xref: /linux/kernel/module/main.c (revision a8aa6a6ddce9b5585f2b74f27f3feea1427fb4e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable with preempt_disable),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const s32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * find_any_unique_sec() - Find a unique section index by name
200  * @info: Load info for the module to scan
201  * @name: Name of the section we're looking for
202  *
203  * Locates a unique section by name. Ignores SHF_ALLOC.
204  *
205  * Return: Section index if found uniquely, zero if absent, negative count
206  *         of total instances if multiple were found.
207  */
208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int idx;
211 	unsigned int count = 0;
212 	int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 			   name) == 0) {
217 			count++;
218 			idx = i;
219 		}
220 	}
221 	if (count == 1) {
222 		return idx;
223 	} else if (count == 0) {
224 		return 0;
225 	} else {
226 		return -count;
227 	}
228 }
229 
230 /* Find a module section, or NULL. */
231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 	/* Section 0 has sh_addr 0. */
234 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236 
237 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
238 static void *section_objs(const struct load_info *info,
239 			  const char *name,
240 			  size_t object_size,
241 			  unsigned int *num)
242 {
243 	unsigned int sec = find_sec(info, name);
244 
245 	/* Section 0 has sh_addr 0 and sh_size 0. */
246 	*num = info->sechdrs[sec].sh_size / object_size;
247 	return (void *)info->sechdrs[sec].sh_addr;
248 }
249 
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 	unsigned int i;
254 
255 	for (i = 1; i < info->hdr->e_shnum; i++) {
256 		Elf_Shdr *shdr = &info->sechdrs[i];
257 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 			return i;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * Find a module section, or NULL. Fill in number of "objects" in section.
265  * Ignores SHF_ALLOC flag.
266  */
267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 					     const char *name,
269 					     size_t object_size,
270 					     unsigned int *num)
271 {
272 	unsigned int sec = find_any_sec(info, name);
273 
274 	/* Section 0 has sh_addr 0 and sh_size 0. */
275 	*num = info->sechdrs[sec].sh_size / object_size;
276 	return (void *)info->sechdrs[sec].sh_addr;
277 }
278 
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284 
285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 	return offset_to_ptr(&sym->name_offset);
289 #else
290 	return sym->name;
291 #endif
292 }
293 
294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 	if (!sym->namespace_offset)
298 		return NULL;
299 	return offset_to_ptr(&sym->namespace_offset);
300 #else
301 	return sym->namespace;
302 #endif
303 }
304 
305 int cmp_name(const void *name, const void *sym)
306 {
307 	return strcmp(name, kernel_symbol_name(sym));
308 }
309 
310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 					    struct module *owner,
312 					    struct find_symbol_arg *fsa)
313 {
314 	struct kernel_symbol *sym;
315 
316 	if (!fsa->gplok && syms->license == GPL_ONLY)
317 		return false;
318 
319 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 			sizeof(struct kernel_symbol), cmp_name);
321 	if (!sym)
322 		return false;
323 
324 	fsa->owner = owner;
325 	fsa->crc = symversion(syms->crcs, sym - syms->start);
326 	fsa->sym = sym;
327 	fsa->license = syms->license;
328 
329 	return true;
330 }
331 
332 /*
333  * Find an exported symbol and return it, along with, (optional) crc and
334  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
335  */
336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 	static const struct symsearch arr[] = {
339 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 		  NOT_GPL_ONLY },
341 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 		  __start___kcrctab_gpl,
343 		  GPL_ONLY },
344 	};
345 	struct module *mod;
346 	unsigned int i;
347 
348 	module_assert_mutex_or_preempt();
349 
350 	for (i = 0; i < ARRAY_SIZE(arr); i++)
351 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
352 			return true;
353 
354 	list_for_each_entry_rcu(mod, &modules, list,
355 				lockdep_is_held(&module_mutex)) {
356 		struct symsearch arr[] = {
357 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
358 			  NOT_GPL_ONLY },
359 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
360 			  mod->gpl_crcs,
361 			  GPL_ONLY },
362 		};
363 
364 		if (mod->state == MODULE_STATE_UNFORMED)
365 			continue;
366 
367 		for (i = 0; i < ARRAY_SIZE(arr); i++)
368 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
369 				return true;
370 	}
371 
372 	pr_debug("Failed to find symbol %s\n", fsa->name);
373 	return false;
374 }
375 
376 /*
377  * Search for module by name: must hold module_mutex (or preempt disabled
378  * for read-only access).
379  */
380 struct module *find_module_all(const char *name, size_t len,
381 			       bool even_unformed)
382 {
383 	struct module *mod;
384 
385 	module_assert_mutex_or_preempt();
386 
387 	list_for_each_entry_rcu(mod, &modules, list,
388 				lockdep_is_held(&module_mutex)) {
389 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
390 			continue;
391 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
392 			return mod;
393 	}
394 	return NULL;
395 }
396 
397 struct module *find_module(const char *name)
398 {
399 	return find_module_all(name, strlen(name), false);
400 }
401 
402 #ifdef CONFIG_SMP
403 
404 static inline void __percpu *mod_percpu(struct module *mod)
405 {
406 	return mod->percpu;
407 }
408 
409 static int percpu_modalloc(struct module *mod, struct load_info *info)
410 {
411 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
412 	unsigned long align = pcpusec->sh_addralign;
413 
414 	if (!pcpusec->sh_size)
415 		return 0;
416 
417 	if (align > PAGE_SIZE) {
418 		pr_warn("%s: per-cpu alignment %li > %li\n",
419 			mod->name, align, PAGE_SIZE);
420 		align = PAGE_SIZE;
421 	}
422 
423 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
424 	if (!mod->percpu) {
425 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
426 			mod->name, (unsigned long)pcpusec->sh_size);
427 		return -ENOMEM;
428 	}
429 	mod->percpu_size = pcpusec->sh_size;
430 	return 0;
431 }
432 
433 static void percpu_modfree(struct module *mod)
434 {
435 	free_percpu(mod->percpu);
436 }
437 
438 static unsigned int find_pcpusec(struct load_info *info)
439 {
440 	return find_sec(info, ".data..percpu");
441 }
442 
443 static void percpu_modcopy(struct module *mod,
444 			   const void *from, unsigned long size)
445 {
446 	int cpu;
447 
448 	for_each_possible_cpu(cpu)
449 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
450 }
451 
452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
453 {
454 	struct module *mod;
455 	unsigned int cpu;
456 
457 	preempt_disable();
458 
459 	list_for_each_entry_rcu(mod, &modules, list) {
460 		if (mod->state == MODULE_STATE_UNFORMED)
461 			continue;
462 		if (!mod->percpu_size)
463 			continue;
464 		for_each_possible_cpu(cpu) {
465 			void *start = per_cpu_ptr(mod->percpu, cpu);
466 			void *va = (void *)addr;
467 
468 			if (va >= start && va < start + mod->percpu_size) {
469 				if (can_addr) {
470 					*can_addr = (unsigned long) (va - start);
471 					*can_addr += (unsigned long)
472 						per_cpu_ptr(mod->percpu,
473 							    get_boot_cpu_id());
474 				}
475 				preempt_enable();
476 				return true;
477 			}
478 		}
479 	}
480 
481 	preempt_enable();
482 	return false;
483 }
484 
485 /**
486  * is_module_percpu_address() - test whether address is from module static percpu
487  * @addr: address to test
488  *
489  * Test whether @addr belongs to module static percpu area.
490  *
491  * Return: %true if @addr is from module static percpu area
492  */
493 bool is_module_percpu_address(unsigned long addr)
494 {
495 	return __is_module_percpu_address(addr, NULL);
496 }
497 
498 #else /* ... !CONFIG_SMP */
499 
500 static inline void __percpu *mod_percpu(struct module *mod)
501 {
502 	return NULL;
503 }
504 static int percpu_modalloc(struct module *mod, struct load_info *info)
505 {
506 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
507 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
508 		return -ENOMEM;
509 	return 0;
510 }
511 static inline void percpu_modfree(struct module *mod)
512 {
513 }
514 static unsigned int find_pcpusec(struct load_info *info)
515 {
516 	return 0;
517 }
518 static inline void percpu_modcopy(struct module *mod,
519 				  const void *from, unsigned long size)
520 {
521 	/* pcpusec should be 0, and size of that section should be 0. */
522 	BUG_ON(size != 0);
523 }
524 bool is_module_percpu_address(unsigned long addr)
525 {
526 	return false;
527 }
528 
529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
530 {
531 	return false;
532 }
533 
534 #endif /* CONFIG_SMP */
535 
536 #define MODINFO_ATTR(field)	\
537 static void setup_modinfo_##field(struct module *mod, const char *s)  \
538 {                                                                     \
539 	mod->field = kstrdup(s, GFP_KERNEL);                          \
540 }                                                                     \
541 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
542 			struct module_kobject *mk, char *buffer)      \
543 {                                                                     \
544 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
545 }                                                                     \
546 static int modinfo_##field##_exists(struct module *mod)               \
547 {                                                                     \
548 	return mod->field != NULL;                                    \
549 }                                                                     \
550 static void free_modinfo_##field(struct module *mod)                  \
551 {                                                                     \
552 	kfree(mod->field);                                            \
553 	mod->field = NULL;                                            \
554 }                                                                     \
555 static const struct module_attribute modinfo_##field = {              \
556 	.attr = { .name = __stringify(field), .mode = 0444 },         \
557 	.show = show_modinfo_##field,                                 \
558 	.setup = setup_modinfo_##field,                               \
559 	.test = modinfo_##field##_exists,                             \
560 	.free = free_modinfo_##field,                                 \
561 };
562 
563 MODINFO_ATTR(version);
564 MODINFO_ATTR(srcversion);
565 
566 static struct {
567 	char name[MODULE_NAME_LEN + 1];
568 	char taints[MODULE_FLAGS_BUF_SIZE];
569 } last_unloaded_module;
570 
571 #ifdef CONFIG_MODULE_UNLOAD
572 
573 EXPORT_TRACEPOINT_SYMBOL(module_get);
574 
575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
576 #define MODULE_REF_BASE	1
577 
578 /* Init the unload section of the module. */
579 static int module_unload_init(struct module *mod)
580 {
581 	/*
582 	 * Initialize reference counter to MODULE_REF_BASE.
583 	 * refcnt == 0 means module is going.
584 	 */
585 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
586 
587 	INIT_LIST_HEAD(&mod->source_list);
588 	INIT_LIST_HEAD(&mod->target_list);
589 
590 	/* Hold reference count during initialization. */
591 	atomic_inc(&mod->refcnt);
592 
593 	return 0;
594 }
595 
596 /* Does a already use b? */
597 static int already_uses(struct module *a, struct module *b)
598 {
599 	struct module_use *use;
600 
601 	list_for_each_entry(use, &b->source_list, source_list) {
602 		if (use->source == a)
603 			return 1;
604 	}
605 	pr_debug("%s does not use %s!\n", a->name, b->name);
606 	return 0;
607 }
608 
609 /*
610  * Module a uses b
611  *  - we add 'a' as a "source", 'b' as a "target" of module use
612  *  - the module_use is added to the list of 'b' sources (so
613  *    'b' can walk the list to see who sourced them), and of 'a'
614  *    targets (so 'a' can see what modules it targets).
615  */
616 static int add_module_usage(struct module *a, struct module *b)
617 {
618 	struct module_use *use;
619 
620 	pr_debug("Allocating new usage for %s.\n", a->name);
621 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
622 	if (!use)
623 		return -ENOMEM;
624 
625 	use->source = a;
626 	use->target = b;
627 	list_add(&use->source_list, &b->source_list);
628 	list_add(&use->target_list, &a->target_list);
629 	return 0;
630 }
631 
632 /* Module a uses b: caller needs module_mutex() */
633 static int ref_module(struct module *a, struct module *b)
634 {
635 	int err;
636 
637 	if (b == NULL || already_uses(a, b))
638 		return 0;
639 
640 	/* If module isn't available, we fail. */
641 	err = strong_try_module_get(b);
642 	if (err)
643 		return err;
644 
645 	err = add_module_usage(a, b);
646 	if (err) {
647 		module_put(b);
648 		return err;
649 	}
650 	return 0;
651 }
652 
653 /* Clear the unload stuff of the module. */
654 static void module_unload_free(struct module *mod)
655 {
656 	struct module_use *use, *tmp;
657 
658 	mutex_lock(&module_mutex);
659 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
660 		struct module *i = use->target;
661 		pr_debug("%s unusing %s\n", mod->name, i->name);
662 		module_put(i);
663 		list_del(&use->source_list);
664 		list_del(&use->target_list);
665 		kfree(use);
666 	}
667 	mutex_unlock(&module_mutex);
668 }
669 
670 #ifdef CONFIG_MODULE_FORCE_UNLOAD
671 static inline int try_force_unload(unsigned int flags)
672 {
673 	int ret = (flags & O_TRUNC);
674 	if (ret)
675 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
676 	return ret;
677 }
678 #else
679 static inline int try_force_unload(unsigned int flags)
680 {
681 	return 0;
682 }
683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
684 
685 /* Try to release refcount of module, 0 means success. */
686 static int try_release_module_ref(struct module *mod)
687 {
688 	int ret;
689 
690 	/* Try to decrement refcnt which we set at loading */
691 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
692 	BUG_ON(ret < 0);
693 	if (ret)
694 		/* Someone can put this right now, recover with checking */
695 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
696 
697 	return ret;
698 }
699 
700 static int try_stop_module(struct module *mod, int flags, int *forced)
701 {
702 	/* If it's not unused, quit unless we're forcing. */
703 	if (try_release_module_ref(mod) != 0) {
704 		*forced = try_force_unload(flags);
705 		if (!(*forced))
706 			return -EWOULDBLOCK;
707 	}
708 
709 	/* Mark it as dying. */
710 	mod->state = MODULE_STATE_GOING;
711 
712 	return 0;
713 }
714 
715 /**
716  * module_refcount() - return the refcount or -1 if unloading
717  * @mod:	the module we're checking
718  *
719  * Return:
720  *	-1 if the module is in the process of unloading
721  *	otherwise the number of references in the kernel to the module
722  */
723 int module_refcount(struct module *mod)
724 {
725 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
726 }
727 EXPORT_SYMBOL(module_refcount);
728 
729 /* This exists whether we can unload or not */
730 static void free_module(struct module *mod);
731 
732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
733 		unsigned int, flags)
734 {
735 	struct module *mod;
736 	char name[MODULE_NAME_LEN];
737 	char buf[MODULE_FLAGS_BUF_SIZE];
738 	int ret, forced = 0;
739 
740 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
741 		return -EPERM;
742 
743 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
744 		return -EFAULT;
745 	name[MODULE_NAME_LEN-1] = '\0';
746 
747 	audit_log_kern_module(name);
748 
749 	if (mutex_lock_interruptible(&module_mutex) != 0)
750 		return -EINTR;
751 
752 	mod = find_module(name);
753 	if (!mod) {
754 		ret = -ENOENT;
755 		goto out;
756 	}
757 
758 	if (!list_empty(&mod->source_list)) {
759 		/* Other modules depend on us: get rid of them first. */
760 		ret = -EWOULDBLOCK;
761 		goto out;
762 	}
763 
764 	/* Doing init or already dying? */
765 	if (mod->state != MODULE_STATE_LIVE) {
766 		/* FIXME: if (force), slam module count damn the torpedoes */
767 		pr_debug("%s already dying\n", mod->name);
768 		ret = -EBUSY;
769 		goto out;
770 	}
771 
772 	/* If it has an init func, it must have an exit func to unload */
773 	if (mod->init && !mod->exit) {
774 		forced = try_force_unload(flags);
775 		if (!forced) {
776 			/* This module can't be removed */
777 			ret = -EBUSY;
778 			goto out;
779 		}
780 	}
781 
782 	ret = try_stop_module(mod, flags, &forced);
783 	if (ret != 0)
784 		goto out;
785 
786 	mutex_unlock(&module_mutex);
787 	/* Final destruction now no one is using it. */
788 	if (mod->exit != NULL)
789 		mod->exit();
790 	blocking_notifier_call_chain(&module_notify_list,
791 				     MODULE_STATE_GOING, mod);
792 	klp_module_going(mod);
793 	ftrace_release_mod(mod);
794 
795 	async_synchronize_full();
796 
797 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
798 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
799 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
800 
801 	free_module(mod);
802 	/* someone could wait for the module in add_unformed_module() */
803 	wake_up_all(&module_wq);
804 	return 0;
805 out:
806 	mutex_unlock(&module_mutex);
807 	return ret;
808 }
809 
810 void __symbol_put(const char *symbol)
811 {
812 	struct find_symbol_arg fsa = {
813 		.name	= symbol,
814 		.gplok	= true,
815 	};
816 
817 	preempt_disable();
818 	BUG_ON(!find_symbol(&fsa));
819 	module_put(fsa.owner);
820 	preempt_enable();
821 }
822 EXPORT_SYMBOL(__symbol_put);
823 
824 /* Note this assumes addr is a function, which it currently always is. */
825 void symbol_put_addr(void *addr)
826 {
827 	struct module *modaddr;
828 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
829 
830 	if (core_kernel_text(a))
831 		return;
832 
833 	/*
834 	 * Even though we hold a reference on the module; we still need to
835 	 * disable preemption in order to safely traverse the data structure.
836 	 */
837 	preempt_disable();
838 	modaddr = __module_text_address(a);
839 	BUG_ON(!modaddr);
840 	module_put(modaddr);
841 	preempt_enable();
842 }
843 EXPORT_SYMBOL_GPL(symbol_put_addr);
844 
845 static ssize_t show_refcnt(const struct module_attribute *mattr,
846 			   struct module_kobject *mk, char *buffer)
847 {
848 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
849 }
850 
851 static const struct module_attribute modinfo_refcnt =
852 	__ATTR(refcnt, 0444, show_refcnt, NULL);
853 
854 void __module_get(struct module *module)
855 {
856 	if (module) {
857 		atomic_inc(&module->refcnt);
858 		trace_module_get(module, _RET_IP_);
859 	}
860 }
861 EXPORT_SYMBOL(__module_get);
862 
863 bool try_module_get(struct module *module)
864 {
865 	bool ret = true;
866 
867 	if (module) {
868 		/* Note: here, we can fail to get a reference */
869 		if (likely(module_is_live(module) &&
870 			   atomic_inc_not_zero(&module->refcnt) != 0))
871 			trace_module_get(module, _RET_IP_);
872 		else
873 			ret = false;
874 	}
875 	return ret;
876 }
877 EXPORT_SYMBOL(try_module_get);
878 
879 void module_put(struct module *module)
880 {
881 	int ret;
882 
883 	if (module) {
884 		ret = atomic_dec_if_positive(&module->refcnt);
885 		WARN_ON(ret < 0);	/* Failed to put refcount */
886 		trace_module_put(module, _RET_IP_);
887 	}
888 }
889 EXPORT_SYMBOL(module_put);
890 
891 #else /* !CONFIG_MODULE_UNLOAD */
892 static inline void module_unload_free(struct module *mod)
893 {
894 }
895 
896 static int ref_module(struct module *a, struct module *b)
897 {
898 	return strong_try_module_get(b);
899 }
900 
901 static inline int module_unload_init(struct module *mod)
902 {
903 	return 0;
904 }
905 #endif /* CONFIG_MODULE_UNLOAD */
906 
907 size_t module_flags_taint(unsigned long taints, char *buf)
908 {
909 	size_t l = 0;
910 	int i;
911 
912 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
913 		if (taint_flags[i].module && test_bit(i, &taints))
914 			buf[l++] = taint_flags[i].c_true;
915 	}
916 
917 	return l;
918 }
919 
920 static ssize_t show_initstate(const struct module_attribute *mattr,
921 			      struct module_kobject *mk, char *buffer)
922 {
923 	const char *state = "unknown";
924 
925 	switch (mk->mod->state) {
926 	case MODULE_STATE_LIVE:
927 		state = "live";
928 		break;
929 	case MODULE_STATE_COMING:
930 		state = "coming";
931 		break;
932 	case MODULE_STATE_GOING:
933 		state = "going";
934 		break;
935 	default:
936 		BUG();
937 	}
938 	return sprintf(buffer, "%s\n", state);
939 }
940 
941 static const struct module_attribute modinfo_initstate =
942 	__ATTR(initstate, 0444, show_initstate, NULL);
943 
944 static ssize_t store_uevent(const struct module_attribute *mattr,
945 			    struct module_kobject *mk,
946 			    const char *buffer, size_t count)
947 {
948 	int rc;
949 
950 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
951 	return rc ? rc : count;
952 }
953 
954 const struct module_attribute module_uevent =
955 	__ATTR(uevent, 0200, NULL, store_uevent);
956 
957 static ssize_t show_coresize(const struct module_attribute *mattr,
958 			     struct module_kobject *mk, char *buffer)
959 {
960 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
961 
962 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
963 		for_class_mod_mem_type(type, core_data)
964 			size += mk->mod->mem[type].size;
965 	}
966 	return sprintf(buffer, "%u\n", size);
967 }
968 
969 static const struct module_attribute modinfo_coresize =
970 	__ATTR(coresize, 0444, show_coresize, NULL);
971 
972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
973 static ssize_t show_datasize(const struct module_attribute *mattr,
974 			     struct module_kobject *mk, char *buffer)
975 {
976 	unsigned int size = 0;
977 
978 	for_class_mod_mem_type(type, core_data)
979 		size += mk->mod->mem[type].size;
980 	return sprintf(buffer, "%u\n", size);
981 }
982 
983 static const struct module_attribute modinfo_datasize =
984 	__ATTR(datasize, 0444, show_datasize, NULL);
985 #endif
986 
987 static ssize_t show_initsize(const struct module_attribute *mattr,
988 			     struct module_kobject *mk, char *buffer)
989 {
990 	unsigned int size = 0;
991 
992 	for_class_mod_mem_type(type, init)
993 		size += mk->mod->mem[type].size;
994 	return sprintf(buffer, "%u\n", size);
995 }
996 
997 static const struct module_attribute modinfo_initsize =
998 	__ATTR(initsize, 0444, show_initsize, NULL);
999 
1000 static ssize_t show_taint(const struct module_attribute *mattr,
1001 			  struct module_kobject *mk, char *buffer)
1002 {
1003 	size_t l;
1004 
1005 	l = module_flags_taint(mk->mod->taints, buffer);
1006 	buffer[l++] = '\n';
1007 	return l;
1008 }
1009 
1010 static const struct module_attribute modinfo_taint =
1011 	__ATTR(taint, 0444, show_taint, NULL);
1012 
1013 const struct module_attribute *const modinfo_attrs[] = {
1014 	&module_uevent,
1015 	&modinfo_version,
1016 	&modinfo_srcversion,
1017 	&modinfo_initstate,
1018 	&modinfo_coresize,
1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1020 	&modinfo_datasize,
1021 #endif
1022 	&modinfo_initsize,
1023 	&modinfo_taint,
1024 #ifdef CONFIG_MODULE_UNLOAD
1025 	&modinfo_refcnt,
1026 #endif
1027 	NULL,
1028 };
1029 
1030 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1031 
1032 static const char vermagic[] = VERMAGIC_STRING;
1033 
1034 int try_to_force_load(struct module *mod, const char *reason)
1035 {
1036 #ifdef CONFIG_MODULE_FORCE_LOAD
1037 	if (!test_taint(TAINT_FORCED_MODULE))
1038 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1039 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1040 	return 0;
1041 #else
1042 	return -ENOEXEC;
1043 #endif
1044 }
1045 
1046 /* Parse tag=value strings from .modinfo section */
1047 char *module_next_tag_pair(char *string, unsigned long *secsize)
1048 {
1049 	/* Skip non-zero chars */
1050 	while (string[0]) {
1051 		string++;
1052 		if ((*secsize)-- <= 1)
1053 			return NULL;
1054 	}
1055 
1056 	/* Skip any zero padding. */
1057 	while (!string[0]) {
1058 		string++;
1059 		if ((*secsize)-- <= 1)
1060 			return NULL;
1061 	}
1062 	return string;
1063 }
1064 
1065 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1066 			      char *prev)
1067 {
1068 	char *p;
1069 	unsigned int taglen = strlen(tag);
1070 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1071 	unsigned long size = infosec->sh_size;
1072 
1073 	/*
1074 	 * get_modinfo() calls made before rewrite_section_headers()
1075 	 * must use sh_offset, as sh_addr isn't set!
1076 	 */
1077 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1078 
1079 	if (prev) {
1080 		size -= prev - modinfo;
1081 		modinfo = module_next_tag_pair(prev, &size);
1082 	}
1083 
1084 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1085 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1086 			return p + taglen + 1;
1087 	}
1088 	return NULL;
1089 }
1090 
1091 static char *get_modinfo(const struct load_info *info, const char *tag)
1092 {
1093 	return get_next_modinfo(info, tag, NULL);
1094 }
1095 
1096 static int verify_namespace_is_imported(const struct load_info *info,
1097 					const struct kernel_symbol *sym,
1098 					struct module *mod)
1099 {
1100 	const char *namespace;
1101 	char *imported_namespace;
1102 
1103 	namespace = kernel_symbol_namespace(sym);
1104 	if (namespace && namespace[0]) {
1105 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1106 			if (strcmp(namespace, imported_namespace) == 0)
1107 				return 0;
1108 		}
1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1110 		pr_warn(
1111 #else
1112 		pr_err(
1113 #endif
1114 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1115 			mod->name, kernel_symbol_name(sym), namespace);
1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1117 		return -EINVAL;
1118 #endif
1119 	}
1120 	return 0;
1121 }
1122 
1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1124 {
1125 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1126 		return true;
1127 
1128 	if (mod->using_gplonly_symbols) {
1129 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1130 			mod->name, name, owner->name);
1131 		return false;
1132 	}
1133 
1134 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1135 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1136 			mod->name, name, owner->name);
1137 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1138 	}
1139 	return true;
1140 }
1141 
1142 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1143 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1144 						  const struct load_info *info,
1145 						  const char *name,
1146 						  char ownername[])
1147 {
1148 	struct find_symbol_arg fsa = {
1149 		.name	= name,
1150 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1151 		.warn	= true,
1152 	};
1153 	int err;
1154 
1155 	/*
1156 	 * The module_mutex should not be a heavily contended lock;
1157 	 * if we get the occasional sleep here, we'll go an extra iteration
1158 	 * in the wait_event_interruptible(), which is harmless.
1159 	 */
1160 	sched_annotate_sleep();
1161 	mutex_lock(&module_mutex);
1162 	if (!find_symbol(&fsa))
1163 		goto unlock;
1164 
1165 	if (fsa.license == GPL_ONLY)
1166 		mod->using_gplonly_symbols = true;
1167 
1168 	if (!inherit_taint(mod, fsa.owner, name)) {
1169 		fsa.sym = NULL;
1170 		goto getname;
1171 	}
1172 
1173 	if (!check_version(info, name, mod, fsa.crc)) {
1174 		fsa.sym = ERR_PTR(-EINVAL);
1175 		goto getname;
1176 	}
1177 
1178 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1179 	if (err) {
1180 		fsa.sym = ERR_PTR(err);
1181 		goto getname;
1182 	}
1183 
1184 	err = ref_module(mod, fsa.owner);
1185 	if (err) {
1186 		fsa.sym = ERR_PTR(err);
1187 		goto getname;
1188 	}
1189 
1190 getname:
1191 	/* We must make copy under the lock if we failed to get ref. */
1192 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1193 unlock:
1194 	mutex_unlock(&module_mutex);
1195 	return fsa.sym;
1196 }
1197 
1198 static const struct kernel_symbol *
1199 resolve_symbol_wait(struct module *mod,
1200 		    const struct load_info *info,
1201 		    const char *name)
1202 {
1203 	const struct kernel_symbol *ksym;
1204 	char owner[MODULE_NAME_LEN];
1205 
1206 	if (wait_event_interruptible_timeout(module_wq,
1207 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1208 			|| PTR_ERR(ksym) != -EBUSY,
1209 					     30 * HZ) <= 0) {
1210 		pr_warn("%s: gave up waiting for init of module %s.\n",
1211 			mod->name, owner);
1212 	}
1213 	return ksym;
1214 }
1215 
1216 void __weak module_arch_cleanup(struct module *mod)
1217 {
1218 }
1219 
1220 void __weak module_arch_freeing_init(struct module *mod)
1221 {
1222 }
1223 
1224 void *__module_writable_address(struct module *mod, void *loc)
1225 {
1226 	for_class_mod_mem_type(type, text) {
1227 		struct module_memory *mem = &mod->mem[type];
1228 
1229 		if (loc >= mem->base && loc < mem->base + mem->size)
1230 			return loc + (mem->rw_copy - mem->base);
1231 	}
1232 
1233 	return loc;
1234 }
1235 
1236 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1237 {
1238 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1239 	enum execmem_type execmem_type;
1240 	void *ptr;
1241 
1242 	mod->mem[type].size = size;
1243 
1244 	if (mod_mem_type_is_data(type))
1245 		execmem_type = EXECMEM_MODULE_DATA;
1246 	else
1247 		execmem_type = EXECMEM_MODULE_TEXT;
1248 
1249 	ptr = execmem_alloc(execmem_type, size);
1250 	if (!ptr)
1251 		return -ENOMEM;
1252 
1253 	mod->mem[type].base = ptr;
1254 
1255 	if (execmem_is_rox(execmem_type)) {
1256 		ptr = vzalloc(size);
1257 
1258 		if (!ptr) {
1259 			execmem_free(mod->mem[type].base);
1260 			return -ENOMEM;
1261 		}
1262 
1263 		mod->mem[type].rw_copy = ptr;
1264 		mod->mem[type].is_rox = true;
1265 	} else {
1266 		mod->mem[type].rw_copy = mod->mem[type].base;
1267 		memset(mod->mem[type].base, 0, size);
1268 	}
1269 
1270 	/*
1271 	 * The pointer to these blocks of memory are stored on the module
1272 	 * structure and we keep that around so long as the module is
1273 	 * around. We only free that memory when we unload the module.
1274 	 * Just mark them as not being a leak then. The .init* ELF
1275 	 * sections *do* get freed after boot so we *could* treat them
1276 	 * slightly differently with kmemleak_ignore() and only grey
1277 	 * them out as they work as typical memory allocations which
1278 	 * *do* eventually get freed, but let's just keep things simple
1279 	 * and avoid *any* false positives.
1280 	 */
1281 	kmemleak_not_leak(ptr);
1282 
1283 	return 0;
1284 }
1285 
1286 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1287 {
1288 	struct module_memory *mem = &mod->mem[type];
1289 
1290 	if (mem->is_rox)
1291 		vfree(mem->rw_copy);
1292 
1293 	execmem_free(mem->base);
1294 }
1295 
1296 static void free_mod_mem(struct module *mod)
1297 {
1298 	for_each_mod_mem_type(type) {
1299 		struct module_memory *mod_mem = &mod->mem[type];
1300 
1301 		if (type == MOD_DATA)
1302 			continue;
1303 
1304 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1305 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1306 		if (mod_mem->size)
1307 			module_memory_free(mod, type);
1308 	}
1309 
1310 	/* MOD_DATA hosts mod, so free it at last */
1311 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1312 	module_memory_free(mod, MOD_DATA);
1313 }
1314 
1315 /* Free a module, remove from lists, etc. */
1316 static void free_module(struct module *mod)
1317 {
1318 	trace_module_free(mod);
1319 
1320 	codetag_unload_module(mod);
1321 
1322 	mod_sysfs_teardown(mod);
1323 
1324 	/*
1325 	 * We leave it in list to prevent duplicate loads, but make sure
1326 	 * that noone uses it while it's being deconstructed.
1327 	 */
1328 	mutex_lock(&module_mutex);
1329 	mod->state = MODULE_STATE_UNFORMED;
1330 	mutex_unlock(&module_mutex);
1331 
1332 	/* Arch-specific cleanup. */
1333 	module_arch_cleanup(mod);
1334 
1335 	/* Module unload stuff */
1336 	module_unload_free(mod);
1337 
1338 	/* Free any allocated parameters. */
1339 	destroy_params(mod->kp, mod->num_kp);
1340 
1341 	if (is_livepatch_module(mod))
1342 		free_module_elf(mod);
1343 
1344 	/* Now we can delete it from the lists */
1345 	mutex_lock(&module_mutex);
1346 	/* Unlink carefully: kallsyms could be walking list. */
1347 	list_del_rcu(&mod->list);
1348 	mod_tree_remove(mod);
1349 	/* Remove this module from bug list, this uses list_del_rcu */
1350 	module_bug_cleanup(mod);
1351 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1352 	synchronize_rcu();
1353 	if (try_add_tainted_module(mod))
1354 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1355 		       mod->name);
1356 	mutex_unlock(&module_mutex);
1357 
1358 	/* This may be empty, but that's OK */
1359 	module_arch_freeing_init(mod);
1360 	kfree(mod->args);
1361 	percpu_modfree(mod);
1362 
1363 	free_mod_mem(mod);
1364 }
1365 
1366 void *__symbol_get(const char *symbol)
1367 {
1368 	struct find_symbol_arg fsa = {
1369 		.name	= symbol,
1370 		.gplok	= true,
1371 		.warn	= true,
1372 	};
1373 
1374 	preempt_disable();
1375 	if (!find_symbol(&fsa))
1376 		goto fail;
1377 	if (fsa.license != GPL_ONLY) {
1378 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1379 			symbol);
1380 		goto fail;
1381 	}
1382 	if (strong_try_module_get(fsa.owner))
1383 		goto fail;
1384 	preempt_enable();
1385 	return (void *)kernel_symbol_value(fsa.sym);
1386 fail:
1387 	preempt_enable();
1388 	return NULL;
1389 }
1390 EXPORT_SYMBOL_GPL(__symbol_get);
1391 
1392 /*
1393  * Ensure that an exported symbol [global namespace] does not already exist
1394  * in the kernel or in some other module's exported symbol table.
1395  *
1396  * You must hold the module_mutex.
1397  */
1398 static int verify_exported_symbols(struct module *mod)
1399 {
1400 	unsigned int i;
1401 	const struct kernel_symbol *s;
1402 	struct {
1403 		const struct kernel_symbol *sym;
1404 		unsigned int num;
1405 	} arr[] = {
1406 		{ mod->syms, mod->num_syms },
1407 		{ mod->gpl_syms, mod->num_gpl_syms },
1408 	};
1409 
1410 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1411 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1412 			struct find_symbol_arg fsa = {
1413 				.name	= kernel_symbol_name(s),
1414 				.gplok	= true,
1415 			};
1416 			if (find_symbol(&fsa)) {
1417 				pr_err("%s: exports duplicate symbol %s"
1418 				       " (owned by %s)\n",
1419 				       mod->name, kernel_symbol_name(s),
1420 				       module_name(fsa.owner));
1421 				return -ENOEXEC;
1422 			}
1423 		}
1424 	}
1425 	return 0;
1426 }
1427 
1428 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1429 {
1430 	/*
1431 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1432 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1433 	 * i386 has a similar problem but may not deserve a fix.
1434 	 *
1435 	 * If we ever have to ignore many symbols, consider refactoring the code to
1436 	 * only warn if referenced by a relocation.
1437 	 */
1438 	if (emachine == EM_386 || emachine == EM_X86_64)
1439 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1440 	return false;
1441 }
1442 
1443 /* Change all symbols so that st_value encodes the pointer directly. */
1444 static int simplify_symbols(struct module *mod, const struct load_info *info)
1445 {
1446 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1447 	Elf_Sym *sym = (void *)symsec->sh_addr;
1448 	unsigned long secbase;
1449 	unsigned int i;
1450 	int ret = 0;
1451 	const struct kernel_symbol *ksym;
1452 
1453 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1454 		const char *name = info->strtab + sym[i].st_name;
1455 
1456 		switch (sym[i].st_shndx) {
1457 		case SHN_COMMON:
1458 			/* Ignore common symbols */
1459 			if (!strncmp(name, "__gnu_lto", 9))
1460 				break;
1461 
1462 			/*
1463 			 * We compiled with -fno-common.  These are not
1464 			 * supposed to happen.
1465 			 */
1466 			pr_debug("Common symbol: %s\n", name);
1467 			pr_warn("%s: please compile with -fno-common\n",
1468 			       mod->name);
1469 			ret = -ENOEXEC;
1470 			break;
1471 
1472 		case SHN_ABS:
1473 			/* Don't need to do anything */
1474 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1475 				 (long)sym[i].st_value, name);
1476 			break;
1477 
1478 		case SHN_LIVEPATCH:
1479 			/* Livepatch symbols are resolved by livepatch */
1480 			break;
1481 
1482 		case SHN_UNDEF:
1483 			ksym = resolve_symbol_wait(mod, info, name);
1484 			/* Ok if resolved.  */
1485 			if (ksym && !IS_ERR(ksym)) {
1486 				sym[i].st_value = kernel_symbol_value(ksym);
1487 				break;
1488 			}
1489 
1490 			/* Ok if weak or ignored.  */
1491 			if (!ksym &&
1492 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1493 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1494 				break;
1495 
1496 			ret = PTR_ERR(ksym) ?: -ENOENT;
1497 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1498 				mod->name, name, ret);
1499 			break;
1500 
1501 		default:
1502 			/* Divert to percpu allocation if a percpu var. */
1503 			if (sym[i].st_shndx == info->index.pcpu)
1504 				secbase = (unsigned long)mod_percpu(mod);
1505 			else
1506 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1507 			sym[i].st_value += secbase;
1508 			break;
1509 		}
1510 	}
1511 
1512 	return ret;
1513 }
1514 
1515 static int apply_relocations(struct module *mod, const struct load_info *info)
1516 {
1517 	unsigned int i;
1518 	int err = 0;
1519 
1520 	/* Now do relocations. */
1521 	for (i = 1; i < info->hdr->e_shnum; i++) {
1522 		unsigned int infosec = info->sechdrs[i].sh_info;
1523 
1524 		/* Not a valid relocation section? */
1525 		if (infosec >= info->hdr->e_shnum)
1526 			continue;
1527 
1528 		/* Don't bother with non-allocated sections */
1529 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1530 			continue;
1531 
1532 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1533 			err = klp_apply_section_relocs(mod, info->sechdrs,
1534 						       info->secstrings,
1535 						       info->strtab,
1536 						       info->index.sym, i,
1537 						       NULL);
1538 		else if (info->sechdrs[i].sh_type == SHT_REL)
1539 			err = apply_relocate(info->sechdrs, info->strtab,
1540 					     info->index.sym, i, mod);
1541 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1542 			err = apply_relocate_add(info->sechdrs, info->strtab,
1543 						 info->index.sym, i, mod);
1544 		if (err < 0)
1545 			break;
1546 	}
1547 	return err;
1548 }
1549 
1550 /* Additional bytes needed by arch in front of individual sections */
1551 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1552 					     unsigned int section)
1553 {
1554 	/* default implementation just returns zero */
1555 	return 0;
1556 }
1557 
1558 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1559 				Elf_Shdr *sechdr, unsigned int section)
1560 {
1561 	long offset;
1562 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1563 
1564 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1565 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1566 	mod->mem[type].size = offset + sechdr->sh_size;
1567 
1568 	WARN_ON_ONCE(offset & mask);
1569 	return offset | mask;
1570 }
1571 
1572 bool module_init_layout_section(const char *sname)
1573 {
1574 #ifndef CONFIG_MODULE_UNLOAD
1575 	if (module_exit_section(sname))
1576 		return true;
1577 #endif
1578 	return module_init_section(sname);
1579 }
1580 
1581 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1582 {
1583 	unsigned int m, i;
1584 
1585 	static const unsigned long masks[][2] = {
1586 		/*
1587 		 * NOTE: all executable code must be the first section
1588 		 * in this array; otherwise modify the text_size
1589 		 * finder in the two loops below
1590 		 */
1591 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1592 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1593 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1594 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1595 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1596 	};
1597 	static const int core_m_to_mem_type[] = {
1598 		MOD_TEXT,
1599 		MOD_RODATA,
1600 		MOD_RO_AFTER_INIT,
1601 		MOD_DATA,
1602 		MOD_DATA,
1603 	};
1604 	static const int init_m_to_mem_type[] = {
1605 		MOD_INIT_TEXT,
1606 		MOD_INIT_RODATA,
1607 		MOD_INVALID,
1608 		MOD_INIT_DATA,
1609 		MOD_INIT_DATA,
1610 	};
1611 
1612 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1613 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1614 
1615 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1616 			Elf_Shdr *s = &info->sechdrs[i];
1617 			const char *sname = info->secstrings + s->sh_name;
1618 
1619 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1620 			    || (s->sh_flags & masks[m][1])
1621 			    || s->sh_entsize != ~0UL
1622 			    || is_init != module_init_layout_section(sname))
1623 				continue;
1624 
1625 			if (WARN_ON_ONCE(type == MOD_INVALID))
1626 				continue;
1627 
1628 			/*
1629 			 * Do not allocate codetag memory as we load it into
1630 			 * preallocated contiguous memory.
1631 			 */
1632 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1633 				/*
1634 				 * s->sh_entsize won't be used but populate the
1635 				 * type field to avoid confusion.
1636 				 */
1637 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1638 						<< SH_ENTSIZE_TYPE_SHIFT;
1639 				continue;
1640 			}
1641 
1642 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1643 			pr_debug("\t%s\n", sname);
1644 		}
1645 	}
1646 }
1647 
1648 /*
1649  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1650  * might -- code, read-only data, read-write data, small data.  Tally
1651  * sizes, and place the offsets into sh_entsize fields: high bit means it
1652  * belongs in init.
1653  */
1654 static void layout_sections(struct module *mod, struct load_info *info)
1655 {
1656 	unsigned int i;
1657 
1658 	for (i = 0; i < info->hdr->e_shnum; i++)
1659 		info->sechdrs[i].sh_entsize = ~0UL;
1660 
1661 	pr_debug("Core section allocation order for %s:\n", mod->name);
1662 	__layout_sections(mod, info, false);
1663 
1664 	pr_debug("Init section allocation order for %s:\n", mod->name);
1665 	__layout_sections(mod, info, true);
1666 }
1667 
1668 static void module_license_taint_check(struct module *mod, const char *license)
1669 {
1670 	if (!license)
1671 		license = "unspecified";
1672 
1673 	if (!license_is_gpl_compatible(license)) {
1674 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1675 			pr_warn("%s: module license '%s' taints kernel.\n",
1676 				mod->name, license);
1677 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1678 				 LOCKDEP_NOW_UNRELIABLE);
1679 	}
1680 }
1681 
1682 static void setup_modinfo(struct module *mod, struct load_info *info)
1683 {
1684 	const struct module_attribute *attr;
1685 	int i;
1686 
1687 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1688 		if (attr->setup)
1689 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1690 	}
1691 }
1692 
1693 static void free_modinfo(struct module *mod)
1694 {
1695 	const struct module_attribute *attr;
1696 	int i;
1697 
1698 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1699 		if (attr->free)
1700 			attr->free(mod);
1701 	}
1702 }
1703 
1704 bool __weak module_init_section(const char *name)
1705 {
1706 	return strstarts(name, ".init");
1707 }
1708 
1709 bool __weak module_exit_section(const char *name)
1710 {
1711 	return strstarts(name, ".exit");
1712 }
1713 
1714 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1715 {
1716 #if defined(CONFIG_64BIT)
1717 	unsigned long long secend;
1718 #else
1719 	unsigned long secend;
1720 #endif
1721 
1722 	/*
1723 	 * Check for both overflow and offset/size being
1724 	 * too large.
1725 	 */
1726 	secend = shdr->sh_offset + shdr->sh_size;
1727 	if (secend < shdr->sh_offset || secend > info->len)
1728 		return -ENOEXEC;
1729 
1730 	return 0;
1731 }
1732 
1733 /**
1734  * elf_validity_ehdr() - Checks an ELF header for module validity
1735  * @info: Load info containing the ELF header to check
1736  *
1737  * Checks whether an ELF header could belong to a valid module. Checks:
1738  *
1739  * * ELF header is within the data the user provided
1740  * * ELF magic is present
1741  * * It is relocatable (not final linked, not core file, etc.)
1742  * * The header's machine type matches what the architecture expects.
1743  * * Optional arch-specific hook for other properties
1744  *   - module_elf_check_arch() is currently only used by PPC to check
1745  *   ELF ABI version, but may be used by others in the future.
1746  *
1747  * Return: %0 if valid, %-ENOEXEC on failure.
1748  */
1749 static int elf_validity_ehdr(const struct load_info *info)
1750 {
1751 	if (info->len < sizeof(*(info->hdr))) {
1752 		pr_err("Invalid ELF header len %lu\n", info->len);
1753 		return -ENOEXEC;
1754 	}
1755 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1756 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1757 		return -ENOEXEC;
1758 	}
1759 	if (info->hdr->e_type != ET_REL) {
1760 		pr_err("Invalid ELF header type: %u != %u\n",
1761 		       info->hdr->e_type, ET_REL);
1762 		return -ENOEXEC;
1763 	}
1764 	if (!elf_check_arch(info->hdr)) {
1765 		pr_err("Invalid architecture in ELF header: %u\n",
1766 		       info->hdr->e_machine);
1767 		return -ENOEXEC;
1768 	}
1769 	if (!module_elf_check_arch(info->hdr)) {
1770 		pr_err("Invalid module architecture in ELF header: %u\n",
1771 		       info->hdr->e_machine);
1772 		return -ENOEXEC;
1773 	}
1774 	return 0;
1775 }
1776 
1777 /**
1778  * elf_validity_cache_sechdrs() - Cache section headers if valid
1779  * @info: Load info to compute section headers from
1780  *
1781  * Checks:
1782  *
1783  * * ELF header is valid (see elf_validity_ehdr())
1784  * * Section headers are the size we expect
1785  * * Section array fits in the user provided data
1786  * * Section index 0 is NULL
1787  * * Section contents are inbounds
1788  *
1789  * Then updates @info with a &load_info->sechdrs pointer if valid.
1790  *
1791  * Return: %0 if valid, negative error code if validation failed.
1792  */
1793 static int elf_validity_cache_sechdrs(struct load_info *info)
1794 {
1795 	Elf_Shdr *sechdrs;
1796 	Elf_Shdr *shdr;
1797 	int i;
1798 	int err;
1799 
1800 	err = elf_validity_ehdr(info);
1801 	if (err < 0)
1802 		return err;
1803 
1804 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1805 		pr_err("Invalid ELF section header size\n");
1806 		return -ENOEXEC;
1807 	}
1808 
1809 	/*
1810 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1811 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1812 	 * will not overflow unsigned long on any platform.
1813 	 */
1814 	if (info->hdr->e_shoff >= info->len
1815 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1816 		info->len - info->hdr->e_shoff)) {
1817 		pr_err("Invalid ELF section header overflow\n");
1818 		return -ENOEXEC;
1819 	}
1820 
1821 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1822 
1823 	/*
1824 	 * The code assumes that section 0 has a length of zero and
1825 	 * an addr of zero, so check for it.
1826 	 */
1827 	if (sechdrs[0].sh_type != SHT_NULL
1828 	    || sechdrs[0].sh_size != 0
1829 	    || sechdrs[0].sh_addr != 0) {
1830 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1831 		       sechdrs[0].sh_type);
1832 		return -ENOEXEC;
1833 	}
1834 
1835 	/* Validate contents are inbounds */
1836 	for (i = 1; i < info->hdr->e_shnum; i++) {
1837 		shdr = &sechdrs[i];
1838 		switch (shdr->sh_type) {
1839 		case SHT_NULL:
1840 		case SHT_NOBITS:
1841 			/* No contents, offset/size don't mean anything */
1842 			continue;
1843 		default:
1844 			err = validate_section_offset(info, shdr);
1845 			if (err < 0) {
1846 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1847 				       i, shdr->sh_type);
1848 				return err;
1849 			}
1850 		}
1851 	}
1852 
1853 	info->sechdrs = sechdrs;
1854 
1855 	return 0;
1856 }
1857 
1858 /**
1859  * elf_validity_cache_secstrings() - Caches section names if valid
1860  * @info: Load info to cache section names from. Must have valid sechdrs.
1861  *
1862  * Specifically checks:
1863  *
1864  * * Section name table index is inbounds of section headers
1865  * * Section name table is not empty
1866  * * Section name table is NUL terminated
1867  * * All section name offsets are inbounds of the section
1868  *
1869  * Then updates @info with a &load_info->secstrings pointer if valid.
1870  *
1871  * Return: %0 if valid, negative error code if validation failed.
1872  */
1873 static int elf_validity_cache_secstrings(struct load_info *info)
1874 {
1875 	Elf_Shdr *strhdr, *shdr;
1876 	char *secstrings;
1877 	int i;
1878 
1879 	/*
1880 	 * Verify if the section name table index is valid.
1881 	 */
1882 	if (info->hdr->e_shstrndx == SHN_UNDEF
1883 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1884 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1885 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1886 		       info->hdr->e_shnum);
1887 		return -ENOEXEC;
1888 	}
1889 
1890 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1891 
1892 	/*
1893 	 * The section name table must be NUL-terminated, as required
1894 	 * by the spec. This makes strcmp and pr_* calls that access
1895 	 * strings in the section safe.
1896 	 */
1897 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1898 	if (strhdr->sh_size == 0) {
1899 		pr_err("empty section name table\n");
1900 		return -ENOEXEC;
1901 	}
1902 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1903 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1904 		return -ENOEXEC;
1905 	}
1906 
1907 	for (i = 0; i < info->hdr->e_shnum; i++) {
1908 		shdr = &info->sechdrs[i];
1909 		/* SHT_NULL means sh_name has an undefined value */
1910 		if (shdr->sh_type == SHT_NULL)
1911 			continue;
1912 		if (shdr->sh_name >= strhdr->sh_size) {
1913 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1914 			       i, shdr->sh_type);
1915 			return -ENOEXEC;
1916 		}
1917 	}
1918 
1919 	info->secstrings = secstrings;
1920 	return 0;
1921 }
1922 
1923 /**
1924  * elf_validity_cache_index_info() - Validate and cache modinfo section
1925  * @info: Load info to populate the modinfo index on.
1926  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1927  *
1928  * Checks that if there is a .modinfo section, it is unique.
1929  * Then, it caches its index in &load_info->index.info.
1930  * Finally, it tries to populate the name to improve error messages.
1931  *
1932  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1933  */
1934 static int elf_validity_cache_index_info(struct load_info *info)
1935 {
1936 	int info_idx;
1937 
1938 	info_idx = find_any_unique_sec(info, ".modinfo");
1939 
1940 	if (info_idx == 0)
1941 		/* Early return, no .modinfo */
1942 		return 0;
1943 
1944 	if (info_idx < 0) {
1945 		pr_err("Only one .modinfo section must exist.\n");
1946 		return -ENOEXEC;
1947 	}
1948 
1949 	info->index.info = info_idx;
1950 	/* Try to find a name early so we can log errors with a module name */
1951 	info->name = get_modinfo(info, "name");
1952 
1953 	return 0;
1954 }
1955 
1956 /**
1957  * elf_validity_cache_index_mod() - Validates and caches this_module section
1958  * @info: Load info to cache this_module on.
1959  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1960  *
1961  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1962  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1963  * to &__this_module properly. The kernel's modpost declares it on each
1964  * modules's *.mod.c file. If the struct module of the kernel changes a full
1965  * kernel rebuild is required.
1966  *
1967  * We have a few expectations for this special section, this function
1968  * validates all this for us:
1969  *
1970  * * The section has contents
1971  * * The section is unique
1972  * * We expect the kernel to always have to allocate it: SHF_ALLOC
1973  * * The section size must match the kernel's run time's struct module
1974  *   size
1975  *
1976  * If all checks pass, the index will be cached in &load_info->index.mod
1977  *
1978  * Return: %0 on validation success, %-ENOEXEC on failure
1979  */
1980 static int elf_validity_cache_index_mod(struct load_info *info)
1981 {
1982 	Elf_Shdr *shdr;
1983 	int mod_idx;
1984 
1985 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1986 	if (mod_idx <= 0) {
1987 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1988 		       info->name ?: "(missing .modinfo section or name field)");
1989 		return -ENOEXEC;
1990 	}
1991 
1992 	shdr = &info->sechdrs[mod_idx];
1993 
1994 	if (shdr->sh_type == SHT_NOBITS) {
1995 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1996 		       info->name ?: "(missing .modinfo section or name field)");
1997 		return -ENOEXEC;
1998 	}
1999 
2000 	if (!(shdr->sh_flags & SHF_ALLOC)) {
2001 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2002 		       info->name ?: "(missing .modinfo section or name field)");
2003 		return -ENOEXEC;
2004 	}
2005 
2006 	if (shdr->sh_size != sizeof(struct module)) {
2007 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2008 		       info->name ?: "(missing .modinfo section or name field)");
2009 		return -ENOEXEC;
2010 	}
2011 
2012 	info->index.mod = mod_idx;
2013 
2014 	return 0;
2015 }
2016 
2017 /**
2018  * elf_validity_cache_index_sym() - Validate and cache symtab index
2019  * @info: Load info to cache symtab index in.
2020  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2021  *
2022  * Checks that there is exactly one symbol table, then caches its index in
2023  * &load_info->index.sym.
2024  *
2025  * Return: %0 if valid, %-ENOEXEC on failure.
2026  */
2027 static int elf_validity_cache_index_sym(struct load_info *info)
2028 {
2029 	unsigned int sym_idx;
2030 	unsigned int num_sym_secs = 0;
2031 	int i;
2032 
2033 	for (i = 1; i < info->hdr->e_shnum; i++) {
2034 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2035 			num_sym_secs++;
2036 			sym_idx = i;
2037 		}
2038 	}
2039 
2040 	if (num_sym_secs != 1) {
2041 		pr_warn("%s: module has no symbols (stripped?)\n",
2042 			info->name ?: "(missing .modinfo section or name field)");
2043 		return -ENOEXEC;
2044 	}
2045 
2046 	info->index.sym = sym_idx;
2047 
2048 	return 0;
2049 }
2050 
2051 /**
2052  * elf_validity_cache_index_str() - Validate and cache strtab index
2053  * @info: Load info to cache strtab index in.
2054  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2055  *        Must have &load_info->index.sym populated.
2056  *
2057  * Looks at the symbol table's associated string table, makes sure it is
2058  * in-bounds, and caches it.
2059  *
2060  * Return: %0 if valid, %-ENOEXEC on failure.
2061  */
2062 static int elf_validity_cache_index_str(struct load_info *info)
2063 {
2064 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2065 
2066 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2067 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2068 		       str_idx, str_idx, info->hdr->e_shnum);
2069 		return -ENOEXEC;
2070 	}
2071 
2072 	info->index.str = str_idx;
2073 	return 0;
2074 }
2075 
2076 /**
2077  * elf_validity_cache_index() - Resolve, validate, cache section indices
2078  * @info:  Load info to read from and update.
2079  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2080  * @flags: Load flags, relevant to suppress version loading, see
2081  *         uapi/linux/module.h
2082  *
2083  * Populates &load_info->index, validating as it goes.
2084  * See child functions for per-field validation:
2085  *
2086  * * elf_validity_cache_index_info()
2087  * * elf_validity_cache_index_mod()
2088  * * elf_validity_cache_index_sym()
2089  * * elf_validity_cache_index_str()
2090  *
2091  * If versioning is not suppressed via flags, load the version index from
2092  * a section called "__versions" with no validation.
2093  *
2094  * If CONFIG_SMP is enabled, load the percpu section by name with no
2095  * validation.
2096  *
2097  * Return: 0 on success, negative error code if an index failed validation.
2098  */
2099 static int elf_validity_cache_index(struct load_info *info, int flags)
2100 {
2101 	int err;
2102 
2103 	err = elf_validity_cache_index_info(info);
2104 	if (err < 0)
2105 		return err;
2106 	err = elf_validity_cache_index_mod(info);
2107 	if (err < 0)
2108 		return err;
2109 	err = elf_validity_cache_index_sym(info);
2110 	if (err < 0)
2111 		return err;
2112 	err = elf_validity_cache_index_str(info);
2113 	if (err < 0)
2114 		return err;
2115 
2116 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2117 		info->index.vers = 0; /* Pretend no __versions section! */
2118 	else
2119 		info->index.vers = find_sec(info, "__versions");
2120 
2121 	info->index.pcpu = find_pcpusec(info);
2122 
2123 	return 0;
2124 }
2125 
2126 /**
2127  * elf_validity_cache_strtab() - Validate and cache symbol string table
2128  * @info: Load info to read from and update.
2129  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2130  *        Must have &load_info->index populated.
2131  *
2132  * Checks:
2133  *
2134  * * The string table is not empty.
2135  * * The string table starts and ends with NUL (required by ELF spec).
2136  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2137  *   string table.
2138  *
2139  * And caches the pointer as &load_info->strtab in @info.
2140  *
2141  * Return: 0 on success, negative error code if a check failed.
2142  */
2143 static int elf_validity_cache_strtab(struct load_info *info)
2144 {
2145 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2146 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2147 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2148 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2149 	int i;
2150 
2151 	if (str_shdr->sh_size == 0) {
2152 		pr_err("empty symbol string table\n");
2153 		return -ENOEXEC;
2154 	}
2155 	if (strtab[0] != '\0') {
2156 		pr_err("symbol string table missing leading NUL\n");
2157 		return -ENOEXEC;
2158 	}
2159 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2160 		pr_err("symbol string table isn't NUL terminated\n");
2161 		return -ENOEXEC;
2162 	}
2163 
2164 	/*
2165 	 * Now that we know strtab is correctly structured, check symbol
2166 	 * starts are inbounds before they're used later.
2167 	 */
2168 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2169 		if (syms[i].st_name >= str_shdr->sh_size) {
2170 			pr_err("symbol name out of bounds in string table");
2171 			return -ENOEXEC;
2172 		}
2173 	}
2174 
2175 	info->strtab = strtab;
2176 	return 0;
2177 }
2178 
2179 /*
2180  * Check userspace passed ELF module against our expectations, and cache
2181  * useful variables for further processing as we go.
2182  *
2183  * This does basic validity checks against section offsets and sizes, the
2184  * section name string table, and the indices used for it (sh_name).
2185  *
2186  * As a last step, since we're already checking the ELF sections we cache
2187  * useful variables which will be used later for our convenience:
2188  *
2189  * 	o pointers to section headers
2190  * 	o cache the modinfo symbol section
2191  * 	o cache the string symbol section
2192  * 	o cache the module section
2193  *
2194  * As a last step we set info->mod to the temporary copy of the module in
2195  * info->hdr. The final one will be allocated in move_module(). Any
2196  * modifications we make to our copy of the module will be carried over
2197  * to the final minted module.
2198  */
2199 static int elf_validity_cache_copy(struct load_info *info, int flags)
2200 {
2201 	int err;
2202 
2203 	err = elf_validity_cache_sechdrs(info);
2204 	if (err < 0)
2205 		return err;
2206 	err = elf_validity_cache_secstrings(info);
2207 	if (err < 0)
2208 		return err;
2209 	err = elf_validity_cache_index(info, flags);
2210 	if (err < 0)
2211 		return err;
2212 	err = elf_validity_cache_strtab(info);
2213 	if (err < 0)
2214 		return err;
2215 
2216 	/* This is temporary: point mod into copy of data. */
2217 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2218 
2219 	/*
2220 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2221 	 * on-disk struct mod 'name' field.
2222 	 */
2223 	if (!info->name)
2224 		info->name = info->mod->name;
2225 
2226 	return 0;
2227 }
2228 
2229 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2230 
2231 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2232 {
2233 	do {
2234 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2235 
2236 		if (copy_from_user(dst, usrc, n) != 0)
2237 			return -EFAULT;
2238 		cond_resched();
2239 		dst += n;
2240 		usrc += n;
2241 		len -= n;
2242 	} while (len);
2243 	return 0;
2244 }
2245 
2246 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2247 {
2248 	if (!get_modinfo(info, "livepatch"))
2249 		/* Nothing more to do */
2250 		return 0;
2251 
2252 	if (set_livepatch_module(mod))
2253 		return 0;
2254 
2255 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2256 	       mod->name);
2257 	return -ENOEXEC;
2258 }
2259 
2260 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2261 {
2262 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2263 		return;
2264 
2265 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2266 		mod->name);
2267 }
2268 
2269 /* Sets info->hdr and info->len. */
2270 static int copy_module_from_user(const void __user *umod, unsigned long len,
2271 				  struct load_info *info)
2272 {
2273 	int err;
2274 
2275 	info->len = len;
2276 	if (info->len < sizeof(*(info->hdr)))
2277 		return -ENOEXEC;
2278 
2279 	err = security_kernel_load_data(LOADING_MODULE, true);
2280 	if (err)
2281 		return err;
2282 
2283 	/* Suck in entire file: we'll want most of it. */
2284 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2285 	if (!info->hdr)
2286 		return -ENOMEM;
2287 
2288 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2289 		err = -EFAULT;
2290 		goto out;
2291 	}
2292 
2293 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2294 					     LOADING_MODULE, "init_module");
2295 out:
2296 	if (err)
2297 		vfree(info->hdr);
2298 
2299 	return err;
2300 }
2301 
2302 static void free_copy(struct load_info *info, int flags)
2303 {
2304 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2305 		module_decompress_cleanup(info);
2306 	else
2307 		vfree(info->hdr);
2308 }
2309 
2310 static int rewrite_section_headers(struct load_info *info, int flags)
2311 {
2312 	unsigned int i;
2313 
2314 	/* This should always be true, but let's be sure. */
2315 	info->sechdrs[0].sh_addr = 0;
2316 
2317 	for (i = 1; i < info->hdr->e_shnum; i++) {
2318 		Elf_Shdr *shdr = &info->sechdrs[i];
2319 
2320 		/*
2321 		 * Mark all sections sh_addr with their address in the
2322 		 * temporary image.
2323 		 */
2324 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2325 
2326 	}
2327 
2328 	/* Track but don't keep modinfo and version sections. */
2329 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2330 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2331 
2332 	return 0;
2333 }
2334 
2335 static const char *const module_license_offenders[] = {
2336 	/* driverloader was caught wrongly pretending to be under GPL */
2337 	"driverloader",
2338 
2339 	/* lve claims to be GPL but upstream won't provide source */
2340 	"lve",
2341 };
2342 
2343 /*
2344  * These calls taint the kernel depending certain module circumstances */
2345 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2346 {
2347 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2348 	size_t i;
2349 
2350 	if (!get_modinfo(info, "intree")) {
2351 		if (!test_taint(TAINT_OOT_MODULE))
2352 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2353 				mod->name);
2354 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2355 	}
2356 
2357 	check_modinfo_retpoline(mod, info);
2358 
2359 	if (get_modinfo(info, "staging")) {
2360 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2361 		pr_warn("%s: module is from the staging directory, the quality "
2362 			"is unknown, you have been warned.\n", mod->name);
2363 	}
2364 
2365 	if (is_livepatch_module(mod)) {
2366 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2367 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2368 				mod->name);
2369 	}
2370 
2371 	module_license_taint_check(mod, get_modinfo(info, "license"));
2372 
2373 	if (get_modinfo(info, "test")) {
2374 		if (!test_taint(TAINT_TEST))
2375 			pr_warn("%s: loading test module taints kernel.\n",
2376 				mod->name);
2377 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2378 	}
2379 #ifdef CONFIG_MODULE_SIG
2380 	mod->sig_ok = info->sig_ok;
2381 	if (!mod->sig_ok) {
2382 		pr_notice_once("%s: module verification failed: signature "
2383 			       "and/or required key missing - tainting "
2384 			       "kernel\n", mod->name);
2385 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2386 	}
2387 #endif
2388 
2389 	/*
2390 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2391 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2392 	 * using GPL-only symbols it needs.
2393 	 */
2394 	if (strcmp(mod->name, "ndiswrapper") == 0)
2395 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2396 
2397 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2398 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2399 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2400 					 LOCKDEP_NOW_UNRELIABLE);
2401 	}
2402 
2403 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2404 		pr_warn("%s: module license taints kernel.\n", mod->name);
2405 
2406 }
2407 
2408 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2409 {
2410 	const char *modmagic = get_modinfo(info, "vermagic");
2411 	int err;
2412 
2413 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2414 		modmagic = NULL;
2415 
2416 	/* This is allowed: modprobe --force will invalidate it. */
2417 	if (!modmagic) {
2418 		err = try_to_force_load(mod, "bad vermagic");
2419 		if (err)
2420 			return err;
2421 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2422 		pr_err("%s: version magic '%s' should be '%s'\n",
2423 		       info->name, modmagic, vermagic);
2424 		return -ENOEXEC;
2425 	}
2426 
2427 	err = check_modinfo_livepatch(mod, info);
2428 	if (err)
2429 		return err;
2430 
2431 	return 0;
2432 }
2433 
2434 static int find_module_sections(struct module *mod, struct load_info *info)
2435 {
2436 	mod->kp = section_objs(info, "__param",
2437 			       sizeof(*mod->kp), &mod->num_kp);
2438 	mod->syms = section_objs(info, "__ksymtab",
2439 				 sizeof(*mod->syms), &mod->num_syms);
2440 	mod->crcs = section_addr(info, "__kcrctab");
2441 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2442 				     sizeof(*mod->gpl_syms),
2443 				     &mod->num_gpl_syms);
2444 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2445 
2446 #ifdef CONFIG_CONSTRUCTORS
2447 	mod->ctors = section_objs(info, ".ctors",
2448 				  sizeof(*mod->ctors), &mod->num_ctors);
2449 	if (!mod->ctors)
2450 		mod->ctors = section_objs(info, ".init_array",
2451 				sizeof(*mod->ctors), &mod->num_ctors);
2452 	else if (find_sec(info, ".init_array")) {
2453 		/*
2454 		 * This shouldn't happen with same compiler and binutils
2455 		 * building all parts of the module.
2456 		 */
2457 		pr_warn("%s: has both .ctors and .init_array.\n",
2458 		       mod->name);
2459 		return -EINVAL;
2460 	}
2461 #endif
2462 
2463 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2464 						&mod->noinstr_text_size);
2465 
2466 #ifdef CONFIG_TRACEPOINTS
2467 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2468 					     sizeof(*mod->tracepoints_ptrs),
2469 					     &mod->num_tracepoints);
2470 #endif
2471 #ifdef CONFIG_TREE_SRCU
2472 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2473 					     sizeof(*mod->srcu_struct_ptrs),
2474 					     &mod->num_srcu_structs);
2475 #endif
2476 #ifdef CONFIG_BPF_EVENTS
2477 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2478 					   sizeof(*mod->bpf_raw_events),
2479 					   &mod->num_bpf_raw_events);
2480 #endif
2481 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2482 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2483 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2484 					      &mod->btf_base_data_size);
2485 #endif
2486 #ifdef CONFIG_JUMP_LABEL
2487 	mod->jump_entries = section_objs(info, "__jump_table",
2488 					sizeof(*mod->jump_entries),
2489 					&mod->num_jump_entries);
2490 #endif
2491 #ifdef CONFIG_EVENT_TRACING
2492 	mod->trace_events = section_objs(info, "_ftrace_events",
2493 					 sizeof(*mod->trace_events),
2494 					 &mod->num_trace_events);
2495 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2496 					sizeof(*mod->trace_evals),
2497 					&mod->num_trace_evals);
2498 #endif
2499 #ifdef CONFIG_TRACING
2500 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2501 					 sizeof(*mod->trace_bprintk_fmt_start),
2502 					 &mod->num_trace_bprintk_fmt);
2503 #endif
2504 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2505 	/* sechdrs[0].sh_size is always zero */
2506 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2507 					     sizeof(*mod->ftrace_callsites),
2508 					     &mod->num_ftrace_callsites);
2509 #endif
2510 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2511 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2512 					    sizeof(*mod->ei_funcs),
2513 					    &mod->num_ei_funcs);
2514 #endif
2515 #ifdef CONFIG_KPROBES
2516 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2517 						&mod->kprobes_text_size);
2518 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2519 						sizeof(unsigned long),
2520 						&mod->num_kprobe_blacklist);
2521 #endif
2522 #ifdef CONFIG_PRINTK_INDEX
2523 	mod->printk_index_start = section_objs(info, ".printk_index",
2524 					       sizeof(*mod->printk_index_start),
2525 					       &mod->printk_index_size);
2526 #endif
2527 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2528 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2529 					      sizeof(*mod->static_call_sites),
2530 					      &mod->num_static_call_sites);
2531 #endif
2532 #if IS_ENABLED(CONFIG_KUNIT)
2533 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2534 					      sizeof(*mod->kunit_suites),
2535 					      &mod->num_kunit_suites);
2536 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2537 					      sizeof(*mod->kunit_init_suites),
2538 					      &mod->num_kunit_init_suites);
2539 #endif
2540 
2541 	mod->extable = section_objs(info, "__ex_table",
2542 				    sizeof(*mod->extable), &mod->num_exentries);
2543 
2544 	if (section_addr(info, "__obsparm"))
2545 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2546 
2547 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2548 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2549 					      sizeof(*mod->dyndbg_info.descs),
2550 					      &mod->dyndbg_info.num_descs);
2551 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2552 						sizeof(*mod->dyndbg_info.classes),
2553 						&mod->dyndbg_info.num_classes);
2554 #endif
2555 
2556 	return 0;
2557 }
2558 
2559 static int move_module(struct module *mod, struct load_info *info)
2560 {
2561 	int i;
2562 	enum mod_mem_type t = 0;
2563 	int ret = -ENOMEM;
2564 	bool codetag_section_found = false;
2565 
2566 	for_each_mod_mem_type(type) {
2567 		if (!mod->mem[type].size) {
2568 			mod->mem[type].base = NULL;
2569 			mod->mem[type].rw_copy = NULL;
2570 			continue;
2571 		}
2572 
2573 		ret = module_memory_alloc(mod, type);
2574 		if (ret) {
2575 			t = type;
2576 			goto out_err;
2577 		}
2578 	}
2579 
2580 	/* Transfer each section which specifies SHF_ALLOC */
2581 	pr_debug("Final section addresses for %s:\n", mod->name);
2582 	for (i = 0; i < info->hdr->e_shnum; i++) {
2583 		void *dest;
2584 		Elf_Shdr *shdr = &info->sechdrs[i];
2585 		const char *sname;
2586 		unsigned long addr;
2587 
2588 		if (!(shdr->sh_flags & SHF_ALLOC))
2589 			continue;
2590 
2591 		sname = info->secstrings + shdr->sh_name;
2592 		/*
2593 		 * Load codetag sections separately as they might still be used
2594 		 * after module unload.
2595 		 */
2596 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2597 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2598 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2599 			if (WARN_ON(!dest)) {
2600 				ret = -EINVAL;
2601 				goto out_err;
2602 			}
2603 			if (IS_ERR(dest)) {
2604 				ret = PTR_ERR(dest);
2605 				goto out_err;
2606 			}
2607 			addr = (unsigned long)dest;
2608 			codetag_section_found = true;
2609 		} else {
2610 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2611 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2612 
2613 			addr = (unsigned long)mod->mem[type].base + offset;
2614 			dest = mod->mem[type].rw_copy + offset;
2615 		}
2616 
2617 		if (shdr->sh_type != SHT_NOBITS) {
2618 			/*
2619 			 * Our ELF checker already validated this, but let's
2620 			 * be pedantic and make the goal clearer. We actually
2621 			 * end up copying over all modifications made to the
2622 			 * userspace copy of the entire struct module.
2623 			 */
2624 			if (i == info->index.mod &&
2625 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2626 				ret = -ENOEXEC;
2627 				goto out_err;
2628 			}
2629 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2630 		}
2631 		/*
2632 		 * Update the userspace copy's ELF section address to point to
2633 		 * our newly allocated memory as a pure convenience so that
2634 		 * users of info can keep taking advantage and using the newly
2635 		 * minted official memory area.
2636 		 */
2637 		shdr->sh_addr = addr;
2638 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2639 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2640 	}
2641 
2642 	return 0;
2643 out_err:
2644 	for (t--; t >= 0; t--)
2645 		module_memory_free(mod, t);
2646 	if (codetag_section_found)
2647 		codetag_free_module_sections(mod);
2648 
2649 	return ret;
2650 }
2651 
2652 static int check_export_symbol_versions(struct module *mod)
2653 {
2654 #ifdef CONFIG_MODVERSIONS
2655 	if ((mod->num_syms && !mod->crcs) ||
2656 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2657 		return try_to_force_load(mod,
2658 					 "no versions for exported symbols");
2659 	}
2660 #endif
2661 	return 0;
2662 }
2663 
2664 static void flush_module_icache(const struct module *mod)
2665 {
2666 	/*
2667 	 * Flush the instruction cache, since we've played with text.
2668 	 * Do it before processing of module parameters, so the module
2669 	 * can provide parameter accessor functions of its own.
2670 	 */
2671 	for_each_mod_mem_type(type) {
2672 		const struct module_memory *mod_mem = &mod->mem[type];
2673 
2674 		if (mod_mem->size) {
2675 			flush_icache_range((unsigned long)mod_mem->base,
2676 					   (unsigned long)mod_mem->base + mod_mem->size);
2677 		}
2678 	}
2679 }
2680 
2681 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2682 {
2683 	return true;
2684 }
2685 
2686 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2687 				     Elf_Shdr *sechdrs,
2688 				     char *secstrings,
2689 				     struct module *mod)
2690 {
2691 	return 0;
2692 }
2693 
2694 /* module_blacklist is a comma-separated list of module names */
2695 static char *module_blacklist;
2696 static bool blacklisted(const char *module_name)
2697 {
2698 	const char *p;
2699 	size_t len;
2700 
2701 	if (!module_blacklist)
2702 		return false;
2703 
2704 	for (p = module_blacklist; *p; p += len) {
2705 		len = strcspn(p, ",");
2706 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2707 			return true;
2708 		if (p[len] == ',')
2709 			len++;
2710 	}
2711 	return false;
2712 }
2713 core_param(module_blacklist, module_blacklist, charp, 0400);
2714 
2715 static struct module *layout_and_allocate(struct load_info *info, int flags)
2716 {
2717 	struct module *mod;
2718 	unsigned int ndx;
2719 	int err;
2720 
2721 	/* Allow arches to frob section contents and sizes.  */
2722 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2723 					info->secstrings, info->mod);
2724 	if (err < 0)
2725 		return ERR_PTR(err);
2726 
2727 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2728 					  info->secstrings, info->mod);
2729 	if (err < 0)
2730 		return ERR_PTR(err);
2731 
2732 	/* We will do a special allocation for per-cpu sections later. */
2733 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2734 
2735 	/*
2736 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2737 	 * layout_sections() can put it in the right place.
2738 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2739 	 */
2740 	ndx = find_sec(info, ".data..ro_after_init");
2741 	if (ndx)
2742 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2743 	/*
2744 	 * Mark the __jump_table section as ro_after_init as well: these data
2745 	 * structures are never modified, with the exception of entries that
2746 	 * refer to code in the __init section, which are annotated as such
2747 	 * at module load time.
2748 	 */
2749 	ndx = find_sec(info, "__jump_table");
2750 	if (ndx)
2751 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2752 
2753 	/*
2754 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2755 	 * this is done generically; there doesn't appear to be any
2756 	 * special cases for the architectures.
2757 	 */
2758 	layout_sections(info->mod, info);
2759 	layout_symtab(info->mod, info);
2760 
2761 	/* Allocate and move to the final place */
2762 	err = move_module(info->mod, info);
2763 	if (err)
2764 		return ERR_PTR(err);
2765 
2766 	/* Module has been copied to its final place now: return it. */
2767 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2768 	kmemleak_load_module(mod, info);
2769 	codetag_module_replaced(info->mod, mod);
2770 
2771 	return mod;
2772 }
2773 
2774 /* mod is no longer valid after this! */
2775 static void module_deallocate(struct module *mod, struct load_info *info)
2776 {
2777 	percpu_modfree(mod);
2778 	module_arch_freeing_init(mod);
2779 
2780 	free_mod_mem(mod);
2781 }
2782 
2783 int __weak module_finalize(const Elf_Ehdr *hdr,
2784 			   const Elf_Shdr *sechdrs,
2785 			   struct module *me)
2786 {
2787 	return 0;
2788 }
2789 
2790 int __weak module_post_finalize(const Elf_Ehdr *hdr,
2791 				const Elf_Shdr *sechdrs,
2792 				struct module *me)
2793 {
2794 	return 0;
2795 }
2796 
2797 static int post_relocation(struct module *mod, const struct load_info *info)
2798 {
2799 	int ret;
2800 
2801 	/* Sort exception table now relocations are done. */
2802 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2803 
2804 	/* Copy relocated percpu area over. */
2805 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2806 		       info->sechdrs[info->index.pcpu].sh_size);
2807 
2808 	/* Setup kallsyms-specific fields. */
2809 	add_kallsyms(mod, info);
2810 
2811 	/* Arch-specific module finalizing. */
2812 	ret = module_finalize(info->hdr, info->sechdrs, mod);
2813 	if (ret)
2814 		return ret;
2815 
2816 	for_each_mod_mem_type(type) {
2817 		struct module_memory *mem = &mod->mem[type];
2818 
2819 		if (mem->is_rox) {
2820 			if (!execmem_update_copy(mem->base, mem->rw_copy,
2821 						 mem->size))
2822 				return -ENOMEM;
2823 
2824 			vfree(mem->rw_copy);
2825 			mem->rw_copy = NULL;
2826 		}
2827 	}
2828 
2829 	return module_post_finalize(info->hdr, info->sechdrs, mod);
2830 }
2831 
2832 /* Call module constructors. */
2833 static void do_mod_ctors(struct module *mod)
2834 {
2835 #ifdef CONFIG_CONSTRUCTORS
2836 	unsigned long i;
2837 
2838 	for (i = 0; i < mod->num_ctors; i++)
2839 		mod->ctors[i]();
2840 #endif
2841 }
2842 
2843 /* For freeing module_init on success, in case kallsyms traversing */
2844 struct mod_initfree {
2845 	struct llist_node node;
2846 	void *init_text;
2847 	void *init_data;
2848 	void *init_rodata;
2849 };
2850 
2851 static void do_free_init(struct work_struct *w)
2852 {
2853 	struct llist_node *pos, *n, *list;
2854 	struct mod_initfree *initfree;
2855 
2856 	list = llist_del_all(&init_free_list);
2857 
2858 	synchronize_rcu();
2859 
2860 	llist_for_each_safe(pos, n, list) {
2861 		initfree = container_of(pos, struct mod_initfree, node);
2862 		execmem_free(initfree->init_text);
2863 		execmem_free(initfree->init_data);
2864 		execmem_free(initfree->init_rodata);
2865 		kfree(initfree);
2866 	}
2867 }
2868 
2869 void flush_module_init_free_work(void)
2870 {
2871 	flush_work(&init_free_wq);
2872 }
2873 
2874 #undef MODULE_PARAM_PREFIX
2875 #define MODULE_PARAM_PREFIX "module."
2876 /* Default value for module->async_probe_requested */
2877 static bool async_probe;
2878 module_param(async_probe, bool, 0644);
2879 
2880 /*
2881  * This is where the real work happens.
2882  *
2883  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2884  * helper command 'lx-symbols'.
2885  */
2886 static noinline int do_init_module(struct module *mod)
2887 {
2888 	int ret = 0;
2889 	struct mod_initfree *freeinit;
2890 #if defined(CONFIG_MODULE_STATS)
2891 	unsigned int text_size = 0, total_size = 0;
2892 
2893 	for_each_mod_mem_type(type) {
2894 		const struct module_memory *mod_mem = &mod->mem[type];
2895 		if (mod_mem->size) {
2896 			total_size += mod_mem->size;
2897 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2898 				text_size += mod_mem->size;
2899 		}
2900 	}
2901 #endif
2902 
2903 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2904 	if (!freeinit) {
2905 		ret = -ENOMEM;
2906 		goto fail;
2907 	}
2908 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2909 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2910 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2911 
2912 	do_mod_ctors(mod);
2913 	/* Start the module */
2914 	if (mod->init != NULL)
2915 		ret = do_one_initcall(mod->init);
2916 	if (ret < 0) {
2917 		goto fail_free_freeinit;
2918 	}
2919 	if (ret > 0) {
2920 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2921 			"follow 0/-E convention\n"
2922 			"%s: loading module anyway...\n",
2923 			__func__, mod->name, ret, __func__);
2924 		dump_stack();
2925 	}
2926 
2927 	/* Now it's a first class citizen! */
2928 	mod->state = MODULE_STATE_LIVE;
2929 	blocking_notifier_call_chain(&module_notify_list,
2930 				     MODULE_STATE_LIVE, mod);
2931 
2932 	/* Delay uevent until module has finished its init routine */
2933 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2934 
2935 	/*
2936 	 * We need to finish all async code before the module init sequence
2937 	 * is done. This has potential to deadlock if synchronous module
2938 	 * loading is requested from async (which is not allowed!).
2939 	 *
2940 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2941 	 * request_module() from async workers") for more details.
2942 	 */
2943 	if (!mod->async_probe_requested)
2944 		async_synchronize_full();
2945 
2946 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2947 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2948 	mutex_lock(&module_mutex);
2949 	/* Drop initial reference. */
2950 	module_put(mod);
2951 	trim_init_extable(mod);
2952 #ifdef CONFIG_KALLSYMS
2953 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2954 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2955 #endif
2956 	ret = module_enable_rodata_ro_after_init(mod);
2957 	if (ret)
2958 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
2959 			"ro_after_init data might still be writable\n",
2960 			mod->name, ret);
2961 
2962 	mod_tree_remove_init(mod);
2963 	module_arch_freeing_init(mod);
2964 	for_class_mod_mem_type(type, init) {
2965 		mod->mem[type].base = NULL;
2966 		mod->mem[type].size = 0;
2967 	}
2968 
2969 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2970 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
2971 	mod->btf_data = NULL;
2972 	mod->btf_base_data = NULL;
2973 #endif
2974 	/*
2975 	 * We want to free module_init, but be aware that kallsyms may be
2976 	 * walking this with preempt disabled.  In all the failure paths, we
2977 	 * call synchronize_rcu(), but we don't want to slow down the success
2978 	 * path. execmem_free() cannot be called in an interrupt, so do the
2979 	 * work and call synchronize_rcu() in a work queue.
2980 	 *
2981 	 * Note that execmem_alloc() on most architectures creates W+X page
2982 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2983 	 * code such as mark_rodata_ro() which depends on those mappings to
2984 	 * be cleaned up needs to sync with the queued work by invoking
2985 	 * flush_module_init_free_work().
2986 	 */
2987 	if (llist_add(&freeinit->node, &init_free_list))
2988 		schedule_work(&init_free_wq);
2989 
2990 	mutex_unlock(&module_mutex);
2991 	wake_up_all(&module_wq);
2992 
2993 	mod_stat_add_long(text_size, &total_text_size);
2994 	mod_stat_add_long(total_size, &total_mod_size);
2995 
2996 	mod_stat_inc(&modcount);
2997 
2998 	return 0;
2999 
3000 fail_free_freeinit:
3001 	kfree(freeinit);
3002 fail:
3003 	/* Try to protect us from buggy refcounters. */
3004 	mod->state = MODULE_STATE_GOING;
3005 	synchronize_rcu();
3006 	module_put(mod);
3007 	blocking_notifier_call_chain(&module_notify_list,
3008 				     MODULE_STATE_GOING, mod);
3009 	klp_module_going(mod);
3010 	ftrace_release_mod(mod);
3011 	free_module(mod);
3012 	wake_up_all(&module_wq);
3013 
3014 	return ret;
3015 }
3016 
3017 static int may_init_module(void)
3018 {
3019 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3020 		return -EPERM;
3021 
3022 	return 0;
3023 }
3024 
3025 /* Is this module of this name done loading?  No locks held. */
3026 static bool finished_loading(const char *name)
3027 {
3028 	struct module *mod;
3029 	bool ret;
3030 
3031 	/*
3032 	 * The module_mutex should not be a heavily contended lock;
3033 	 * if we get the occasional sleep here, we'll go an extra iteration
3034 	 * in the wait_event_interruptible(), which is harmless.
3035 	 */
3036 	sched_annotate_sleep();
3037 	mutex_lock(&module_mutex);
3038 	mod = find_module_all(name, strlen(name), true);
3039 	ret = !mod || mod->state == MODULE_STATE_LIVE
3040 		|| mod->state == MODULE_STATE_GOING;
3041 	mutex_unlock(&module_mutex);
3042 
3043 	return ret;
3044 }
3045 
3046 /* Must be called with module_mutex held */
3047 static int module_patient_check_exists(const char *name,
3048 				       enum fail_dup_mod_reason reason)
3049 {
3050 	struct module *old;
3051 	int err = 0;
3052 
3053 	old = find_module_all(name, strlen(name), true);
3054 	if (old == NULL)
3055 		return 0;
3056 
3057 	if (old->state == MODULE_STATE_COMING ||
3058 	    old->state == MODULE_STATE_UNFORMED) {
3059 		/* Wait in case it fails to load. */
3060 		mutex_unlock(&module_mutex);
3061 		err = wait_event_interruptible(module_wq,
3062 				       finished_loading(name));
3063 		mutex_lock(&module_mutex);
3064 		if (err)
3065 			return err;
3066 
3067 		/* The module might have gone in the meantime. */
3068 		old = find_module_all(name, strlen(name), true);
3069 	}
3070 
3071 	if (try_add_failed_module(name, reason))
3072 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3073 
3074 	/*
3075 	 * We are here only when the same module was being loaded. Do
3076 	 * not try to load it again right now. It prevents long delays
3077 	 * caused by serialized module load failures. It might happen
3078 	 * when more devices of the same type trigger load of
3079 	 * a particular module.
3080 	 */
3081 	if (old && old->state == MODULE_STATE_LIVE)
3082 		return -EEXIST;
3083 	return -EBUSY;
3084 }
3085 
3086 /*
3087  * We try to place it in the list now to make sure it's unique before
3088  * we dedicate too many resources.  In particular, temporary percpu
3089  * memory exhaustion.
3090  */
3091 static int add_unformed_module(struct module *mod)
3092 {
3093 	int err;
3094 
3095 	mod->state = MODULE_STATE_UNFORMED;
3096 
3097 	mutex_lock(&module_mutex);
3098 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3099 	if (err)
3100 		goto out;
3101 
3102 	mod_update_bounds(mod);
3103 	list_add_rcu(&mod->list, &modules);
3104 	mod_tree_insert(mod);
3105 	err = 0;
3106 
3107 out:
3108 	mutex_unlock(&module_mutex);
3109 	return err;
3110 }
3111 
3112 static int complete_formation(struct module *mod, struct load_info *info)
3113 {
3114 	int err;
3115 
3116 	mutex_lock(&module_mutex);
3117 
3118 	/* Find duplicate symbols (must be called under lock). */
3119 	err = verify_exported_symbols(mod);
3120 	if (err < 0)
3121 		goto out;
3122 
3123 	/* These rely on module_mutex for list integrity. */
3124 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3125 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3126 
3127 	err = module_enable_rodata_ro(mod);
3128 	if (err)
3129 		goto out_strict_rwx;
3130 	err = module_enable_data_nx(mod);
3131 	if (err)
3132 		goto out_strict_rwx;
3133 	err = module_enable_text_rox(mod);
3134 	if (err)
3135 		goto out_strict_rwx;
3136 
3137 	/*
3138 	 * Mark state as coming so strong_try_module_get() ignores us,
3139 	 * but kallsyms etc. can see us.
3140 	 */
3141 	mod->state = MODULE_STATE_COMING;
3142 	mutex_unlock(&module_mutex);
3143 
3144 	return 0;
3145 
3146 out_strict_rwx:
3147 	module_bug_cleanup(mod);
3148 out:
3149 	mutex_unlock(&module_mutex);
3150 	return err;
3151 }
3152 
3153 static int prepare_coming_module(struct module *mod)
3154 {
3155 	int err;
3156 
3157 	ftrace_module_enable(mod);
3158 	err = klp_module_coming(mod);
3159 	if (err)
3160 		return err;
3161 
3162 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3163 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3164 	err = notifier_to_errno(err);
3165 	if (err)
3166 		klp_module_going(mod);
3167 
3168 	return err;
3169 }
3170 
3171 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3172 				   void *arg)
3173 {
3174 	struct module *mod = arg;
3175 	int ret;
3176 
3177 	if (strcmp(param, "async_probe") == 0) {
3178 		if (kstrtobool(val, &mod->async_probe_requested))
3179 			mod->async_probe_requested = true;
3180 		return 0;
3181 	}
3182 
3183 	/* Check for magic 'dyndbg' arg */
3184 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3185 	if (ret != 0)
3186 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3187 	return 0;
3188 }
3189 
3190 /* Module within temporary copy, this doesn't do any allocation  */
3191 static int early_mod_check(struct load_info *info, int flags)
3192 {
3193 	int err;
3194 
3195 	/*
3196 	 * Now that we know we have the correct module name, check
3197 	 * if it's blacklisted.
3198 	 */
3199 	if (blacklisted(info->name)) {
3200 		pr_err("Module %s is blacklisted\n", info->name);
3201 		return -EPERM;
3202 	}
3203 
3204 	err = rewrite_section_headers(info, flags);
3205 	if (err)
3206 		return err;
3207 
3208 	/* Check module struct version now, before we try to use module. */
3209 	if (!check_modstruct_version(info, info->mod))
3210 		return -ENOEXEC;
3211 
3212 	err = check_modinfo(info->mod, info, flags);
3213 	if (err)
3214 		return err;
3215 
3216 	mutex_lock(&module_mutex);
3217 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3218 	mutex_unlock(&module_mutex);
3219 
3220 	return err;
3221 }
3222 
3223 /*
3224  * Allocate and load the module: note that size of section 0 is always
3225  * zero, and we rely on this for optional sections.
3226  */
3227 static int load_module(struct load_info *info, const char __user *uargs,
3228 		       int flags)
3229 {
3230 	struct module *mod;
3231 	bool module_allocated = false;
3232 	long err = 0;
3233 	char *after_dashes;
3234 
3235 	/*
3236 	 * Do the signature check (if any) first. All that
3237 	 * the signature check needs is info->len, it does
3238 	 * not need any of the section info. That can be
3239 	 * set up later. This will minimize the chances
3240 	 * of a corrupt module causing problems before
3241 	 * we even get to the signature check.
3242 	 *
3243 	 * The check will also adjust info->len by stripping
3244 	 * off the sig length at the end of the module, making
3245 	 * checks against info->len more correct.
3246 	 */
3247 	err = module_sig_check(info, flags);
3248 	if (err)
3249 		goto free_copy;
3250 
3251 	/*
3252 	 * Do basic sanity checks against the ELF header and
3253 	 * sections. Cache useful sections and set the
3254 	 * info->mod to the userspace passed struct module.
3255 	 */
3256 	err = elf_validity_cache_copy(info, flags);
3257 	if (err)
3258 		goto free_copy;
3259 
3260 	err = early_mod_check(info, flags);
3261 	if (err)
3262 		goto free_copy;
3263 
3264 	/* Figure out module layout, and allocate all the memory. */
3265 	mod = layout_and_allocate(info, flags);
3266 	if (IS_ERR(mod)) {
3267 		err = PTR_ERR(mod);
3268 		goto free_copy;
3269 	}
3270 
3271 	module_allocated = true;
3272 
3273 	audit_log_kern_module(mod->name);
3274 
3275 	/* Reserve our place in the list. */
3276 	err = add_unformed_module(mod);
3277 	if (err)
3278 		goto free_module;
3279 
3280 	/*
3281 	 * We are tainting your kernel if your module gets into
3282 	 * the modules linked list somehow.
3283 	 */
3284 	module_augment_kernel_taints(mod, info);
3285 
3286 	/* To avoid stressing percpu allocator, do this once we're unique. */
3287 	err = percpu_modalloc(mod, info);
3288 	if (err)
3289 		goto unlink_mod;
3290 
3291 	/* Now module is in final location, initialize linked lists, etc. */
3292 	err = module_unload_init(mod);
3293 	if (err)
3294 		goto unlink_mod;
3295 
3296 	init_param_lock(mod);
3297 
3298 	/*
3299 	 * Now we've got everything in the final locations, we can
3300 	 * find optional sections.
3301 	 */
3302 	err = find_module_sections(mod, info);
3303 	if (err)
3304 		goto free_unload;
3305 
3306 	err = check_export_symbol_versions(mod);
3307 	if (err)
3308 		goto free_unload;
3309 
3310 	/* Set up MODINFO_ATTR fields */
3311 	setup_modinfo(mod, info);
3312 
3313 	/* Fix up syms, so that st_value is a pointer to location. */
3314 	err = simplify_symbols(mod, info);
3315 	if (err < 0)
3316 		goto free_modinfo;
3317 
3318 	err = apply_relocations(mod, info);
3319 	if (err < 0)
3320 		goto free_modinfo;
3321 
3322 	err = post_relocation(mod, info);
3323 	if (err < 0)
3324 		goto free_modinfo;
3325 
3326 	flush_module_icache(mod);
3327 
3328 	/* Now copy in args */
3329 	mod->args = strndup_user(uargs, ~0UL >> 1);
3330 	if (IS_ERR(mod->args)) {
3331 		err = PTR_ERR(mod->args);
3332 		goto free_arch_cleanup;
3333 	}
3334 
3335 	init_build_id(mod, info);
3336 
3337 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3338 	ftrace_module_init(mod);
3339 
3340 	/* Finally it's fully formed, ready to start executing. */
3341 	err = complete_formation(mod, info);
3342 	if (err)
3343 		goto ddebug_cleanup;
3344 
3345 	err = prepare_coming_module(mod);
3346 	if (err)
3347 		goto bug_cleanup;
3348 
3349 	mod->async_probe_requested = async_probe;
3350 
3351 	/* Module is ready to execute: parsing args may do that. */
3352 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3353 				  -32768, 32767, mod,
3354 				  unknown_module_param_cb);
3355 	if (IS_ERR(after_dashes)) {
3356 		err = PTR_ERR(after_dashes);
3357 		goto coming_cleanup;
3358 	} else if (after_dashes) {
3359 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3360 		       mod->name, after_dashes);
3361 	}
3362 
3363 	/* Link in to sysfs. */
3364 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3365 	if (err < 0)
3366 		goto coming_cleanup;
3367 
3368 	if (is_livepatch_module(mod)) {
3369 		err = copy_module_elf(mod, info);
3370 		if (err < 0)
3371 			goto sysfs_cleanup;
3372 	}
3373 
3374 	/* Get rid of temporary copy. */
3375 	free_copy(info, flags);
3376 
3377 	codetag_load_module(mod);
3378 
3379 	/* Done! */
3380 	trace_module_load(mod);
3381 
3382 	return do_init_module(mod);
3383 
3384  sysfs_cleanup:
3385 	mod_sysfs_teardown(mod);
3386  coming_cleanup:
3387 	mod->state = MODULE_STATE_GOING;
3388 	destroy_params(mod->kp, mod->num_kp);
3389 	blocking_notifier_call_chain(&module_notify_list,
3390 				     MODULE_STATE_GOING, mod);
3391 	klp_module_going(mod);
3392  bug_cleanup:
3393 	mod->state = MODULE_STATE_GOING;
3394 	/* module_bug_cleanup needs module_mutex protection */
3395 	mutex_lock(&module_mutex);
3396 	module_bug_cleanup(mod);
3397 	mutex_unlock(&module_mutex);
3398 
3399  ddebug_cleanup:
3400 	ftrace_release_mod(mod);
3401 	synchronize_rcu();
3402 	kfree(mod->args);
3403  free_arch_cleanup:
3404 	module_arch_cleanup(mod);
3405  free_modinfo:
3406 	free_modinfo(mod);
3407  free_unload:
3408 	module_unload_free(mod);
3409  unlink_mod:
3410 	mutex_lock(&module_mutex);
3411 	/* Unlink carefully: kallsyms could be walking list. */
3412 	list_del_rcu(&mod->list);
3413 	mod_tree_remove(mod);
3414 	wake_up_all(&module_wq);
3415 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3416 	synchronize_rcu();
3417 	mutex_unlock(&module_mutex);
3418  free_module:
3419 	mod_stat_bump_invalid(info, flags);
3420 	/* Free lock-classes; relies on the preceding sync_rcu() */
3421 	for_class_mod_mem_type(type, core_data) {
3422 		lockdep_free_key_range(mod->mem[type].base,
3423 				       mod->mem[type].size);
3424 	}
3425 
3426 	module_deallocate(mod, info);
3427  free_copy:
3428 	/*
3429 	 * The info->len is always set. We distinguish between
3430 	 * failures once the proper module was allocated and
3431 	 * before that.
3432 	 */
3433 	if (!module_allocated)
3434 		mod_stat_bump_becoming(info, flags);
3435 	free_copy(info, flags);
3436 	return err;
3437 }
3438 
3439 SYSCALL_DEFINE3(init_module, void __user *, umod,
3440 		unsigned long, len, const char __user *, uargs)
3441 {
3442 	int err;
3443 	struct load_info info = { };
3444 
3445 	err = may_init_module();
3446 	if (err)
3447 		return err;
3448 
3449 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3450 	       umod, len, uargs);
3451 
3452 	err = copy_module_from_user(umod, len, &info);
3453 	if (err) {
3454 		mod_stat_inc(&failed_kreads);
3455 		mod_stat_add_long(len, &invalid_kread_bytes);
3456 		return err;
3457 	}
3458 
3459 	return load_module(&info, uargs, 0);
3460 }
3461 
3462 struct idempotent {
3463 	const void *cookie;
3464 	struct hlist_node entry;
3465 	struct completion complete;
3466 	int ret;
3467 };
3468 
3469 #define IDEM_HASH_BITS 8
3470 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3471 static DEFINE_SPINLOCK(idem_lock);
3472 
3473 static bool idempotent(struct idempotent *u, const void *cookie)
3474 {
3475 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3476 	struct hlist_head *head = idem_hash + hash;
3477 	struct idempotent *existing;
3478 	bool first;
3479 
3480 	u->ret = -EINTR;
3481 	u->cookie = cookie;
3482 	init_completion(&u->complete);
3483 
3484 	spin_lock(&idem_lock);
3485 	first = true;
3486 	hlist_for_each_entry(existing, head, entry) {
3487 		if (existing->cookie != cookie)
3488 			continue;
3489 		first = false;
3490 		break;
3491 	}
3492 	hlist_add_head(&u->entry, idem_hash + hash);
3493 	spin_unlock(&idem_lock);
3494 
3495 	return !first;
3496 }
3497 
3498 /*
3499  * We were the first one with 'cookie' on the list, and we ended
3500  * up completing the operation. We now need to walk the list,
3501  * remove everybody - which includes ourselves - fill in the return
3502  * value, and then complete the operation.
3503  */
3504 static int idempotent_complete(struct idempotent *u, int ret)
3505 {
3506 	const void *cookie = u->cookie;
3507 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3508 	struct hlist_head *head = idem_hash + hash;
3509 	struct hlist_node *next;
3510 	struct idempotent *pos;
3511 
3512 	spin_lock(&idem_lock);
3513 	hlist_for_each_entry_safe(pos, next, head, entry) {
3514 		if (pos->cookie != cookie)
3515 			continue;
3516 		hlist_del_init(&pos->entry);
3517 		pos->ret = ret;
3518 		complete(&pos->complete);
3519 	}
3520 	spin_unlock(&idem_lock);
3521 	return ret;
3522 }
3523 
3524 /*
3525  * Wait for the idempotent worker.
3526  *
3527  * If we get interrupted, we need to remove ourselves from the
3528  * the idempotent list, and the completion may still come in.
3529  *
3530  * The 'idem_lock' protects against the race, and 'idem.ret' was
3531  * initialized to -EINTR and is thus always the right return
3532  * value even if the idempotent work then completes between
3533  * the wait_for_completion and the cleanup.
3534  */
3535 static int idempotent_wait_for_completion(struct idempotent *u)
3536 {
3537 	if (wait_for_completion_interruptible(&u->complete)) {
3538 		spin_lock(&idem_lock);
3539 		if (!hlist_unhashed(&u->entry))
3540 			hlist_del(&u->entry);
3541 		spin_unlock(&idem_lock);
3542 	}
3543 	return u->ret;
3544 }
3545 
3546 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3547 {
3548 	struct load_info info = { };
3549 	void *buf = NULL;
3550 	int len;
3551 
3552 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3553 	if (len < 0) {
3554 		mod_stat_inc(&failed_kreads);
3555 		return len;
3556 	}
3557 
3558 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3559 		int err = module_decompress(&info, buf, len);
3560 		vfree(buf); /* compressed data is no longer needed */
3561 		if (err) {
3562 			mod_stat_inc(&failed_decompress);
3563 			mod_stat_add_long(len, &invalid_decompress_bytes);
3564 			return err;
3565 		}
3566 	} else {
3567 		info.hdr = buf;
3568 		info.len = len;
3569 	}
3570 
3571 	return load_module(&info, uargs, flags);
3572 }
3573 
3574 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3575 {
3576 	struct idempotent idem;
3577 
3578 	if (!(f->f_mode & FMODE_READ))
3579 		return -EBADF;
3580 
3581 	/* Are we the winners of the race and get to do this? */
3582 	if (!idempotent(&idem, file_inode(f))) {
3583 		int ret = init_module_from_file(f, uargs, flags);
3584 		return idempotent_complete(&idem, ret);
3585 	}
3586 
3587 	/*
3588 	 * Somebody else won the race and is loading the module.
3589 	 */
3590 	return idempotent_wait_for_completion(&idem);
3591 }
3592 
3593 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3594 {
3595 	int err = may_init_module();
3596 	if (err)
3597 		return err;
3598 
3599 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3600 
3601 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3602 		      |MODULE_INIT_IGNORE_VERMAGIC
3603 		      |MODULE_INIT_COMPRESSED_FILE))
3604 		return -EINVAL;
3605 
3606 	CLASS(fd, f)(fd);
3607 	if (fd_empty(f))
3608 		return -EBADF;
3609 	return idempotent_init_module(fd_file(f), uargs, flags);
3610 }
3611 
3612 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3613 char *module_flags(struct module *mod, char *buf, bool show_state)
3614 {
3615 	int bx = 0;
3616 
3617 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3618 	if (!mod->taints && !show_state)
3619 		goto out;
3620 	if (mod->taints ||
3621 	    mod->state == MODULE_STATE_GOING ||
3622 	    mod->state == MODULE_STATE_COMING) {
3623 		buf[bx++] = '(';
3624 		bx += module_flags_taint(mod->taints, buf + bx);
3625 		/* Show a - for module-is-being-unloaded */
3626 		if (mod->state == MODULE_STATE_GOING && show_state)
3627 			buf[bx++] = '-';
3628 		/* Show a + for module-is-being-loaded */
3629 		if (mod->state == MODULE_STATE_COMING && show_state)
3630 			buf[bx++] = '+';
3631 		buf[bx++] = ')';
3632 	}
3633 out:
3634 	buf[bx] = '\0';
3635 
3636 	return buf;
3637 }
3638 
3639 /* Given an address, look for it in the module exception tables. */
3640 const struct exception_table_entry *search_module_extables(unsigned long addr)
3641 {
3642 	const struct exception_table_entry *e = NULL;
3643 	struct module *mod;
3644 
3645 	preempt_disable();
3646 	mod = __module_address(addr);
3647 	if (!mod)
3648 		goto out;
3649 
3650 	if (!mod->num_exentries)
3651 		goto out;
3652 
3653 	e = search_extable(mod->extable,
3654 			   mod->num_exentries,
3655 			   addr);
3656 out:
3657 	preempt_enable();
3658 
3659 	/*
3660 	 * Now, if we found one, we are running inside it now, hence
3661 	 * we cannot unload the module, hence no refcnt needed.
3662 	 */
3663 	return e;
3664 }
3665 
3666 /**
3667  * is_module_address() - is this address inside a module?
3668  * @addr: the address to check.
3669  *
3670  * See is_module_text_address() if you simply want to see if the address
3671  * is code (not data).
3672  */
3673 bool is_module_address(unsigned long addr)
3674 {
3675 	bool ret;
3676 
3677 	preempt_disable();
3678 	ret = __module_address(addr) != NULL;
3679 	preempt_enable();
3680 
3681 	return ret;
3682 }
3683 
3684 /**
3685  * __module_address() - get the module which contains an address.
3686  * @addr: the address.
3687  *
3688  * Must be called with preempt disabled or module mutex held so that
3689  * module doesn't get freed during this.
3690  */
3691 struct module *__module_address(unsigned long addr)
3692 {
3693 	struct module *mod;
3694 
3695 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3696 		goto lookup;
3697 
3698 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3699 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3700 		goto lookup;
3701 #endif
3702 
3703 	return NULL;
3704 
3705 lookup:
3706 	module_assert_mutex_or_preempt();
3707 
3708 	mod = mod_find(addr, &mod_tree);
3709 	if (mod) {
3710 		BUG_ON(!within_module(addr, mod));
3711 		if (mod->state == MODULE_STATE_UNFORMED)
3712 			mod = NULL;
3713 	}
3714 	return mod;
3715 }
3716 
3717 /**
3718  * is_module_text_address() - is this address inside module code?
3719  * @addr: the address to check.
3720  *
3721  * See is_module_address() if you simply want to see if the address is
3722  * anywhere in a module.  See kernel_text_address() for testing if an
3723  * address corresponds to kernel or module code.
3724  */
3725 bool is_module_text_address(unsigned long addr)
3726 {
3727 	bool ret;
3728 
3729 	preempt_disable();
3730 	ret = __module_text_address(addr) != NULL;
3731 	preempt_enable();
3732 
3733 	return ret;
3734 }
3735 
3736 /**
3737  * __module_text_address() - get the module whose code contains an address.
3738  * @addr: the address.
3739  *
3740  * Must be called with preempt disabled or module mutex held so that
3741  * module doesn't get freed during this.
3742  */
3743 struct module *__module_text_address(unsigned long addr)
3744 {
3745 	struct module *mod = __module_address(addr);
3746 	if (mod) {
3747 		/* Make sure it's within the text section. */
3748 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3749 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3750 			mod = NULL;
3751 	}
3752 	return mod;
3753 }
3754 
3755 /* Don't grab lock, we're oopsing. */
3756 void print_modules(void)
3757 {
3758 	struct module *mod;
3759 	char buf[MODULE_FLAGS_BUF_SIZE];
3760 
3761 	printk(KERN_DEFAULT "Modules linked in:");
3762 	/* Most callers should already have preempt disabled, but make sure */
3763 	preempt_disable();
3764 	list_for_each_entry_rcu(mod, &modules, list) {
3765 		if (mod->state == MODULE_STATE_UNFORMED)
3766 			continue;
3767 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3768 	}
3769 
3770 	print_unloaded_tainted_modules();
3771 	preempt_enable();
3772 	if (last_unloaded_module.name[0])
3773 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3774 			last_unloaded_module.taints);
3775 	pr_cont("\n");
3776 }
3777 
3778 #ifdef CONFIG_MODULE_DEBUGFS
3779 struct dentry *mod_debugfs_root;
3780 
3781 static int module_debugfs_init(void)
3782 {
3783 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3784 	return 0;
3785 }
3786 module_init(module_debugfs_init);
3787 #endif
3788