1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable within RCU read section), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /** 199 * find_any_unique_sec() - Find a unique section index by name 200 * @info: Load info for the module to scan 201 * @name: Name of the section we're looking for 202 * 203 * Locates a unique section by name. Ignores SHF_ALLOC. 204 * 205 * Return: Section index if found uniquely, zero if absent, negative count 206 * of total instances if multiple were found. 207 */ 208 static int find_any_unique_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int idx; 211 unsigned int count = 0; 212 int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 216 name) == 0) { 217 count++; 218 idx = i; 219 } 220 } 221 if (count == 1) { 222 return idx; 223 } else if (count == 0) { 224 return 0; 225 } else { 226 return -count; 227 } 228 } 229 230 /* Find a module section, or NULL. */ 231 static void *section_addr(const struct load_info *info, const char *name) 232 { 233 /* Section 0 has sh_addr 0. */ 234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 235 } 236 237 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 238 static void *section_objs(const struct load_info *info, 239 const char *name, 240 size_t object_size, 241 unsigned int *num) 242 { 243 unsigned int sec = find_sec(info, name); 244 245 /* Section 0 has sh_addr 0 and sh_size 0. */ 246 *num = info->sechdrs[sec].sh_size / object_size; 247 return (void *)info->sechdrs[sec].sh_addr; 248 } 249 250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 251 static unsigned int find_any_sec(const struct load_info *info, const char *name) 252 { 253 unsigned int i; 254 255 for (i = 1; i < info->hdr->e_shnum; i++) { 256 Elf_Shdr *shdr = &info->sechdrs[i]; 257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 258 return i; 259 } 260 return 0; 261 } 262 263 /* 264 * Find a module section, or NULL. Fill in number of "objects" in section. 265 * Ignores SHF_ALLOC flag. 266 */ 267 static __maybe_unused void *any_section_objs(const struct load_info *info, 268 const char *name, 269 size_t object_size, 270 unsigned int *num) 271 { 272 unsigned int sec = find_any_sec(info, name); 273 274 /* Section 0 has sh_addr 0 and sh_size 0. */ 275 *num = info->sechdrs[sec].sh_size / object_size; 276 return (void *)info->sechdrs[sec].sh_addr; 277 } 278 279 #ifndef CONFIG_MODVERSIONS 280 #define symversion(base, idx) NULL 281 #else 282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 283 #endif 284 285 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 286 { 287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 288 return offset_to_ptr(&sym->name_offset); 289 #else 290 return sym->name; 291 #endif 292 } 293 294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 295 { 296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 297 if (!sym->namespace_offset) 298 return NULL; 299 return offset_to_ptr(&sym->namespace_offset); 300 #else 301 return sym->namespace; 302 #endif 303 } 304 305 int cmp_name(const void *name, const void *sym) 306 { 307 return strcmp(name, kernel_symbol_name(sym)); 308 } 309 310 static bool find_exported_symbol_in_section(const struct symsearch *syms, 311 struct module *owner, 312 struct find_symbol_arg *fsa) 313 { 314 struct kernel_symbol *sym; 315 316 if (!fsa->gplok && syms->license == GPL_ONLY) 317 return false; 318 319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 320 sizeof(struct kernel_symbol), cmp_name); 321 if (!sym) 322 return false; 323 324 fsa->owner = owner; 325 fsa->crc = symversion(syms->crcs, sym - syms->start); 326 fsa->sym = sym; 327 fsa->license = syms->license; 328 329 return true; 330 } 331 332 /* 333 * Find an exported symbol and return it, along with, (optional) crc and 334 * (optional) module which owns it. Needs RCU or module_mutex. 335 */ 336 bool find_symbol(struct find_symbol_arg *fsa) 337 { 338 static const struct symsearch arr[] = { 339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 340 NOT_GPL_ONLY }, 341 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 342 __start___kcrctab_gpl, 343 GPL_ONLY }, 344 }; 345 struct module *mod; 346 unsigned int i; 347 348 for (i = 0; i < ARRAY_SIZE(arr); i++) 349 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 350 return true; 351 352 list_for_each_entry_rcu(mod, &modules, list, 353 lockdep_is_held(&module_mutex)) { 354 struct symsearch arr[] = { 355 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 356 NOT_GPL_ONLY }, 357 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 358 mod->gpl_crcs, 359 GPL_ONLY }, 360 }; 361 362 if (mod->state == MODULE_STATE_UNFORMED) 363 continue; 364 365 for (i = 0; i < ARRAY_SIZE(arr); i++) 366 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 367 return true; 368 } 369 370 pr_debug("Failed to find symbol %s\n", fsa->name); 371 return false; 372 } 373 374 /* 375 * Search for module by name: must hold module_mutex (or RCU for read-only 376 * access). 377 */ 378 struct module *find_module_all(const char *name, size_t len, 379 bool even_unformed) 380 { 381 struct module *mod; 382 383 list_for_each_entry_rcu(mod, &modules, list, 384 lockdep_is_held(&module_mutex)) { 385 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 386 continue; 387 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 388 return mod; 389 } 390 return NULL; 391 } 392 393 struct module *find_module(const char *name) 394 { 395 return find_module_all(name, strlen(name), false); 396 } 397 398 #ifdef CONFIG_SMP 399 400 static inline void __percpu *mod_percpu(struct module *mod) 401 { 402 return mod->percpu; 403 } 404 405 static int percpu_modalloc(struct module *mod, struct load_info *info) 406 { 407 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 408 unsigned long align = pcpusec->sh_addralign; 409 410 if (!pcpusec->sh_size) 411 return 0; 412 413 if (align > PAGE_SIZE) { 414 pr_warn("%s: per-cpu alignment %li > %li\n", 415 mod->name, align, PAGE_SIZE); 416 align = PAGE_SIZE; 417 } 418 419 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 420 if (!mod->percpu) { 421 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 422 mod->name, (unsigned long)pcpusec->sh_size); 423 return -ENOMEM; 424 } 425 mod->percpu_size = pcpusec->sh_size; 426 return 0; 427 } 428 429 static void percpu_modfree(struct module *mod) 430 { 431 free_percpu(mod->percpu); 432 } 433 434 static unsigned int find_pcpusec(struct load_info *info) 435 { 436 return find_sec(info, ".data..percpu"); 437 } 438 439 static void percpu_modcopy(struct module *mod, 440 const void *from, unsigned long size) 441 { 442 int cpu; 443 444 for_each_possible_cpu(cpu) 445 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 446 } 447 448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 449 { 450 struct module *mod; 451 unsigned int cpu; 452 453 guard(rcu)(); 454 list_for_each_entry_rcu(mod, &modules, list) { 455 if (mod->state == MODULE_STATE_UNFORMED) 456 continue; 457 if (!mod->percpu_size) 458 continue; 459 for_each_possible_cpu(cpu) { 460 void *start = per_cpu_ptr(mod->percpu, cpu); 461 void *va = (void *)addr; 462 463 if (va >= start && va < start + mod->percpu_size) { 464 if (can_addr) { 465 *can_addr = (unsigned long) (va - start); 466 *can_addr += (unsigned long) 467 per_cpu_ptr(mod->percpu, 468 get_boot_cpu_id()); 469 } 470 return true; 471 } 472 } 473 } 474 return false; 475 } 476 477 /** 478 * is_module_percpu_address() - test whether address is from module static percpu 479 * @addr: address to test 480 * 481 * Test whether @addr belongs to module static percpu area. 482 * 483 * Return: %true if @addr is from module static percpu area 484 */ 485 bool is_module_percpu_address(unsigned long addr) 486 { 487 return __is_module_percpu_address(addr, NULL); 488 } 489 490 #else /* ... !CONFIG_SMP */ 491 492 static inline void __percpu *mod_percpu(struct module *mod) 493 { 494 return NULL; 495 } 496 static int percpu_modalloc(struct module *mod, struct load_info *info) 497 { 498 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 499 if (info->sechdrs[info->index.pcpu].sh_size != 0) 500 return -ENOMEM; 501 return 0; 502 } 503 static inline void percpu_modfree(struct module *mod) 504 { 505 } 506 static unsigned int find_pcpusec(struct load_info *info) 507 { 508 return 0; 509 } 510 static inline void percpu_modcopy(struct module *mod, 511 const void *from, unsigned long size) 512 { 513 /* pcpusec should be 0, and size of that section should be 0. */ 514 BUG_ON(size != 0); 515 } 516 bool is_module_percpu_address(unsigned long addr) 517 { 518 return false; 519 } 520 521 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 522 { 523 return false; 524 } 525 526 #endif /* CONFIG_SMP */ 527 528 #define MODINFO_ATTR(field) \ 529 static void setup_modinfo_##field(struct module *mod, const char *s) \ 530 { \ 531 mod->field = kstrdup(s, GFP_KERNEL); \ 532 } \ 533 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 534 struct module_kobject *mk, char *buffer) \ 535 { \ 536 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 537 } \ 538 static int modinfo_##field##_exists(struct module *mod) \ 539 { \ 540 return mod->field != NULL; \ 541 } \ 542 static void free_modinfo_##field(struct module *mod) \ 543 { \ 544 kfree(mod->field); \ 545 mod->field = NULL; \ 546 } \ 547 static const struct module_attribute modinfo_##field = { \ 548 .attr = { .name = __stringify(field), .mode = 0444 }, \ 549 .show = show_modinfo_##field, \ 550 .setup = setup_modinfo_##field, \ 551 .test = modinfo_##field##_exists, \ 552 .free = free_modinfo_##field, \ 553 }; 554 555 MODINFO_ATTR(version); 556 MODINFO_ATTR(srcversion); 557 558 static struct { 559 char name[MODULE_NAME_LEN + 1]; 560 char taints[MODULE_FLAGS_BUF_SIZE]; 561 } last_unloaded_module; 562 563 #ifdef CONFIG_MODULE_UNLOAD 564 565 EXPORT_TRACEPOINT_SYMBOL(module_get); 566 567 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 568 #define MODULE_REF_BASE 1 569 570 /* Init the unload section of the module. */ 571 static int module_unload_init(struct module *mod) 572 { 573 /* 574 * Initialize reference counter to MODULE_REF_BASE. 575 * refcnt == 0 means module is going. 576 */ 577 atomic_set(&mod->refcnt, MODULE_REF_BASE); 578 579 INIT_LIST_HEAD(&mod->source_list); 580 INIT_LIST_HEAD(&mod->target_list); 581 582 /* Hold reference count during initialization. */ 583 atomic_inc(&mod->refcnt); 584 585 return 0; 586 } 587 588 /* Does a already use b? */ 589 static int already_uses(struct module *a, struct module *b) 590 { 591 struct module_use *use; 592 593 list_for_each_entry(use, &b->source_list, source_list) { 594 if (use->source == a) 595 return 1; 596 } 597 pr_debug("%s does not use %s!\n", a->name, b->name); 598 return 0; 599 } 600 601 /* 602 * Module a uses b 603 * - we add 'a' as a "source", 'b' as a "target" of module use 604 * - the module_use is added to the list of 'b' sources (so 605 * 'b' can walk the list to see who sourced them), and of 'a' 606 * targets (so 'a' can see what modules it targets). 607 */ 608 static int add_module_usage(struct module *a, struct module *b) 609 { 610 struct module_use *use; 611 612 pr_debug("Allocating new usage for %s.\n", a->name); 613 use = kmalloc(sizeof(*use), GFP_ATOMIC); 614 if (!use) 615 return -ENOMEM; 616 617 use->source = a; 618 use->target = b; 619 list_add(&use->source_list, &b->source_list); 620 list_add(&use->target_list, &a->target_list); 621 return 0; 622 } 623 624 /* Module a uses b: caller needs module_mutex() */ 625 static int ref_module(struct module *a, struct module *b) 626 { 627 int err; 628 629 if (b == NULL || already_uses(a, b)) 630 return 0; 631 632 /* If module isn't available, we fail. */ 633 err = strong_try_module_get(b); 634 if (err) 635 return err; 636 637 err = add_module_usage(a, b); 638 if (err) { 639 module_put(b); 640 return err; 641 } 642 return 0; 643 } 644 645 /* Clear the unload stuff of the module. */ 646 static void module_unload_free(struct module *mod) 647 { 648 struct module_use *use, *tmp; 649 650 mutex_lock(&module_mutex); 651 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 652 struct module *i = use->target; 653 pr_debug("%s unusing %s\n", mod->name, i->name); 654 module_put(i); 655 list_del(&use->source_list); 656 list_del(&use->target_list); 657 kfree(use); 658 } 659 mutex_unlock(&module_mutex); 660 } 661 662 #ifdef CONFIG_MODULE_FORCE_UNLOAD 663 static inline int try_force_unload(unsigned int flags) 664 { 665 int ret = (flags & O_TRUNC); 666 if (ret) 667 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 668 return ret; 669 } 670 #else 671 static inline int try_force_unload(unsigned int flags) 672 { 673 return 0; 674 } 675 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 676 677 /* Try to release refcount of module, 0 means success. */ 678 static int try_release_module_ref(struct module *mod) 679 { 680 int ret; 681 682 /* Try to decrement refcnt which we set at loading */ 683 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 684 BUG_ON(ret < 0); 685 if (ret) 686 /* Someone can put this right now, recover with checking */ 687 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 688 689 return ret; 690 } 691 692 static int try_stop_module(struct module *mod, int flags, int *forced) 693 { 694 /* If it's not unused, quit unless we're forcing. */ 695 if (try_release_module_ref(mod) != 0) { 696 *forced = try_force_unload(flags); 697 if (!(*forced)) 698 return -EWOULDBLOCK; 699 } 700 701 /* Mark it as dying. */ 702 mod->state = MODULE_STATE_GOING; 703 704 return 0; 705 } 706 707 /** 708 * module_refcount() - return the refcount or -1 if unloading 709 * @mod: the module we're checking 710 * 711 * Return: 712 * -1 if the module is in the process of unloading 713 * otherwise the number of references in the kernel to the module 714 */ 715 int module_refcount(struct module *mod) 716 { 717 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 718 } 719 EXPORT_SYMBOL(module_refcount); 720 721 /* This exists whether we can unload or not */ 722 static void free_module(struct module *mod); 723 724 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 725 unsigned int, flags) 726 { 727 struct module *mod; 728 char name[MODULE_NAME_LEN]; 729 char buf[MODULE_FLAGS_BUF_SIZE]; 730 int ret, forced = 0; 731 732 if (!capable(CAP_SYS_MODULE) || modules_disabled) 733 return -EPERM; 734 735 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 736 return -EFAULT; 737 name[MODULE_NAME_LEN-1] = '\0'; 738 739 audit_log_kern_module(name); 740 741 if (mutex_lock_interruptible(&module_mutex) != 0) 742 return -EINTR; 743 744 mod = find_module(name); 745 if (!mod) { 746 ret = -ENOENT; 747 goto out; 748 } 749 750 if (!list_empty(&mod->source_list)) { 751 /* Other modules depend on us: get rid of them first. */ 752 ret = -EWOULDBLOCK; 753 goto out; 754 } 755 756 /* Doing init or already dying? */ 757 if (mod->state != MODULE_STATE_LIVE) { 758 /* FIXME: if (force), slam module count damn the torpedoes */ 759 pr_debug("%s already dying\n", mod->name); 760 ret = -EBUSY; 761 goto out; 762 } 763 764 /* If it has an init func, it must have an exit func to unload */ 765 if (mod->init && !mod->exit) { 766 forced = try_force_unload(flags); 767 if (!forced) { 768 /* This module can't be removed */ 769 ret = -EBUSY; 770 goto out; 771 } 772 } 773 774 ret = try_stop_module(mod, flags, &forced); 775 if (ret != 0) 776 goto out; 777 778 mutex_unlock(&module_mutex); 779 /* Final destruction now no one is using it. */ 780 if (mod->exit != NULL) 781 mod->exit(); 782 blocking_notifier_call_chain(&module_notify_list, 783 MODULE_STATE_GOING, mod); 784 klp_module_going(mod); 785 ftrace_release_mod(mod); 786 787 async_synchronize_full(); 788 789 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 790 strscpy(last_unloaded_module.name, mod->name); 791 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false)); 792 793 free_module(mod); 794 /* someone could wait for the module in add_unformed_module() */ 795 wake_up_all(&module_wq); 796 return 0; 797 out: 798 mutex_unlock(&module_mutex); 799 return ret; 800 } 801 802 void __symbol_put(const char *symbol) 803 { 804 struct find_symbol_arg fsa = { 805 .name = symbol, 806 .gplok = true, 807 }; 808 809 guard(rcu)(); 810 BUG_ON(!find_symbol(&fsa)); 811 module_put(fsa.owner); 812 } 813 EXPORT_SYMBOL(__symbol_put); 814 815 /* Note this assumes addr is a function, which it currently always is. */ 816 void symbol_put_addr(void *addr) 817 { 818 struct module *modaddr; 819 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 820 821 if (core_kernel_text(a)) 822 return; 823 824 /* 825 * Even though we hold a reference on the module; we still need to 826 * RCU read section in order to safely traverse the data structure. 827 */ 828 guard(rcu)(); 829 modaddr = __module_text_address(a); 830 BUG_ON(!modaddr); 831 module_put(modaddr); 832 } 833 EXPORT_SYMBOL_GPL(symbol_put_addr); 834 835 static ssize_t show_refcnt(const struct module_attribute *mattr, 836 struct module_kobject *mk, char *buffer) 837 { 838 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 839 } 840 841 static const struct module_attribute modinfo_refcnt = 842 __ATTR(refcnt, 0444, show_refcnt, NULL); 843 844 void __module_get(struct module *module) 845 { 846 if (module) { 847 atomic_inc(&module->refcnt); 848 trace_module_get(module, _RET_IP_); 849 } 850 } 851 EXPORT_SYMBOL(__module_get); 852 853 bool try_module_get(struct module *module) 854 { 855 bool ret = true; 856 857 if (module) { 858 /* Note: here, we can fail to get a reference */ 859 if (likely(module_is_live(module) && 860 atomic_inc_not_zero(&module->refcnt) != 0)) 861 trace_module_get(module, _RET_IP_); 862 else 863 ret = false; 864 } 865 return ret; 866 } 867 EXPORT_SYMBOL(try_module_get); 868 869 void module_put(struct module *module) 870 { 871 int ret; 872 873 if (module) { 874 ret = atomic_dec_if_positive(&module->refcnt); 875 WARN_ON(ret < 0); /* Failed to put refcount */ 876 trace_module_put(module, _RET_IP_); 877 } 878 } 879 EXPORT_SYMBOL(module_put); 880 881 #else /* !CONFIG_MODULE_UNLOAD */ 882 static inline void module_unload_free(struct module *mod) 883 { 884 } 885 886 static int ref_module(struct module *a, struct module *b) 887 { 888 return strong_try_module_get(b); 889 } 890 891 static inline int module_unload_init(struct module *mod) 892 { 893 return 0; 894 } 895 #endif /* CONFIG_MODULE_UNLOAD */ 896 897 size_t module_flags_taint(unsigned long taints, char *buf) 898 { 899 size_t l = 0; 900 int i; 901 902 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 903 if (taint_flags[i].module && test_bit(i, &taints)) 904 buf[l++] = taint_flags[i].c_true; 905 } 906 907 return l; 908 } 909 910 static ssize_t show_initstate(const struct module_attribute *mattr, 911 struct module_kobject *mk, char *buffer) 912 { 913 const char *state = "unknown"; 914 915 switch (mk->mod->state) { 916 case MODULE_STATE_LIVE: 917 state = "live"; 918 break; 919 case MODULE_STATE_COMING: 920 state = "coming"; 921 break; 922 case MODULE_STATE_GOING: 923 state = "going"; 924 break; 925 default: 926 BUG(); 927 } 928 return sprintf(buffer, "%s\n", state); 929 } 930 931 static const struct module_attribute modinfo_initstate = 932 __ATTR(initstate, 0444, show_initstate, NULL); 933 934 static ssize_t store_uevent(const struct module_attribute *mattr, 935 struct module_kobject *mk, 936 const char *buffer, size_t count) 937 { 938 int rc; 939 940 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 941 return rc ? rc : count; 942 } 943 944 const struct module_attribute module_uevent = 945 __ATTR(uevent, 0200, NULL, store_uevent); 946 947 static ssize_t show_coresize(const struct module_attribute *mattr, 948 struct module_kobject *mk, char *buffer) 949 { 950 unsigned int size = mk->mod->mem[MOD_TEXT].size; 951 952 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 953 for_class_mod_mem_type(type, core_data) 954 size += mk->mod->mem[type].size; 955 } 956 return sprintf(buffer, "%u\n", size); 957 } 958 959 static const struct module_attribute modinfo_coresize = 960 __ATTR(coresize, 0444, show_coresize, NULL); 961 962 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 963 static ssize_t show_datasize(const struct module_attribute *mattr, 964 struct module_kobject *mk, char *buffer) 965 { 966 unsigned int size = 0; 967 968 for_class_mod_mem_type(type, core_data) 969 size += mk->mod->mem[type].size; 970 return sprintf(buffer, "%u\n", size); 971 } 972 973 static const struct module_attribute modinfo_datasize = 974 __ATTR(datasize, 0444, show_datasize, NULL); 975 #endif 976 977 static ssize_t show_initsize(const struct module_attribute *mattr, 978 struct module_kobject *mk, char *buffer) 979 { 980 unsigned int size = 0; 981 982 for_class_mod_mem_type(type, init) 983 size += mk->mod->mem[type].size; 984 return sprintf(buffer, "%u\n", size); 985 } 986 987 static const struct module_attribute modinfo_initsize = 988 __ATTR(initsize, 0444, show_initsize, NULL); 989 990 static ssize_t show_taint(const struct module_attribute *mattr, 991 struct module_kobject *mk, char *buffer) 992 { 993 size_t l; 994 995 l = module_flags_taint(mk->mod->taints, buffer); 996 buffer[l++] = '\n'; 997 return l; 998 } 999 1000 static const struct module_attribute modinfo_taint = 1001 __ATTR(taint, 0444, show_taint, NULL); 1002 1003 const struct module_attribute *const modinfo_attrs[] = { 1004 &module_uevent, 1005 &modinfo_version, 1006 &modinfo_srcversion, 1007 &modinfo_initstate, 1008 &modinfo_coresize, 1009 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1010 &modinfo_datasize, 1011 #endif 1012 &modinfo_initsize, 1013 &modinfo_taint, 1014 #ifdef CONFIG_MODULE_UNLOAD 1015 &modinfo_refcnt, 1016 #endif 1017 NULL, 1018 }; 1019 1020 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1021 1022 static const char vermagic[] = VERMAGIC_STRING; 1023 1024 int try_to_force_load(struct module *mod, const char *reason) 1025 { 1026 #ifdef CONFIG_MODULE_FORCE_LOAD 1027 if (!test_taint(TAINT_FORCED_MODULE)) 1028 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1029 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1030 return 0; 1031 #else 1032 return -ENOEXEC; 1033 #endif 1034 } 1035 1036 /* Parse tag=value strings from .modinfo section */ 1037 char *module_next_tag_pair(char *string, unsigned long *secsize) 1038 { 1039 /* Skip non-zero chars */ 1040 while (string[0]) { 1041 string++; 1042 if ((*secsize)-- <= 1) 1043 return NULL; 1044 } 1045 1046 /* Skip any zero padding. */ 1047 while (!string[0]) { 1048 string++; 1049 if ((*secsize)-- <= 1) 1050 return NULL; 1051 } 1052 return string; 1053 } 1054 1055 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1056 char *prev) 1057 { 1058 char *p; 1059 unsigned int taglen = strlen(tag); 1060 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1061 unsigned long size = infosec->sh_size; 1062 1063 /* 1064 * get_modinfo() calls made before rewrite_section_headers() 1065 * must use sh_offset, as sh_addr isn't set! 1066 */ 1067 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1068 1069 if (prev) { 1070 size -= prev - modinfo; 1071 modinfo = module_next_tag_pair(prev, &size); 1072 } 1073 1074 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1075 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1076 return p + taglen + 1; 1077 } 1078 return NULL; 1079 } 1080 1081 static char *get_modinfo(const struct load_info *info, const char *tag) 1082 { 1083 return get_next_modinfo(info, tag, NULL); 1084 } 1085 1086 static int verify_namespace_is_imported(const struct load_info *info, 1087 const struct kernel_symbol *sym, 1088 struct module *mod) 1089 { 1090 const char *namespace; 1091 char *imported_namespace; 1092 1093 namespace = kernel_symbol_namespace(sym); 1094 if (namespace && namespace[0]) { 1095 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1096 if (strcmp(namespace, imported_namespace) == 0) 1097 return 0; 1098 } 1099 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1100 pr_warn( 1101 #else 1102 pr_err( 1103 #endif 1104 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1105 mod->name, kernel_symbol_name(sym), namespace); 1106 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1107 return -EINVAL; 1108 #endif 1109 } 1110 return 0; 1111 } 1112 1113 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1114 { 1115 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1116 return true; 1117 1118 if (mod->using_gplonly_symbols) { 1119 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1120 mod->name, name, owner->name); 1121 return false; 1122 } 1123 1124 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1125 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1126 mod->name, name, owner->name); 1127 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1128 } 1129 return true; 1130 } 1131 1132 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1133 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1134 const struct load_info *info, 1135 const char *name, 1136 char ownername[]) 1137 { 1138 struct find_symbol_arg fsa = { 1139 .name = name, 1140 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1141 .warn = true, 1142 }; 1143 int err; 1144 1145 /* 1146 * The module_mutex should not be a heavily contended lock; 1147 * if we get the occasional sleep here, we'll go an extra iteration 1148 * in the wait_event_interruptible(), which is harmless. 1149 */ 1150 sched_annotate_sleep(); 1151 mutex_lock(&module_mutex); 1152 if (!find_symbol(&fsa)) 1153 goto unlock; 1154 1155 if (fsa.license == GPL_ONLY) 1156 mod->using_gplonly_symbols = true; 1157 1158 if (!inherit_taint(mod, fsa.owner, name)) { 1159 fsa.sym = NULL; 1160 goto getname; 1161 } 1162 1163 if (!check_version(info, name, mod, fsa.crc)) { 1164 fsa.sym = ERR_PTR(-EINVAL); 1165 goto getname; 1166 } 1167 1168 err = verify_namespace_is_imported(info, fsa.sym, mod); 1169 if (err) { 1170 fsa.sym = ERR_PTR(err); 1171 goto getname; 1172 } 1173 1174 err = ref_module(mod, fsa.owner); 1175 if (err) { 1176 fsa.sym = ERR_PTR(err); 1177 goto getname; 1178 } 1179 1180 getname: 1181 /* We must make copy under the lock if we failed to get ref. */ 1182 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1183 unlock: 1184 mutex_unlock(&module_mutex); 1185 return fsa.sym; 1186 } 1187 1188 static const struct kernel_symbol * 1189 resolve_symbol_wait(struct module *mod, 1190 const struct load_info *info, 1191 const char *name) 1192 { 1193 const struct kernel_symbol *ksym; 1194 char owner[MODULE_NAME_LEN]; 1195 1196 if (wait_event_interruptible_timeout(module_wq, 1197 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1198 || PTR_ERR(ksym) != -EBUSY, 1199 30 * HZ) <= 0) { 1200 pr_warn("%s: gave up waiting for init of module %s.\n", 1201 mod->name, owner); 1202 } 1203 return ksym; 1204 } 1205 1206 void __weak module_arch_cleanup(struct module *mod) 1207 { 1208 } 1209 1210 void __weak module_arch_freeing_init(struct module *mod) 1211 { 1212 } 1213 1214 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1215 { 1216 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1217 enum execmem_type execmem_type; 1218 void *ptr; 1219 1220 mod->mem[type].size = size; 1221 1222 if (mod_mem_type_is_data(type)) 1223 execmem_type = EXECMEM_MODULE_DATA; 1224 else 1225 execmem_type = EXECMEM_MODULE_TEXT; 1226 1227 ptr = execmem_alloc(execmem_type, size); 1228 if (!ptr) 1229 return -ENOMEM; 1230 1231 if (execmem_is_rox(execmem_type)) { 1232 int err = execmem_make_temp_rw(ptr, size); 1233 1234 if (err) { 1235 execmem_free(ptr); 1236 return -ENOMEM; 1237 } 1238 1239 mod->mem[type].is_rox = true; 1240 } 1241 1242 /* 1243 * The pointer to these blocks of memory are stored on the module 1244 * structure and we keep that around so long as the module is 1245 * around. We only free that memory when we unload the module. 1246 * Just mark them as not being a leak then. The .init* ELF 1247 * sections *do* get freed after boot so we *could* treat them 1248 * slightly differently with kmemleak_ignore() and only grey 1249 * them out as they work as typical memory allocations which 1250 * *do* eventually get freed, but let's just keep things simple 1251 * and avoid *any* false positives. 1252 */ 1253 if (!mod->mem[type].is_rox) 1254 kmemleak_not_leak(ptr); 1255 1256 memset(ptr, 0, size); 1257 mod->mem[type].base = ptr; 1258 1259 return 0; 1260 } 1261 1262 static void module_memory_restore_rox(struct module *mod) 1263 { 1264 for_class_mod_mem_type(type, text) { 1265 struct module_memory *mem = &mod->mem[type]; 1266 1267 if (mem->is_rox) 1268 execmem_restore_rox(mem->base, mem->size); 1269 } 1270 } 1271 1272 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1273 { 1274 struct module_memory *mem = &mod->mem[type]; 1275 1276 execmem_free(mem->base); 1277 } 1278 1279 static void free_mod_mem(struct module *mod) 1280 { 1281 for_each_mod_mem_type(type) { 1282 struct module_memory *mod_mem = &mod->mem[type]; 1283 1284 if (type == MOD_DATA) 1285 continue; 1286 1287 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1288 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1289 if (mod_mem->size) 1290 module_memory_free(mod, type); 1291 } 1292 1293 /* MOD_DATA hosts mod, so free it at last */ 1294 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1295 module_memory_free(mod, MOD_DATA); 1296 } 1297 1298 /* Free a module, remove from lists, etc. */ 1299 static void free_module(struct module *mod) 1300 { 1301 trace_module_free(mod); 1302 1303 codetag_unload_module(mod); 1304 1305 mod_sysfs_teardown(mod); 1306 1307 /* 1308 * We leave it in list to prevent duplicate loads, but make sure 1309 * that noone uses it while it's being deconstructed. 1310 */ 1311 mutex_lock(&module_mutex); 1312 mod->state = MODULE_STATE_UNFORMED; 1313 mutex_unlock(&module_mutex); 1314 1315 /* Arch-specific cleanup. */ 1316 module_arch_cleanup(mod); 1317 1318 /* Module unload stuff */ 1319 module_unload_free(mod); 1320 1321 /* Free any allocated parameters. */ 1322 destroy_params(mod->kp, mod->num_kp); 1323 1324 if (is_livepatch_module(mod)) 1325 free_module_elf(mod); 1326 1327 /* Now we can delete it from the lists */ 1328 mutex_lock(&module_mutex); 1329 /* Unlink carefully: kallsyms could be walking list. */ 1330 list_del_rcu(&mod->list); 1331 mod_tree_remove(mod); 1332 /* Remove this module from bug list, this uses list_del_rcu */ 1333 module_bug_cleanup(mod); 1334 /* Wait for RCU synchronizing before releasing mod->list and buglist. */ 1335 synchronize_rcu(); 1336 if (try_add_tainted_module(mod)) 1337 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1338 mod->name); 1339 mutex_unlock(&module_mutex); 1340 1341 /* This may be empty, but that's OK */ 1342 module_arch_freeing_init(mod); 1343 kfree(mod->args); 1344 percpu_modfree(mod); 1345 1346 free_mod_mem(mod); 1347 } 1348 1349 void *__symbol_get(const char *symbol) 1350 { 1351 struct find_symbol_arg fsa = { 1352 .name = symbol, 1353 .gplok = true, 1354 .warn = true, 1355 }; 1356 1357 scoped_guard(rcu) { 1358 if (!find_symbol(&fsa)) 1359 return NULL; 1360 if (fsa.license != GPL_ONLY) { 1361 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1362 symbol); 1363 return NULL; 1364 } 1365 if (strong_try_module_get(fsa.owner)) 1366 return NULL; 1367 } 1368 return (void *)kernel_symbol_value(fsa.sym); 1369 } 1370 EXPORT_SYMBOL_GPL(__symbol_get); 1371 1372 /* 1373 * Ensure that an exported symbol [global namespace] does not already exist 1374 * in the kernel or in some other module's exported symbol table. 1375 * 1376 * You must hold the module_mutex. 1377 */ 1378 static int verify_exported_symbols(struct module *mod) 1379 { 1380 unsigned int i; 1381 const struct kernel_symbol *s; 1382 struct { 1383 const struct kernel_symbol *sym; 1384 unsigned int num; 1385 } arr[] = { 1386 { mod->syms, mod->num_syms }, 1387 { mod->gpl_syms, mod->num_gpl_syms }, 1388 }; 1389 1390 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1391 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1392 struct find_symbol_arg fsa = { 1393 .name = kernel_symbol_name(s), 1394 .gplok = true, 1395 }; 1396 if (find_symbol(&fsa)) { 1397 pr_err("%s: exports duplicate symbol %s" 1398 " (owned by %s)\n", 1399 mod->name, kernel_symbol_name(s), 1400 module_name(fsa.owner)); 1401 return -ENOEXEC; 1402 } 1403 } 1404 } 1405 return 0; 1406 } 1407 1408 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1409 { 1410 /* 1411 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1412 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1413 * i386 has a similar problem but may not deserve a fix. 1414 * 1415 * If we ever have to ignore many symbols, consider refactoring the code to 1416 * only warn if referenced by a relocation. 1417 */ 1418 if (emachine == EM_386 || emachine == EM_X86_64) 1419 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1420 return false; 1421 } 1422 1423 /* Change all symbols so that st_value encodes the pointer directly. */ 1424 static int simplify_symbols(struct module *mod, const struct load_info *info) 1425 { 1426 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1427 Elf_Sym *sym = (void *)symsec->sh_addr; 1428 unsigned long secbase; 1429 unsigned int i; 1430 int ret = 0; 1431 const struct kernel_symbol *ksym; 1432 1433 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1434 const char *name = info->strtab + sym[i].st_name; 1435 1436 switch (sym[i].st_shndx) { 1437 case SHN_COMMON: 1438 /* Ignore common symbols */ 1439 if (!strncmp(name, "__gnu_lto", 9)) 1440 break; 1441 1442 /* 1443 * We compiled with -fno-common. These are not 1444 * supposed to happen. 1445 */ 1446 pr_debug("Common symbol: %s\n", name); 1447 pr_warn("%s: please compile with -fno-common\n", 1448 mod->name); 1449 ret = -ENOEXEC; 1450 break; 1451 1452 case SHN_ABS: 1453 /* Don't need to do anything */ 1454 pr_debug("Absolute symbol: 0x%08lx %s\n", 1455 (long)sym[i].st_value, name); 1456 break; 1457 1458 case SHN_LIVEPATCH: 1459 /* Livepatch symbols are resolved by livepatch */ 1460 break; 1461 1462 case SHN_UNDEF: 1463 ksym = resolve_symbol_wait(mod, info, name); 1464 /* Ok if resolved. */ 1465 if (ksym && !IS_ERR(ksym)) { 1466 sym[i].st_value = kernel_symbol_value(ksym); 1467 break; 1468 } 1469 1470 /* Ok if weak or ignored. */ 1471 if (!ksym && 1472 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1473 ignore_undef_symbol(info->hdr->e_machine, name))) 1474 break; 1475 1476 ret = PTR_ERR(ksym) ?: -ENOENT; 1477 pr_warn("%s: Unknown symbol %s (err %d)\n", 1478 mod->name, name, ret); 1479 break; 1480 1481 default: 1482 /* Divert to percpu allocation if a percpu var. */ 1483 if (sym[i].st_shndx == info->index.pcpu) 1484 secbase = (unsigned long)mod_percpu(mod); 1485 else 1486 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1487 sym[i].st_value += secbase; 1488 break; 1489 } 1490 } 1491 1492 return ret; 1493 } 1494 1495 static int apply_relocations(struct module *mod, const struct load_info *info) 1496 { 1497 unsigned int i; 1498 int err = 0; 1499 1500 /* Now do relocations. */ 1501 for (i = 1; i < info->hdr->e_shnum; i++) { 1502 unsigned int infosec = info->sechdrs[i].sh_info; 1503 1504 /* Not a valid relocation section? */ 1505 if (infosec >= info->hdr->e_shnum) 1506 continue; 1507 1508 /* Don't bother with non-allocated sections */ 1509 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1510 continue; 1511 1512 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1513 err = klp_apply_section_relocs(mod, info->sechdrs, 1514 info->secstrings, 1515 info->strtab, 1516 info->index.sym, i, 1517 NULL); 1518 else if (info->sechdrs[i].sh_type == SHT_REL) 1519 err = apply_relocate(info->sechdrs, info->strtab, 1520 info->index.sym, i, mod); 1521 else if (info->sechdrs[i].sh_type == SHT_RELA) 1522 err = apply_relocate_add(info->sechdrs, info->strtab, 1523 info->index.sym, i, mod); 1524 if (err < 0) 1525 break; 1526 } 1527 return err; 1528 } 1529 1530 /* Additional bytes needed by arch in front of individual sections */ 1531 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1532 unsigned int section) 1533 { 1534 /* default implementation just returns zero */ 1535 return 0; 1536 } 1537 1538 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1539 Elf_Shdr *sechdr, unsigned int section) 1540 { 1541 long offset; 1542 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1543 1544 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1545 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1546 mod->mem[type].size = offset + sechdr->sh_size; 1547 1548 WARN_ON_ONCE(offset & mask); 1549 return offset | mask; 1550 } 1551 1552 bool module_init_layout_section(const char *sname) 1553 { 1554 #ifndef CONFIG_MODULE_UNLOAD 1555 if (module_exit_section(sname)) 1556 return true; 1557 #endif 1558 return module_init_section(sname); 1559 } 1560 1561 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1562 { 1563 unsigned int m, i; 1564 1565 /* 1566 * { Mask of required section header flags, 1567 * Mask of excluded section header flags } 1568 */ 1569 static const unsigned long masks[][2] = { 1570 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1571 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1572 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1573 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1574 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1575 }; 1576 static const int core_m_to_mem_type[] = { 1577 MOD_TEXT, 1578 MOD_RODATA, 1579 MOD_RO_AFTER_INIT, 1580 MOD_DATA, 1581 MOD_DATA, 1582 }; 1583 static const int init_m_to_mem_type[] = { 1584 MOD_INIT_TEXT, 1585 MOD_INIT_RODATA, 1586 MOD_INVALID, 1587 MOD_INIT_DATA, 1588 MOD_INIT_DATA, 1589 }; 1590 1591 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1592 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1593 1594 for (i = 0; i < info->hdr->e_shnum; ++i) { 1595 Elf_Shdr *s = &info->sechdrs[i]; 1596 const char *sname = info->secstrings + s->sh_name; 1597 1598 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1599 || (s->sh_flags & masks[m][1]) 1600 || s->sh_entsize != ~0UL 1601 || is_init != module_init_layout_section(sname)) 1602 continue; 1603 1604 if (WARN_ON_ONCE(type == MOD_INVALID)) 1605 continue; 1606 1607 /* 1608 * Do not allocate codetag memory as we load it into 1609 * preallocated contiguous memory. 1610 */ 1611 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1612 /* 1613 * s->sh_entsize won't be used but populate the 1614 * type field to avoid confusion. 1615 */ 1616 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1617 << SH_ENTSIZE_TYPE_SHIFT; 1618 continue; 1619 } 1620 1621 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1622 pr_debug("\t%s\n", sname); 1623 } 1624 } 1625 } 1626 1627 /* 1628 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1629 * might -- code, read-only data, read-write data, small data. Tally 1630 * sizes, and place the offsets into sh_entsize fields: high bit means it 1631 * belongs in init. 1632 */ 1633 static void layout_sections(struct module *mod, struct load_info *info) 1634 { 1635 unsigned int i; 1636 1637 for (i = 0; i < info->hdr->e_shnum; i++) 1638 info->sechdrs[i].sh_entsize = ~0UL; 1639 1640 pr_debug("Core section allocation order for %s:\n", mod->name); 1641 __layout_sections(mod, info, false); 1642 1643 pr_debug("Init section allocation order for %s:\n", mod->name); 1644 __layout_sections(mod, info, true); 1645 } 1646 1647 static void module_license_taint_check(struct module *mod, const char *license) 1648 { 1649 if (!license) 1650 license = "unspecified"; 1651 1652 if (!license_is_gpl_compatible(license)) { 1653 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1654 pr_warn("%s: module license '%s' taints kernel.\n", 1655 mod->name, license); 1656 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1657 LOCKDEP_NOW_UNRELIABLE); 1658 } 1659 } 1660 1661 static void setup_modinfo(struct module *mod, struct load_info *info) 1662 { 1663 const struct module_attribute *attr; 1664 int i; 1665 1666 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1667 if (attr->setup) 1668 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1669 } 1670 } 1671 1672 static void free_modinfo(struct module *mod) 1673 { 1674 const struct module_attribute *attr; 1675 int i; 1676 1677 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1678 if (attr->free) 1679 attr->free(mod); 1680 } 1681 } 1682 1683 bool __weak module_init_section(const char *name) 1684 { 1685 return strstarts(name, ".init"); 1686 } 1687 1688 bool __weak module_exit_section(const char *name) 1689 { 1690 return strstarts(name, ".exit"); 1691 } 1692 1693 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1694 { 1695 #if defined(CONFIG_64BIT) 1696 unsigned long long secend; 1697 #else 1698 unsigned long secend; 1699 #endif 1700 1701 /* 1702 * Check for both overflow and offset/size being 1703 * too large. 1704 */ 1705 secend = shdr->sh_offset + shdr->sh_size; 1706 if (secend < shdr->sh_offset || secend > info->len) 1707 return -ENOEXEC; 1708 1709 return 0; 1710 } 1711 1712 /** 1713 * elf_validity_ehdr() - Checks an ELF header for module validity 1714 * @info: Load info containing the ELF header to check 1715 * 1716 * Checks whether an ELF header could belong to a valid module. Checks: 1717 * 1718 * * ELF header is within the data the user provided 1719 * * ELF magic is present 1720 * * It is relocatable (not final linked, not core file, etc.) 1721 * * The header's machine type matches what the architecture expects. 1722 * * Optional arch-specific hook for other properties 1723 * - module_elf_check_arch() is currently only used by PPC to check 1724 * ELF ABI version, but may be used by others in the future. 1725 * 1726 * Return: %0 if valid, %-ENOEXEC on failure. 1727 */ 1728 static int elf_validity_ehdr(const struct load_info *info) 1729 { 1730 if (info->len < sizeof(*(info->hdr))) { 1731 pr_err("Invalid ELF header len %lu\n", info->len); 1732 return -ENOEXEC; 1733 } 1734 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1735 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1736 return -ENOEXEC; 1737 } 1738 if (info->hdr->e_type != ET_REL) { 1739 pr_err("Invalid ELF header type: %u != %u\n", 1740 info->hdr->e_type, ET_REL); 1741 return -ENOEXEC; 1742 } 1743 if (!elf_check_arch(info->hdr)) { 1744 pr_err("Invalid architecture in ELF header: %u\n", 1745 info->hdr->e_machine); 1746 return -ENOEXEC; 1747 } 1748 if (!module_elf_check_arch(info->hdr)) { 1749 pr_err("Invalid module architecture in ELF header: %u\n", 1750 info->hdr->e_machine); 1751 return -ENOEXEC; 1752 } 1753 return 0; 1754 } 1755 1756 /** 1757 * elf_validity_cache_sechdrs() - Cache section headers if valid 1758 * @info: Load info to compute section headers from 1759 * 1760 * Checks: 1761 * 1762 * * ELF header is valid (see elf_validity_ehdr()) 1763 * * Section headers are the size we expect 1764 * * Section array fits in the user provided data 1765 * * Section index 0 is NULL 1766 * * Section contents are inbounds 1767 * 1768 * Then updates @info with a &load_info->sechdrs pointer if valid. 1769 * 1770 * Return: %0 if valid, negative error code if validation failed. 1771 */ 1772 static int elf_validity_cache_sechdrs(struct load_info *info) 1773 { 1774 Elf_Shdr *sechdrs; 1775 Elf_Shdr *shdr; 1776 int i; 1777 int err; 1778 1779 err = elf_validity_ehdr(info); 1780 if (err < 0) 1781 return err; 1782 1783 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1784 pr_err("Invalid ELF section header size\n"); 1785 return -ENOEXEC; 1786 } 1787 1788 /* 1789 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1790 * known and small. So e_shnum * sizeof(Elf_Shdr) 1791 * will not overflow unsigned long on any platform. 1792 */ 1793 if (info->hdr->e_shoff >= info->len 1794 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1795 info->len - info->hdr->e_shoff)) { 1796 pr_err("Invalid ELF section header overflow\n"); 1797 return -ENOEXEC; 1798 } 1799 1800 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1801 1802 /* 1803 * The code assumes that section 0 has a length of zero and 1804 * an addr of zero, so check for it. 1805 */ 1806 if (sechdrs[0].sh_type != SHT_NULL 1807 || sechdrs[0].sh_size != 0 1808 || sechdrs[0].sh_addr != 0) { 1809 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1810 sechdrs[0].sh_type); 1811 return -ENOEXEC; 1812 } 1813 1814 /* Validate contents are inbounds */ 1815 for (i = 1; i < info->hdr->e_shnum; i++) { 1816 shdr = &sechdrs[i]; 1817 switch (shdr->sh_type) { 1818 case SHT_NULL: 1819 case SHT_NOBITS: 1820 /* No contents, offset/size don't mean anything */ 1821 continue; 1822 default: 1823 err = validate_section_offset(info, shdr); 1824 if (err < 0) { 1825 pr_err("Invalid ELF section in module (section %u type %u)\n", 1826 i, shdr->sh_type); 1827 return err; 1828 } 1829 } 1830 } 1831 1832 info->sechdrs = sechdrs; 1833 1834 return 0; 1835 } 1836 1837 /** 1838 * elf_validity_cache_secstrings() - Caches section names if valid 1839 * @info: Load info to cache section names from. Must have valid sechdrs. 1840 * 1841 * Specifically checks: 1842 * 1843 * * Section name table index is inbounds of section headers 1844 * * Section name table is not empty 1845 * * Section name table is NUL terminated 1846 * * All section name offsets are inbounds of the section 1847 * 1848 * Then updates @info with a &load_info->secstrings pointer if valid. 1849 * 1850 * Return: %0 if valid, negative error code if validation failed. 1851 */ 1852 static int elf_validity_cache_secstrings(struct load_info *info) 1853 { 1854 Elf_Shdr *strhdr, *shdr; 1855 char *secstrings; 1856 int i; 1857 1858 /* 1859 * Verify if the section name table index is valid. 1860 */ 1861 if (info->hdr->e_shstrndx == SHN_UNDEF 1862 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1863 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1864 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1865 info->hdr->e_shnum); 1866 return -ENOEXEC; 1867 } 1868 1869 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1870 1871 /* 1872 * The section name table must be NUL-terminated, as required 1873 * by the spec. This makes strcmp and pr_* calls that access 1874 * strings in the section safe. 1875 */ 1876 secstrings = (void *)info->hdr + strhdr->sh_offset; 1877 if (strhdr->sh_size == 0) { 1878 pr_err("empty section name table\n"); 1879 return -ENOEXEC; 1880 } 1881 if (secstrings[strhdr->sh_size - 1] != '\0') { 1882 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1883 return -ENOEXEC; 1884 } 1885 1886 for (i = 0; i < info->hdr->e_shnum; i++) { 1887 shdr = &info->sechdrs[i]; 1888 /* SHT_NULL means sh_name has an undefined value */ 1889 if (shdr->sh_type == SHT_NULL) 1890 continue; 1891 if (shdr->sh_name >= strhdr->sh_size) { 1892 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1893 i, shdr->sh_type); 1894 return -ENOEXEC; 1895 } 1896 } 1897 1898 info->secstrings = secstrings; 1899 return 0; 1900 } 1901 1902 /** 1903 * elf_validity_cache_index_info() - Validate and cache modinfo section 1904 * @info: Load info to populate the modinfo index on. 1905 * Must have &load_info->sechdrs and &load_info->secstrings populated 1906 * 1907 * Checks that if there is a .modinfo section, it is unique. 1908 * Then, it caches its index in &load_info->index.info. 1909 * Finally, it tries to populate the name to improve error messages. 1910 * 1911 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1912 */ 1913 static int elf_validity_cache_index_info(struct load_info *info) 1914 { 1915 int info_idx; 1916 1917 info_idx = find_any_unique_sec(info, ".modinfo"); 1918 1919 if (info_idx == 0) 1920 /* Early return, no .modinfo */ 1921 return 0; 1922 1923 if (info_idx < 0) { 1924 pr_err("Only one .modinfo section must exist.\n"); 1925 return -ENOEXEC; 1926 } 1927 1928 info->index.info = info_idx; 1929 /* Try to find a name early so we can log errors with a module name */ 1930 info->name = get_modinfo(info, "name"); 1931 1932 return 0; 1933 } 1934 1935 /** 1936 * elf_validity_cache_index_mod() - Validates and caches this_module section 1937 * @info: Load info to cache this_module on. 1938 * Must have &load_info->sechdrs and &load_info->secstrings populated 1939 * 1940 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 1941 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 1942 * to &__this_module properly. The kernel's modpost declares it on each 1943 * modules's *.mod.c file. If the struct module of the kernel changes a full 1944 * kernel rebuild is required. 1945 * 1946 * We have a few expectations for this special section, this function 1947 * validates all this for us: 1948 * 1949 * * The section has contents 1950 * * The section is unique 1951 * * We expect the kernel to always have to allocate it: SHF_ALLOC 1952 * * The section size must match the kernel's run time's struct module 1953 * size 1954 * 1955 * If all checks pass, the index will be cached in &load_info->index.mod 1956 * 1957 * Return: %0 on validation success, %-ENOEXEC on failure 1958 */ 1959 static int elf_validity_cache_index_mod(struct load_info *info) 1960 { 1961 Elf_Shdr *shdr; 1962 int mod_idx; 1963 1964 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 1965 if (mod_idx <= 0) { 1966 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 1967 info->name ?: "(missing .modinfo section or name field)"); 1968 return -ENOEXEC; 1969 } 1970 1971 shdr = &info->sechdrs[mod_idx]; 1972 1973 if (shdr->sh_type == SHT_NOBITS) { 1974 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1975 info->name ?: "(missing .modinfo section or name field)"); 1976 return -ENOEXEC; 1977 } 1978 1979 if (!(shdr->sh_flags & SHF_ALLOC)) { 1980 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1981 info->name ?: "(missing .modinfo section or name field)"); 1982 return -ENOEXEC; 1983 } 1984 1985 if (shdr->sh_size != sizeof(struct module)) { 1986 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1987 info->name ?: "(missing .modinfo section or name field)"); 1988 return -ENOEXEC; 1989 } 1990 1991 info->index.mod = mod_idx; 1992 1993 return 0; 1994 } 1995 1996 /** 1997 * elf_validity_cache_index_sym() - Validate and cache symtab index 1998 * @info: Load info to cache symtab index in. 1999 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2000 * 2001 * Checks that there is exactly one symbol table, then caches its index in 2002 * &load_info->index.sym. 2003 * 2004 * Return: %0 if valid, %-ENOEXEC on failure. 2005 */ 2006 static int elf_validity_cache_index_sym(struct load_info *info) 2007 { 2008 unsigned int sym_idx; 2009 unsigned int num_sym_secs = 0; 2010 int i; 2011 2012 for (i = 1; i < info->hdr->e_shnum; i++) { 2013 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2014 num_sym_secs++; 2015 sym_idx = i; 2016 } 2017 } 2018 2019 if (num_sym_secs != 1) { 2020 pr_warn("%s: module has no symbols (stripped?)\n", 2021 info->name ?: "(missing .modinfo section or name field)"); 2022 return -ENOEXEC; 2023 } 2024 2025 info->index.sym = sym_idx; 2026 2027 return 0; 2028 } 2029 2030 /** 2031 * elf_validity_cache_index_str() - Validate and cache strtab index 2032 * @info: Load info to cache strtab index in. 2033 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2034 * Must have &load_info->index.sym populated. 2035 * 2036 * Looks at the symbol table's associated string table, makes sure it is 2037 * in-bounds, and caches it. 2038 * 2039 * Return: %0 if valid, %-ENOEXEC on failure. 2040 */ 2041 static int elf_validity_cache_index_str(struct load_info *info) 2042 { 2043 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2044 2045 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2046 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2047 str_idx, str_idx, info->hdr->e_shnum); 2048 return -ENOEXEC; 2049 } 2050 2051 info->index.str = str_idx; 2052 return 0; 2053 } 2054 2055 /** 2056 * elf_validity_cache_index_versions() - Validate and cache version indices 2057 * @info: Load info to cache version indices in. 2058 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2059 * @flags: Load flags, relevant to suppress version loading, see 2060 * uapi/linux/module.h 2061 * 2062 * If we're ignoring modversions based on @flags, zero all version indices 2063 * and return validity. Othewrise check: 2064 * 2065 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2066 * * There is a name present for every crc 2067 * 2068 * Then populate: 2069 * 2070 * * &load_info->index.vers 2071 * * &load_info->index.vers_ext_crc 2072 * * &load_info->index.vers_ext_names 2073 * 2074 * if present. 2075 * 2076 * Return: %0 if valid, %-ENOEXEC on failure. 2077 */ 2078 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2079 { 2080 unsigned int vers_ext_crc; 2081 unsigned int vers_ext_name; 2082 size_t crc_count; 2083 size_t remaining_len; 2084 size_t name_size; 2085 char *name; 2086 2087 /* If modversions were suppressed, pretend we didn't find any */ 2088 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2089 info->index.vers = 0; 2090 info->index.vers_ext_crc = 0; 2091 info->index.vers_ext_name = 0; 2092 return 0; 2093 } 2094 2095 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2096 vers_ext_name = find_sec(info, "__version_ext_names"); 2097 2098 /* If we have one field, we must have the other */ 2099 if (!!vers_ext_crc != !!vers_ext_name) { 2100 pr_err("extended version crc+name presence does not match"); 2101 return -ENOEXEC; 2102 } 2103 2104 /* 2105 * If we have extended version information, we should have the same 2106 * number of entries in every section. 2107 */ 2108 if (vers_ext_crc) { 2109 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2110 name = (void *)info->hdr + 2111 info->sechdrs[vers_ext_name].sh_offset; 2112 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2113 2114 while (crc_count--) { 2115 name_size = strnlen(name, remaining_len) + 1; 2116 if (name_size > remaining_len) { 2117 pr_err("more extended version crcs than names"); 2118 return -ENOEXEC; 2119 } 2120 remaining_len -= name_size; 2121 name += name_size; 2122 } 2123 } 2124 2125 info->index.vers = find_sec(info, "__versions"); 2126 info->index.vers_ext_crc = vers_ext_crc; 2127 info->index.vers_ext_name = vers_ext_name; 2128 return 0; 2129 } 2130 2131 /** 2132 * elf_validity_cache_index() - Resolve, validate, cache section indices 2133 * @info: Load info to read from and update. 2134 * &load_info->sechdrs and &load_info->secstrings must be populated. 2135 * @flags: Load flags, relevant to suppress version loading, see 2136 * uapi/linux/module.h 2137 * 2138 * Populates &load_info->index, validating as it goes. 2139 * See child functions for per-field validation: 2140 * 2141 * * elf_validity_cache_index_info() 2142 * * elf_validity_cache_index_mod() 2143 * * elf_validity_cache_index_sym() 2144 * * elf_validity_cache_index_str() 2145 * * elf_validity_cache_index_versions() 2146 * 2147 * If CONFIG_SMP is enabled, load the percpu section by name with no 2148 * validation. 2149 * 2150 * Return: 0 on success, negative error code if an index failed validation. 2151 */ 2152 static int elf_validity_cache_index(struct load_info *info, int flags) 2153 { 2154 int err; 2155 2156 err = elf_validity_cache_index_info(info); 2157 if (err < 0) 2158 return err; 2159 err = elf_validity_cache_index_mod(info); 2160 if (err < 0) 2161 return err; 2162 err = elf_validity_cache_index_sym(info); 2163 if (err < 0) 2164 return err; 2165 err = elf_validity_cache_index_str(info); 2166 if (err < 0) 2167 return err; 2168 err = elf_validity_cache_index_versions(info, flags); 2169 if (err < 0) 2170 return err; 2171 2172 info->index.pcpu = find_pcpusec(info); 2173 2174 return 0; 2175 } 2176 2177 /** 2178 * elf_validity_cache_strtab() - Validate and cache symbol string table 2179 * @info: Load info to read from and update. 2180 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2181 * Must have &load_info->index populated. 2182 * 2183 * Checks: 2184 * 2185 * * The string table is not empty. 2186 * * The string table starts and ends with NUL (required by ELF spec). 2187 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2188 * string table. 2189 * 2190 * And caches the pointer as &load_info->strtab in @info. 2191 * 2192 * Return: 0 on success, negative error code if a check failed. 2193 */ 2194 static int elf_validity_cache_strtab(struct load_info *info) 2195 { 2196 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2197 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2198 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2199 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2200 int i; 2201 2202 if (str_shdr->sh_size == 0) { 2203 pr_err("empty symbol string table\n"); 2204 return -ENOEXEC; 2205 } 2206 if (strtab[0] != '\0') { 2207 pr_err("symbol string table missing leading NUL\n"); 2208 return -ENOEXEC; 2209 } 2210 if (strtab[str_shdr->sh_size - 1] != '\0') { 2211 pr_err("symbol string table isn't NUL terminated\n"); 2212 return -ENOEXEC; 2213 } 2214 2215 /* 2216 * Now that we know strtab is correctly structured, check symbol 2217 * starts are inbounds before they're used later. 2218 */ 2219 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2220 if (syms[i].st_name >= str_shdr->sh_size) { 2221 pr_err("symbol name out of bounds in string table"); 2222 return -ENOEXEC; 2223 } 2224 } 2225 2226 info->strtab = strtab; 2227 return 0; 2228 } 2229 2230 /* 2231 * Check userspace passed ELF module against our expectations, and cache 2232 * useful variables for further processing as we go. 2233 * 2234 * This does basic validity checks against section offsets and sizes, the 2235 * section name string table, and the indices used for it (sh_name). 2236 * 2237 * As a last step, since we're already checking the ELF sections we cache 2238 * useful variables which will be used later for our convenience: 2239 * 2240 * o pointers to section headers 2241 * o cache the modinfo symbol section 2242 * o cache the string symbol section 2243 * o cache the module section 2244 * 2245 * As a last step we set info->mod to the temporary copy of the module in 2246 * info->hdr. The final one will be allocated in move_module(). Any 2247 * modifications we make to our copy of the module will be carried over 2248 * to the final minted module. 2249 */ 2250 static int elf_validity_cache_copy(struct load_info *info, int flags) 2251 { 2252 int err; 2253 2254 err = elf_validity_cache_sechdrs(info); 2255 if (err < 0) 2256 return err; 2257 err = elf_validity_cache_secstrings(info); 2258 if (err < 0) 2259 return err; 2260 err = elf_validity_cache_index(info, flags); 2261 if (err < 0) 2262 return err; 2263 err = elf_validity_cache_strtab(info); 2264 if (err < 0) 2265 return err; 2266 2267 /* This is temporary: point mod into copy of data. */ 2268 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2269 2270 /* 2271 * If we didn't load the .modinfo 'name' field earlier, fall back to 2272 * on-disk struct mod 'name' field. 2273 */ 2274 if (!info->name) 2275 info->name = info->mod->name; 2276 2277 return 0; 2278 } 2279 2280 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2281 2282 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2283 { 2284 do { 2285 unsigned long n = min(len, COPY_CHUNK_SIZE); 2286 2287 if (copy_from_user(dst, usrc, n) != 0) 2288 return -EFAULT; 2289 cond_resched(); 2290 dst += n; 2291 usrc += n; 2292 len -= n; 2293 } while (len); 2294 return 0; 2295 } 2296 2297 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2298 { 2299 if (!get_modinfo(info, "livepatch")) 2300 /* Nothing more to do */ 2301 return 0; 2302 2303 if (set_livepatch_module(mod)) 2304 return 0; 2305 2306 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2307 mod->name); 2308 return -ENOEXEC; 2309 } 2310 2311 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2312 { 2313 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2314 return; 2315 2316 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2317 mod->name); 2318 } 2319 2320 /* Sets info->hdr and info->len. */ 2321 static int copy_module_from_user(const void __user *umod, unsigned long len, 2322 struct load_info *info) 2323 { 2324 int err; 2325 2326 info->len = len; 2327 if (info->len < sizeof(*(info->hdr))) 2328 return -ENOEXEC; 2329 2330 err = security_kernel_load_data(LOADING_MODULE, true); 2331 if (err) 2332 return err; 2333 2334 /* Suck in entire file: we'll want most of it. */ 2335 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2336 if (!info->hdr) 2337 return -ENOMEM; 2338 2339 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2340 err = -EFAULT; 2341 goto out; 2342 } 2343 2344 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2345 LOADING_MODULE, "init_module"); 2346 out: 2347 if (err) 2348 vfree(info->hdr); 2349 2350 return err; 2351 } 2352 2353 static void free_copy(struct load_info *info, int flags) 2354 { 2355 if (flags & MODULE_INIT_COMPRESSED_FILE) 2356 module_decompress_cleanup(info); 2357 else 2358 vfree(info->hdr); 2359 } 2360 2361 static int rewrite_section_headers(struct load_info *info, int flags) 2362 { 2363 unsigned int i; 2364 2365 /* This should always be true, but let's be sure. */ 2366 info->sechdrs[0].sh_addr = 0; 2367 2368 for (i = 1; i < info->hdr->e_shnum; i++) { 2369 Elf_Shdr *shdr = &info->sechdrs[i]; 2370 2371 /* 2372 * Mark all sections sh_addr with their address in the 2373 * temporary image. 2374 */ 2375 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2376 2377 } 2378 2379 /* Track but don't keep modinfo and version sections. */ 2380 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2381 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2382 ~(unsigned long)SHF_ALLOC; 2383 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2384 ~(unsigned long)SHF_ALLOC; 2385 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2386 2387 return 0; 2388 } 2389 2390 static const char *const module_license_offenders[] = { 2391 /* driverloader was caught wrongly pretending to be under GPL */ 2392 "driverloader", 2393 2394 /* lve claims to be GPL but upstream won't provide source */ 2395 "lve", 2396 }; 2397 2398 /* 2399 * These calls taint the kernel depending certain module circumstances */ 2400 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2401 { 2402 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2403 size_t i; 2404 2405 if (!get_modinfo(info, "intree")) { 2406 if (!test_taint(TAINT_OOT_MODULE)) 2407 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2408 mod->name); 2409 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2410 } 2411 2412 check_modinfo_retpoline(mod, info); 2413 2414 if (get_modinfo(info, "staging")) { 2415 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2416 pr_warn("%s: module is from the staging directory, the quality " 2417 "is unknown, you have been warned.\n", mod->name); 2418 } 2419 2420 if (is_livepatch_module(mod)) { 2421 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2422 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2423 mod->name); 2424 } 2425 2426 module_license_taint_check(mod, get_modinfo(info, "license")); 2427 2428 if (get_modinfo(info, "test")) { 2429 if (!test_taint(TAINT_TEST)) 2430 pr_warn("%s: loading test module taints kernel.\n", 2431 mod->name); 2432 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2433 } 2434 #ifdef CONFIG_MODULE_SIG 2435 mod->sig_ok = info->sig_ok; 2436 if (!mod->sig_ok) { 2437 pr_notice_once("%s: module verification failed: signature " 2438 "and/or required key missing - tainting " 2439 "kernel\n", mod->name); 2440 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2441 } 2442 #endif 2443 2444 /* 2445 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2446 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2447 * using GPL-only symbols it needs. 2448 */ 2449 if (strcmp(mod->name, "ndiswrapper") == 0) 2450 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2451 2452 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2453 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2454 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2455 LOCKDEP_NOW_UNRELIABLE); 2456 } 2457 2458 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2459 pr_warn("%s: module license taints kernel.\n", mod->name); 2460 2461 } 2462 2463 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2464 { 2465 const char *modmagic = get_modinfo(info, "vermagic"); 2466 int err; 2467 2468 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2469 modmagic = NULL; 2470 2471 /* This is allowed: modprobe --force will invalidate it. */ 2472 if (!modmagic) { 2473 err = try_to_force_load(mod, "bad vermagic"); 2474 if (err) 2475 return err; 2476 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2477 pr_err("%s: version magic '%s' should be '%s'\n", 2478 info->name, modmagic, vermagic); 2479 return -ENOEXEC; 2480 } 2481 2482 err = check_modinfo_livepatch(mod, info); 2483 if (err) 2484 return err; 2485 2486 return 0; 2487 } 2488 2489 static int find_module_sections(struct module *mod, struct load_info *info) 2490 { 2491 mod->kp = section_objs(info, "__param", 2492 sizeof(*mod->kp), &mod->num_kp); 2493 mod->syms = section_objs(info, "__ksymtab", 2494 sizeof(*mod->syms), &mod->num_syms); 2495 mod->crcs = section_addr(info, "__kcrctab"); 2496 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2497 sizeof(*mod->gpl_syms), 2498 &mod->num_gpl_syms); 2499 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2500 2501 #ifdef CONFIG_CONSTRUCTORS 2502 mod->ctors = section_objs(info, ".ctors", 2503 sizeof(*mod->ctors), &mod->num_ctors); 2504 if (!mod->ctors) 2505 mod->ctors = section_objs(info, ".init_array", 2506 sizeof(*mod->ctors), &mod->num_ctors); 2507 else if (find_sec(info, ".init_array")) { 2508 /* 2509 * This shouldn't happen with same compiler and binutils 2510 * building all parts of the module. 2511 */ 2512 pr_warn("%s: has both .ctors and .init_array.\n", 2513 mod->name); 2514 return -EINVAL; 2515 } 2516 #endif 2517 2518 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2519 &mod->noinstr_text_size); 2520 2521 #ifdef CONFIG_TRACEPOINTS 2522 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2523 sizeof(*mod->tracepoints_ptrs), 2524 &mod->num_tracepoints); 2525 #endif 2526 #ifdef CONFIG_TREE_SRCU 2527 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2528 sizeof(*mod->srcu_struct_ptrs), 2529 &mod->num_srcu_structs); 2530 #endif 2531 #ifdef CONFIG_BPF_EVENTS 2532 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2533 sizeof(*mod->bpf_raw_events), 2534 &mod->num_bpf_raw_events); 2535 #endif 2536 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2537 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2538 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2539 &mod->btf_base_data_size); 2540 #endif 2541 #ifdef CONFIG_JUMP_LABEL 2542 mod->jump_entries = section_objs(info, "__jump_table", 2543 sizeof(*mod->jump_entries), 2544 &mod->num_jump_entries); 2545 #endif 2546 #ifdef CONFIG_EVENT_TRACING 2547 mod->trace_events = section_objs(info, "_ftrace_events", 2548 sizeof(*mod->trace_events), 2549 &mod->num_trace_events); 2550 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2551 sizeof(*mod->trace_evals), 2552 &mod->num_trace_evals); 2553 #endif 2554 #ifdef CONFIG_TRACING 2555 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2556 sizeof(*mod->trace_bprintk_fmt_start), 2557 &mod->num_trace_bprintk_fmt); 2558 #endif 2559 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2560 /* sechdrs[0].sh_size is always zero */ 2561 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2562 sizeof(*mod->ftrace_callsites), 2563 &mod->num_ftrace_callsites); 2564 #endif 2565 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2566 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2567 sizeof(*mod->ei_funcs), 2568 &mod->num_ei_funcs); 2569 #endif 2570 #ifdef CONFIG_KPROBES 2571 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2572 &mod->kprobes_text_size); 2573 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2574 sizeof(unsigned long), 2575 &mod->num_kprobe_blacklist); 2576 #endif 2577 #ifdef CONFIG_PRINTK_INDEX 2578 mod->printk_index_start = section_objs(info, ".printk_index", 2579 sizeof(*mod->printk_index_start), 2580 &mod->printk_index_size); 2581 #endif 2582 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2583 mod->static_call_sites = section_objs(info, ".static_call_sites", 2584 sizeof(*mod->static_call_sites), 2585 &mod->num_static_call_sites); 2586 #endif 2587 #if IS_ENABLED(CONFIG_KUNIT) 2588 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2589 sizeof(*mod->kunit_suites), 2590 &mod->num_kunit_suites); 2591 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2592 sizeof(*mod->kunit_init_suites), 2593 &mod->num_kunit_init_suites); 2594 #endif 2595 2596 mod->extable = section_objs(info, "__ex_table", 2597 sizeof(*mod->extable), &mod->num_exentries); 2598 2599 if (section_addr(info, "__obsparm")) 2600 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2601 2602 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2603 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2604 sizeof(*mod->dyndbg_info.descs), 2605 &mod->dyndbg_info.num_descs); 2606 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2607 sizeof(*mod->dyndbg_info.classes), 2608 &mod->dyndbg_info.num_classes); 2609 #endif 2610 2611 return 0; 2612 } 2613 2614 static int move_module(struct module *mod, struct load_info *info) 2615 { 2616 int i; 2617 enum mod_mem_type t = 0; 2618 int ret = -ENOMEM; 2619 bool codetag_section_found = false; 2620 2621 for_each_mod_mem_type(type) { 2622 if (!mod->mem[type].size) { 2623 mod->mem[type].base = NULL; 2624 continue; 2625 } 2626 2627 ret = module_memory_alloc(mod, type); 2628 if (ret) { 2629 t = type; 2630 goto out_err; 2631 } 2632 } 2633 2634 /* Transfer each section which specifies SHF_ALLOC */ 2635 pr_debug("Final section addresses for %s:\n", mod->name); 2636 for (i = 0; i < info->hdr->e_shnum; i++) { 2637 void *dest; 2638 Elf_Shdr *shdr = &info->sechdrs[i]; 2639 const char *sname; 2640 2641 if (!(shdr->sh_flags & SHF_ALLOC)) 2642 continue; 2643 2644 sname = info->secstrings + shdr->sh_name; 2645 /* 2646 * Load codetag sections separately as they might still be used 2647 * after module unload. 2648 */ 2649 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2650 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2651 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2652 if (WARN_ON(!dest)) { 2653 ret = -EINVAL; 2654 goto out_err; 2655 } 2656 if (IS_ERR(dest)) { 2657 ret = PTR_ERR(dest); 2658 goto out_err; 2659 } 2660 codetag_section_found = true; 2661 } else { 2662 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2663 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2664 2665 dest = mod->mem[type].base + offset; 2666 } 2667 2668 if (shdr->sh_type != SHT_NOBITS) { 2669 /* 2670 * Our ELF checker already validated this, but let's 2671 * be pedantic and make the goal clearer. We actually 2672 * end up copying over all modifications made to the 2673 * userspace copy of the entire struct module. 2674 */ 2675 if (i == info->index.mod && 2676 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2677 ret = -ENOEXEC; 2678 goto out_err; 2679 } 2680 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2681 } 2682 /* 2683 * Update the userspace copy's ELF section address to point to 2684 * our newly allocated memory as a pure convenience so that 2685 * users of info can keep taking advantage and using the newly 2686 * minted official memory area. 2687 */ 2688 shdr->sh_addr = (unsigned long)dest; 2689 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2690 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2691 } 2692 2693 return 0; 2694 out_err: 2695 module_memory_restore_rox(mod); 2696 for (t--; t >= 0; t--) 2697 module_memory_free(mod, t); 2698 if (codetag_section_found) 2699 codetag_free_module_sections(mod); 2700 2701 return ret; 2702 } 2703 2704 static int check_export_symbol_versions(struct module *mod) 2705 { 2706 #ifdef CONFIG_MODVERSIONS 2707 if ((mod->num_syms && !mod->crcs) || 2708 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2709 return try_to_force_load(mod, 2710 "no versions for exported symbols"); 2711 } 2712 #endif 2713 return 0; 2714 } 2715 2716 static void flush_module_icache(const struct module *mod) 2717 { 2718 /* 2719 * Flush the instruction cache, since we've played with text. 2720 * Do it before processing of module parameters, so the module 2721 * can provide parameter accessor functions of its own. 2722 */ 2723 for_each_mod_mem_type(type) { 2724 const struct module_memory *mod_mem = &mod->mem[type]; 2725 2726 if (mod_mem->size) { 2727 flush_icache_range((unsigned long)mod_mem->base, 2728 (unsigned long)mod_mem->base + mod_mem->size); 2729 } 2730 } 2731 } 2732 2733 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2734 { 2735 return true; 2736 } 2737 2738 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2739 Elf_Shdr *sechdrs, 2740 char *secstrings, 2741 struct module *mod) 2742 { 2743 return 0; 2744 } 2745 2746 /* module_blacklist is a comma-separated list of module names */ 2747 static char *module_blacklist; 2748 static bool blacklisted(const char *module_name) 2749 { 2750 const char *p; 2751 size_t len; 2752 2753 if (!module_blacklist) 2754 return false; 2755 2756 for (p = module_blacklist; *p; p += len) { 2757 len = strcspn(p, ","); 2758 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2759 return true; 2760 if (p[len] == ',') 2761 len++; 2762 } 2763 return false; 2764 } 2765 core_param(module_blacklist, module_blacklist, charp, 0400); 2766 2767 static struct module *layout_and_allocate(struct load_info *info, int flags) 2768 { 2769 struct module *mod; 2770 int err; 2771 2772 /* Allow arches to frob section contents and sizes. */ 2773 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2774 info->secstrings, info->mod); 2775 if (err < 0) 2776 return ERR_PTR(err); 2777 2778 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2779 info->secstrings, info->mod); 2780 if (err < 0) 2781 return ERR_PTR(err); 2782 2783 /* We will do a special allocation for per-cpu sections later. */ 2784 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2785 2786 /* 2787 * Mark relevant sections as SHF_RO_AFTER_INIT so layout_sections() can 2788 * put them in the right place. 2789 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2790 */ 2791 module_mark_ro_after_init(info->hdr, info->sechdrs, info->secstrings); 2792 2793 /* 2794 * Determine total sizes, and put offsets in sh_entsize. For now 2795 * this is done generically; there doesn't appear to be any 2796 * special cases for the architectures. 2797 */ 2798 layout_sections(info->mod, info); 2799 layout_symtab(info->mod, info); 2800 2801 /* Allocate and move to the final place */ 2802 err = move_module(info->mod, info); 2803 if (err) 2804 return ERR_PTR(err); 2805 2806 /* Module has been copied to its final place now: return it. */ 2807 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2808 kmemleak_load_module(mod, info); 2809 codetag_module_replaced(info->mod, mod); 2810 2811 return mod; 2812 } 2813 2814 /* mod is no longer valid after this! */ 2815 static void module_deallocate(struct module *mod, struct load_info *info) 2816 { 2817 percpu_modfree(mod); 2818 module_arch_freeing_init(mod); 2819 codetag_free_module_sections(mod); 2820 2821 free_mod_mem(mod); 2822 } 2823 2824 int __weak module_finalize(const Elf_Ehdr *hdr, 2825 const Elf_Shdr *sechdrs, 2826 struct module *me) 2827 { 2828 return 0; 2829 } 2830 2831 static int post_relocation(struct module *mod, const struct load_info *info) 2832 { 2833 /* Sort exception table now relocations are done. */ 2834 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2835 2836 /* Copy relocated percpu area over. */ 2837 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2838 info->sechdrs[info->index.pcpu].sh_size); 2839 2840 /* Setup kallsyms-specific fields. */ 2841 add_kallsyms(mod, info); 2842 2843 /* Arch-specific module finalizing. */ 2844 return module_finalize(info->hdr, info->sechdrs, mod); 2845 } 2846 2847 /* Call module constructors. */ 2848 static void do_mod_ctors(struct module *mod) 2849 { 2850 #ifdef CONFIG_CONSTRUCTORS 2851 unsigned long i; 2852 2853 for (i = 0; i < mod->num_ctors; i++) 2854 mod->ctors[i](); 2855 #endif 2856 } 2857 2858 /* For freeing module_init on success, in case kallsyms traversing */ 2859 struct mod_initfree { 2860 struct llist_node node; 2861 void *init_text; 2862 void *init_data; 2863 void *init_rodata; 2864 }; 2865 2866 static void do_free_init(struct work_struct *w) 2867 { 2868 struct llist_node *pos, *n, *list; 2869 struct mod_initfree *initfree; 2870 2871 list = llist_del_all(&init_free_list); 2872 2873 synchronize_rcu(); 2874 2875 llist_for_each_safe(pos, n, list) { 2876 initfree = container_of(pos, struct mod_initfree, node); 2877 execmem_free(initfree->init_text); 2878 execmem_free(initfree->init_data); 2879 execmem_free(initfree->init_rodata); 2880 kfree(initfree); 2881 } 2882 } 2883 2884 void flush_module_init_free_work(void) 2885 { 2886 flush_work(&init_free_wq); 2887 } 2888 2889 #undef MODULE_PARAM_PREFIX 2890 #define MODULE_PARAM_PREFIX "module." 2891 /* Default value for module->async_probe_requested */ 2892 static bool async_probe; 2893 module_param(async_probe, bool, 0644); 2894 2895 /* 2896 * This is where the real work happens. 2897 * 2898 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2899 * helper command 'lx-symbols'. 2900 */ 2901 static noinline int do_init_module(struct module *mod) 2902 { 2903 int ret = 0; 2904 struct mod_initfree *freeinit; 2905 #if defined(CONFIG_MODULE_STATS) 2906 unsigned int text_size = 0, total_size = 0; 2907 2908 for_each_mod_mem_type(type) { 2909 const struct module_memory *mod_mem = &mod->mem[type]; 2910 if (mod_mem->size) { 2911 total_size += mod_mem->size; 2912 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2913 text_size += mod_mem->size; 2914 } 2915 } 2916 #endif 2917 2918 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2919 if (!freeinit) { 2920 ret = -ENOMEM; 2921 goto fail; 2922 } 2923 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2924 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2925 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2926 2927 do_mod_ctors(mod); 2928 /* Start the module */ 2929 if (mod->init != NULL) 2930 ret = do_one_initcall(mod->init); 2931 if (ret < 0) { 2932 goto fail_free_freeinit; 2933 } 2934 if (ret > 0) { 2935 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2936 "follow 0/-E convention\n" 2937 "%s: loading module anyway...\n", 2938 __func__, mod->name, ret, __func__); 2939 dump_stack(); 2940 } 2941 2942 /* Now it's a first class citizen! */ 2943 mod->state = MODULE_STATE_LIVE; 2944 blocking_notifier_call_chain(&module_notify_list, 2945 MODULE_STATE_LIVE, mod); 2946 2947 /* Delay uevent until module has finished its init routine */ 2948 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2949 2950 /* 2951 * We need to finish all async code before the module init sequence 2952 * is done. This has potential to deadlock if synchronous module 2953 * loading is requested from async (which is not allowed!). 2954 * 2955 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2956 * request_module() from async workers") for more details. 2957 */ 2958 if (!mod->async_probe_requested) 2959 async_synchronize_full(); 2960 2961 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2962 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2963 mutex_lock(&module_mutex); 2964 /* Drop initial reference. */ 2965 module_put(mod); 2966 trim_init_extable(mod); 2967 #ifdef CONFIG_KALLSYMS 2968 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2969 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2970 #endif 2971 ret = module_enable_rodata_ro_after_init(mod); 2972 if (ret) 2973 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 2974 "ro_after_init data might still be writable\n", 2975 mod->name, ret); 2976 2977 mod_tree_remove_init(mod); 2978 module_arch_freeing_init(mod); 2979 for_class_mod_mem_type(type, init) { 2980 mod->mem[type].base = NULL; 2981 mod->mem[type].size = 0; 2982 } 2983 2984 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2985 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 2986 mod->btf_data = NULL; 2987 mod->btf_base_data = NULL; 2988 #endif 2989 /* 2990 * We want to free module_init, but be aware that kallsyms may be 2991 * walking this within an RCU read section. In all the failure paths, we 2992 * call synchronize_rcu(), but we don't want to slow down the success 2993 * path. execmem_free() cannot be called in an interrupt, so do the 2994 * work and call synchronize_rcu() in a work queue. 2995 * 2996 * Note that execmem_alloc() on most architectures creates W+X page 2997 * mappings which won't be cleaned up until do_free_init() runs. Any 2998 * code such as mark_rodata_ro() which depends on those mappings to 2999 * be cleaned up needs to sync with the queued work by invoking 3000 * flush_module_init_free_work(). 3001 */ 3002 if (llist_add(&freeinit->node, &init_free_list)) 3003 schedule_work(&init_free_wq); 3004 3005 mutex_unlock(&module_mutex); 3006 wake_up_all(&module_wq); 3007 3008 mod_stat_add_long(text_size, &total_text_size); 3009 mod_stat_add_long(total_size, &total_mod_size); 3010 3011 mod_stat_inc(&modcount); 3012 3013 return 0; 3014 3015 fail_free_freeinit: 3016 kfree(freeinit); 3017 fail: 3018 /* Try to protect us from buggy refcounters. */ 3019 mod->state = MODULE_STATE_GOING; 3020 synchronize_rcu(); 3021 module_put(mod); 3022 blocking_notifier_call_chain(&module_notify_list, 3023 MODULE_STATE_GOING, mod); 3024 klp_module_going(mod); 3025 ftrace_release_mod(mod); 3026 free_module(mod); 3027 wake_up_all(&module_wq); 3028 3029 return ret; 3030 } 3031 3032 static int may_init_module(void) 3033 { 3034 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3035 return -EPERM; 3036 3037 return 0; 3038 } 3039 3040 /* Is this module of this name done loading? No locks held. */ 3041 static bool finished_loading(const char *name) 3042 { 3043 struct module *mod; 3044 bool ret; 3045 3046 /* 3047 * The module_mutex should not be a heavily contended lock; 3048 * if we get the occasional sleep here, we'll go an extra iteration 3049 * in the wait_event_interruptible(), which is harmless. 3050 */ 3051 sched_annotate_sleep(); 3052 mutex_lock(&module_mutex); 3053 mod = find_module_all(name, strlen(name), true); 3054 ret = !mod || mod->state == MODULE_STATE_LIVE 3055 || mod->state == MODULE_STATE_GOING; 3056 mutex_unlock(&module_mutex); 3057 3058 return ret; 3059 } 3060 3061 /* Must be called with module_mutex held */ 3062 static int module_patient_check_exists(const char *name, 3063 enum fail_dup_mod_reason reason) 3064 { 3065 struct module *old; 3066 int err = 0; 3067 3068 old = find_module_all(name, strlen(name), true); 3069 if (old == NULL) 3070 return 0; 3071 3072 if (old->state == MODULE_STATE_COMING || 3073 old->state == MODULE_STATE_UNFORMED) { 3074 /* Wait in case it fails to load. */ 3075 mutex_unlock(&module_mutex); 3076 err = wait_event_interruptible(module_wq, 3077 finished_loading(name)); 3078 mutex_lock(&module_mutex); 3079 if (err) 3080 return err; 3081 3082 /* The module might have gone in the meantime. */ 3083 old = find_module_all(name, strlen(name), true); 3084 } 3085 3086 if (try_add_failed_module(name, reason)) 3087 pr_warn("Could not add fail-tracking for module: %s\n", name); 3088 3089 /* 3090 * We are here only when the same module was being loaded. Do 3091 * not try to load it again right now. It prevents long delays 3092 * caused by serialized module load failures. It might happen 3093 * when more devices of the same type trigger load of 3094 * a particular module. 3095 */ 3096 if (old && old->state == MODULE_STATE_LIVE) 3097 return -EEXIST; 3098 return -EBUSY; 3099 } 3100 3101 /* 3102 * We try to place it in the list now to make sure it's unique before 3103 * we dedicate too many resources. In particular, temporary percpu 3104 * memory exhaustion. 3105 */ 3106 static int add_unformed_module(struct module *mod) 3107 { 3108 int err; 3109 3110 mod->state = MODULE_STATE_UNFORMED; 3111 3112 mutex_lock(&module_mutex); 3113 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3114 if (err) 3115 goto out; 3116 3117 mod_update_bounds(mod); 3118 list_add_rcu(&mod->list, &modules); 3119 mod_tree_insert(mod); 3120 err = 0; 3121 3122 out: 3123 mutex_unlock(&module_mutex); 3124 return err; 3125 } 3126 3127 static int complete_formation(struct module *mod, struct load_info *info) 3128 { 3129 int err; 3130 3131 mutex_lock(&module_mutex); 3132 3133 /* Find duplicate symbols (must be called under lock). */ 3134 err = verify_exported_symbols(mod); 3135 if (err < 0) 3136 goto out; 3137 3138 /* These rely on module_mutex for list integrity. */ 3139 module_bug_finalize(info->hdr, info->sechdrs, mod); 3140 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3141 3142 err = module_enable_rodata_ro(mod); 3143 if (err) 3144 goto out_strict_rwx; 3145 err = module_enable_data_nx(mod); 3146 if (err) 3147 goto out_strict_rwx; 3148 err = module_enable_text_rox(mod); 3149 if (err) 3150 goto out_strict_rwx; 3151 3152 /* 3153 * Mark state as coming so strong_try_module_get() ignores us, 3154 * but kallsyms etc. can see us. 3155 */ 3156 mod->state = MODULE_STATE_COMING; 3157 mutex_unlock(&module_mutex); 3158 3159 return 0; 3160 3161 out_strict_rwx: 3162 module_bug_cleanup(mod); 3163 out: 3164 mutex_unlock(&module_mutex); 3165 return err; 3166 } 3167 3168 static int prepare_coming_module(struct module *mod) 3169 { 3170 int err; 3171 3172 ftrace_module_enable(mod); 3173 err = klp_module_coming(mod); 3174 if (err) 3175 return err; 3176 3177 err = blocking_notifier_call_chain_robust(&module_notify_list, 3178 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3179 err = notifier_to_errno(err); 3180 if (err) 3181 klp_module_going(mod); 3182 3183 return err; 3184 } 3185 3186 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3187 void *arg) 3188 { 3189 struct module *mod = arg; 3190 int ret; 3191 3192 if (strcmp(param, "async_probe") == 0) { 3193 if (kstrtobool(val, &mod->async_probe_requested)) 3194 mod->async_probe_requested = true; 3195 return 0; 3196 } 3197 3198 /* Check for magic 'dyndbg' arg */ 3199 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3200 if (ret != 0) 3201 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3202 return 0; 3203 } 3204 3205 /* Module within temporary copy, this doesn't do any allocation */ 3206 static int early_mod_check(struct load_info *info, int flags) 3207 { 3208 int err; 3209 3210 /* 3211 * Now that we know we have the correct module name, check 3212 * if it's blacklisted. 3213 */ 3214 if (blacklisted(info->name)) { 3215 pr_err("Module %s is blacklisted\n", info->name); 3216 return -EPERM; 3217 } 3218 3219 err = rewrite_section_headers(info, flags); 3220 if (err) 3221 return err; 3222 3223 /* Check module struct version now, before we try to use module. */ 3224 if (!check_modstruct_version(info, info->mod)) 3225 return -ENOEXEC; 3226 3227 err = check_modinfo(info->mod, info, flags); 3228 if (err) 3229 return err; 3230 3231 mutex_lock(&module_mutex); 3232 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3233 mutex_unlock(&module_mutex); 3234 3235 return err; 3236 } 3237 3238 /* 3239 * Allocate and load the module: note that size of section 0 is always 3240 * zero, and we rely on this for optional sections. 3241 */ 3242 static int load_module(struct load_info *info, const char __user *uargs, 3243 int flags) 3244 { 3245 struct module *mod; 3246 bool module_allocated = false; 3247 long err = 0; 3248 char *after_dashes; 3249 3250 /* 3251 * Do the signature check (if any) first. All that 3252 * the signature check needs is info->len, it does 3253 * not need any of the section info. That can be 3254 * set up later. This will minimize the chances 3255 * of a corrupt module causing problems before 3256 * we even get to the signature check. 3257 * 3258 * The check will also adjust info->len by stripping 3259 * off the sig length at the end of the module, making 3260 * checks against info->len more correct. 3261 */ 3262 err = module_sig_check(info, flags); 3263 if (err) 3264 goto free_copy; 3265 3266 /* 3267 * Do basic sanity checks against the ELF header and 3268 * sections. Cache useful sections and set the 3269 * info->mod to the userspace passed struct module. 3270 */ 3271 err = elf_validity_cache_copy(info, flags); 3272 if (err) 3273 goto free_copy; 3274 3275 err = early_mod_check(info, flags); 3276 if (err) 3277 goto free_copy; 3278 3279 /* Figure out module layout, and allocate all the memory. */ 3280 mod = layout_and_allocate(info, flags); 3281 if (IS_ERR(mod)) { 3282 err = PTR_ERR(mod); 3283 goto free_copy; 3284 } 3285 3286 module_allocated = true; 3287 3288 audit_log_kern_module(mod->name); 3289 3290 /* Reserve our place in the list. */ 3291 err = add_unformed_module(mod); 3292 if (err) 3293 goto free_module; 3294 3295 /* 3296 * We are tainting your kernel if your module gets into 3297 * the modules linked list somehow. 3298 */ 3299 module_augment_kernel_taints(mod, info); 3300 3301 /* To avoid stressing percpu allocator, do this once we're unique. */ 3302 err = percpu_modalloc(mod, info); 3303 if (err) 3304 goto unlink_mod; 3305 3306 /* Now module is in final location, initialize linked lists, etc. */ 3307 err = module_unload_init(mod); 3308 if (err) 3309 goto unlink_mod; 3310 3311 init_param_lock(mod); 3312 3313 /* 3314 * Now we've got everything in the final locations, we can 3315 * find optional sections. 3316 */ 3317 err = find_module_sections(mod, info); 3318 if (err) 3319 goto free_unload; 3320 3321 err = check_export_symbol_versions(mod); 3322 if (err) 3323 goto free_unload; 3324 3325 /* Set up MODINFO_ATTR fields */ 3326 setup_modinfo(mod, info); 3327 3328 /* Fix up syms, so that st_value is a pointer to location. */ 3329 err = simplify_symbols(mod, info); 3330 if (err < 0) 3331 goto free_modinfo; 3332 3333 err = apply_relocations(mod, info); 3334 if (err < 0) 3335 goto free_modinfo; 3336 3337 err = post_relocation(mod, info); 3338 if (err < 0) 3339 goto free_modinfo; 3340 3341 flush_module_icache(mod); 3342 3343 /* Now copy in args */ 3344 mod->args = strndup_user(uargs, ~0UL >> 1); 3345 if (IS_ERR(mod->args)) { 3346 err = PTR_ERR(mod->args); 3347 goto free_arch_cleanup; 3348 } 3349 3350 init_build_id(mod, info); 3351 3352 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3353 ftrace_module_init(mod); 3354 3355 /* Finally it's fully formed, ready to start executing. */ 3356 err = complete_formation(mod, info); 3357 if (err) 3358 goto ddebug_cleanup; 3359 3360 err = prepare_coming_module(mod); 3361 if (err) 3362 goto bug_cleanup; 3363 3364 mod->async_probe_requested = async_probe; 3365 3366 /* Module is ready to execute: parsing args may do that. */ 3367 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3368 -32768, 32767, mod, 3369 unknown_module_param_cb); 3370 if (IS_ERR(after_dashes)) { 3371 err = PTR_ERR(after_dashes); 3372 goto coming_cleanup; 3373 } else if (after_dashes) { 3374 pr_warn("%s: parameters '%s' after `--' ignored\n", 3375 mod->name, after_dashes); 3376 } 3377 3378 /* Link in to sysfs. */ 3379 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3380 if (err < 0) 3381 goto coming_cleanup; 3382 3383 if (is_livepatch_module(mod)) { 3384 err = copy_module_elf(mod, info); 3385 if (err < 0) 3386 goto sysfs_cleanup; 3387 } 3388 3389 /* Get rid of temporary copy. */ 3390 free_copy(info, flags); 3391 3392 codetag_load_module(mod); 3393 3394 /* Done! */ 3395 trace_module_load(mod); 3396 3397 return do_init_module(mod); 3398 3399 sysfs_cleanup: 3400 mod_sysfs_teardown(mod); 3401 coming_cleanup: 3402 mod->state = MODULE_STATE_GOING; 3403 destroy_params(mod->kp, mod->num_kp); 3404 blocking_notifier_call_chain(&module_notify_list, 3405 MODULE_STATE_GOING, mod); 3406 klp_module_going(mod); 3407 bug_cleanup: 3408 mod->state = MODULE_STATE_GOING; 3409 /* module_bug_cleanup needs module_mutex protection */ 3410 mutex_lock(&module_mutex); 3411 module_bug_cleanup(mod); 3412 mutex_unlock(&module_mutex); 3413 3414 ddebug_cleanup: 3415 ftrace_release_mod(mod); 3416 synchronize_rcu(); 3417 kfree(mod->args); 3418 free_arch_cleanup: 3419 module_arch_cleanup(mod); 3420 free_modinfo: 3421 free_modinfo(mod); 3422 free_unload: 3423 module_unload_free(mod); 3424 unlink_mod: 3425 mutex_lock(&module_mutex); 3426 /* Unlink carefully: kallsyms could be walking list. */ 3427 list_del_rcu(&mod->list); 3428 mod_tree_remove(mod); 3429 wake_up_all(&module_wq); 3430 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3431 synchronize_rcu(); 3432 mutex_unlock(&module_mutex); 3433 free_module: 3434 mod_stat_bump_invalid(info, flags); 3435 /* Free lock-classes; relies on the preceding sync_rcu() */ 3436 for_class_mod_mem_type(type, core_data) { 3437 lockdep_free_key_range(mod->mem[type].base, 3438 mod->mem[type].size); 3439 } 3440 3441 module_memory_restore_rox(mod); 3442 module_deallocate(mod, info); 3443 free_copy: 3444 /* 3445 * The info->len is always set. We distinguish between 3446 * failures once the proper module was allocated and 3447 * before that. 3448 */ 3449 if (!module_allocated) 3450 mod_stat_bump_becoming(info, flags); 3451 free_copy(info, flags); 3452 return err; 3453 } 3454 3455 SYSCALL_DEFINE3(init_module, void __user *, umod, 3456 unsigned long, len, const char __user *, uargs) 3457 { 3458 int err; 3459 struct load_info info = { }; 3460 3461 err = may_init_module(); 3462 if (err) 3463 return err; 3464 3465 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3466 umod, len, uargs); 3467 3468 err = copy_module_from_user(umod, len, &info); 3469 if (err) { 3470 mod_stat_inc(&failed_kreads); 3471 mod_stat_add_long(len, &invalid_kread_bytes); 3472 return err; 3473 } 3474 3475 return load_module(&info, uargs, 0); 3476 } 3477 3478 struct idempotent { 3479 const void *cookie; 3480 struct hlist_node entry; 3481 struct completion complete; 3482 int ret; 3483 }; 3484 3485 #define IDEM_HASH_BITS 8 3486 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3487 static DEFINE_SPINLOCK(idem_lock); 3488 3489 static bool idempotent(struct idempotent *u, const void *cookie) 3490 { 3491 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3492 struct hlist_head *head = idem_hash + hash; 3493 struct idempotent *existing; 3494 bool first; 3495 3496 u->ret = -EINTR; 3497 u->cookie = cookie; 3498 init_completion(&u->complete); 3499 3500 spin_lock(&idem_lock); 3501 first = true; 3502 hlist_for_each_entry(existing, head, entry) { 3503 if (existing->cookie != cookie) 3504 continue; 3505 first = false; 3506 break; 3507 } 3508 hlist_add_head(&u->entry, idem_hash + hash); 3509 spin_unlock(&idem_lock); 3510 3511 return !first; 3512 } 3513 3514 /* 3515 * We were the first one with 'cookie' on the list, and we ended 3516 * up completing the operation. We now need to walk the list, 3517 * remove everybody - which includes ourselves - fill in the return 3518 * value, and then complete the operation. 3519 */ 3520 static int idempotent_complete(struct idempotent *u, int ret) 3521 { 3522 const void *cookie = u->cookie; 3523 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3524 struct hlist_head *head = idem_hash + hash; 3525 struct hlist_node *next; 3526 struct idempotent *pos; 3527 3528 spin_lock(&idem_lock); 3529 hlist_for_each_entry_safe(pos, next, head, entry) { 3530 if (pos->cookie != cookie) 3531 continue; 3532 hlist_del_init(&pos->entry); 3533 pos->ret = ret; 3534 complete(&pos->complete); 3535 } 3536 spin_unlock(&idem_lock); 3537 return ret; 3538 } 3539 3540 /* 3541 * Wait for the idempotent worker. 3542 * 3543 * If we get interrupted, we need to remove ourselves from the 3544 * the idempotent list, and the completion may still come in. 3545 * 3546 * The 'idem_lock' protects against the race, and 'idem.ret' was 3547 * initialized to -EINTR and is thus always the right return 3548 * value even if the idempotent work then completes between 3549 * the wait_for_completion and the cleanup. 3550 */ 3551 static int idempotent_wait_for_completion(struct idempotent *u) 3552 { 3553 if (wait_for_completion_interruptible(&u->complete)) { 3554 spin_lock(&idem_lock); 3555 if (!hlist_unhashed(&u->entry)) 3556 hlist_del(&u->entry); 3557 spin_unlock(&idem_lock); 3558 } 3559 return u->ret; 3560 } 3561 3562 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3563 { 3564 struct load_info info = { }; 3565 void *buf = NULL; 3566 int len; 3567 3568 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3569 if (len < 0) { 3570 mod_stat_inc(&failed_kreads); 3571 return len; 3572 } 3573 3574 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3575 int err = module_decompress(&info, buf, len); 3576 vfree(buf); /* compressed data is no longer needed */ 3577 if (err) { 3578 mod_stat_inc(&failed_decompress); 3579 mod_stat_add_long(len, &invalid_decompress_bytes); 3580 return err; 3581 } 3582 } else { 3583 info.hdr = buf; 3584 info.len = len; 3585 } 3586 3587 return load_module(&info, uargs, flags); 3588 } 3589 3590 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3591 { 3592 struct idempotent idem; 3593 3594 if (!(f->f_mode & FMODE_READ)) 3595 return -EBADF; 3596 3597 /* Are we the winners of the race and get to do this? */ 3598 if (!idempotent(&idem, file_inode(f))) { 3599 int ret = init_module_from_file(f, uargs, flags); 3600 return idempotent_complete(&idem, ret); 3601 } 3602 3603 /* 3604 * Somebody else won the race and is loading the module. 3605 */ 3606 return idempotent_wait_for_completion(&idem); 3607 } 3608 3609 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3610 { 3611 int err = may_init_module(); 3612 if (err) 3613 return err; 3614 3615 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3616 3617 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3618 |MODULE_INIT_IGNORE_VERMAGIC 3619 |MODULE_INIT_COMPRESSED_FILE)) 3620 return -EINVAL; 3621 3622 CLASS(fd, f)(fd); 3623 if (fd_empty(f)) 3624 return -EBADF; 3625 return idempotent_init_module(fd_file(f), uargs, flags); 3626 } 3627 3628 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3629 char *module_flags(struct module *mod, char *buf, bool show_state) 3630 { 3631 int bx = 0; 3632 3633 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3634 if (!mod->taints && !show_state) 3635 goto out; 3636 if (mod->taints || 3637 mod->state == MODULE_STATE_GOING || 3638 mod->state == MODULE_STATE_COMING) { 3639 buf[bx++] = '('; 3640 bx += module_flags_taint(mod->taints, buf + bx); 3641 /* Show a - for module-is-being-unloaded */ 3642 if (mod->state == MODULE_STATE_GOING && show_state) 3643 buf[bx++] = '-'; 3644 /* Show a + for module-is-being-loaded */ 3645 if (mod->state == MODULE_STATE_COMING && show_state) 3646 buf[bx++] = '+'; 3647 buf[bx++] = ')'; 3648 } 3649 out: 3650 buf[bx] = '\0'; 3651 3652 return buf; 3653 } 3654 3655 /* Given an address, look for it in the module exception tables. */ 3656 const struct exception_table_entry *search_module_extables(unsigned long addr) 3657 { 3658 struct module *mod; 3659 3660 guard(rcu)(); 3661 mod = __module_address(addr); 3662 if (!mod) 3663 return NULL; 3664 3665 if (!mod->num_exentries) 3666 return NULL; 3667 /* 3668 * The address passed here belongs to a module that is currently 3669 * invoked (we are running inside it). Therefore its module::refcnt 3670 * needs already be >0 to ensure that it is not removed at this stage. 3671 * All other user need to invoke this function within a RCU read 3672 * section. 3673 */ 3674 return search_extable(mod->extable, mod->num_exentries, addr); 3675 } 3676 3677 /** 3678 * is_module_address() - is this address inside a module? 3679 * @addr: the address to check. 3680 * 3681 * See is_module_text_address() if you simply want to see if the address 3682 * is code (not data). 3683 */ 3684 bool is_module_address(unsigned long addr) 3685 { 3686 guard(rcu)(); 3687 return __module_address(addr) != NULL; 3688 } 3689 3690 /** 3691 * __module_address() - get the module which contains an address. 3692 * @addr: the address. 3693 * 3694 * Must be called within RCU read section or module mutex held so that 3695 * module doesn't get freed during this. 3696 */ 3697 struct module *__module_address(unsigned long addr) 3698 { 3699 struct module *mod; 3700 3701 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3702 goto lookup; 3703 3704 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3705 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3706 goto lookup; 3707 #endif 3708 3709 return NULL; 3710 3711 lookup: 3712 mod = mod_find(addr, &mod_tree); 3713 if (mod) { 3714 BUG_ON(!within_module(addr, mod)); 3715 if (mod->state == MODULE_STATE_UNFORMED) 3716 mod = NULL; 3717 } 3718 return mod; 3719 } 3720 3721 /** 3722 * is_module_text_address() - is this address inside module code? 3723 * @addr: the address to check. 3724 * 3725 * See is_module_address() if you simply want to see if the address is 3726 * anywhere in a module. See kernel_text_address() for testing if an 3727 * address corresponds to kernel or module code. 3728 */ 3729 bool is_module_text_address(unsigned long addr) 3730 { 3731 guard(rcu)(); 3732 return __module_text_address(addr) != NULL; 3733 } 3734 3735 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data) 3736 { 3737 struct module *mod; 3738 3739 guard(rcu)(); 3740 list_for_each_entry_rcu(mod, &modules, list) { 3741 if (mod->state == MODULE_STATE_UNFORMED) 3742 continue; 3743 if (func(mod, data)) 3744 break; 3745 } 3746 } 3747 3748 /** 3749 * __module_text_address() - get the module whose code contains an address. 3750 * @addr: the address. 3751 * 3752 * Must be called within RCU read section or module mutex held so that 3753 * module doesn't get freed during this. 3754 */ 3755 struct module *__module_text_address(unsigned long addr) 3756 { 3757 struct module *mod = __module_address(addr); 3758 if (mod) { 3759 /* Make sure it's within the text section. */ 3760 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3761 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3762 mod = NULL; 3763 } 3764 return mod; 3765 } 3766 3767 /* Don't grab lock, we're oopsing. */ 3768 void print_modules(void) 3769 { 3770 struct module *mod; 3771 char buf[MODULE_FLAGS_BUF_SIZE]; 3772 3773 printk(KERN_DEFAULT "Modules linked in:"); 3774 /* Most callers should already have preempt disabled, but make sure */ 3775 guard(rcu)(); 3776 list_for_each_entry_rcu(mod, &modules, list) { 3777 if (mod->state == MODULE_STATE_UNFORMED) 3778 continue; 3779 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3780 } 3781 3782 print_unloaded_tainted_modules(); 3783 if (last_unloaded_module.name[0]) 3784 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3785 last_unloaded_module.taints); 3786 pr_cont("\n"); 3787 } 3788 3789 #ifdef CONFIG_MODULE_DEBUGFS 3790 struct dentry *mod_debugfs_root; 3791 3792 static int module_debugfs_init(void) 3793 { 3794 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3795 return 0; 3796 } 3797 module_init(module_debugfs_init); 3798 #endif 3799