo(info, "livepatch")) 2389 /* Nothing more to do */ 2390 return 0; 2391 2392 if (set_livepatch_module(mod)) 2393 return 0; 2394 2395 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2396 mod->name); 2397 return -ENOEXEC; 2398 } 2399 2400 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2401 { 2402 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2403 return; 2404 2405 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2406 mod->name); 2407 } 2408 2409 /* Sets info->hdr and info->len. */ 2410 static int copy_module_from_user(const void __user *umod, unsigned long len, 2411 struct load_info *info) 2412 { 2413 int err; 2414 2415 info->len = len; 2416 if (info->len < sizeof(*(info->hdr))) 2417 return -ENOEXEC; 2418 2419 err = security_kernel_load_data(LOADING_MODULE, true); 2420 if (err) 2421 return err; 2422 2423 /* Suck in entire file: we'll want most of it. */ 2424 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2425 if (!info->hdr) 2426 return -ENOMEM; 2427 2428 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2429 err = -EFAULT; 2430 goto out; 2431 } 2432 2433 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2434 LOADING_MODULE, "init_module"); 2435 out: 2436 if (err) 2437 vfree(info->hdr); 2438 2439 return err; 2440 } 2441 2442 static void free_copy(struct load_info *info, int flags) 2443 { 2444 if (flags & MODULE_INIT_COMPRESSED_FILE) 2445 module_decompress_cleanup(info); 2446 else 2447 vfree(info->hdr); 2448 } 2449 2450 static int rewrite_section_headers(struct load_info *info, int flags) 2451 { 2452 unsigned int i; 2453 2454 /* This should always be true, but let's be sure. */ 2455 info->sechdrs[0].sh_addr = 0; 2456 2457 for (i = 1; i < info->hdr->e_shnum; i++) { 2458 Elf_Shdr *shdr = &info->sechdrs[i]; 2459 2460 /* 2461 * Mark all sections sh_addr with their address in the 2462 * temporary image. 2463 */ 2464 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2465 2466 } 2467 2468 /* Track but don't keep modinfo and version sections. */ 2469 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2470 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2471 ~(unsigned long)SHF_ALLOC; 2472 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2473 ~(unsigned long)SHF_ALLOC; 2474 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2475 2476 return 0; 2477 } 2478 2479 static const char *const module_license_offenders[] = { 2480 /* driverloader was caught wrongly pretending to be under GPL */ 2481 "driverloader", 2482 2483 /* lve claims to be GPL but upstream won't provide source */ 2484 "lve", 2485 }; 2486 2487 /* 2488 * These calls taint the kernel depending certain module circumstances */ 2489 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2490 { 2491 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2492 size_t i; 2493 2494 if (!get_modinfo(info, "intree")) { 2495 if (!test_taint(TAINT_OOT_MODULE)) 2496 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2497 mod->name); 2498 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2499 } 2500 2501 check_modinfo_retpoline(mod, info); 2502 2503 if (get_modinfo(info, "staging")) { 2504 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2505 pr_warn("%s: module is from the staging directory, the quality " 2506 "is unknown, you have been warned.\n", mod->name); 2507 } 2508 2509 if (is_livepatch_module(mod)) { 2510 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2511 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2512 mod->name); 2513 } 2514 2515 module_license_taint_check(mod, get_modinfo(info, "license")); 2516 2517 if (get_modinfo(info, "test")) { 2518 if (!test_taint(TAINT_TEST)) 2519 pr_warn("%s: loading test module taints kernel.\n", 2520 mod->name); 2521 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2522 } 2523 #ifdef CONFIG_MODULE_SIG 2524 mod->sig_ok = info->sig_ok; 2525 if (!mod->sig_ok) { 2526 pr_notice_once("%s: module verification failed: signature " 2527 "and/or required key missing - tainting " 2528 "kernel\n", mod->name); 2529 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2530 } 2531 #endif 2532 2533 /* 2534 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2535 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2536 * using GPL-only symbols it needs. 2537 */ 2538 if (strcmp(mod->name, "ndiswrapper") == 0) 2539 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2540 2541 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2542 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2543 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2544 LOCKDEP_NOW_UNRELIABLE); 2545 } 2546 2547 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2548 pr_warn("%s: module license taints kernel.\n", mod->name); 2549 2550 } 2551 2552 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2553 { 2554 const char *modmagic = get_modinfo(info, "vermagic"); 2555 int err; 2556 2557 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2558 modmagic = NULL; 2559 2560 /* This is allowed: modprobe --force will invalidate it. */ 2561 if (!modmagic) { 2562 err = try_to_force_load(mod, "bad vermagic"); 2563 if (err) 2564 return err; 2565 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2566 pr_err("%s: version magic '%s' should be '%s'\n", 2567 info->name, modmagic, vermagic); 2568 return -ENOEXEC; 2569 } 2570 2571 err = check_modinfo_livepatch(mod, info); 2572 if (err) 2573 return err; 2574 2575 return 0; 2576 } 2577 2578 static int find_module_sections(struct module *mod, struct load_info *info) 2579 { 2580 mod->kp = section_objs(info, "__param", 2581 sizeof(*mod->kp), &mod->num_kp); 2582 mod->syms = section_objs(info, "__ksymtab", 2583 sizeof(*mod->syms), &mod->num_syms); 2584 mod->crcs = section_addr(info, "__kcrctab"); 2585 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2586 sizeof(*mod->gpl_syms), 2587 &mod->num_gpl_syms); 2588 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2589 2590 #ifdef CONFIG_CONSTRUCTORS 2591 mod->ctors = section_objs(info, ".ctors", 2592 sizeof(*mod->ctors), &mod->num_ctors); 2593 if (!mod->ctors) 2594 mod->ctors = section_objs(info, ".init_array", 2595 sizeof(*mod->ctors), &mod->num_ctors); 2596 else if (find_sec(info, ".init_array")) { 2597 /* 2598 * This shouldn't happen with same compiler and binutils 2599 * building all parts of the module. 2600 */ 2601 pr_warn("%s: has both .ctors and .init_array.\n", 2602 mod->name); 2603 return -EINVAL; 2604 } 2605 #endif 2606 2607 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2608 &mod->noinstr_text_size); 2609 2610 #ifdef CONFIG_TRACEPOINTS 2611 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2612 sizeof(*mod->tracepoints_ptrs), 2613 &mod->num_tracepoints); 2614 #endif 2615 #ifdef CONFIG_TREE_SRCU 2616 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2617 sizeof(*mod->srcu_struct_ptrs), 2618 &mod->num_srcu_structs); 2619 #endif 2620 #ifdef CONFIG_BPF_EVENTS 2621 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2622 sizeof(*mod->bpf_raw_events), 2623 &mod->num_bpf_raw_events); 2624 #endif 2625 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2626 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2627 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2628 &mod->btf_base_data_size); 2629 #endif 2630 #ifdef CONFIG_JUMP_LABEL 2631 mod->jump_entries = section_objs(info, "__jump_table", 2632 sizeof(*mod->jump_entries), 2633 &mod->num_jump_entries); 2634 #endif 2635 #ifdef CONFIG_EVENT_TRACING 2636 mod->trace_events = section_objs(info, "_ftrace_events", 2637 sizeof(*mod->trace_events), 2638 &mod->num_trace_events); 2639 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2640 sizeof(*mod->trace_evals), 2641 &mod->num_trace_evals); 2642 #endif 2643 #ifdef CONFIG_TRACING 2644 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2645 sizeof(*mod->trace_bprintk_fmt_start), 2646 &mod->num_trace_bprintk_fmt); 2647 #endif 2648 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2649 /* sechdrs[0].sh_size is always zero */ 2650 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2651 sizeof(*mod->ftrace_callsites), 2652 &mod->num_ftrace_callsites); 2653 #endif 2654 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2655 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2656 sizeof(*mod->ei_funcs), 2657 &mod->num_ei_funcs); 2658 #endif 2659 #ifdef CONFIG_KPROBES 2660 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2661 &mod->kprobes_text_size); 2662 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2663 sizeof(unsigned long), 2664 &mod->num_kprobe_blacklist); 2665 #endif 2666 #ifdef CONFIG_PRINTK_INDEX 2667 mod->printk_index_start = section_objs(info, ".printk_index", 2668 sizeof(*mod->printk_index_start), 2669 &mod->printk_index_size); 2670 #endif 2671 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2672 mod->static_call_sites = section_objs(info, ".static_call_sites", 2673 sizeof(*mod->static_call_sites), 2674 &mod->num_static_call_sites); 2675 #endif 2676 #if IS_ENABLED(CONFIG_KUNIT) 2677 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2678 sizeof(*mod->kunit_suites), 2679 &mod->num_kunit_suites); 2680 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2681 sizeof(*mod->kunit_init_suites), 2682 &mod->num_kunit_init_suites); 2683 #endif 2684 2685 mod->extable = section_objs(info, "__ex_table", 2686 sizeof(*mod->extable), &mod->num_exentries); 2687 2688 if (section_addr(info, "__obsparm")) 2689 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2690 2691 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2692 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2693 sizeof(*mod->dyndbg_info.descs), 2694 &mod->dyndbg_info.num_descs); 2695 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2696 sizeof(*mod->dyndbg_info.classes), 2697 &mod->dyndbg_info.num_classes); 2698 #endif 2699 2700 return 0; 2701 } 2702 2703 static int move_module(struct module *mod, struct load_info *info) 2704 { 2705 int i, ret; 2706 enum mod_mem_type t = MOD_MEM_NUM_TYPES; 2707 bool codetag_section_found = false; 2708 2709 for_each_mod_mem_type(type) { 2710 if (!mod->mem[type].size) { 2711 mod->mem[type].base = NULL; 2712 continue; 2713 } 2714 2715 ret = module_memory_alloc(mod, type); 2716 if (ret) { 2717 t = type; 2718 goto out_err; 2719 } 2720 } 2721 2722 /* Transfer each section which specifies SHF_ALLOC */ 2723 pr_debug("Final section addresses for %s:\n", mod->name); 2724 for (i = 0; i < info->hdr->e_shnum; i++) { 2725 void *dest; 2726 Elf_Shdr *shdr = &info->sechdrs[i]; 2727 const char *sname; 2728 2729 if (!(shdr->sh_flags & SHF_ALLOC)) 2730 continue; 2731 2732 sname = info->secstrings + shdr->sh_name; 2733 /* 2734 * Load codetag sections separately as they might still be used 2735 * after module unload. 2736 */ 2737 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2738 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2739 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2740 if (WARN_ON(!dest)) { 2741 ret = -EINVAL; 2742 goto out_err; 2743 } 2744 if (IS_ERR(dest)) { 2745 ret = PTR_ERR(dest); 2746 goto out_err; 2747 } 2748 codetag_section_found = true; 2749 } else { 2750 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2751 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2752 2753 dest = mod->mem[type].base + offset; 2754 } 2755 2756 if (shdr->sh_type != SHT_NOBITS) { 2757 /* 2758 * Our ELF checker already validated this, but let's 2759 * be pedantic and make the goal clearer. We actually 2760 * end up copying over all modifications made to the 2761 * userspace copy of the entire struct module. 2762 */ 2763 if (i == info->index.mod && 2764 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2765 ret = -ENOEXEC; 2766 goto out_err; 2767 } 2768 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2769 } 2770 /* 2771 * Update the userspace copy's ELF section address to point to 2772 * our newly allocated memory as a pure convenience so that 2773 * users of info can keep taking advantage and using the newly 2774 * minted official memory area. 2775 */ 2776 shdr->sh_addr = (unsigned long)dest; 2777 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2778 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2779 } 2780 2781 return 0; 2782 out_err: 2783 module_memory_restore_rox(mod); 2784 while (t--) 2785 module_memory_free(mod, t); 2786 if (codetag_section_found) 2787 codetag_free_module_sections(mod); 2788 2789 return ret; 2790 } 2791 2792 static int check_export_symbol_versions(struct module *mod) 2793 { 2794 #ifdef CONFIG_MODVERSIONS 2795 if ((mod->num_syms && !mod->crcs) || 2796 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2797 return try_to_force_load(mod, 2798 "no versions for exported symbols"); 2799 } 2800 #endif 2801 return 0; 2802 } 2803 2804 static void flush_module_icache(const struct module *mod) 2805 { 2806 /* 2807 * Flush the instruction cache, since we've played with text. 2808 * Do it before processing of module parameters, so the module 2809 * can provide parameter accessor functions of its own. 2810 */ 2811 for_each_mod_mem_type(type) { 2812 const struct module_memory *mod_mem = &mod->mem[type]; 2813 2814 if (mod_mem->size) { 2815 flush_icache_range((unsigned long)mod_mem->base, 2816 (unsigned long)mod_mem->base + mod_mem->size); 2817 } 2818 } 2819 } 2820 2821 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2822 { 2823 return true; 2824 } 2825 2826 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2827 Elf_Shdr *sechdrs, 2828 char *secstrings, 2829 struct module *mod) 2830 { 2831 return 0; 2832 } 2833 2834 /* module_blacklist is a comma-separated list of module names */ 2835 static char *module_blacklist; 2836 static bool blacklisted(const char *module_name) 2837 { 2838 const char *p; 2839 size_t len; 2840 2841 if (!module_blacklist) 2842 return false; 2843 2844 for (p = module_blacklist; *p; p += len) { 2845 len = strcspn(p, ","); 2846 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2847 return true; 2848 if (p[len] == ',') 2849 len++; 2850 } 2851 return false; 2852 } 2853 core_param(module_blacklist, module_blacklist, charp, 0400); 2854 2855 static struct module *layout_and_allocate(struct load_info *info, int flags) 2856 { 2857 struct module *mod; 2858 int err; 2859 2860 /* Allow arches to frob section contents and sizes. */ 2861 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2862 info->secstrings, info->mod); 2863 if (err < 0) 2864 return ERR_PTR(err); 2865 2866 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2867 info->secstrings, info->mod); 2868 if (err < 0) 2869 return ERR_PTR(err); 2870 2871 /* We will do a special allocation for per-cpu sections later. */ 2872 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2873 2874 /* 2875 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can 2876 * put them in the right place. 2877 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2878 */ 2879 module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings); 2880 2881 /* 2882 * Determine total sizes, and put offsets in sh_entsize. For now 2883 * this is done generically; there doesn't appear to be any 2884 * special cases for the architectures. 2885 */ 2886 layout_sections(info->mod, info); 2887 layout_symtab(info->mod, info); 2888 2889 /* Allocate and move to the final place */ 2890 err = move_module(info->mod, info); 2891 if (err) 2892 return ERR_PTR(err); 2893 2894 /* Module has been copied to its final place now: return it. */ 2895 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2896 kmemleak_load_module(mod, info); 2897 codetag_module_replaced(info->mod, mod); 2898 2899 return mod; 2900 } 2901 2902 /* mod is no longer valid after this! */ 2903 static void module_deallocate(struct module *mod, struct load_info *info) 2904 { 2905 percpu_modfree(mod); 2906 module_arch_freeing_init(mod); 2907 codetag_free_module_sections(mod); 2908 2909 free_mod_mem(mod); 2910 } 2911 2912 int __weak module_finalize(const Elf_Ehdr *hdr, 2913 const Elf_Shdr *sechdrs, 2914 struct module *me) 2915 { 2916 return 0; 2917 } 2918 2919 static int post_relocation(struct module *mod, const struct load_info *info) 2920 { 2921 /* Sort exception table now relocations are done. */ 2922 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2923 2924 /* Copy relocated percpu area over. */ 2925 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2926 info->sechdrs[info->index.pcpu].sh_size); 2927 2928 /* Setup kallsyms-specific fields. */ 2929 add_kallsyms(mod, info); 2930 2931 /* Arch-specific module finalizing. */ 2932 return module_finalize(info->hdr, info->sechdrs, mod); 2933 } 2934 2935 /* Call module constructors. */ 2936 static void do_mod_ctors(struct module *mod) 2937 { 2938 #ifdef CONFIG_CONSTRUCTORS 2939 unsigned long i; 2940 2941 for (i = 0; i < mod->num_ctors; i++) 2942 mod->ctors[i](); 2943 #endif 2944 } 2945 2946 /* For freeing module_init on success, in case kallsyms traversing */ 2947 struct mod_initfree { 2948 struct llist_node node; 2949 void *init_text; 2950 void *init_data; 2951 void *init_rodata; 2952 }; 2953 2954 static void do_free_init(struct work_struct *w) 2955 { 2956 struct llist_node *pos, *n, *list; 2957 struct mod_initfree *initfree; 2958 2959 list = llist_del_all(&init_free_list); 2960 2961 synchronize_rcu(); 2962 2963 llist_for_each_safe(pos, n, list) { 2964 initfree = container_of(pos, struct mod_initfree, node); 2965 execmem_free(initfree->init_text); 2966 execmem_free(initfree->init_data); 2967 execmem_free(initfree->init_rodata); 2968 kfree(initfree); 2969 } 2970 } 2971 2972 void flush_module_init_free_work(void) 2973 { 2974 flush_work(&init_free_wq); 2975 } 2976 2977 #undef MODULE_PARAM_PREFIX 2978 #define MODULE_PARAM_PREFIX "module." 2979 /* Default value for module->async_probe_requested */ 2980 static bool async_probe; 2981 module_param(async_probe, bool, 0644); 2982 2983 /* 2984 * This is where the real work happens. 2985 * 2986 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2987 * helper command 'lx-symbols'. 2988 */ 2989 static noinline int do_init_module(struct module *mod) 2990 { 2991 int ret = 0; 2992 struct mod_initfree *freeinit; 2993 #if defined(CONFIG_MODULE_STATS) 2994 unsigned int text_size = 0, total_size = 0; 2995 2996 for_each_mod_mem_type(type) { 2997 const struct module_memory *mod_mem = &mod->mem[type]; 2998 if (mod_mem->size) { 2999 total_size += mod_mem->size; 3000 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 3001 text_size += mod_mem->size; 3002 } 3003 } 3004 #endif 3005 3006 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 3007 if (!freeinit) { 3008 ret = -ENOMEM; 3009 goto fail; 3010 } 3011 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 3012 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 3013 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 3014 3015 do_mod_ctors(mod); 3016 /* Start the module */ 3017 if (mod->init != NULL) 3018 ret = do_one_initcall(mod->init); 3019 if (ret < 0) { 3020 goto fail_free_freeinit; 3021 } 3022 if (ret > 0) { 3023 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 3024 "follow 0/-E convention\n" 3025 "%s: loading module anyway...\n", 3026 __func__, mod->name, ret, __func__); 3027 dump_stack(); 3028 } 3029 3030 /* Now it's a first class citizen! */ 3031 mod->state = MODULE_STATE_LIVE; 3032 blocking_notifier_call_chain(&module_notify_list, 3033 MODULE_STATE_LIVE, mod); 3034 3035 /* Delay uevent until module has finished its init routine */ 3036 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 3037 3038 /* 3039 * We need to finish all async code before the module init sequence 3040 * is done. This has potential to deadlock if synchronous module 3041 * loading is requested from async (which is not allowed!). 3042 * 3043 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 3044 * request_module() from async workers") for more details. 3045 */ 3046 if (!mod->async_probe_requested) 3047 async_synchronize_full(); 3048 3049 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 3050 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 3051 mutex_lock(&module_mutex); 3052 /* Drop initial reference. */ 3053 module_put(mod); 3054 trim_init_extable(mod); 3055 #ifdef CONFIG_KALLSYMS 3056 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 3057 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 3058 #endif 3059 ret = module_enable_rodata_ro_after_init(mod); 3060 if (ret) 3061 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 3062 "ro_after_init data might still be writable\n", 3063 mod->name, ret); 3064 3065 mod_tree_remove_init(mod); 3066 module_arch_freeing_init(mod); 3067 for_class_mod_mem_type(type, init) { 3068 mod->mem[type].base = NULL; 3069 mod->mem[type].size = 0; 3070 } 3071 3072 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 3073 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 3074 mod->btf_data = NULL; 3075 mod->btf_base_data = NULL; 3076 #endif 3077 /* 3078 * We want to free module_init, but be aware that kallsyms may be 3079 * walking this within an RCU read section. In all the failure paths, we 3080 * call synchronize_rcu(), but we don't want to slow down the success 3081 * path. execmem_free() cannot be called in an interrupt, so do the 3082 * work and call synchronize_rcu() in a work queue. 3083 * 3084 * Note that execmem_alloc() on most architectures creates W+X page 3085 * mappings which won't be cleaned up until do_free_init() runs. Any 3086 * code such as mark_rodata_ro() which depends on those mappings to 3087 * be cleaned up needs to sync with the queued work by invoking 3088 * flush_module_init_free_work(). 3089 */ 3090 if (llist_add(&freeinit->node, &init_free_list)) 3091 schedule_work(&init_free_wq); 3092 3093 mutex_unlock(&module_mutex); 3094 wake_up_all(&module_wq); 3095 3096 mod_stat_add_long(text_size, &total_text_size); 3097 mod_stat_add_long(total_size, &total_mod_size); 3098 3099 mod_stat_inc(&modcount); 3100 3101 return 0; 3102 3103 fail_free_freeinit: 3104 kfree(freeinit); 3105 fail: 3106 /* Try to protect us from buggy refcounters. */ 3107 mod->state = MODULE_STATE_GOING; 3108 synchronize_rcu(); 3109 module_put(mod); 3110 blocking_notifier_call_chain(&module_notify_list, 3111 MODULE_STATE_GOING, mod); 3112 klp_module_going(mod); 3113 ftrace_release_mod(mod); 3114 free_module(mod); 3115 wake_up_all(&module_wq); 3116 3117 return ret; 3118 } 3119 3120 static int may_init_module(void) 3121 { 3122 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3123 return -EPERM; 3124 3125 return 0; 3126 } 3127 3128 /* Is this module of this name done loading? No locks held. */ 3129 static bool finished_loading(const char *name) 3130 { 3131 struct module *mod; 3132 bool ret; 3133 3134 /* 3135 * The module_mutex should not be a heavily contended lock; 3136 * if we get the occasional sleep here, we'll go an extra iteration 3137 * in the wait_event_interruptible(), which is harmless. 3138 */ 3139 sched_annotate_sleep(); 3140 mutex_lock(&module_mutex); 3141 mod = find_module_all(name, strlen(name), true); 3142 ret = !mod || mod->state == MODULE_STATE_LIVE 3143 || mod->state == MODULE_STATE_GOING; 3144 mutex_unlock(&module_mutex); 3145 3146 return ret; 3147 } 3148 3149 /* Must be called with module_mutex held */ 3150 static int module_patient_check_exists(const char *name, 3151 enum fail_dup_mod_reason reason) 3152 { 3153 struct module *old; 3154 int err = 0; 3155 3156 old = find_module_all(name, strlen(name), true); 3157 if (old == NULL) 3158 return 0; 3159 3160 if (old->state == MODULE_STATE_COMING || 3161 old->state == MODULE_STATE_UNFORMED) { 3162 /* Wait in case it fails to load. */ 3163 mutex_unlock(&module_mutex); 3164 err = wait_event_interruptible(module_wq, 3165 finished_loading(name)); 3166 mutex_lock(&module_mutex); 3167 if (err) 3168 return err; 3169 3170 /* The module might have gone in the meantime. */ 3171 old = find_module_all(name, strlen(name), true); 3172 } 3173 3174 if (try_add_failed_module(name, reason)) 3175 pr_warn("Could not add fail-tracking for module: %s\n", name); 3176 3177 /* 3178 * We are here only when the same module was being loaded. Do 3179 * not try to load it again right now. It prevents long delays 3180 * caused by serialized module load failures. It might happen 3181 * when more devices of the same type trigger load of 3182 * a particular module. 3183 */ 3184 if (old && old->state == MODULE_STATE_LIVE) 3185 return -EEXIST; 3186 return -EBUSY; 3187 } 3188 3189 /* 3190 * We try to place it in the list now to make sure it's unique before 3191 * we dedicate too many resources. In particular, temporary percpu 3192 * memory exhaustion. 3193 */ 3194 static int add_unformed_module(struct module *mod) 3195 { 3196 int err; 3197 3198 mod->state = MODULE_STATE_UNFORMED; 3199 3200 mutex_lock(&module_mutex); 3201 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3202 if (err) 3203 goto out; 3204 3205 mod_update_bounds(mod); 3206 list_add_rcu(&mod->list, &modules); 3207 mod_tree_insert(mod); 3208 err = 0; 3209 3210 out: 3211 mutex_unlock(&module_mutex); 3212 return err; 3213 } 3214 3215 static int complete_formation(struct module *mod, struct load_info *info) 3216 { 3217 int err; 3218 3219 mutex_lock(&module_mutex); 3220 3221 /* Find duplicate symbols (must be called under lock). */ 3222 err = verify_exported_symbols(mod); 3223 if (err < 0) 3224 goto out; 3225 3226 /* These rely on module_mutex for list integrity. */ 3227 module_bug_finalize(info->hdr, info->sechdrs, mod); 3228 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3229 3230 err = module_enable_rodata_ro(mod); 3231 if (err) 3232 goto out_strict_rwx; 3233 err = module_enable_data_nx(mod); 3234 if (err) 3235 goto out_strict_rwx; 3236 err = module_enable_text_rox(mod); 3237 if (err) 3238 goto out_strict_rwx; 3239 3240 /* 3241 * Mark state as coming so strong_try_module_get() ignores us, 3242 * but kallsyms etc. can see us. 3243 */ 3244 mod->state = MODULE_STATE_COMING; 3245 mutex_unlock(&module_mutex); 3246 3247 return 0; 3248 3249 out_strict_rwx: 3250 module_bug_cleanup(mod); 3251 out: 3252 mutex_unlock(&module_mutex); 3253 return err; 3254 } 3255 3256 static int prepare_coming_module(struct module *mod) 3257 { 3258 int err; 3259 3260 ftrace_module_enable(mod); 3261 err = klp_module_coming(mod); 3262 if (err) 3263 return err; 3264 3265 err = blocking_notifier_call_chain_robust(&module_notify_list, 3266 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3267 err = notifier_to_errno(err); 3268 if (err) 3269 klp_module_going(mod); 3270 3271 return err; 3272 } 3273 3274 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3275 void *arg) 3276 { 3277 struct module *mod = arg; 3278 int ret; 3279 3280 if (strcmp(param, "async_probe") == 0) { 3281 if (kstrtobool(val, &mod->async_probe_requested)) 3282 mod->async_probe_requested = true; 3283 return 0; 3284 } 3285 3286 /* Check for magic 'dyndbg' arg */ 3287 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3288 if (ret != 0) 3289 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3290 return 0; 3291 } 3292 3293 /* Module within temporary copy, this doesn't do any allocation */ 3294 static int early_mod_check(struct load_info *info, int flags) 3295 { 3296 int err; 3297 3298 /* 3299 * Now that we know we have the correct module name, check 3300 * if it's blacklisted. 3301 */ 3302 if (blacklisted(info->name)) { 3303 pr_err("Module %s is blacklisted\n", info->name); 3304 return -EPERM; 3305 } 3306 3307 err = rewrite_section_headers(info, flags); 3308 if (err) 3309 return err; 3310 3311 /* Check module struct version now, before we try to use module. */ 3312 if (!check_modstruct_version(info, info->mod)) 3313 return -ENOEXEC; 3314 3315 err = check_modinfo(info->mod, info, flags); 3316 if (err) 3317 return err; 3318 3319 mutex_lock(&module_mutex); 3320 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3321 mutex_unlock(&module_mutex); 3322 3323 return err; 3324 } 3325 3326 /* 3327 * Allocate and load the module: note that size of section 0 is always 3328 * zero, and we rely on this for optional sections. 3329 */ 3330 static int load_module(struct load_info *info, const char __user *uargs, 3331 int flags) 3332 { 3333 struct module *mod; 3334 bool module_allocated = false; 3335 long err = 0; 3336 char *after_dashes; 3337 3338 /* 3339 * Do the signature check (if any) first. All that 3340 * the signature check needs is info->len, it does 3341 * not need any of the section info. That can be 3342 * set up later. This will minimize the chances 3343 * of a corrupt module causing problems before 3344 * we even get to the signature check. 3345 * 3346 * The check will also adjust info->len by stripping 3347 * off the sig length at the end of the module, making 3348 * checks against info->len more correct. 3349 */ 3350 err = module_sig_check(info, flags); 3351 if (err) 3352 goto free_copy; 3353 3354 /* 3355 * Do basic sanity checks against the ELF header and 3356 * sections. Cache useful sections and set the 3357 * info->mod to the userspace passed struct module. 3358 */ 3359 err = elf_validity_cache_copy(info, flags); 3360 if (err) 3361 goto free_copy; 3362 3363 err = early_mod_check(info, flags); 3364 if (err) 3365 goto free_copy; 3366 3367 /* Figure out module layout, and allocate all the memory. */ 3368 mod = layout_and_allocate(info, flags); 3369 if (IS_ERR(mod)) { 3370 err = PTR_ERR(mod); 3371 goto free_copy; 3372 } 3373 3374 module_allocated = true; 3375 3376 audit_log_kern_module(mod->name); 3377 3378 /* Reserve our place in the list. */ 3379 err = add_unformed_module(mod); 3380 if (err) 3381 goto free_module; 3382 3383 /* 3384 * We are tainting your kernel if your module gets into 3385 * the modules linked list somehow. 3386 */ 3387 module_augment_kernel_taints(mod, info); 3388 3389 /* To avoid stressing percpu allocator, do this once we're unique. */ 3390 err = percpu_modalloc(mod, info); 3391 if (err) 3392 goto unlink_mod; 3393 3394 /* Now module is in final location, initialize linked lists, etc. */ 3395 err = module_unload_init(mod); 3396 if (err) 3397 goto unlink_mod; 3398 3399 init_param_lock(mod); 3400 3401 /* 3402 * Now we've got everything in the final locations, we can 3403 * find optional sections. 3404 */ 3405 err = find_module_sections(mod, info); 3406 if (err) 3407 goto free_unload; 3408 3409 err = check_export_symbol_versions(mod); 3410 if (err) 3411 goto free_unload; 3412 3413 /* Set up MODINFO_ATTR fields */ 3414 err = setup_modinfo(mod, info); 3415 if (err) 3416 goto free_modinfo; 3417 3418 /* Fix up syms, so that st_value is a pointer to location. */ 3419 err = simplify_symbols(mod, info); 3420 if (err < 0) 3421 goto free_modinfo; 3422 3423 err = apply_relocations(mod, info); 3424 if (err < 0) 3425 goto free_modinfo; 3426 3427 err = post_relocation(mod, info); 3428 if (err < 0) 3429 goto free_modinfo; 3430 3431 flush_module_icache(mod); 3432 3433 /* Now copy in args */ 3434 mod->args = strndup_user(uargs, ~0UL >> 1); 3435 if (IS_ERR(mod->args)) { 3436 err = PTR_ERR(mod->args); 3437 goto free_arch_cleanup; 3438 } 3439 3440 init_build_id(mod, info); 3441 3442 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3443 ftrace_module_init(mod); 3444 3445 /* Finally it's fully formed, ready to start executing. */ 3446 err = complete_formation(mod, info); 3447 if (err) 3448 goto ddebug_cleanup; 3449 3450 err = prepare_coming_module(mod); 3451 if (err) 3452 goto bug_cleanup; 3453 3454 mod->async_probe_requested = async_probe; 3455 3456 /* Module is ready to execute: parsing args may do that. */ 3457 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3458 -32768, 32767, mod, 3459 unknown_module_param_cb); 3460 if (IS_ERR(after_dashes)) { 3461 err = PTR_ERR(after_dashes); 3462 goto coming_cleanup; 3463 } else if (after_dashes) { 3464 pr_warn("%s: parameters '%s' after `--' ignored\n", 3465 mod->name, after_dashes); 3466 } 3467 3468 /* Link in to sysfs. */ 3469 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3470 if (err < 0) 3471 goto coming_cleanup; 3472 3473 if (is_livepatch_module(mod)) { 3474 err = copy_module_elf(mod, info); 3475 if (err < 0) 3476 goto sysfs_cleanup; 3477 } 3478 3479 if (codetag_load_module(mod)) 3480 goto sysfs_cleanup; 3481 3482 /* Get rid of temporary copy. */ 3483 free_copy(info, flags); 3484 3485 /* Done! */ 3486 trace_module_load(mod); 3487 3488 return do_init_module(mod); 3489 3490 sysfs_cleanup: 3491 mod_sysfs_teardown(mod); 3492 coming_cleanup: 3493 mod->state = MODULE_STATE_GOING; 3494 destroy_params(mod->kp, mod->num_kp); 3495 blocking_notifier_call_chain(&module_notify_list, 3496 MODULE_STATE_GOING, mod); 3497 klp_module_going(mod); 3498 bug_cleanup: 3499 mod->state = MODULE_STATE_GOING; 3500 /* module_bug_cleanup needs module_mutex protection */ 3501 mutex_lock(&module_mutex); 3502 module_bug_cleanup(mod); 3503 mutex_unlock(&module_mutex); 3504 3505 ddebug_cleanup: 3506 ftrace_release_mod(mod); 3507 synchronize_rcu(); 3508 kfree(mod->args); 3509 free_arch_cleanup: 3510 module_arch_cleanup(mod); 3511 free_modinfo: 3512 free_modinfo(mod); 3513 free_unload: 3514 module_unload_free(mod); 3515 unlink_mod: 3516 mutex_lock(&module_mutex); 3517 /* Unlink carefully: kallsyms could be walking list. */ 3518 list_del_rcu(&mod->list); 3519 mod_tree_remove(mod); 3520 wake_up_all(&module_wq); 3521 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3522 synchronize_rcu(); 3523 mutex_unlock(&module_mutex); 3524 free_module: 3525 mod_stat_bump_invalid(info, flags); 3526 /* Free lock-classes; relies on the preceding sync_rcu() */ 3527 for_class_mod_mem_type(type, core_data) { 3528 lockdep_free_key_range(mod->mem[type].base, 3529 mod->mem[type].size); 3530 } 3531 3532 module_memory_restore_rox(mod); 3533 module_deallocate(mod, info); 3534 free_copy: 3535 /* 3536 * The info->len is always set. We distinguish between 3537 * failures once the proper module was allocated and 3538 * before that. 3539 */ 3540 if (!module_allocated) 3541 mod_stat_bump_becoming(info, flags); 3542 free_copy(info, flags); 3543 return err; 3544 } 3545 3546 SYSCALL_DEFINE3(init_module, void __user *, umod, 3547 unsigned long, len, const char __user *, uargs) 3548 { 3549 int err; 3550 struct load_info info = { }; 3551 3552 err = may_init_module(); 3553 if (err) 3554 return err; 3555 3556 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3557 umod, len, uargs); 3558 3559 err = copy_module_from_user(umod, len, &info); 3560 if (err) { 3561 mod_stat_inc(&failed_kreads); 3562 mod_stat_add_long(len, &invalid_kread_bytes); 3563 return err; 3564 } 3565 3566 return load_module(&info, uargs, 0); 3567 } 3568 3569 struct idempotent { 3570 const void *cookie; 3571 struct hlist_node entry; 3572 struct completion complete; 3573 int ret; 3574 }; 3575 3576 #define IDEM_HASH_BITS 8 3577 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3578 static DEFINE_SPINLOCK(idem_lock); 3579 3580 static bool idempotent(struct idempotent *u, const void *cookie) 3581 { 3582 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3583 struct hlist_head *head = idem_hash + hash; 3584 struct idempotent *existing; 3585 bool first; 3586 3587 u->ret = -EINTR; 3588 u->cookie = cookie; 3589 init_completion(&u->complete); 3590 3591 spin_lock(&idem_lock); 3592 first = true; 3593 hlist_for_each_entry(existing, head, entry) { 3594 if (existing->cookie != cookie) 3595 continue; 3596 first = false; 3597 break; 3598 } 3599 hlist_add_head(&u->entry, idem_hash + hash); 3600 spin_unlock(&idem_lock); 3601 3602 return !first; 3603 } 3604 3605 /* 3606 * We were the first one with 'cookie' on the list, and we ended 3607 * up completing the operation. We now need to walk the list, 3608 * remove everybody - which includes ourselves - fill in the return 3609 * value, and then complete the operation. 3610 */ 3611 static int idempotent_complete(struct idempotent *u, int ret) 3612 { 3613 const void *cookie = u->cookie; 3614 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3615 struct hlist_head *head = idem_hash + hash; 3616 struct hlist_node *next; 3617 struct idempotent *pos; 3618 3619 spin_lock(&idem_lock); 3620 hlist_for_each_entry_safe(pos, next, head, entry) { 3621 if (pos->cookie != cookie) 3622 continue; 3623 hlist_del_init(&pos->entry); 3624 pos->ret = ret; 3625 complete(&pos->complete); 3626 } 3627 spin_unlock(&idem_lock); 3628 return ret; 3629 } 3630 3631 /* 3632 * Wait for the idempotent worker. 3633 * 3634 * If we get interrupted, we need to remove ourselves from the 3635 * the idempotent list, and the completion may still come in. 3636 * 3637 * The 'idem_lock' protects against the race, and 'idem.ret' was 3638 * initialized to -EINTR and is thus always the right return 3639 * value even if the idempotent work then completes between 3640 * the wait_for_completion and the cleanup. 3641 */ 3642 static int idempotent_wait_for_completion(struct idempotent *u) 3643 { 3644 if (wait_for_completion_interruptible(&u->complete)) { 3645 spin_lock(&idem_lock); 3646 if (!hlist_unhashed(&u->entry)) 3647 hlist_del(&u->entry); 3648 spin_unlock(&idem_lock); 3649 } 3650 return u->ret; 3651 } 3652 3653 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3654 { 3655 struct load_info info = { }; 3656 void *buf = NULL; 3657 int len; 3658 3659 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3660 if (len < 0) { 3661 mod_stat_inc(&failed_kreads); 3662 return len; 3663 } 3664 3665 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3666 int err = module_decompress(&info, buf, len); 3667 vfree(buf); /* compressed data is no longer needed */ 3668 if (err) { 3669 mod_stat_inc(&failed_decompress); 3670 mod_stat_add_long(len, &invalid_decompress_bytes); 3671 return err; 3672 } 3673 } else { 3674 info.hdr = buf; 3675 info.len = len; 3676 } 3677 3678 return load_module(&info, uargs, flags); 3679 } 3680 3681 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3682 { 3683 struct idempotent idem; 3684 3685 if (!(f->f_mode & FMODE_READ)) 3686 return -EBADF; 3687 3688 /* Are we the winners of the race and get to do this? */ 3689 if (!idempotent(&idem, file_inode(f))) { 3690 int ret = init_module_from_file(f, uargs, flags); 3691 return idempotent_complete(&idem, ret); 3692 } 3693 3694 /* 3695 * Somebody else won the race and is loading the module. 3696 */ 3697 return idempotent_wait_for_completion(&idem); 3698 } 3699 3700 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3701 { 3702 int err = may_init_module(); 3703 if (err) 3704 return err; 3705 3706 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3707 3708 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3709 |MODULE_INIT_IGNORE_VERMAGIC 3710 |MODULE_INIT_COMPRESSED_FILE)) 3711 return -EINVAL; 3712 3713 CLASS(fd, f)(fd); 3714 if (fd_empty(f)) 3715 return -EBADF; 3716 return idempotent_init_module(fd_file(f), uargs, flags); 3717 } 3718 3719 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3720 char *module_flags(struct module *mod, char *buf, bool show_state) 3721 { 3722 int bx = 0; 3723 3724 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3725 if (!mod->taints && !show_state) 3726 goto out; 3727 if (mod->taints || 3728 mod->state == MODULE_STATE_GOING || 3729 mod->state == MODULE_STATE_COMING) { 3730 buf[bx++] = '('; 3731 bx += module_flags_taint(mod->taints, buf + bx); 3732 /* Show a - for module-is-being-unloaded */ 3733 if (mod->state == MODULE_STATE_GOING && show_state) 3734 buf[bx++] = '-'; 3735 /* Show a + for module-is-being-loaded */ 3736 if (mod->state == MODULE_STATE_COMING && show_state) 3737 buf[bx++] = '+'; 3738 buf[bx++] = ')'; 3739 } 3740 out: 3741 buf[bx] = '\0'; 3742 3743 return buf; 3744 } 3745 3746 /* Given an address, look for it in the module exception tables. */ 3747 const struct exception_table_entry *search_module_extables(unsigned long addr) 3748 { 3749 struct module *mod; 3750 3751 guard(rcu)(); 3752 mod = __module_address(addr); 3753 if (!mod) 3754 return NULL; 3755 3756 if (!mod->num_exentries) 3757 return NULL; 3758 /* 3759 * The address passed here belongs to a module that is currently 3760 * invoked (we are running inside it). Therefore its module::refcnt 3761 * needs already be >0 to ensure that it is not removed at this stage. 3762 * All other user need to invoke this function within a RCU read 3763 * section. 3764 */ 3765 return search_extable(mod->extable, mod->num_exentries, addr); 3766 } 3767 3768 /** 3769 * is_module_address() - is this address inside a module? 3770 * @addr: the address to check. 3771 * 3772 * See is_module_text_address() if you simply want to see if the address 3773 * is code (not data). 3774 */ 3775 bool is_module_address(unsigned long addr) 3776 { 3777 guard(rcu)(); 3778 return __module_address(addr) != NULL; 3779 } 3780 3781 /** 3782 * __module_address() - get the module which contains an address. 3783 * @addr: the address. 3784 * 3785 * Must be called within RCU read section or module mutex held so that 3786 * module doesn't get freed during this. 3787 */ 3788 struct module *__module_address(unsigned long addr) 3789 { 3790 struct module *mod; 3791 3792 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3793 goto lookup; 3794 3795 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3796 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3797 goto lookup; 3798 #endif 3799 3800 return NULL; 3801 3802 lookup: 3803 mod = mod_find(addr, &mod_tree); 3804 if (mod) { 3805 BUG_ON(!within_module(addr, mod)); 3806 if (mod->state == MODULE_STATE_UNFORMED) 3807 mod = NULL; 3808 } 3809 return mod; 3810 } 3811 3812 /** 3813 * is_module_text_address() - is this address inside module code? 3814 * @addr: the address to check. 3815 * 3816 * See is_module_address() if you simply want to see if the address is 3817 * anywhere in a module. See kernel_text_address() for testing if an 3818 * address corresponds to kernel or module code. 3819 */ 3820 bool is_module_text_address(unsigned long addr) 3821 { 3822 guard(rcu)(); 3823 return __module_text_address(addr) != NULL; 3824 } 3825 3826 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data) 3827 { 3828 struct module *mod; 3829 3830 guard(rcu)(); 3831 list_for_each_entry_rcu(mod, &modules, list) { 3832 if (mod->state == MODULE_STATE_UNFORMED) 3833 continue; 3834 if (func(mod, data)) 3835 break; 3836 } 3837 } 3838 3839 /** 3840 * __module_text_address() - get the module whose code contains an address. 3841 * @addr: the address. 3842 * 3843 * Must be called within RCU read section or module mutex held so that 3844 * module doesn't get freed during this. 3845 */ 3846 struct module *__module_text_address(unsigned long addr) 3847 { 3848 struct module *mod = __module_address(addr); 3849 if (mod) { 3850 /* Make sure it's within the text section. */ 3851 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3852 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3853 mod = NULL; 3854 } 3855 return mod; 3856 } 3857 3858 /* Don't grab lock, we're oopsing. */ 3859 void print_modules(void) 3860 { 3861 struct module *mod; 3862 char buf[MODULE_FLAGS_BUF_SIZE]; 3863 3864 printk(KERN_DEFAULT "Modules linked in:"); 3865 /* Most callers should already have preempt disabled, but make sure */ 3866 guard(rcu)(); 3867 list_for_each_entry_rcu(mod, &modules, list) { 3868 if (mod->state == MODULE_STATE_UNFORMED) 3869 continue; 3870 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3871 } 3872 3873 print_unloaded_tainted_modules(); 3874 if (last_unloaded_module.name[0]) 3875 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3876 last_unloaded_module.taints); 3877 pr_cont("\n"); 3878 } 3879 3880 #ifdef CONFIG_MODULE_DEBUGFS 3881 struct dentry *mod_debugfs_root; 3882 3883 static int module_debugfs_init(void) 3884 { 3885 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3886 return 0; 3887 } 3888 module_init(module_debugfs_init); 3889 #endif 3890