1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/debugfs.h> 60 #include <linux/execmem.h> 61 #include <uapi/linux/module.h> 62 #include "internal.h" 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/module.h> 66 67 /* 68 * Mutex protects: 69 * 1) List of modules (also safely readable with preempt_disable), 70 * 2) module_use links, 71 * 3) mod_tree.addr_min/mod_tree.addr_max. 72 * (delete and add uses RCU list operations). 73 */ 74 DEFINE_MUTEX(module_mutex); 75 LIST_HEAD(modules); 76 77 /* Work queue for freeing init sections in success case */ 78 static void do_free_init(struct work_struct *w); 79 static DECLARE_WORK(init_free_wq, do_free_init); 80 static LLIST_HEAD(init_free_list); 81 82 struct mod_tree_root mod_tree __cacheline_aligned = { 83 .addr_min = -1UL, 84 }; 85 86 struct symsearch { 87 const struct kernel_symbol *start, *stop; 88 const s32 *crcs; 89 enum mod_license license; 90 }; 91 92 /* 93 * Bounds of module memory, for speeding up __module_address. 94 * Protected by module_mutex. 95 */ 96 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 97 unsigned int size, struct mod_tree_root *tree) 98 { 99 unsigned long min = (unsigned long)base; 100 unsigned long max = min + size; 101 102 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 103 if (mod_mem_type_is_core_data(type)) { 104 if (min < tree->data_addr_min) 105 tree->data_addr_min = min; 106 if (max > tree->data_addr_max) 107 tree->data_addr_max = max; 108 return; 109 } 110 #endif 111 if (min < tree->addr_min) 112 tree->addr_min = min; 113 if (max > tree->addr_max) 114 tree->addr_max = max; 115 } 116 117 static void mod_update_bounds(struct module *mod) 118 { 119 for_each_mod_mem_type(type) { 120 struct module_memory *mod_mem = &mod->mem[type]; 121 122 if (mod_mem->size) 123 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 124 } 125 } 126 127 /* Block module loading/unloading? */ 128 int modules_disabled; 129 core_param(nomodule, modules_disabled, bint, 0); 130 131 /* Waiting for a module to finish initializing? */ 132 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 133 134 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 135 136 int register_module_notifier(struct notifier_block *nb) 137 { 138 return blocking_notifier_chain_register(&module_notify_list, nb); 139 } 140 EXPORT_SYMBOL(register_module_notifier); 141 142 int unregister_module_notifier(struct notifier_block *nb) 143 { 144 return blocking_notifier_chain_unregister(&module_notify_list, nb); 145 } 146 EXPORT_SYMBOL(unregister_module_notifier); 147 148 /* 149 * We require a truly strong try_module_get(): 0 means success. 150 * Otherwise an error is returned due to ongoing or failed 151 * initialization etc. 152 */ 153 static inline int strong_try_module_get(struct module *mod) 154 { 155 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 156 if (mod && mod->state == MODULE_STATE_COMING) 157 return -EBUSY; 158 if (try_module_get(mod)) 159 return 0; 160 else 161 return -ENOENT; 162 } 163 164 static inline void add_taint_module(struct module *mod, unsigned flag, 165 enum lockdep_ok lockdep_ok) 166 { 167 add_taint(flag, lockdep_ok); 168 set_bit(flag, &mod->taints); 169 } 170 171 /* 172 * A thread that wants to hold a reference to a module only while it 173 * is running can call this to safely exit. 174 */ 175 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 176 { 177 module_put(mod); 178 kthread_exit(code); 179 } 180 EXPORT_SYMBOL(__module_put_and_kthread_exit); 181 182 /* Find a module section: 0 means not found. */ 183 static unsigned int find_sec(const struct load_info *info, const char *name) 184 { 185 unsigned int i; 186 187 for (i = 1; i < info->hdr->e_shnum; i++) { 188 Elf_Shdr *shdr = &info->sechdrs[i]; 189 /* Alloc bit cleared means "ignore it." */ 190 if ((shdr->sh_flags & SHF_ALLOC) 191 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 192 return i; 193 } 194 return 0; 195 } 196 197 /* Find a module section, or NULL. */ 198 static void *section_addr(const struct load_info *info, const char *name) 199 { 200 /* Section 0 has sh_addr 0. */ 201 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 202 } 203 204 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 205 static void *section_objs(const struct load_info *info, 206 const char *name, 207 size_t object_size, 208 unsigned int *num) 209 { 210 unsigned int sec = find_sec(info, name); 211 212 /* Section 0 has sh_addr 0 and sh_size 0. */ 213 *num = info->sechdrs[sec].sh_size / object_size; 214 return (void *)info->sechdrs[sec].sh_addr; 215 } 216 217 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 218 static unsigned int find_any_sec(const struct load_info *info, const char *name) 219 { 220 unsigned int i; 221 222 for (i = 1; i < info->hdr->e_shnum; i++) { 223 Elf_Shdr *shdr = &info->sechdrs[i]; 224 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 225 return i; 226 } 227 return 0; 228 } 229 230 /* 231 * Find a module section, or NULL. Fill in number of "objects" in section. 232 * Ignores SHF_ALLOC flag. 233 */ 234 static __maybe_unused void *any_section_objs(const struct load_info *info, 235 const char *name, 236 size_t object_size, 237 unsigned int *num) 238 { 239 unsigned int sec = find_any_sec(info, name); 240 241 /* Section 0 has sh_addr 0 and sh_size 0. */ 242 *num = info->sechdrs[sec].sh_size / object_size; 243 return (void *)info->sechdrs[sec].sh_addr; 244 } 245 246 #ifndef CONFIG_MODVERSIONS 247 #define symversion(base, idx) NULL 248 #else 249 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 250 #endif 251 252 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 253 { 254 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 255 return offset_to_ptr(&sym->name_offset); 256 #else 257 return sym->name; 258 #endif 259 } 260 261 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 262 { 263 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 264 if (!sym->namespace_offset) 265 return NULL; 266 return offset_to_ptr(&sym->namespace_offset); 267 #else 268 return sym->namespace; 269 #endif 270 } 271 272 int cmp_name(const void *name, const void *sym) 273 { 274 return strcmp(name, kernel_symbol_name(sym)); 275 } 276 277 static bool find_exported_symbol_in_section(const struct symsearch *syms, 278 struct module *owner, 279 struct find_symbol_arg *fsa) 280 { 281 struct kernel_symbol *sym; 282 283 if (!fsa->gplok && syms->license == GPL_ONLY) 284 return false; 285 286 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 287 sizeof(struct kernel_symbol), cmp_name); 288 if (!sym) 289 return false; 290 291 fsa->owner = owner; 292 fsa->crc = symversion(syms->crcs, sym - syms->start); 293 fsa->sym = sym; 294 fsa->license = syms->license; 295 296 return true; 297 } 298 299 /* 300 * Find an exported symbol and return it, along with, (optional) crc and 301 * (optional) module which owns it. Needs preempt disabled or module_mutex. 302 */ 303 bool find_symbol(struct find_symbol_arg *fsa) 304 { 305 static const struct symsearch arr[] = { 306 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 307 NOT_GPL_ONLY }, 308 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 309 __start___kcrctab_gpl, 310 GPL_ONLY }, 311 }; 312 struct module *mod; 313 unsigned int i; 314 315 module_assert_mutex_or_preempt(); 316 317 for (i = 0; i < ARRAY_SIZE(arr); i++) 318 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 319 return true; 320 321 list_for_each_entry_rcu(mod, &modules, list, 322 lockdep_is_held(&module_mutex)) { 323 struct symsearch arr[] = { 324 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 325 NOT_GPL_ONLY }, 326 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 327 mod->gpl_crcs, 328 GPL_ONLY }, 329 }; 330 331 if (mod->state == MODULE_STATE_UNFORMED) 332 continue; 333 334 for (i = 0; i < ARRAY_SIZE(arr); i++) 335 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 336 return true; 337 } 338 339 pr_debug("Failed to find symbol %s\n", fsa->name); 340 return false; 341 } 342 343 /* 344 * Search for module by name: must hold module_mutex (or preempt disabled 345 * for read-only access). 346 */ 347 struct module *find_module_all(const char *name, size_t len, 348 bool even_unformed) 349 { 350 struct module *mod; 351 352 module_assert_mutex_or_preempt(); 353 354 list_for_each_entry_rcu(mod, &modules, list, 355 lockdep_is_held(&module_mutex)) { 356 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 357 continue; 358 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 359 return mod; 360 } 361 return NULL; 362 } 363 364 struct module *find_module(const char *name) 365 { 366 return find_module_all(name, strlen(name), false); 367 } 368 369 #ifdef CONFIG_SMP 370 371 static inline void __percpu *mod_percpu(struct module *mod) 372 { 373 return mod->percpu; 374 } 375 376 static int percpu_modalloc(struct module *mod, struct load_info *info) 377 { 378 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 379 unsigned long align = pcpusec->sh_addralign; 380 381 if (!pcpusec->sh_size) 382 return 0; 383 384 if (align > PAGE_SIZE) { 385 pr_warn("%s: per-cpu alignment %li > %li\n", 386 mod->name, align, PAGE_SIZE); 387 align = PAGE_SIZE; 388 } 389 390 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 391 if (!mod->percpu) { 392 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 393 mod->name, (unsigned long)pcpusec->sh_size); 394 return -ENOMEM; 395 } 396 mod->percpu_size = pcpusec->sh_size; 397 return 0; 398 } 399 400 static void percpu_modfree(struct module *mod) 401 { 402 free_percpu(mod->percpu); 403 } 404 405 static unsigned int find_pcpusec(struct load_info *info) 406 { 407 return find_sec(info, ".data..percpu"); 408 } 409 410 static void percpu_modcopy(struct module *mod, 411 const void *from, unsigned long size) 412 { 413 int cpu; 414 415 for_each_possible_cpu(cpu) 416 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 417 } 418 419 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 420 { 421 struct module *mod; 422 unsigned int cpu; 423 424 preempt_disable(); 425 426 list_for_each_entry_rcu(mod, &modules, list) { 427 if (mod->state == MODULE_STATE_UNFORMED) 428 continue; 429 if (!mod->percpu_size) 430 continue; 431 for_each_possible_cpu(cpu) { 432 void *start = per_cpu_ptr(mod->percpu, cpu); 433 void *va = (void *)addr; 434 435 if (va >= start && va < start + mod->percpu_size) { 436 if (can_addr) { 437 *can_addr = (unsigned long) (va - start); 438 *can_addr += (unsigned long) 439 per_cpu_ptr(mod->percpu, 440 get_boot_cpu_id()); 441 } 442 preempt_enable(); 443 return true; 444 } 445 } 446 } 447 448 preempt_enable(); 449 return false; 450 } 451 452 /** 453 * is_module_percpu_address() - test whether address is from module static percpu 454 * @addr: address to test 455 * 456 * Test whether @addr belongs to module static percpu area. 457 * 458 * Return: %true if @addr is from module static percpu area 459 */ 460 bool is_module_percpu_address(unsigned long addr) 461 { 462 return __is_module_percpu_address(addr, NULL); 463 } 464 465 #else /* ... !CONFIG_SMP */ 466 467 static inline void __percpu *mod_percpu(struct module *mod) 468 { 469 return NULL; 470 } 471 static int percpu_modalloc(struct module *mod, struct load_info *info) 472 { 473 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 474 if (info->sechdrs[info->index.pcpu].sh_size != 0) 475 return -ENOMEM; 476 return 0; 477 } 478 static inline void percpu_modfree(struct module *mod) 479 { 480 } 481 static unsigned int find_pcpusec(struct load_info *info) 482 { 483 return 0; 484 } 485 static inline void percpu_modcopy(struct module *mod, 486 const void *from, unsigned long size) 487 { 488 /* pcpusec should be 0, and size of that section should be 0. */ 489 BUG_ON(size != 0); 490 } 491 bool is_module_percpu_address(unsigned long addr) 492 { 493 return false; 494 } 495 496 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 497 { 498 return false; 499 } 500 501 #endif /* CONFIG_SMP */ 502 503 #define MODINFO_ATTR(field) \ 504 static void setup_modinfo_##field(struct module *mod, const char *s) \ 505 { \ 506 mod->field = kstrdup(s, GFP_KERNEL); \ 507 } \ 508 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 509 struct module_kobject *mk, char *buffer) \ 510 { \ 511 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 512 } \ 513 static int modinfo_##field##_exists(struct module *mod) \ 514 { \ 515 return mod->field != NULL; \ 516 } \ 517 static void free_modinfo_##field(struct module *mod) \ 518 { \ 519 kfree(mod->field); \ 520 mod->field = NULL; \ 521 } \ 522 static struct module_attribute modinfo_##field = { \ 523 .attr = { .name = __stringify(field), .mode = 0444 }, \ 524 .show = show_modinfo_##field, \ 525 .setup = setup_modinfo_##field, \ 526 .test = modinfo_##field##_exists, \ 527 .free = free_modinfo_##field, \ 528 }; 529 530 MODINFO_ATTR(version); 531 MODINFO_ATTR(srcversion); 532 533 static struct { 534 char name[MODULE_NAME_LEN + 1]; 535 char taints[MODULE_FLAGS_BUF_SIZE]; 536 } last_unloaded_module; 537 538 #ifdef CONFIG_MODULE_UNLOAD 539 540 EXPORT_TRACEPOINT_SYMBOL(module_get); 541 542 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 543 #define MODULE_REF_BASE 1 544 545 /* Init the unload section of the module. */ 546 static int module_unload_init(struct module *mod) 547 { 548 /* 549 * Initialize reference counter to MODULE_REF_BASE. 550 * refcnt == 0 means module is going. 551 */ 552 atomic_set(&mod->refcnt, MODULE_REF_BASE); 553 554 INIT_LIST_HEAD(&mod->source_list); 555 INIT_LIST_HEAD(&mod->target_list); 556 557 /* Hold reference count during initialization. */ 558 atomic_inc(&mod->refcnt); 559 560 return 0; 561 } 562 563 /* Does a already use b? */ 564 static int already_uses(struct module *a, struct module *b) 565 { 566 struct module_use *use; 567 568 list_for_each_entry(use, &b->source_list, source_list) { 569 if (use->source == a) 570 return 1; 571 } 572 pr_debug("%s does not use %s!\n", a->name, b->name); 573 return 0; 574 } 575 576 /* 577 * Module a uses b 578 * - we add 'a' as a "source", 'b' as a "target" of module use 579 * - the module_use is added to the list of 'b' sources (so 580 * 'b' can walk the list to see who sourced them), and of 'a' 581 * targets (so 'a' can see what modules it targets). 582 */ 583 static int add_module_usage(struct module *a, struct module *b) 584 { 585 struct module_use *use; 586 587 pr_debug("Allocating new usage for %s.\n", a->name); 588 use = kmalloc(sizeof(*use), GFP_ATOMIC); 589 if (!use) 590 return -ENOMEM; 591 592 use->source = a; 593 use->target = b; 594 list_add(&use->source_list, &b->source_list); 595 list_add(&use->target_list, &a->target_list); 596 return 0; 597 } 598 599 /* Module a uses b: caller needs module_mutex() */ 600 static int ref_module(struct module *a, struct module *b) 601 { 602 int err; 603 604 if (b == NULL || already_uses(a, b)) 605 return 0; 606 607 /* If module isn't available, we fail. */ 608 err = strong_try_module_get(b); 609 if (err) 610 return err; 611 612 err = add_module_usage(a, b); 613 if (err) { 614 module_put(b); 615 return err; 616 } 617 return 0; 618 } 619 620 /* Clear the unload stuff of the module. */ 621 static void module_unload_free(struct module *mod) 622 { 623 struct module_use *use, *tmp; 624 625 mutex_lock(&module_mutex); 626 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 627 struct module *i = use->target; 628 pr_debug("%s unusing %s\n", mod->name, i->name); 629 module_put(i); 630 list_del(&use->source_list); 631 list_del(&use->target_list); 632 kfree(use); 633 } 634 mutex_unlock(&module_mutex); 635 } 636 637 #ifdef CONFIG_MODULE_FORCE_UNLOAD 638 static inline int try_force_unload(unsigned int flags) 639 { 640 int ret = (flags & O_TRUNC); 641 if (ret) 642 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 643 return ret; 644 } 645 #else 646 static inline int try_force_unload(unsigned int flags) 647 { 648 return 0; 649 } 650 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 651 652 /* Try to release refcount of module, 0 means success. */ 653 static int try_release_module_ref(struct module *mod) 654 { 655 int ret; 656 657 /* Try to decrement refcnt which we set at loading */ 658 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 659 BUG_ON(ret < 0); 660 if (ret) 661 /* Someone can put this right now, recover with checking */ 662 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 663 664 return ret; 665 } 666 667 static int try_stop_module(struct module *mod, int flags, int *forced) 668 { 669 /* If it's not unused, quit unless we're forcing. */ 670 if (try_release_module_ref(mod) != 0) { 671 *forced = try_force_unload(flags); 672 if (!(*forced)) 673 return -EWOULDBLOCK; 674 } 675 676 /* Mark it as dying. */ 677 mod->state = MODULE_STATE_GOING; 678 679 return 0; 680 } 681 682 /** 683 * module_refcount() - return the refcount or -1 if unloading 684 * @mod: the module we're checking 685 * 686 * Return: 687 * -1 if the module is in the process of unloading 688 * otherwise the number of references in the kernel to the module 689 */ 690 int module_refcount(struct module *mod) 691 { 692 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 693 } 694 EXPORT_SYMBOL(module_refcount); 695 696 /* This exists whether we can unload or not */ 697 static void free_module(struct module *mod); 698 699 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 700 unsigned int, flags) 701 { 702 struct module *mod; 703 char name[MODULE_NAME_LEN]; 704 char buf[MODULE_FLAGS_BUF_SIZE]; 705 int ret, forced = 0; 706 707 if (!capable(CAP_SYS_MODULE) || modules_disabled) 708 return -EPERM; 709 710 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 711 return -EFAULT; 712 name[MODULE_NAME_LEN-1] = '\0'; 713 714 audit_log_kern_module(name); 715 716 if (mutex_lock_interruptible(&module_mutex) != 0) 717 return -EINTR; 718 719 mod = find_module(name); 720 if (!mod) { 721 ret = -ENOENT; 722 goto out; 723 } 724 725 if (!list_empty(&mod->source_list)) { 726 /* Other modules depend on us: get rid of them first. */ 727 ret = -EWOULDBLOCK; 728 goto out; 729 } 730 731 /* Doing init or already dying? */ 732 if (mod->state != MODULE_STATE_LIVE) { 733 /* FIXME: if (force), slam module count damn the torpedoes */ 734 pr_debug("%s already dying\n", mod->name); 735 ret = -EBUSY; 736 goto out; 737 } 738 739 /* If it has an init func, it must have an exit func to unload */ 740 if (mod->init && !mod->exit) { 741 forced = try_force_unload(flags); 742 if (!forced) { 743 /* This module can't be removed */ 744 ret = -EBUSY; 745 goto out; 746 } 747 } 748 749 ret = try_stop_module(mod, flags, &forced); 750 if (ret != 0) 751 goto out; 752 753 mutex_unlock(&module_mutex); 754 /* Final destruction now no one is using it. */ 755 if (mod->exit != NULL) 756 mod->exit(); 757 blocking_notifier_call_chain(&module_notify_list, 758 MODULE_STATE_GOING, mod); 759 klp_module_going(mod); 760 ftrace_release_mod(mod); 761 762 async_synchronize_full(); 763 764 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 765 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 766 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 767 768 free_module(mod); 769 /* someone could wait for the module in add_unformed_module() */ 770 wake_up_all(&module_wq); 771 return 0; 772 out: 773 mutex_unlock(&module_mutex); 774 return ret; 775 } 776 777 void __symbol_put(const char *symbol) 778 { 779 struct find_symbol_arg fsa = { 780 .name = symbol, 781 .gplok = true, 782 }; 783 784 preempt_disable(); 785 BUG_ON(!find_symbol(&fsa)); 786 module_put(fsa.owner); 787 preempt_enable(); 788 } 789 EXPORT_SYMBOL(__symbol_put); 790 791 /* Note this assumes addr is a function, which it currently always is. */ 792 void symbol_put_addr(void *addr) 793 { 794 struct module *modaddr; 795 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 796 797 if (core_kernel_text(a)) 798 return; 799 800 /* 801 * Even though we hold a reference on the module; we still need to 802 * disable preemption in order to safely traverse the data structure. 803 */ 804 preempt_disable(); 805 modaddr = __module_text_address(a); 806 BUG_ON(!modaddr); 807 module_put(modaddr); 808 preempt_enable(); 809 } 810 EXPORT_SYMBOL_GPL(symbol_put_addr); 811 812 static ssize_t show_refcnt(struct module_attribute *mattr, 813 struct module_kobject *mk, char *buffer) 814 { 815 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 816 } 817 818 static struct module_attribute modinfo_refcnt = 819 __ATTR(refcnt, 0444, show_refcnt, NULL); 820 821 void __module_get(struct module *module) 822 { 823 if (module) { 824 atomic_inc(&module->refcnt); 825 trace_module_get(module, _RET_IP_); 826 } 827 } 828 EXPORT_SYMBOL(__module_get); 829 830 bool try_module_get(struct module *module) 831 { 832 bool ret = true; 833 834 if (module) { 835 /* Note: here, we can fail to get a reference */ 836 if (likely(module_is_live(module) && 837 atomic_inc_not_zero(&module->refcnt) != 0)) 838 trace_module_get(module, _RET_IP_); 839 else 840 ret = false; 841 } 842 return ret; 843 } 844 EXPORT_SYMBOL(try_module_get); 845 846 void module_put(struct module *module) 847 { 848 int ret; 849 850 if (module) { 851 ret = atomic_dec_if_positive(&module->refcnt); 852 WARN_ON(ret < 0); /* Failed to put refcount */ 853 trace_module_put(module, _RET_IP_); 854 } 855 } 856 EXPORT_SYMBOL(module_put); 857 858 #else /* !CONFIG_MODULE_UNLOAD */ 859 static inline void module_unload_free(struct module *mod) 860 { 861 } 862 863 static int ref_module(struct module *a, struct module *b) 864 { 865 return strong_try_module_get(b); 866 } 867 868 static inline int module_unload_init(struct module *mod) 869 { 870 return 0; 871 } 872 #endif /* CONFIG_MODULE_UNLOAD */ 873 874 size_t module_flags_taint(unsigned long taints, char *buf) 875 { 876 size_t l = 0; 877 int i; 878 879 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 880 if (taint_flags[i].module && test_bit(i, &taints)) 881 buf[l++] = taint_flags[i].c_true; 882 } 883 884 return l; 885 } 886 887 static ssize_t show_initstate(struct module_attribute *mattr, 888 struct module_kobject *mk, char *buffer) 889 { 890 const char *state = "unknown"; 891 892 switch (mk->mod->state) { 893 case MODULE_STATE_LIVE: 894 state = "live"; 895 break; 896 case MODULE_STATE_COMING: 897 state = "coming"; 898 break; 899 case MODULE_STATE_GOING: 900 state = "going"; 901 break; 902 default: 903 BUG(); 904 } 905 return sprintf(buffer, "%s\n", state); 906 } 907 908 static struct module_attribute modinfo_initstate = 909 __ATTR(initstate, 0444, show_initstate, NULL); 910 911 static ssize_t store_uevent(struct module_attribute *mattr, 912 struct module_kobject *mk, 913 const char *buffer, size_t count) 914 { 915 int rc; 916 917 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 918 return rc ? rc : count; 919 } 920 921 struct module_attribute module_uevent = 922 __ATTR(uevent, 0200, NULL, store_uevent); 923 924 static ssize_t show_coresize(struct module_attribute *mattr, 925 struct module_kobject *mk, char *buffer) 926 { 927 unsigned int size = mk->mod->mem[MOD_TEXT].size; 928 929 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 930 for_class_mod_mem_type(type, core_data) 931 size += mk->mod->mem[type].size; 932 } 933 return sprintf(buffer, "%u\n", size); 934 } 935 936 static struct module_attribute modinfo_coresize = 937 __ATTR(coresize, 0444, show_coresize, NULL); 938 939 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 940 static ssize_t show_datasize(struct module_attribute *mattr, 941 struct module_kobject *mk, char *buffer) 942 { 943 unsigned int size = 0; 944 945 for_class_mod_mem_type(type, core_data) 946 size += mk->mod->mem[type].size; 947 return sprintf(buffer, "%u\n", size); 948 } 949 950 static struct module_attribute modinfo_datasize = 951 __ATTR(datasize, 0444, show_datasize, NULL); 952 #endif 953 954 static ssize_t show_initsize(struct module_attribute *mattr, 955 struct module_kobject *mk, char *buffer) 956 { 957 unsigned int size = 0; 958 959 for_class_mod_mem_type(type, init) 960 size += mk->mod->mem[type].size; 961 return sprintf(buffer, "%u\n", size); 962 } 963 964 static struct module_attribute modinfo_initsize = 965 __ATTR(initsize, 0444, show_initsize, NULL); 966 967 static ssize_t show_taint(struct module_attribute *mattr, 968 struct module_kobject *mk, char *buffer) 969 { 970 size_t l; 971 972 l = module_flags_taint(mk->mod->taints, buffer); 973 buffer[l++] = '\n'; 974 return l; 975 } 976 977 static struct module_attribute modinfo_taint = 978 __ATTR(taint, 0444, show_taint, NULL); 979 980 struct module_attribute *modinfo_attrs[] = { 981 &module_uevent, 982 &modinfo_version, 983 &modinfo_srcversion, 984 &modinfo_initstate, 985 &modinfo_coresize, 986 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 987 &modinfo_datasize, 988 #endif 989 &modinfo_initsize, 990 &modinfo_taint, 991 #ifdef CONFIG_MODULE_UNLOAD 992 &modinfo_refcnt, 993 #endif 994 NULL, 995 }; 996 997 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 998 999 static const char vermagic[] = VERMAGIC_STRING; 1000 1001 int try_to_force_load(struct module *mod, const char *reason) 1002 { 1003 #ifdef CONFIG_MODULE_FORCE_LOAD 1004 if (!test_taint(TAINT_FORCED_MODULE)) 1005 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1006 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1007 return 0; 1008 #else 1009 return -ENOEXEC; 1010 #endif 1011 } 1012 1013 /* Parse tag=value strings from .modinfo section */ 1014 char *module_next_tag_pair(char *string, unsigned long *secsize) 1015 { 1016 /* Skip non-zero chars */ 1017 while (string[0]) { 1018 string++; 1019 if ((*secsize)-- <= 1) 1020 return NULL; 1021 } 1022 1023 /* Skip any zero padding. */ 1024 while (!string[0]) { 1025 string++; 1026 if ((*secsize)-- <= 1) 1027 return NULL; 1028 } 1029 return string; 1030 } 1031 1032 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1033 char *prev) 1034 { 1035 char *p; 1036 unsigned int taglen = strlen(tag); 1037 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1038 unsigned long size = infosec->sh_size; 1039 1040 /* 1041 * get_modinfo() calls made before rewrite_section_headers() 1042 * must use sh_offset, as sh_addr isn't set! 1043 */ 1044 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1045 1046 if (prev) { 1047 size -= prev - modinfo; 1048 modinfo = module_next_tag_pair(prev, &size); 1049 } 1050 1051 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1052 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1053 return p + taglen + 1; 1054 } 1055 return NULL; 1056 } 1057 1058 static char *get_modinfo(const struct load_info *info, const char *tag) 1059 { 1060 return get_next_modinfo(info, tag, NULL); 1061 } 1062 1063 static int verify_namespace_is_imported(const struct load_info *info, 1064 const struct kernel_symbol *sym, 1065 struct module *mod) 1066 { 1067 const char *namespace; 1068 char *imported_namespace; 1069 1070 namespace = kernel_symbol_namespace(sym); 1071 if (namespace && namespace[0]) { 1072 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1073 if (strcmp(namespace, imported_namespace) == 0) 1074 return 0; 1075 } 1076 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1077 pr_warn( 1078 #else 1079 pr_err( 1080 #endif 1081 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1082 mod->name, kernel_symbol_name(sym), namespace); 1083 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1084 return -EINVAL; 1085 #endif 1086 } 1087 return 0; 1088 } 1089 1090 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1091 { 1092 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1093 return true; 1094 1095 if (mod->using_gplonly_symbols) { 1096 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1097 mod->name, name, owner->name); 1098 return false; 1099 } 1100 1101 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1102 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1103 mod->name, name, owner->name); 1104 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1105 } 1106 return true; 1107 } 1108 1109 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1110 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1111 const struct load_info *info, 1112 const char *name, 1113 char ownername[]) 1114 { 1115 struct find_symbol_arg fsa = { 1116 .name = name, 1117 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1118 .warn = true, 1119 }; 1120 int err; 1121 1122 /* 1123 * The module_mutex should not be a heavily contended lock; 1124 * if we get the occasional sleep here, we'll go an extra iteration 1125 * in the wait_event_interruptible(), which is harmless. 1126 */ 1127 sched_annotate_sleep(); 1128 mutex_lock(&module_mutex); 1129 if (!find_symbol(&fsa)) 1130 goto unlock; 1131 1132 if (fsa.license == GPL_ONLY) 1133 mod->using_gplonly_symbols = true; 1134 1135 if (!inherit_taint(mod, fsa.owner, name)) { 1136 fsa.sym = NULL; 1137 goto getname; 1138 } 1139 1140 if (!check_version(info, name, mod, fsa.crc)) { 1141 fsa.sym = ERR_PTR(-EINVAL); 1142 goto getname; 1143 } 1144 1145 err = verify_namespace_is_imported(info, fsa.sym, mod); 1146 if (err) { 1147 fsa.sym = ERR_PTR(err); 1148 goto getname; 1149 } 1150 1151 err = ref_module(mod, fsa.owner); 1152 if (err) { 1153 fsa.sym = ERR_PTR(err); 1154 goto getname; 1155 } 1156 1157 getname: 1158 /* We must make copy under the lock if we failed to get ref. */ 1159 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1160 unlock: 1161 mutex_unlock(&module_mutex); 1162 return fsa.sym; 1163 } 1164 1165 static const struct kernel_symbol * 1166 resolve_symbol_wait(struct module *mod, 1167 const struct load_info *info, 1168 const char *name) 1169 { 1170 const struct kernel_symbol *ksym; 1171 char owner[MODULE_NAME_LEN]; 1172 1173 if (wait_event_interruptible_timeout(module_wq, 1174 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1175 || PTR_ERR(ksym) != -EBUSY, 1176 30 * HZ) <= 0) { 1177 pr_warn("%s: gave up waiting for init of module %s.\n", 1178 mod->name, owner); 1179 } 1180 return ksym; 1181 } 1182 1183 void __weak module_arch_cleanup(struct module *mod) 1184 { 1185 } 1186 1187 void __weak module_arch_freeing_init(struct module *mod) 1188 { 1189 } 1190 1191 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1192 { 1193 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1194 enum execmem_type execmem_type; 1195 void *ptr; 1196 1197 mod->mem[type].size = size; 1198 1199 if (mod_mem_type_is_data(type)) 1200 execmem_type = EXECMEM_MODULE_DATA; 1201 else 1202 execmem_type = EXECMEM_MODULE_TEXT; 1203 1204 ptr = execmem_alloc(execmem_type, size); 1205 if (!ptr) 1206 return -ENOMEM; 1207 1208 /* 1209 * The pointer to these blocks of memory are stored on the module 1210 * structure and we keep that around so long as the module is 1211 * around. We only free that memory when we unload the module. 1212 * Just mark them as not being a leak then. The .init* ELF 1213 * sections *do* get freed after boot so we *could* treat them 1214 * slightly differently with kmemleak_ignore() and only grey 1215 * them out as they work as typical memory allocations which 1216 * *do* eventually get freed, but let's just keep things simple 1217 * and avoid *any* false positives. 1218 */ 1219 kmemleak_not_leak(ptr); 1220 1221 memset(ptr, 0, size); 1222 mod->mem[type].base = ptr; 1223 1224 return 0; 1225 } 1226 1227 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1228 { 1229 void *ptr = mod->mem[type].base; 1230 1231 execmem_free(ptr); 1232 } 1233 1234 static void free_mod_mem(struct module *mod) 1235 { 1236 for_each_mod_mem_type(type) { 1237 struct module_memory *mod_mem = &mod->mem[type]; 1238 1239 if (type == MOD_DATA) 1240 continue; 1241 1242 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1243 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1244 if (mod_mem->size) 1245 module_memory_free(mod, type); 1246 } 1247 1248 /* MOD_DATA hosts mod, so free it at last */ 1249 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1250 module_memory_free(mod, MOD_DATA); 1251 } 1252 1253 /* Free a module, remove from lists, etc. */ 1254 static void free_module(struct module *mod) 1255 { 1256 trace_module_free(mod); 1257 1258 mod_sysfs_teardown(mod); 1259 1260 /* 1261 * We leave it in list to prevent duplicate loads, but make sure 1262 * that noone uses it while it's being deconstructed. 1263 */ 1264 mutex_lock(&module_mutex); 1265 mod->state = MODULE_STATE_UNFORMED; 1266 mutex_unlock(&module_mutex); 1267 1268 /* Arch-specific cleanup. */ 1269 module_arch_cleanup(mod); 1270 1271 /* Module unload stuff */ 1272 module_unload_free(mod); 1273 1274 /* Free any allocated parameters. */ 1275 destroy_params(mod->kp, mod->num_kp); 1276 1277 if (is_livepatch_module(mod)) 1278 free_module_elf(mod); 1279 1280 /* Now we can delete it from the lists */ 1281 mutex_lock(&module_mutex); 1282 /* Unlink carefully: kallsyms could be walking list. */ 1283 list_del_rcu(&mod->list); 1284 mod_tree_remove(mod); 1285 /* Remove this module from bug list, this uses list_del_rcu */ 1286 module_bug_cleanup(mod); 1287 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1288 synchronize_rcu(); 1289 if (try_add_tainted_module(mod)) 1290 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1291 mod->name); 1292 mutex_unlock(&module_mutex); 1293 1294 /* This may be empty, but that's OK */ 1295 module_arch_freeing_init(mod); 1296 kfree(mod->args); 1297 percpu_modfree(mod); 1298 1299 free_mod_mem(mod); 1300 } 1301 1302 void *__symbol_get(const char *symbol) 1303 { 1304 struct find_symbol_arg fsa = { 1305 .name = symbol, 1306 .gplok = true, 1307 .warn = true, 1308 }; 1309 1310 preempt_disable(); 1311 if (!find_symbol(&fsa)) 1312 goto fail; 1313 if (fsa.license != GPL_ONLY) { 1314 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1315 symbol); 1316 goto fail; 1317 } 1318 if (strong_try_module_get(fsa.owner)) 1319 goto fail; 1320 preempt_enable(); 1321 return (void *)kernel_symbol_value(fsa.sym); 1322 fail: 1323 preempt_enable(); 1324 return NULL; 1325 } 1326 EXPORT_SYMBOL_GPL(__symbol_get); 1327 1328 /* 1329 * Ensure that an exported symbol [global namespace] does not already exist 1330 * in the kernel or in some other module's exported symbol table. 1331 * 1332 * You must hold the module_mutex. 1333 */ 1334 static int verify_exported_symbols(struct module *mod) 1335 { 1336 unsigned int i; 1337 const struct kernel_symbol *s; 1338 struct { 1339 const struct kernel_symbol *sym; 1340 unsigned int num; 1341 } arr[] = { 1342 { mod->syms, mod->num_syms }, 1343 { mod->gpl_syms, mod->num_gpl_syms }, 1344 }; 1345 1346 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1347 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1348 struct find_symbol_arg fsa = { 1349 .name = kernel_symbol_name(s), 1350 .gplok = true, 1351 }; 1352 if (find_symbol(&fsa)) { 1353 pr_err("%s: exports duplicate symbol %s" 1354 " (owned by %s)\n", 1355 mod->name, kernel_symbol_name(s), 1356 module_name(fsa.owner)); 1357 return -ENOEXEC; 1358 } 1359 } 1360 } 1361 return 0; 1362 } 1363 1364 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1365 { 1366 /* 1367 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1368 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1369 * i386 has a similar problem but may not deserve a fix. 1370 * 1371 * If we ever have to ignore many symbols, consider refactoring the code to 1372 * only warn if referenced by a relocation. 1373 */ 1374 if (emachine == EM_386 || emachine == EM_X86_64) 1375 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1376 return false; 1377 } 1378 1379 /* Change all symbols so that st_value encodes the pointer directly. */ 1380 static int simplify_symbols(struct module *mod, const struct load_info *info) 1381 { 1382 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1383 Elf_Sym *sym = (void *)symsec->sh_addr; 1384 unsigned long secbase; 1385 unsigned int i; 1386 int ret = 0; 1387 const struct kernel_symbol *ksym; 1388 1389 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1390 const char *name = info->strtab + sym[i].st_name; 1391 1392 switch (sym[i].st_shndx) { 1393 case SHN_COMMON: 1394 /* Ignore common symbols */ 1395 if (!strncmp(name, "__gnu_lto", 9)) 1396 break; 1397 1398 /* 1399 * We compiled with -fno-common. These are not 1400 * supposed to happen. 1401 */ 1402 pr_debug("Common symbol: %s\n", name); 1403 pr_warn("%s: please compile with -fno-common\n", 1404 mod->name); 1405 ret = -ENOEXEC; 1406 break; 1407 1408 case SHN_ABS: 1409 /* Don't need to do anything */ 1410 pr_debug("Absolute symbol: 0x%08lx %s\n", 1411 (long)sym[i].st_value, name); 1412 break; 1413 1414 case SHN_LIVEPATCH: 1415 /* Livepatch symbols are resolved by livepatch */ 1416 break; 1417 1418 case SHN_UNDEF: 1419 ksym = resolve_symbol_wait(mod, info, name); 1420 /* Ok if resolved. */ 1421 if (ksym && !IS_ERR(ksym)) { 1422 sym[i].st_value = kernel_symbol_value(ksym); 1423 break; 1424 } 1425 1426 /* Ok if weak or ignored. */ 1427 if (!ksym && 1428 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1429 ignore_undef_symbol(info->hdr->e_machine, name))) 1430 break; 1431 1432 ret = PTR_ERR(ksym) ?: -ENOENT; 1433 pr_warn("%s: Unknown symbol %s (err %d)\n", 1434 mod->name, name, ret); 1435 break; 1436 1437 default: 1438 /* Divert to percpu allocation if a percpu var. */ 1439 if (sym[i].st_shndx == info->index.pcpu) 1440 secbase = (unsigned long)mod_percpu(mod); 1441 else 1442 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1443 sym[i].st_value += secbase; 1444 break; 1445 } 1446 } 1447 1448 return ret; 1449 } 1450 1451 static int apply_relocations(struct module *mod, const struct load_info *info) 1452 { 1453 unsigned int i; 1454 int err = 0; 1455 1456 /* Now do relocations. */ 1457 for (i = 1; i < info->hdr->e_shnum; i++) { 1458 unsigned int infosec = info->sechdrs[i].sh_info; 1459 1460 /* Not a valid relocation section? */ 1461 if (infosec >= info->hdr->e_shnum) 1462 continue; 1463 1464 /* Don't bother with non-allocated sections */ 1465 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1466 continue; 1467 1468 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1469 err = klp_apply_section_relocs(mod, info->sechdrs, 1470 info->secstrings, 1471 info->strtab, 1472 info->index.sym, i, 1473 NULL); 1474 else if (info->sechdrs[i].sh_type == SHT_REL) 1475 err = apply_relocate(info->sechdrs, info->strtab, 1476 info->index.sym, i, mod); 1477 else if (info->sechdrs[i].sh_type == SHT_RELA) 1478 err = apply_relocate_add(info->sechdrs, info->strtab, 1479 info->index.sym, i, mod); 1480 if (err < 0) 1481 break; 1482 } 1483 return err; 1484 } 1485 1486 /* Additional bytes needed by arch in front of individual sections */ 1487 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1488 unsigned int section) 1489 { 1490 /* default implementation just returns zero */ 1491 return 0; 1492 } 1493 1494 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1495 Elf_Shdr *sechdr, unsigned int section) 1496 { 1497 long offset; 1498 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1499 1500 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1501 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1502 mod->mem[type].size = offset + sechdr->sh_size; 1503 1504 WARN_ON_ONCE(offset & mask); 1505 return offset | mask; 1506 } 1507 1508 bool module_init_layout_section(const char *sname) 1509 { 1510 #ifndef CONFIG_MODULE_UNLOAD 1511 if (module_exit_section(sname)) 1512 return true; 1513 #endif 1514 return module_init_section(sname); 1515 } 1516 1517 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1518 { 1519 unsigned int m, i; 1520 1521 static const unsigned long masks[][2] = { 1522 /* 1523 * NOTE: all executable code must be the first section 1524 * in this array; otherwise modify the text_size 1525 * finder in the two loops below 1526 */ 1527 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1528 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1529 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1530 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1531 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1532 }; 1533 static const int core_m_to_mem_type[] = { 1534 MOD_TEXT, 1535 MOD_RODATA, 1536 MOD_RO_AFTER_INIT, 1537 MOD_DATA, 1538 MOD_DATA, 1539 }; 1540 static const int init_m_to_mem_type[] = { 1541 MOD_INIT_TEXT, 1542 MOD_INIT_RODATA, 1543 MOD_INVALID, 1544 MOD_INIT_DATA, 1545 MOD_INIT_DATA, 1546 }; 1547 1548 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1549 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1550 1551 for (i = 0; i < info->hdr->e_shnum; ++i) { 1552 Elf_Shdr *s = &info->sechdrs[i]; 1553 const char *sname = info->secstrings + s->sh_name; 1554 1555 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1556 || (s->sh_flags & masks[m][1]) 1557 || s->sh_entsize != ~0UL 1558 || is_init != module_init_layout_section(sname)) 1559 continue; 1560 1561 if (WARN_ON_ONCE(type == MOD_INVALID)) 1562 continue; 1563 1564 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1565 pr_debug("\t%s\n", sname); 1566 } 1567 } 1568 } 1569 1570 /* 1571 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1572 * might -- code, read-only data, read-write data, small data. Tally 1573 * sizes, and place the offsets into sh_entsize fields: high bit means it 1574 * belongs in init. 1575 */ 1576 static void layout_sections(struct module *mod, struct load_info *info) 1577 { 1578 unsigned int i; 1579 1580 for (i = 0; i < info->hdr->e_shnum; i++) 1581 info->sechdrs[i].sh_entsize = ~0UL; 1582 1583 pr_debug("Core section allocation order for %s:\n", mod->name); 1584 __layout_sections(mod, info, false); 1585 1586 pr_debug("Init section allocation order for %s:\n", mod->name); 1587 __layout_sections(mod, info, true); 1588 } 1589 1590 static void module_license_taint_check(struct module *mod, const char *license) 1591 { 1592 if (!license) 1593 license = "unspecified"; 1594 1595 if (!license_is_gpl_compatible(license)) { 1596 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1597 pr_warn("%s: module license '%s' taints kernel.\n", 1598 mod->name, license); 1599 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1600 LOCKDEP_NOW_UNRELIABLE); 1601 } 1602 } 1603 1604 static void setup_modinfo(struct module *mod, struct load_info *info) 1605 { 1606 struct module_attribute *attr; 1607 int i; 1608 1609 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1610 if (attr->setup) 1611 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1612 } 1613 } 1614 1615 static void free_modinfo(struct module *mod) 1616 { 1617 struct module_attribute *attr; 1618 int i; 1619 1620 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1621 if (attr->free) 1622 attr->free(mod); 1623 } 1624 } 1625 1626 bool __weak module_init_section(const char *name) 1627 { 1628 return strstarts(name, ".init"); 1629 } 1630 1631 bool __weak module_exit_section(const char *name) 1632 { 1633 return strstarts(name, ".exit"); 1634 } 1635 1636 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1637 { 1638 #if defined(CONFIG_64BIT) 1639 unsigned long long secend; 1640 #else 1641 unsigned long secend; 1642 #endif 1643 1644 /* 1645 * Check for both overflow and offset/size being 1646 * too large. 1647 */ 1648 secend = shdr->sh_offset + shdr->sh_size; 1649 if (secend < shdr->sh_offset || secend > info->len) 1650 return -ENOEXEC; 1651 1652 return 0; 1653 } 1654 1655 /* 1656 * Check userspace passed ELF module against our expectations, and cache 1657 * useful variables for further processing as we go. 1658 * 1659 * This does basic validity checks against section offsets and sizes, the 1660 * section name string table, and the indices used for it (sh_name). 1661 * 1662 * As a last step, since we're already checking the ELF sections we cache 1663 * useful variables which will be used later for our convenience: 1664 * 1665 * o pointers to section headers 1666 * o cache the modinfo symbol section 1667 * o cache the string symbol section 1668 * o cache the module section 1669 * 1670 * As a last step we set info->mod to the temporary copy of the module in 1671 * info->hdr. The final one will be allocated in move_module(). Any 1672 * modifications we make to our copy of the module will be carried over 1673 * to the final minted module. 1674 */ 1675 static int elf_validity_cache_copy(struct load_info *info, int flags) 1676 { 1677 unsigned int i; 1678 Elf_Shdr *shdr, *strhdr; 1679 int err; 1680 unsigned int num_mod_secs = 0, mod_idx; 1681 unsigned int num_info_secs = 0, info_idx; 1682 unsigned int num_sym_secs = 0, sym_idx; 1683 1684 if (info->len < sizeof(*(info->hdr))) { 1685 pr_err("Invalid ELF header len %lu\n", info->len); 1686 goto no_exec; 1687 } 1688 1689 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1690 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1691 goto no_exec; 1692 } 1693 if (info->hdr->e_type != ET_REL) { 1694 pr_err("Invalid ELF header type: %u != %u\n", 1695 info->hdr->e_type, ET_REL); 1696 goto no_exec; 1697 } 1698 if (!elf_check_arch(info->hdr)) { 1699 pr_err("Invalid architecture in ELF header: %u\n", 1700 info->hdr->e_machine); 1701 goto no_exec; 1702 } 1703 if (!module_elf_check_arch(info->hdr)) { 1704 pr_err("Invalid module architecture in ELF header: %u\n", 1705 info->hdr->e_machine); 1706 goto no_exec; 1707 } 1708 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1709 pr_err("Invalid ELF section header size\n"); 1710 goto no_exec; 1711 } 1712 1713 /* 1714 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1715 * known and small. So e_shnum * sizeof(Elf_Shdr) 1716 * will not overflow unsigned long on any platform. 1717 */ 1718 if (info->hdr->e_shoff >= info->len 1719 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1720 info->len - info->hdr->e_shoff)) { 1721 pr_err("Invalid ELF section header overflow\n"); 1722 goto no_exec; 1723 } 1724 1725 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1726 1727 /* 1728 * Verify if the section name table index is valid. 1729 */ 1730 if (info->hdr->e_shstrndx == SHN_UNDEF 1731 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1732 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1733 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1734 info->hdr->e_shnum); 1735 goto no_exec; 1736 } 1737 1738 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1739 err = validate_section_offset(info, strhdr); 1740 if (err < 0) { 1741 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1742 return err; 1743 } 1744 1745 /* 1746 * The section name table must be NUL-terminated, as required 1747 * by the spec. This makes strcmp and pr_* calls that access 1748 * strings in the section safe. 1749 */ 1750 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1751 if (strhdr->sh_size == 0) { 1752 pr_err("empty section name table\n"); 1753 goto no_exec; 1754 } 1755 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1756 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1757 goto no_exec; 1758 } 1759 1760 /* 1761 * The code assumes that section 0 has a length of zero and 1762 * an addr of zero, so check for it. 1763 */ 1764 if (info->sechdrs[0].sh_type != SHT_NULL 1765 || info->sechdrs[0].sh_size != 0 1766 || info->sechdrs[0].sh_addr != 0) { 1767 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1768 info->sechdrs[0].sh_type); 1769 goto no_exec; 1770 } 1771 1772 for (i = 1; i < info->hdr->e_shnum; i++) { 1773 shdr = &info->sechdrs[i]; 1774 switch (shdr->sh_type) { 1775 case SHT_NULL: 1776 case SHT_NOBITS: 1777 continue; 1778 case SHT_SYMTAB: 1779 if (shdr->sh_link == SHN_UNDEF 1780 || shdr->sh_link >= info->hdr->e_shnum) { 1781 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1782 shdr->sh_link, shdr->sh_link, 1783 info->hdr->e_shnum); 1784 goto no_exec; 1785 } 1786 num_sym_secs++; 1787 sym_idx = i; 1788 fallthrough; 1789 default: 1790 err = validate_section_offset(info, shdr); 1791 if (err < 0) { 1792 pr_err("Invalid ELF section in module (section %u type %u)\n", 1793 i, shdr->sh_type); 1794 return err; 1795 } 1796 if (strcmp(info->secstrings + shdr->sh_name, 1797 ".gnu.linkonce.this_module") == 0) { 1798 num_mod_secs++; 1799 mod_idx = i; 1800 } else if (strcmp(info->secstrings + shdr->sh_name, 1801 ".modinfo") == 0) { 1802 num_info_secs++; 1803 info_idx = i; 1804 } 1805 1806 if (shdr->sh_flags & SHF_ALLOC) { 1807 if (shdr->sh_name >= strhdr->sh_size) { 1808 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1809 i, shdr->sh_type); 1810 return -ENOEXEC; 1811 } 1812 } 1813 break; 1814 } 1815 } 1816 1817 if (num_info_secs > 1) { 1818 pr_err("Only one .modinfo section must exist.\n"); 1819 goto no_exec; 1820 } else if (num_info_secs == 1) { 1821 /* Try to find a name early so we can log errors with a module name */ 1822 info->index.info = info_idx; 1823 info->name = get_modinfo(info, "name"); 1824 } 1825 1826 if (num_sym_secs != 1) { 1827 pr_warn("%s: module has no symbols (stripped?)\n", 1828 info->name ?: "(missing .modinfo section or name field)"); 1829 goto no_exec; 1830 } 1831 1832 /* Sets internal symbols and strings. */ 1833 info->index.sym = sym_idx; 1834 shdr = &info->sechdrs[sym_idx]; 1835 info->index.str = shdr->sh_link; 1836 info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset; 1837 1838 /* 1839 * The ".gnu.linkonce.this_module" ELF section is special. It is 1840 * what modpost uses to refer to __this_module and let's use rely 1841 * on THIS_MODULE to point to &__this_module properly. The kernel's 1842 * modpost declares it on each modules's *.mod.c file. If the struct 1843 * module of the kernel changes a full kernel rebuild is required. 1844 * 1845 * We have a few expectaions for this special section, the following 1846 * code validates all this for us: 1847 * 1848 * o Only one section must exist 1849 * o We expect the kernel to always have to allocate it: SHF_ALLOC 1850 * o The section size must match the kernel's run time's struct module 1851 * size 1852 */ 1853 if (num_mod_secs != 1) { 1854 pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n", 1855 info->name ?: "(missing .modinfo section or name field)"); 1856 goto no_exec; 1857 } 1858 1859 shdr = &info->sechdrs[mod_idx]; 1860 1861 /* 1862 * This is already implied on the switch above, however let's be 1863 * pedantic about it. 1864 */ 1865 if (shdr->sh_type == SHT_NOBITS) { 1866 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1867 info->name ?: "(missing .modinfo section or name field)"); 1868 goto no_exec; 1869 } 1870 1871 if (!(shdr->sh_flags & SHF_ALLOC)) { 1872 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1873 info->name ?: "(missing .modinfo section or name field)"); 1874 goto no_exec; 1875 } 1876 1877 if (shdr->sh_size != sizeof(struct module)) { 1878 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1879 info->name ?: "(missing .modinfo section or name field)"); 1880 goto no_exec; 1881 } 1882 1883 info->index.mod = mod_idx; 1884 1885 /* This is temporary: point mod into copy of data. */ 1886 info->mod = (void *)info->hdr + shdr->sh_offset; 1887 1888 /* 1889 * If we didn't load the .modinfo 'name' field earlier, fall back to 1890 * on-disk struct mod 'name' field. 1891 */ 1892 if (!info->name) 1893 info->name = info->mod->name; 1894 1895 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1896 info->index.vers = 0; /* Pretend no __versions section! */ 1897 else 1898 info->index.vers = find_sec(info, "__versions"); 1899 1900 info->index.pcpu = find_pcpusec(info); 1901 1902 return 0; 1903 1904 no_exec: 1905 return -ENOEXEC; 1906 } 1907 1908 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1909 1910 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1911 { 1912 do { 1913 unsigned long n = min(len, COPY_CHUNK_SIZE); 1914 1915 if (copy_from_user(dst, usrc, n) != 0) 1916 return -EFAULT; 1917 cond_resched(); 1918 dst += n; 1919 usrc += n; 1920 len -= n; 1921 } while (len); 1922 return 0; 1923 } 1924 1925 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1926 { 1927 if (!get_modinfo(info, "livepatch")) 1928 /* Nothing more to do */ 1929 return 0; 1930 1931 if (set_livepatch_module(mod)) 1932 return 0; 1933 1934 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1935 mod->name); 1936 return -ENOEXEC; 1937 } 1938 1939 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1940 { 1941 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1942 return; 1943 1944 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1945 mod->name); 1946 } 1947 1948 /* Sets info->hdr and info->len. */ 1949 static int copy_module_from_user(const void __user *umod, unsigned long len, 1950 struct load_info *info) 1951 { 1952 int err; 1953 1954 info->len = len; 1955 if (info->len < sizeof(*(info->hdr))) 1956 return -ENOEXEC; 1957 1958 err = security_kernel_load_data(LOADING_MODULE, true); 1959 if (err) 1960 return err; 1961 1962 /* Suck in entire file: we'll want most of it. */ 1963 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1964 if (!info->hdr) 1965 return -ENOMEM; 1966 1967 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1968 err = -EFAULT; 1969 goto out; 1970 } 1971 1972 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1973 LOADING_MODULE, "init_module"); 1974 out: 1975 if (err) 1976 vfree(info->hdr); 1977 1978 return err; 1979 } 1980 1981 static void free_copy(struct load_info *info, int flags) 1982 { 1983 if (flags & MODULE_INIT_COMPRESSED_FILE) 1984 module_decompress_cleanup(info); 1985 else 1986 vfree(info->hdr); 1987 } 1988 1989 static int rewrite_section_headers(struct load_info *info, int flags) 1990 { 1991 unsigned int i; 1992 1993 /* This should always be true, but let's be sure. */ 1994 info->sechdrs[0].sh_addr = 0; 1995 1996 for (i = 1; i < info->hdr->e_shnum; i++) { 1997 Elf_Shdr *shdr = &info->sechdrs[i]; 1998 1999 /* 2000 * Mark all sections sh_addr with their address in the 2001 * temporary image. 2002 */ 2003 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2004 2005 } 2006 2007 /* Track but don't keep modinfo and version sections. */ 2008 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2009 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2010 2011 return 0; 2012 } 2013 2014 /* 2015 * These calls taint the kernel depending certain module circumstances */ 2016 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2017 { 2018 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2019 2020 if (!get_modinfo(info, "intree")) { 2021 if (!test_taint(TAINT_OOT_MODULE)) 2022 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2023 mod->name); 2024 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2025 } 2026 2027 check_modinfo_retpoline(mod, info); 2028 2029 if (get_modinfo(info, "staging")) { 2030 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2031 pr_warn("%s: module is from the staging directory, the quality " 2032 "is unknown, you have been warned.\n", mod->name); 2033 } 2034 2035 if (is_livepatch_module(mod)) { 2036 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2037 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2038 mod->name); 2039 } 2040 2041 module_license_taint_check(mod, get_modinfo(info, "license")); 2042 2043 if (get_modinfo(info, "test")) { 2044 if (!test_taint(TAINT_TEST)) 2045 pr_warn("%s: loading test module taints kernel.\n", 2046 mod->name); 2047 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2048 } 2049 #ifdef CONFIG_MODULE_SIG 2050 mod->sig_ok = info->sig_ok; 2051 if (!mod->sig_ok) { 2052 pr_notice_once("%s: module verification failed: signature " 2053 "and/or required key missing - tainting " 2054 "kernel\n", mod->name); 2055 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2056 } 2057 #endif 2058 2059 /* 2060 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2061 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2062 * using GPL-only symbols it needs. 2063 */ 2064 if (strcmp(mod->name, "ndiswrapper") == 0) 2065 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2066 2067 /* driverloader was caught wrongly pretending to be under GPL */ 2068 if (strcmp(mod->name, "driverloader") == 0) 2069 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2070 LOCKDEP_NOW_UNRELIABLE); 2071 2072 /* lve claims to be GPL but upstream won't provide source */ 2073 if (strcmp(mod->name, "lve") == 0) 2074 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2075 LOCKDEP_NOW_UNRELIABLE); 2076 2077 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2078 pr_warn("%s: module license taints kernel.\n", mod->name); 2079 2080 } 2081 2082 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2083 { 2084 const char *modmagic = get_modinfo(info, "vermagic"); 2085 int err; 2086 2087 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2088 modmagic = NULL; 2089 2090 /* This is allowed: modprobe --force will invalidate it. */ 2091 if (!modmagic) { 2092 err = try_to_force_load(mod, "bad vermagic"); 2093 if (err) 2094 return err; 2095 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2096 pr_err("%s: version magic '%s' should be '%s'\n", 2097 info->name, modmagic, vermagic); 2098 return -ENOEXEC; 2099 } 2100 2101 err = check_modinfo_livepatch(mod, info); 2102 if (err) 2103 return err; 2104 2105 return 0; 2106 } 2107 2108 static int find_module_sections(struct module *mod, struct load_info *info) 2109 { 2110 mod->kp = section_objs(info, "__param", 2111 sizeof(*mod->kp), &mod->num_kp); 2112 mod->syms = section_objs(info, "__ksymtab", 2113 sizeof(*mod->syms), &mod->num_syms); 2114 mod->crcs = section_addr(info, "__kcrctab"); 2115 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2116 sizeof(*mod->gpl_syms), 2117 &mod->num_gpl_syms); 2118 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2119 2120 #ifdef CONFIG_CONSTRUCTORS 2121 mod->ctors = section_objs(info, ".ctors", 2122 sizeof(*mod->ctors), &mod->num_ctors); 2123 if (!mod->ctors) 2124 mod->ctors = section_objs(info, ".init_array", 2125 sizeof(*mod->ctors), &mod->num_ctors); 2126 else if (find_sec(info, ".init_array")) { 2127 /* 2128 * This shouldn't happen with same compiler and binutils 2129 * building all parts of the module. 2130 */ 2131 pr_warn("%s: has both .ctors and .init_array.\n", 2132 mod->name); 2133 return -EINVAL; 2134 } 2135 #endif 2136 2137 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2138 &mod->noinstr_text_size); 2139 2140 #ifdef CONFIG_TRACEPOINTS 2141 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2142 sizeof(*mod->tracepoints_ptrs), 2143 &mod->num_tracepoints); 2144 #endif 2145 #ifdef CONFIG_TREE_SRCU 2146 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2147 sizeof(*mod->srcu_struct_ptrs), 2148 &mod->num_srcu_structs); 2149 #endif 2150 #ifdef CONFIG_BPF_EVENTS 2151 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2152 sizeof(*mod->bpf_raw_events), 2153 &mod->num_bpf_raw_events); 2154 #endif 2155 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2156 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2157 #endif 2158 #ifdef CONFIG_JUMP_LABEL 2159 mod->jump_entries = section_objs(info, "__jump_table", 2160 sizeof(*mod->jump_entries), 2161 &mod->num_jump_entries); 2162 #endif 2163 #ifdef CONFIG_EVENT_TRACING 2164 mod->trace_events = section_objs(info, "_ftrace_events", 2165 sizeof(*mod->trace_events), 2166 &mod->num_trace_events); 2167 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2168 sizeof(*mod->trace_evals), 2169 &mod->num_trace_evals); 2170 #endif 2171 #ifdef CONFIG_TRACING 2172 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2173 sizeof(*mod->trace_bprintk_fmt_start), 2174 &mod->num_trace_bprintk_fmt); 2175 #endif 2176 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2177 /* sechdrs[0].sh_size is always zero */ 2178 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2179 sizeof(*mod->ftrace_callsites), 2180 &mod->num_ftrace_callsites); 2181 #endif 2182 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2183 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2184 sizeof(*mod->ei_funcs), 2185 &mod->num_ei_funcs); 2186 #endif 2187 #ifdef CONFIG_KPROBES 2188 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2189 &mod->kprobes_text_size); 2190 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2191 sizeof(unsigned long), 2192 &mod->num_kprobe_blacklist); 2193 #endif 2194 #ifdef CONFIG_PRINTK_INDEX 2195 mod->printk_index_start = section_objs(info, ".printk_index", 2196 sizeof(*mod->printk_index_start), 2197 &mod->printk_index_size); 2198 #endif 2199 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2200 mod->static_call_sites = section_objs(info, ".static_call_sites", 2201 sizeof(*mod->static_call_sites), 2202 &mod->num_static_call_sites); 2203 #endif 2204 #if IS_ENABLED(CONFIG_KUNIT) 2205 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2206 sizeof(*mod->kunit_suites), 2207 &mod->num_kunit_suites); 2208 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2209 sizeof(*mod->kunit_init_suites), 2210 &mod->num_kunit_init_suites); 2211 #endif 2212 2213 mod->extable = section_objs(info, "__ex_table", 2214 sizeof(*mod->extable), &mod->num_exentries); 2215 2216 if (section_addr(info, "__obsparm")) 2217 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2218 2219 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2220 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2221 sizeof(*mod->dyndbg_info.descs), 2222 &mod->dyndbg_info.num_descs); 2223 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2224 sizeof(*mod->dyndbg_info.classes), 2225 &mod->dyndbg_info.num_classes); 2226 #endif 2227 2228 return 0; 2229 } 2230 2231 static int move_module(struct module *mod, struct load_info *info) 2232 { 2233 int i; 2234 enum mod_mem_type t = 0; 2235 int ret = -ENOMEM; 2236 2237 for_each_mod_mem_type(type) { 2238 if (!mod->mem[type].size) { 2239 mod->mem[type].base = NULL; 2240 continue; 2241 } 2242 2243 ret = module_memory_alloc(mod, type); 2244 if (ret) { 2245 t = type; 2246 goto out_enomem; 2247 } 2248 } 2249 2250 /* Transfer each section which specifies SHF_ALLOC */ 2251 pr_debug("Final section addresses for %s:\n", mod->name); 2252 for (i = 0; i < info->hdr->e_shnum; i++) { 2253 void *dest; 2254 Elf_Shdr *shdr = &info->sechdrs[i]; 2255 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2256 2257 if (!(shdr->sh_flags & SHF_ALLOC)) 2258 continue; 2259 2260 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK); 2261 2262 if (shdr->sh_type != SHT_NOBITS) { 2263 /* 2264 * Our ELF checker already validated this, but let's 2265 * be pedantic and make the goal clearer. We actually 2266 * end up copying over all modifications made to the 2267 * userspace copy of the entire struct module. 2268 */ 2269 if (i == info->index.mod && 2270 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2271 ret = -ENOEXEC; 2272 goto out_enomem; 2273 } 2274 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2275 } 2276 /* 2277 * Update the userspace copy's ELF section address to point to 2278 * our newly allocated memory as a pure convenience so that 2279 * users of info can keep taking advantage and using the newly 2280 * minted official memory area. 2281 */ 2282 shdr->sh_addr = (unsigned long)dest; 2283 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2284 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2285 } 2286 2287 return 0; 2288 out_enomem: 2289 for (t--; t >= 0; t--) 2290 module_memory_free(mod, t); 2291 return ret; 2292 } 2293 2294 static int check_export_symbol_versions(struct module *mod) 2295 { 2296 #ifdef CONFIG_MODVERSIONS 2297 if ((mod->num_syms && !mod->crcs) || 2298 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2299 return try_to_force_load(mod, 2300 "no versions for exported symbols"); 2301 } 2302 #endif 2303 return 0; 2304 } 2305 2306 static void flush_module_icache(const struct module *mod) 2307 { 2308 /* 2309 * Flush the instruction cache, since we've played with text. 2310 * Do it before processing of module parameters, so the module 2311 * can provide parameter accessor functions of its own. 2312 */ 2313 for_each_mod_mem_type(type) { 2314 const struct module_memory *mod_mem = &mod->mem[type]; 2315 2316 if (mod_mem->size) { 2317 flush_icache_range((unsigned long)mod_mem->base, 2318 (unsigned long)mod_mem->base + mod_mem->size); 2319 } 2320 } 2321 } 2322 2323 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2324 { 2325 return true; 2326 } 2327 2328 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2329 Elf_Shdr *sechdrs, 2330 char *secstrings, 2331 struct module *mod) 2332 { 2333 return 0; 2334 } 2335 2336 /* module_blacklist is a comma-separated list of module names */ 2337 static char *module_blacklist; 2338 static bool blacklisted(const char *module_name) 2339 { 2340 const char *p; 2341 size_t len; 2342 2343 if (!module_blacklist) 2344 return false; 2345 2346 for (p = module_blacklist; *p; p += len) { 2347 len = strcspn(p, ","); 2348 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2349 return true; 2350 if (p[len] == ',') 2351 len++; 2352 } 2353 return false; 2354 } 2355 core_param(module_blacklist, module_blacklist, charp, 0400); 2356 2357 static struct module *layout_and_allocate(struct load_info *info, int flags) 2358 { 2359 struct module *mod; 2360 unsigned int ndx; 2361 int err; 2362 2363 /* Allow arches to frob section contents and sizes. */ 2364 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2365 info->secstrings, info->mod); 2366 if (err < 0) 2367 return ERR_PTR(err); 2368 2369 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2370 info->secstrings, info->mod); 2371 if (err < 0) 2372 return ERR_PTR(err); 2373 2374 /* We will do a special allocation for per-cpu sections later. */ 2375 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2376 2377 /* 2378 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2379 * layout_sections() can put it in the right place. 2380 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2381 */ 2382 ndx = find_sec(info, ".data..ro_after_init"); 2383 if (ndx) 2384 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2385 /* 2386 * Mark the __jump_table section as ro_after_init as well: these data 2387 * structures are never modified, with the exception of entries that 2388 * refer to code in the __init section, which are annotated as such 2389 * at module load time. 2390 */ 2391 ndx = find_sec(info, "__jump_table"); 2392 if (ndx) 2393 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2394 2395 /* 2396 * Determine total sizes, and put offsets in sh_entsize. For now 2397 * this is done generically; there doesn't appear to be any 2398 * special cases for the architectures. 2399 */ 2400 layout_sections(info->mod, info); 2401 layout_symtab(info->mod, info); 2402 2403 /* Allocate and move to the final place */ 2404 err = move_module(info->mod, info); 2405 if (err) 2406 return ERR_PTR(err); 2407 2408 /* Module has been copied to its final place now: return it. */ 2409 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2410 kmemleak_load_module(mod, info); 2411 return mod; 2412 } 2413 2414 /* mod is no longer valid after this! */ 2415 static void module_deallocate(struct module *mod, struct load_info *info) 2416 { 2417 percpu_modfree(mod); 2418 module_arch_freeing_init(mod); 2419 2420 free_mod_mem(mod); 2421 } 2422 2423 int __weak module_finalize(const Elf_Ehdr *hdr, 2424 const Elf_Shdr *sechdrs, 2425 struct module *me) 2426 { 2427 return 0; 2428 } 2429 2430 static int post_relocation(struct module *mod, const struct load_info *info) 2431 { 2432 /* Sort exception table now relocations are done. */ 2433 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2434 2435 /* Copy relocated percpu area over. */ 2436 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2437 info->sechdrs[info->index.pcpu].sh_size); 2438 2439 /* Setup kallsyms-specific fields. */ 2440 add_kallsyms(mod, info); 2441 2442 /* Arch-specific module finalizing. */ 2443 return module_finalize(info->hdr, info->sechdrs, mod); 2444 } 2445 2446 /* Call module constructors. */ 2447 static void do_mod_ctors(struct module *mod) 2448 { 2449 #ifdef CONFIG_CONSTRUCTORS 2450 unsigned long i; 2451 2452 for (i = 0; i < mod->num_ctors; i++) 2453 mod->ctors[i](); 2454 #endif 2455 } 2456 2457 /* For freeing module_init on success, in case kallsyms traversing */ 2458 struct mod_initfree { 2459 struct llist_node node; 2460 void *init_text; 2461 void *init_data; 2462 void *init_rodata; 2463 }; 2464 2465 static void do_free_init(struct work_struct *w) 2466 { 2467 struct llist_node *pos, *n, *list; 2468 struct mod_initfree *initfree; 2469 2470 list = llist_del_all(&init_free_list); 2471 2472 synchronize_rcu(); 2473 2474 llist_for_each_safe(pos, n, list) { 2475 initfree = container_of(pos, struct mod_initfree, node); 2476 execmem_free(initfree->init_text); 2477 execmem_free(initfree->init_data); 2478 execmem_free(initfree->init_rodata); 2479 kfree(initfree); 2480 } 2481 } 2482 2483 void flush_module_init_free_work(void) 2484 { 2485 flush_work(&init_free_wq); 2486 } 2487 2488 #undef MODULE_PARAM_PREFIX 2489 #define MODULE_PARAM_PREFIX "module." 2490 /* Default value for module->async_probe_requested */ 2491 static bool async_probe; 2492 module_param(async_probe, bool, 0644); 2493 2494 /* 2495 * This is where the real work happens. 2496 * 2497 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2498 * helper command 'lx-symbols'. 2499 */ 2500 static noinline int do_init_module(struct module *mod) 2501 { 2502 int ret = 0; 2503 struct mod_initfree *freeinit; 2504 #if defined(CONFIG_MODULE_STATS) 2505 unsigned int text_size = 0, total_size = 0; 2506 2507 for_each_mod_mem_type(type) { 2508 const struct module_memory *mod_mem = &mod->mem[type]; 2509 if (mod_mem->size) { 2510 total_size += mod_mem->size; 2511 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2512 text_size += mod_mem->size; 2513 } 2514 } 2515 #endif 2516 2517 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2518 if (!freeinit) { 2519 ret = -ENOMEM; 2520 goto fail; 2521 } 2522 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2523 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2524 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2525 2526 do_mod_ctors(mod); 2527 /* Start the module */ 2528 if (mod->init != NULL) 2529 ret = do_one_initcall(mod->init); 2530 if (ret < 0) { 2531 goto fail_free_freeinit; 2532 } 2533 if (ret > 0) { 2534 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2535 "follow 0/-E convention\n" 2536 "%s: loading module anyway...\n", 2537 __func__, mod->name, ret, __func__); 2538 dump_stack(); 2539 } 2540 2541 /* Now it's a first class citizen! */ 2542 mod->state = MODULE_STATE_LIVE; 2543 blocking_notifier_call_chain(&module_notify_list, 2544 MODULE_STATE_LIVE, mod); 2545 2546 /* Delay uevent until module has finished its init routine */ 2547 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2548 2549 /* 2550 * We need to finish all async code before the module init sequence 2551 * is done. This has potential to deadlock if synchronous module 2552 * loading is requested from async (which is not allowed!). 2553 * 2554 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2555 * request_module() from async workers") for more details. 2556 */ 2557 if (!mod->async_probe_requested) 2558 async_synchronize_full(); 2559 2560 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2561 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2562 mutex_lock(&module_mutex); 2563 /* Drop initial reference. */ 2564 module_put(mod); 2565 trim_init_extable(mod); 2566 #ifdef CONFIG_KALLSYMS 2567 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2568 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2569 #endif 2570 ret = module_enable_rodata_ro(mod, true); 2571 if (ret) 2572 goto fail_mutex_unlock; 2573 mod_tree_remove_init(mod); 2574 module_arch_freeing_init(mod); 2575 for_class_mod_mem_type(type, init) { 2576 mod->mem[type].base = NULL; 2577 mod->mem[type].size = 0; 2578 } 2579 2580 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2581 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2582 mod->btf_data = NULL; 2583 #endif 2584 /* 2585 * We want to free module_init, but be aware that kallsyms may be 2586 * walking this with preempt disabled. In all the failure paths, we 2587 * call synchronize_rcu(), but we don't want to slow down the success 2588 * path. execmem_free() cannot be called in an interrupt, so do the 2589 * work and call synchronize_rcu() in a work queue. 2590 * 2591 * Note that execmem_alloc() on most architectures creates W+X page 2592 * mappings which won't be cleaned up until do_free_init() runs. Any 2593 * code such as mark_rodata_ro() which depends on those mappings to 2594 * be cleaned up needs to sync with the queued work by invoking 2595 * flush_module_init_free_work(). 2596 */ 2597 if (llist_add(&freeinit->node, &init_free_list)) 2598 schedule_work(&init_free_wq); 2599 2600 mutex_unlock(&module_mutex); 2601 wake_up_all(&module_wq); 2602 2603 mod_stat_add_long(text_size, &total_text_size); 2604 mod_stat_add_long(total_size, &total_mod_size); 2605 2606 mod_stat_inc(&modcount); 2607 2608 return 0; 2609 2610 fail_mutex_unlock: 2611 mutex_unlock(&module_mutex); 2612 fail_free_freeinit: 2613 kfree(freeinit); 2614 fail: 2615 /* Try to protect us from buggy refcounters. */ 2616 mod->state = MODULE_STATE_GOING; 2617 synchronize_rcu(); 2618 module_put(mod); 2619 blocking_notifier_call_chain(&module_notify_list, 2620 MODULE_STATE_GOING, mod); 2621 klp_module_going(mod); 2622 ftrace_release_mod(mod); 2623 free_module(mod); 2624 wake_up_all(&module_wq); 2625 2626 return ret; 2627 } 2628 2629 static int may_init_module(void) 2630 { 2631 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2632 return -EPERM; 2633 2634 return 0; 2635 } 2636 2637 /* Is this module of this name done loading? No locks held. */ 2638 static bool finished_loading(const char *name) 2639 { 2640 struct module *mod; 2641 bool ret; 2642 2643 /* 2644 * The module_mutex should not be a heavily contended lock; 2645 * if we get the occasional sleep here, we'll go an extra iteration 2646 * in the wait_event_interruptible(), which is harmless. 2647 */ 2648 sched_annotate_sleep(); 2649 mutex_lock(&module_mutex); 2650 mod = find_module_all(name, strlen(name), true); 2651 ret = !mod || mod->state == MODULE_STATE_LIVE 2652 || mod->state == MODULE_STATE_GOING; 2653 mutex_unlock(&module_mutex); 2654 2655 return ret; 2656 } 2657 2658 /* Must be called with module_mutex held */ 2659 static int module_patient_check_exists(const char *name, 2660 enum fail_dup_mod_reason reason) 2661 { 2662 struct module *old; 2663 int err = 0; 2664 2665 old = find_module_all(name, strlen(name), true); 2666 if (old == NULL) 2667 return 0; 2668 2669 if (old->state == MODULE_STATE_COMING || 2670 old->state == MODULE_STATE_UNFORMED) { 2671 /* Wait in case it fails to load. */ 2672 mutex_unlock(&module_mutex); 2673 err = wait_event_interruptible(module_wq, 2674 finished_loading(name)); 2675 mutex_lock(&module_mutex); 2676 if (err) 2677 return err; 2678 2679 /* The module might have gone in the meantime. */ 2680 old = find_module_all(name, strlen(name), true); 2681 } 2682 2683 if (try_add_failed_module(name, reason)) 2684 pr_warn("Could not add fail-tracking for module: %s\n", name); 2685 2686 /* 2687 * We are here only when the same module was being loaded. Do 2688 * not try to load it again right now. It prevents long delays 2689 * caused by serialized module load failures. It might happen 2690 * when more devices of the same type trigger load of 2691 * a particular module. 2692 */ 2693 if (old && old->state == MODULE_STATE_LIVE) 2694 return -EEXIST; 2695 return -EBUSY; 2696 } 2697 2698 /* 2699 * We try to place it in the list now to make sure it's unique before 2700 * we dedicate too many resources. In particular, temporary percpu 2701 * memory exhaustion. 2702 */ 2703 static int add_unformed_module(struct module *mod) 2704 { 2705 int err; 2706 2707 mod->state = MODULE_STATE_UNFORMED; 2708 2709 mutex_lock(&module_mutex); 2710 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 2711 if (err) 2712 goto out; 2713 2714 mod_update_bounds(mod); 2715 list_add_rcu(&mod->list, &modules); 2716 mod_tree_insert(mod); 2717 err = 0; 2718 2719 out: 2720 mutex_unlock(&module_mutex); 2721 return err; 2722 } 2723 2724 static int complete_formation(struct module *mod, struct load_info *info) 2725 { 2726 int err; 2727 2728 mutex_lock(&module_mutex); 2729 2730 /* Find duplicate symbols (must be called under lock). */ 2731 err = verify_exported_symbols(mod); 2732 if (err < 0) 2733 goto out; 2734 2735 /* These rely on module_mutex for list integrity. */ 2736 module_bug_finalize(info->hdr, info->sechdrs, mod); 2737 module_cfi_finalize(info->hdr, info->sechdrs, mod); 2738 2739 err = module_enable_rodata_ro(mod, false); 2740 if (err) 2741 goto out_strict_rwx; 2742 err = module_enable_data_nx(mod); 2743 if (err) 2744 goto out_strict_rwx; 2745 err = module_enable_text_rox(mod); 2746 if (err) 2747 goto out_strict_rwx; 2748 2749 /* 2750 * Mark state as coming so strong_try_module_get() ignores us, 2751 * but kallsyms etc. can see us. 2752 */ 2753 mod->state = MODULE_STATE_COMING; 2754 mutex_unlock(&module_mutex); 2755 2756 return 0; 2757 2758 out_strict_rwx: 2759 module_bug_cleanup(mod); 2760 out: 2761 mutex_unlock(&module_mutex); 2762 return err; 2763 } 2764 2765 static int prepare_coming_module(struct module *mod) 2766 { 2767 int err; 2768 2769 ftrace_module_enable(mod); 2770 err = klp_module_coming(mod); 2771 if (err) 2772 return err; 2773 2774 err = blocking_notifier_call_chain_robust(&module_notify_list, 2775 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2776 err = notifier_to_errno(err); 2777 if (err) 2778 klp_module_going(mod); 2779 2780 return err; 2781 } 2782 2783 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2784 void *arg) 2785 { 2786 struct module *mod = arg; 2787 int ret; 2788 2789 if (strcmp(param, "async_probe") == 0) { 2790 if (kstrtobool(val, &mod->async_probe_requested)) 2791 mod->async_probe_requested = true; 2792 return 0; 2793 } 2794 2795 /* Check for magic 'dyndbg' arg */ 2796 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2797 if (ret != 0) 2798 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2799 return 0; 2800 } 2801 2802 /* Module within temporary copy, this doesn't do any allocation */ 2803 static int early_mod_check(struct load_info *info, int flags) 2804 { 2805 int err; 2806 2807 /* 2808 * Now that we know we have the correct module name, check 2809 * if it's blacklisted. 2810 */ 2811 if (blacklisted(info->name)) { 2812 pr_err("Module %s is blacklisted\n", info->name); 2813 return -EPERM; 2814 } 2815 2816 err = rewrite_section_headers(info, flags); 2817 if (err) 2818 return err; 2819 2820 /* Check module struct version now, before we try to use module. */ 2821 if (!check_modstruct_version(info, info->mod)) 2822 return -ENOEXEC; 2823 2824 err = check_modinfo(info->mod, info, flags); 2825 if (err) 2826 return err; 2827 2828 mutex_lock(&module_mutex); 2829 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 2830 mutex_unlock(&module_mutex); 2831 2832 return err; 2833 } 2834 2835 /* 2836 * Allocate and load the module: note that size of section 0 is always 2837 * zero, and we rely on this for optional sections. 2838 */ 2839 static int load_module(struct load_info *info, const char __user *uargs, 2840 int flags) 2841 { 2842 struct module *mod; 2843 bool module_allocated = false; 2844 long err = 0; 2845 char *after_dashes; 2846 2847 /* 2848 * Do the signature check (if any) first. All that 2849 * the signature check needs is info->len, it does 2850 * not need any of the section info. That can be 2851 * set up later. This will minimize the chances 2852 * of a corrupt module causing problems before 2853 * we even get to the signature check. 2854 * 2855 * The check will also adjust info->len by stripping 2856 * off the sig length at the end of the module, making 2857 * checks against info->len more correct. 2858 */ 2859 err = module_sig_check(info, flags); 2860 if (err) 2861 goto free_copy; 2862 2863 /* 2864 * Do basic sanity checks against the ELF header and 2865 * sections. Cache useful sections and set the 2866 * info->mod to the userspace passed struct module. 2867 */ 2868 err = elf_validity_cache_copy(info, flags); 2869 if (err) 2870 goto free_copy; 2871 2872 err = early_mod_check(info, flags); 2873 if (err) 2874 goto free_copy; 2875 2876 /* Figure out module layout, and allocate all the memory. */ 2877 mod = layout_and_allocate(info, flags); 2878 if (IS_ERR(mod)) { 2879 err = PTR_ERR(mod); 2880 goto free_copy; 2881 } 2882 2883 module_allocated = true; 2884 2885 audit_log_kern_module(mod->name); 2886 2887 /* Reserve our place in the list. */ 2888 err = add_unformed_module(mod); 2889 if (err) 2890 goto free_module; 2891 2892 /* 2893 * We are tainting your kernel if your module gets into 2894 * the modules linked list somehow. 2895 */ 2896 module_augment_kernel_taints(mod, info); 2897 2898 /* To avoid stressing percpu allocator, do this once we're unique. */ 2899 err = percpu_modalloc(mod, info); 2900 if (err) 2901 goto unlink_mod; 2902 2903 /* Now module is in final location, initialize linked lists, etc. */ 2904 err = module_unload_init(mod); 2905 if (err) 2906 goto unlink_mod; 2907 2908 init_param_lock(mod); 2909 2910 /* 2911 * Now we've got everything in the final locations, we can 2912 * find optional sections. 2913 */ 2914 err = find_module_sections(mod, info); 2915 if (err) 2916 goto free_unload; 2917 2918 err = check_export_symbol_versions(mod); 2919 if (err) 2920 goto free_unload; 2921 2922 /* Set up MODINFO_ATTR fields */ 2923 setup_modinfo(mod, info); 2924 2925 /* Fix up syms, so that st_value is a pointer to location. */ 2926 err = simplify_symbols(mod, info); 2927 if (err < 0) 2928 goto free_modinfo; 2929 2930 err = apply_relocations(mod, info); 2931 if (err < 0) 2932 goto free_modinfo; 2933 2934 err = post_relocation(mod, info); 2935 if (err < 0) 2936 goto free_modinfo; 2937 2938 flush_module_icache(mod); 2939 2940 /* Now copy in args */ 2941 mod->args = strndup_user(uargs, ~0UL >> 1); 2942 if (IS_ERR(mod->args)) { 2943 err = PTR_ERR(mod->args); 2944 goto free_arch_cleanup; 2945 } 2946 2947 init_build_id(mod, info); 2948 2949 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2950 ftrace_module_init(mod); 2951 2952 /* Finally it's fully formed, ready to start executing. */ 2953 err = complete_formation(mod, info); 2954 if (err) 2955 goto ddebug_cleanup; 2956 2957 err = prepare_coming_module(mod); 2958 if (err) 2959 goto bug_cleanup; 2960 2961 mod->async_probe_requested = async_probe; 2962 2963 /* Module is ready to execute: parsing args may do that. */ 2964 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2965 -32768, 32767, mod, 2966 unknown_module_param_cb); 2967 if (IS_ERR(after_dashes)) { 2968 err = PTR_ERR(after_dashes); 2969 goto coming_cleanup; 2970 } else if (after_dashes) { 2971 pr_warn("%s: parameters '%s' after `--' ignored\n", 2972 mod->name, after_dashes); 2973 } 2974 2975 /* Link in to sysfs. */ 2976 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2977 if (err < 0) 2978 goto coming_cleanup; 2979 2980 if (is_livepatch_module(mod)) { 2981 err = copy_module_elf(mod, info); 2982 if (err < 0) 2983 goto sysfs_cleanup; 2984 } 2985 2986 /* Get rid of temporary copy. */ 2987 free_copy(info, flags); 2988 2989 /* Done! */ 2990 trace_module_load(mod); 2991 2992 return do_init_module(mod); 2993 2994 sysfs_cleanup: 2995 mod_sysfs_teardown(mod); 2996 coming_cleanup: 2997 mod->state = MODULE_STATE_GOING; 2998 destroy_params(mod->kp, mod->num_kp); 2999 blocking_notifier_call_chain(&module_notify_list, 3000 MODULE_STATE_GOING, mod); 3001 klp_module_going(mod); 3002 bug_cleanup: 3003 mod->state = MODULE_STATE_GOING; 3004 /* module_bug_cleanup needs module_mutex protection */ 3005 mutex_lock(&module_mutex); 3006 module_bug_cleanup(mod); 3007 mutex_unlock(&module_mutex); 3008 3009 ddebug_cleanup: 3010 ftrace_release_mod(mod); 3011 synchronize_rcu(); 3012 kfree(mod->args); 3013 free_arch_cleanup: 3014 module_arch_cleanup(mod); 3015 free_modinfo: 3016 free_modinfo(mod); 3017 free_unload: 3018 module_unload_free(mod); 3019 unlink_mod: 3020 mutex_lock(&module_mutex); 3021 /* Unlink carefully: kallsyms could be walking list. */ 3022 list_del_rcu(&mod->list); 3023 mod_tree_remove(mod); 3024 wake_up_all(&module_wq); 3025 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3026 synchronize_rcu(); 3027 mutex_unlock(&module_mutex); 3028 free_module: 3029 mod_stat_bump_invalid(info, flags); 3030 /* Free lock-classes; relies on the preceding sync_rcu() */ 3031 for_class_mod_mem_type(type, core_data) { 3032 lockdep_free_key_range(mod->mem[type].base, 3033 mod->mem[type].size); 3034 } 3035 3036 module_deallocate(mod, info); 3037 free_copy: 3038 /* 3039 * The info->len is always set. We distinguish between 3040 * failures once the proper module was allocated and 3041 * before that. 3042 */ 3043 if (!module_allocated) 3044 mod_stat_bump_becoming(info, flags); 3045 free_copy(info, flags); 3046 return err; 3047 } 3048 3049 SYSCALL_DEFINE3(init_module, void __user *, umod, 3050 unsigned long, len, const char __user *, uargs) 3051 { 3052 int err; 3053 struct load_info info = { }; 3054 3055 err = may_init_module(); 3056 if (err) 3057 return err; 3058 3059 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3060 umod, len, uargs); 3061 3062 err = copy_module_from_user(umod, len, &info); 3063 if (err) { 3064 mod_stat_inc(&failed_kreads); 3065 mod_stat_add_long(len, &invalid_kread_bytes); 3066 return err; 3067 } 3068 3069 return load_module(&info, uargs, 0); 3070 } 3071 3072 struct idempotent { 3073 const void *cookie; 3074 struct hlist_node entry; 3075 struct completion complete; 3076 int ret; 3077 }; 3078 3079 #define IDEM_HASH_BITS 8 3080 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3081 static DEFINE_SPINLOCK(idem_lock); 3082 3083 static bool idempotent(struct idempotent *u, const void *cookie) 3084 { 3085 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3086 struct hlist_head *head = idem_hash + hash; 3087 struct idempotent *existing; 3088 bool first; 3089 3090 u->ret = 0; 3091 u->cookie = cookie; 3092 init_completion(&u->complete); 3093 3094 spin_lock(&idem_lock); 3095 first = true; 3096 hlist_for_each_entry(existing, head, entry) { 3097 if (existing->cookie != cookie) 3098 continue; 3099 first = false; 3100 break; 3101 } 3102 hlist_add_head(&u->entry, idem_hash + hash); 3103 spin_unlock(&idem_lock); 3104 3105 return !first; 3106 } 3107 3108 /* 3109 * We were the first one with 'cookie' on the list, and we ended 3110 * up completing the operation. We now need to walk the list, 3111 * remove everybody - which includes ourselves - fill in the return 3112 * value, and then complete the operation. 3113 */ 3114 static int idempotent_complete(struct idempotent *u, int ret) 3115 { 3116 const void *cookie = u->cookie; 3117 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3118 struct hlist_head *head = idem_hash + hash; 3119 struct hlist_node *next; 3120 struct idempotent *pos; 3121 3122 spin_lock(&idem_lock); 3123 hlist_for_each_entry_safe(pos, next, head, entry) { 3124 if (pos->cookie != cookie) 3125 continue; 3126 hlist_del(&pos->entry); 3127 pos->ret = ret; 3128 complete(&pos->complete); 3129 } 3130 spin_unlock(&idem_lock); 3131 return ret; 3132 } 3133 3134 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3135 { 3136 struct load_info info = { }; 3137 void *buf = NULL; 3138 int len; 3139 3140 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3141 if (len < 0) { 3142 mod_stat_inc(&failed_kreads); 3143 return len; 3144 } 3145 3146 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3147 int err = module_decompress(&info, buf, len); 3148 vfree(buf); /* compressed data is no longer needed */ 3149 if (err) { 3150 mod_stat_inc(&failed_decompress); 3151 mod_stat_add_long(len, &invalid_decompress_bytes); 3152 return err; 3153 } 3154 } else { 3155 info.hdr = buf; 3156 info.len = len; 3157 } 3158 3159 return load_module(&info, uargs, flags); 3160 } 3161 3162 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3163 { 3164 struct idempotent idem; 3165 3166 if (!f || !(f->f_mode & FMODE_READ)) 3167 return -EBADF; 3168 3169 /* See if somebody else is doing the operation? */ 3170 if (idempotent(&idem, file_inode(f))) { 3171 wait_for_completion(&idem.complete); 3172 return idem.ret; 3173 } 3174 3175 /* Otherwise, we'll do it and complete others */ 3176 return idempotent_complete(&idem, 3177 init_module_from_file(f, uargs, flags)); 3178 } 3179 3180 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3181 { 3182 int err; 3183 struct fd f; 3184 3185 err = may_init_module(); 3186 if (err) 3187 return err; 3188 3189 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3190 3191 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3192 |MODULE_INIT_IGNORE_VERMAGIC 3193 |MODULE_INIT_COMPRESSED_FILE)) 3194 return -EINVAL; 3195 3196 f = fdget(fd); 3197 err = idempotent_init_module(f.file, uargs, flags); 3198 fdput(f); 3199 return err; 3200 } 3201 3202 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3203 char *module_flags(struct module *mod, char *buf, bool show_state) 3204 { 3205 int bx = 0; 3206 3207 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3208 if (!mod->taints && !show_state) 3209 goto out; 3210 if (mod->taints || 3211 mod->state == MODULE_STATE_GOING || 3212 mod->state == MODULE_STATE_COMING) { 3213 buf[bx++] = '('; 3214 bx += module_flags_taint(mod->taints, buf + bx); 3215 /* Show a - for module-is-being-unloaded */ 3216 if (mod->state == MODULE_STATE_GOING && show_state) 3217 buf[bx++] = '-'; 3218 /* Show a + for module-is-being-loaded */ 3219 if (mod->state == MODULE_STATE_COMING && show_state) 3220 buf[bx++] = '+'; 3221 buf[bx++] = ')'; 3222 } 3223 out: 3224 buf[bx] = '\0'; 3225 3226 return buf; 3227 } 3228 3229 /* Given an address, look for it in the module exception tables. */ 3230 const struct exception_table_entry *search_module_extables(unsigned long addr) 3231 { 3232 const struct exception_table_entry *e = NULL; 3233 struct module *mod; 3234 3235 preempt_disable(); 3236 mod = __module_address(addr); 3237 if (!mod) 3238 goto out; 3239 3240 if (!mod->num_exentries) 3241 goto out; 3242 3243 e = search_extable(mod->extable, 3244 mod->num_exentries, 3245 addr); 3246 out: 3247 preempt_enable(); 3248 3249 /* 3250 * Now, if we found one, we are running inside it now, hence 3251 * we cannot unload the module, hence no refcnt needed. 3252 */ 3253 return e; 3254 } 3255 3256 /** 3257 * is_module_address() - is this address inside a module? 3258 * @addr: the address to check. 3259 * 3260 * See is_module_text_address() if you simply want to see if the address 3261 * is code (not data). 3262 */ 3263 bool is_module_address(unsigned long addr) 3264 { 3265 bool ret; 3266 3267 preempt_disable(); 3268 ret = __module_address(addr) != NULL; 3269 preempt_enable(); 3270 3271 return ret; 3272 } 3273 3274 /** 3275 * __module_address() - get the module which contains an address. 3276 * @addr: the address. 3277 * 3278 * Must be called with preempt disabled or module mutex held so that 3279 * module doesn't get freed during this. 3280 */ 3281 struct module *__module_address(unsigned long addr) 3282 { 3283 struct module *mod; 3284 3285 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3286 goto lookup; 3287 3288 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3289 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3290 goto lookup; 3291 #endif 3292 3293 return NULL; 3294 3295 lookup: 3296 module_assert_mutex_or_preempt(); 3297 3298 mod = mod_find(addr, &mod_tree); 3299 if (mod) { 3300 BUG_ON(!within_module(addr, mod)); 3301 if (mod->state == MODULE_STATE_UNFORMED) 3302 mod = NULL; 3303 } 3304 return mod; 3305 } 3306 3307 /** 3308 * is_module_text_address() - is this address inside module code? 3309 * @addr: the address to check. 3310 * 3311 * See is_module_address() if you simply want to see if the address is 3312 * anywhere in a module. See kernel_text_address() for testing if an 3313 * address corresponds to kernel or module code. 3314 */ 3315 bool is_module_text_address(unsigned long addr) 3316 { 3317 bool ret; 3318 3319 preempt_disable(); 3320 ret = __module_text_address(addr) != NULL; 3321 preempt_enable(); 3322 3323 return ret; 3324 } 3325 3326 /** 3327 * __module_text_address() - get the module whose code contains an address. 3328 * @addr: the address. 3329 * 3330 * Must be called with preempt disabled or module mutex held so that 3331 * module doesn't get freed during this. 3332 */ 3333 struct module *__module_text_address(unsigned long addr) 3334 { 3335 struct module *mod = __module_address(addr); 3336 if (mod) { 3337 /* Make sure it's within the text section. */ 3338 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3339 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3340 mod = NULL; 3341 } 3342 return mod; 3343 } 3344 3345 /* Don't grab lock, we're oopsing. */ 3346 void print_modules(void) 3347 { 3348 struct module *mod; 3349 char buf[MODULE_FLAGS_BUF_SIZE]; 3350 3351 printk(KERN_DEFAULT "Modules linked in:"); 3352 /* Most callers should already have preempt disabled, but make sure */ 3353 preempt_disable(); 3354 list_for_each_entry_rcu(mod, &modules, list) { 3355 if (mod->state == MODULE_STATE_UNFORMED) 3356 continue; 3357 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3358 } 3359 3360 print_unloaded_tainted_modules(); 3361 preempt_enable(); 3362 if (last_unloaded_module.name[0]) 3363 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3364 last_unloaded_module.taints); 3365 pr_cont("\n"); 3366 } 3367 3368 #ifdef CONFIG_MODULE_DEBUGFS 3369 struct dentry *mod_debugfs_root; 3370 3371 static int module_debugfs_init(void) 3372 { 3373 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3374 return 0; 3375 } 3376 module_init(module_debugfs_init); 3377 #endif 3378