1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable with preempt_disable), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const s32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /* Find a module section, or NULL. */ 199 static void *section_addr(const struct load_info *info, const char *name) 200 { 201 /* Section 0 has sh_addr 0. */ 202 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 203 } 204 205 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 206 static void *section_objs(const struct load_info *info, 207 const char *name, 208 size_t object_size, 209 unsigned int *num) 210 { 211 unsigned int sec = find_sec(info, name); 212 213 /* Section 0 has sh_addr 0 and sh_size 0. */ 214 *num = info->sechdrs[sec].sh_size / object_size; 215 return (void *)info->sechdrs[sec].sh_addr; 216 } 217 218 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 219 static unsigned int find_any_sec(const struct load_info *info, const char *name) 220 { 221 unsigned int i; 222 223 for (i = 1; i < info->hdr->e_shnum; i++) { 224 Elf_Shdr *shdr = &info->sechdrs[i]; 225 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 226 return i; 227 } 228 return 0; 229 } 230 231 /* 232 * Find a module section, or NULL. Fill in number of "objects" in section. 233 * Ignores SHF_ALLOC flag. 234 */ 235 static __maybe_unused void *any_section_objs(const struct load_info *info, 236 const char *name, 237 size_t object_size, 238 unsigned int *num) 239 { 240 unsigned int sec = find_any_sec(info, name); 241 242 /* Section 0 has sh_addr 0 and sh_size 0. */ 243 *num = info->sechdrs[sec].sh_size / object_size; 244 return (void *)info->sechdrs[sec].sh_addr; 245 } 246 247 #ifndef CONFIG_MODVERSIONS 248 #define symversion(base, idx) NULL 249 #else 250 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 251 #endif 252 253 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 254 { 255 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 256 return offset_to_ptr(&sym->name_offset); 257 #else 258 return sym->name; 259 #endif 260 } 261 262 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 263 { 264 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 265 if (!sym->namespace_offset) 266 return NULL; 267 return offset_to_ptr(&sym->namespace_offset); 268 #else 269 return sym->namespace; 270 #endif 271 } 272 273 int cmp_name(const void *name, const void *sym) 274 { 275 return strcmp(name, kernel_symbol_name(sym)); 276 } 277 278 static bool find_exported_symbol_in_section(const struct symsearch *syms, 279 struct module *owner, 280 struct find_symbol_arg *fsa) 281 { 282 struct kernel_symbol *sym; 283 284 if (!fsa->gplok && syms->license == GPL_ONLY) 285 return false; 286 287 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 288 sizeof(struct kernel_symbol), cmp_name); 289 if (!sym) 290 return false; 291 292 fsa->owner = owner; 293 fsa->crc = symversion(syms->crcs, sym - syms->start); 294 fsa->sym = sym; 295 fsa->license = syms->license; 296 297 return true; 298 } 299 300 /* 301 * Find an exported symbol and return it, along with, (optional) crc and 302 * (optional) module which owns it. Needs preempt disabled or module_mutex. 303 */ 304 bool find_symbol(struct find_symbol_arg *fsa) 305 { 306 static const struct symsearch arr[] = { 307 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 308 NOT_GPL_ONLY }, 309 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 310 __start___kcrctab_gpl, 311 GPL_ONLY }, 312 }; 313 struct module *mod; 314 unsigned int i; 315 316 module_assert_mutex_or_preempt(); 317 318 for (i = 0; i < ARRAY_SIZE(arr); i++) 319 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 320 return true; 321 322 list_for_each_entry_rcu(mod, &modules, list, 323 lockdep_is_held(&module_mutex)) { 324 struct symsearch arr[] = { 325 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 326 NOT_GPL_ONLY }, 327 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 328 mod->gpl_crcs, 329 GPL_ONLY }, 330 }; 331 332 if (mod->state == MODULE_STATE_UNFORMED) 333 continue; 334 335 for (i = 0; i < ARRAY_SIZE(arr); i++) 336 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 337 return true; 338 } 339 340 pr_debug("Failed to find symbol %s\n", fsa->name); 341 return false; 342 } 343 344 /* 345 * Search for module by name: must hold module_mutex (or preempt disabled 346 * for read-only access). 347 */ 348 struct module *find_module_all(const char *name, size_t len, 349 bool even_unformed) 350 { 351 struct module *mod; 352 353 module_assert_mutex_or_preempt(); 354 355 list_for_each_entry_rcu(mod, &modules, list, 356 lockdep_is_held(&module_mutex)) { 357 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 358 continue; 359 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 360 return mod; 361 } 362 return NULL; 363 } 364 365 struct module *find_module(const char *name) 366 { 367 return find_module_all(name, strlen(name), false); 368 } 369 370 #ifdef CONFIG_SMP 371 372 static inline void __percpu *mod_percpu(struct module *mod) 373 { 374 return mod->percpu; 375 } 376 377 static int percpu_modalloc(struct module *mod, struct load_info *info) 378 { 379 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 380 unsigned long align = pcpusec->sh_addralign; 381 382 if (!pcpusec->sh_size) 383 return 0; 384 385 if (align > PAGE_SIZE) { 386 pr_warn("%s: per-cpu alignment %li > %li\n", 387 mod->name, align, PAGE_SIZE); 388 align = PAGE_SIZE; 389 } 390 391 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 392 if (!mod->percpu) { 393 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 394 mod->name, (unsigned long)pcpusec->sh_size); 395 return -ENOMEM; 396 } 397 mod->percpu_size = pcpusec->sh_size; 398 return 0; 399 } 400 401 static void percpu_modfree(struct module *mod) 402 { 403 free_percpu(mod->percpu); 404 } 405 406 static unsigned int find_pcpusec(struct load_info *info) 407 { 408 return find_sec(info, ".data..percpu"); 409 } 410 411 static void percpu_modcopy(struct module *mod, 412 const void *from, unsigned long size) 413 { 414 int cpu; 415 416 for_each_possible_cpu(cpu) 417 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 418 } 419 420 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 421 { 422 struct module *mod; 423 unsigned int cpu; 424 425 preempt_disable(); 426 427 list_for_each_entry_rcu(mod, &modules, list) { 428 if (mod->state == MODULE_STATE_UNFORMED) 429 continue; 430 if (!mod->percpu_size) 431 continue; 432 for_each_possible_cpu(cpu) { 433 void *start = per_cpu_ptr(mod->percpu, cpu); 434 void *va = (void *)addr; 435 436 if (va >= start && va < start + mod->percpu_size) { 437 if (can_addr) { 438 *can_addr = (unsigned long) (va - start); 439 *can_addr += (unsigned long) 440 per_cpu_ptr(mod->percpu, 441 get_boot_cpu_id()); 442 } 443 preempt_enable(); 444 return true; 445 } 446 } 447 } 448 449 preempt_enable(); 450 return false; 451 } 452 453 /** 454 * is_module_percpu_address() - test whether address is from module static percpu 455 * @addr: address to test 456 * 457 * Test whether @addr belongs to module static percpu area. 458 * 459 * Return: %true if @addr is from module static percpu area 460 */ 461 bool is_module_percpu_address(unsigned long addr) 462 { 463 return __is_module_percpu_address(addr, NULL); 464 } 465 466 #else /* ... !CONFIG_SMP */ 467 468 static inline void __percpu *mod_percpu(struct module *mod) 469 { 470 return NULL; 471 } 472 static int percpu_modalloc(struct module *mod, struct load_info *info) 473 { 474 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 475 if (info->sechdrs[info->index.pcpu].sh_size != 0) 476 return -ENOMEM; 477 return 0; 478 } 479 static inline void percpu_modfree(struct module *mod) 480 { 481 } 482 static unsigned int find_pcpusec(struct load_info *info) 483 { 484 return 0; 485 } 486 static inline void percpu_modcopy(struct module *mod, 487 const void *from, unsigned long size) 488 { 489 /* pcpusec should be 0, and size of that section should be 0. */ 490 BUG_ON(size != 0); 491 } 492 bool is_module_percpu_address(unsigned long addr) 493 { 494 return false; 495 } 496 497 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 498 { 499 return false; 500 } 501 502 #endif /* CONFIG_SMP */ 503 504 #define MODINFO_ATTR(field) \ 505 static void setup_modinfo_##field(struct module *mod, const char *s) \ 506 { \ 507 mod->field = kstrdup(s, GFP_KERNEL); \ 508 } \ 509 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 510 struct module_kobject *mk, char *buffer) \ 511 { \ 512 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 513 } \ 514 static int modinfo_##field##_exists(struct module *mod) \ 515 { \ 516 return mod->field != NULL; \ 517 } \ 518 static void free_modinfo_##field(struct module *mod) \ 519 { \ 520 kfree(mod->field); \ 521 mod->field = NULL; \ 522 } \ 523 static struct module_attribute modinfo_##field = { \ 524 .attr = { .name = __stringify(field), .mode = 0444 }, \ 525 .show = show_modinfo_##field, \ 526 .setup = setup_modinfo_##field, \ 527 .test = modinfo_##field##_exists, \ 528 .free = free_modinfo_##field, \ 529 }; 530 531 MODINFO_ATTR(version); 532 MODINFO_ATTR(srcversion); 533 534 static struct { 535 char name[MODULE_NAME_LEN + 1]; 536 char taints[MODULE_FLAGS_BUF_SIZE]; 537 } last_unloaded_module; 538 539 #ifdef CONFIG_MODULE_UNLOAD 540 541 EXPORT_TRACEPOINT_SYMBOL(module_get); 542 543 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 544 #define MODULE_REF_BASE 1 545 546 /* Init the unload section of the module. */ 547 static int module_unload_init(struct module *mod) 548 { 549 /* 550 * Initialize reference counter to MODULE_REF_BASE. 551 * refcnt == 0 means module is going. 552 */ 553 atomic_set(&mod->refcnt, MODULE_REF_BASE); 554 555 INIT_LIST_HEAD(&mod->source_list); 556 INIT_LIST_HEAD(&mod->target_list); 557 558 /* Hold reference count during initialization. */ 559 atomic_inc(&mod->refcnt); 560 561 return 0; 562 } 563 564 /* Does a already use b? */ 565 static int already_uses(struct module *a, struct module *b) 566 { 567 struct module_use *use; 568 569 list_for_each_entry(use, &b->source_list, source_list) { 570 if (use->source == a) 571 return 1; 572 } 573 pr_debug("%s does not use %s!\n", a->name, b->name); 574 return 0; 575 } 576 577 /* 578 * Module a uses b 579 * - we add 'a' as a "source", 'b' as a "target" of module use 580 * - the module_use is added to the list of 'b' sources (so 581 * 'b' can walk the list to see who sourced them), and of 'a' 582 * targets (so 'a' can see what modules it targets). 583 */ 584 static int add_module_usage(struct module *a, struct module *b) 585 { 586 struct module_use *use; 587 588 pr_debug("Allocating new usage for %s.\n", a->name); 589 use = kmalloc(sizeof(*use), GFP_ATOMIC); 590 if (!use) 591 return -ENOMEM; 592 593 use->source = a; 594 use->target = b; 595 list_add(&use->source_list, &b->source_list); 596 list_add(&use->target_list, &a->target_list); 597 return 0; 598 } 599 600 /* Module a uses b: caller needs module_mutex() */ 601 static int ref_module(struct module *a, struct module *b) 602 { 603 int err; 604 605 if (b == NULL || already_uses(a, b)) 606 return 0; 607 608 /* If module isn't available, we fail. */ 609 err = strong_try_module_get(b); 610 if (err) 611 return err; 612 613 err = add_module_usage(a, b); 614 if (err) { 615 module_put(b); 616 return err; 617 } 618 return 0; 619 } 620 621 /* Clear the unload stuff of the module. */ 622 static void module_unload_free(struct module *mod) 623 { 624 struct module_use *use, *tmp; 625 626 mutex_lock(&module_mutex); 627 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 628 struct module *i = use->target; 629 pr_debug("%s unusing %s\n", mod->name, i->name); 630 module_put(i); 631 list_del(&use->source_list); 632 list_del(&use->target_list); 633 kfree(use); 634 } 635 mutex_unlock(&module_mutex); 636 } 637 638 #ifdef CONFIG_MODULE_FORCE_UNLOAD 639 static inline int try_force_unload(unsigned int flags) 640 { 641 int ret = (flags & O_TRUNC); 642 if (ret) 643 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 644 return ret; 645 } 646 #else 647 static inline int try_force_unload(unsigned int flags) 648 { 649 return 0; 650 } 651 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 652 653 /* Try to release refcount of module, 0 means success. */ 654 static int try_release_module_ref(struct module *mod) 655 { 656 int ret; 657 658 /* Try to decrement refcnt which we set at loading */ 659 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 660 BUG_ON(ret < 0); 661 if (ret) 662 /* Someone can put this right now, recover with checking */ 663 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 664 665 return ret; 666 } 667 668 static int try_stop_module(struct module *mod, int flags, int *forced) 669 { 670 /* If it's not unused, quit unless we're forcing. */ 671 if (try_release_module_ref(mod) != 0) { 672 *forced = try_force_unload(flags); 673 if (!(*forced)) 674 return -EWOULDBLOCK; 675 } 676 677 /* Mark it as dying. */ 678 mod->state = MODULE_STATE_GOING; 679 680 return 0; 681 } 682 683 /** 684 * module_refcount() - return the refcount or -1 if unloading 685 * @mod: the module we're checking 686 * 687 * Return: 688 * -1 if the module is in the process of unloading 689 * otherwise the number of references in the kernel to the module 690 */ 691 int module_refcount(struct module *mod) 692 { 693 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 694 } 695 EXPORT_SYMBOL(module_refcount); 696 697 /* This exists whether we can unload or not */ 698 static void free_module(struct module *mod); 699 700 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 701 unsigned int, flags) 702 { 703 struct module *mod; 704 char name[MODULE_NAME_LEN]; 705 char buf[MODULE_FLAGS_BUF_SIZE]; 706 int ret, forced = 0; 707 708 if (!capable(CAP_SYS_MODULE) || modules_disabled) 709 return -EPERM; 710 711 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 712 return -EFAULT; 713 name[MODULE_NAME_LEN-1] = '\0'; 714 715 audit_log_kern_module(name); 716 717 if (mutex_lock_interruptible(&module_mutex) != 0) 718 return -EINTR; 719 720 mod = find_module(name); 721 if (!mod) { 722 ret = -ENOENT; 723 goto out; 724 } 725 726 if (!list_empty(&mod->source_list)) { 727 /* Other modules depend on us: get rid of them first. */ 728 ret = -EWOULDBLOCK; 729 goto out; 730 } 731 732 /* Doing init or already dying? */ 733 if (mod->state != MODULE_STATE_LIVE) { 734 /* FIXME: if (force), slam module count damn the torpedoes */ 735 pr_debug("%s already dying\n", mod->name); 736 ret = -EBUSY; 737 goto out; 738 } 739 740 /* If it has an init func, it must have an exit func to unload */ 741 if (mod->init && !mod->exit) { 742 forced = try_force_unload(flags); 743 if (!forced) { 744 /* This module can't be removed */ 745 ret = -EBUSY; 746 goto out; 747 } 748 } 749 750 ret = try_stop_module(mod, flags, &forced); 751 if (ret != 0) 752 goto out; 753 754 mutex_unlock(&module_mutex); 755 /* Final destruction now no one is using it. */ 756 if (mod->exit != NULL) 757 mod->exit(); 758 blocking_notifier_call_chain(&module_notify_list, 759 MODULE_STATE_GOING, mod); 760 klp_module_going(mod); 761 ftrace_release_mod(mod); 762 763 async_synchronize_full(); 764 765 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 766 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 767 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 768 769 free_module(mod); 770 /* someone could wait for the module in add_unformed_module() */ 771 wake_up_all(&module_wq); 772 return 0; 773 out: 774 mutex_unlock(&module_mutex); 775 return ret; 776 } 777 778 void __symbol_put(const char *symbol) 779 { 780 struct find_symbol_arg fsa = { 781 .name = symbol, 782 .gplok = true, 783 }; 784 785 preempt_disable(); 786 BUG_ON(!find_symbol(&fsa)); 787 module_put(fsa.owner); 788 preempt_enable(); 789 } 790 EXPORT_SYMBOL(__symbol_put); 791 792 /* Note this assumes addr is a function, which it currently always is. */ 793 void symbol_put_addr(void *addr) 794 { 795 struct module *modaddr; 796 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 797 798 if (core_kernel_text(a)) 799 return; 800 801 /* 802 * Even though we hold a reference on the module; we still need to 803 * disable preemption in order to safely traverse the data structure. 804 */ 805 preempt_disable(); 806 modaddr = __module_text_address(a); 807 BUG_ON(!modaddr); 808 module_put(modaddr); 809 preempt_enable(); 810 } 811 EXPORT_SYMBOL_GPL(symbol_put_addr); 812 813 static ssize_t show_refcnt(struct module_attribute *mattr, 814 struct module_kobject *mk, char *buffer) 815 { 816 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 817 } 818 819 static struct module_attribute modinfo_refcnt = 820 __ATTR(refcnt, 0444, show_refcnt, NULL); 821 822 void __module_get(struct module *module) 823 { 824 if (module) { 825 atomic_inc(&module->refcnt); 826 trace_module_get(module, _RET_IP_); 827 } 828 } 829 EXPORT_SYMBOL(__module_get); 830 831 bool try_module_get(struct module *module) 832 { 833 bool ret = true; 834 835 if (module) { 836 /* Note: here, we can fail to get a reference */ 837 if (likely(module_is_live(module) && 838 atomic_inc_not_zero(&module->refcnt) != 0)) 839 trace_module_get(module, _RET_IP_); 840 else 841 ret = false; 842 } 843 return ret; 844 } 845 EXPORT_SYMBOL(try_module_get); 846 847 void module_put(struct module *module) 848 { 849 int ret; 850 851 if (module) { 852 ret = atomic_dec_if_positive(&module->refcnt); 853 WARN_ON(ret < 0); /* Failed to put refcount */ 854 trace_module_put(module, _RET_IP_); 855 } 856 } 857 EXPORT_SYMBOL(module_put); 858 859 #else /* !CONFIG_MODULE_UNLOAD */ 860 static inline void module_unload_free(struct module *mod) 861 { 862 } 863 864 static int ref_module(struct module *a, struct module *b) 865 { 866 return strong_try_module_get(b); 867 } 868 869 static inline int module_unload_init(struct module *mod) 870 { 871 return 0; 872 } 873 #endif /* CONFIG_MODULE_UNLOAD */ 874 875 size_t module_flags_taint(unsigned long taints, char *buf) 876 { 877 size_t l = 0; 878 int i; 879 880 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 881 if (taint_flags[i].module && test_bit(i, &taints)) 882 buf[l++] = taint_flags[i].c_true; 883 } 884 885 return l; 886 } 887 888 static ssize_t show_initstate(struct module_attribute *mattr, 889 struct module_kobject *mk, char *buffer) 890 { 891 const char *state = "unknown"; 892 893 switch (mk->mod->state) { 894 case MODULE_STATE_LIVE: 895 state = "live"; 896 break; 897 case MODULE_STATE_COMING: 898 state = "coming"; 899 break; 900 case MODULE_STATE_GOING: 901 state = "going"; 902 break; 903 default: 904 BUG(); 905 } 906 return sprintf(buffer, "%s\n", state); 907 } 908 909 static struct module_attribute modinfo_initstate = 910 __ATTR(initstate, 0444, show_initstate, NULL); 911 912 static ssize_t store_uevent(struct module_attribute *mattr, 913 struct module_kobject *mk, 914 const char *buffer, size_t count) 915 { 916 int rc; 917 918 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 919 return rc ? rc : count; 920 } 921 922 struct module_attribute module_uevent = 923 __ATTR(uevent, 0200, NULL, store_uevent); 924 925 static ssize_t show_coresize(struct module_attribute *mattr, 926 struct module_kobject *mk, char *buffer) 927 { 928 unsigned int size = mk->mod->mem[MOD_TEXT].size; 929 930 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 931 for_class_mod_mem_type(type, core_data) 932 size += mk->mod->mem[type].size; 933 } 934 return sprintf(buffer, "%u\n", size); 935 } 936 937 static struct module_attribute modinfo_coresize = 938 __ATTR(coresize, 0444, show_coresize, NULL); 939 940 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 941 static ssize_t show_datasize(struct module_attribute *mattr, 942 struct module_kobject *mk, char *buffer) 943 { 944 unsigned int size = 0; 945 946 for_class_mod_mem_type(type, core_data) 947 size += mk->mod->mem[type].size; 948 return sprintf(buffer, "%u\n", size); 949 } 950 951 static struct module_attribute modinfo_datasize = 952 __ATTR(datasize, 0444, show_datasize, NULL); 953 #endif 954 955 static ssize_t show_initsize(struct module_attribute *mattr, 956 struct module_kobject *mk, char *buffer) 957 { 958 unsigned int size = 0; 959 960 for_class_mod_mem_type(type, init) 961 size += mk->mod->mem[type].size; 962 return sprintf(buffer, "%u\n", size); 963 } 964 965 static struct module_attribute modinfo_initsize = 966 __ATTR(initsize, 0444, show_initsize, NULL); 967 968 static ssize_t show_taint(struct module_attribute *mattr, 969 struct module_kobject *mk, char *buffer) 970 { 971 size_t l; 972 973 l = module_flags_taint(mk->mod->taints, buffer); 974 buffer[l++] = '\n'; 975 return l; 976 } 977 978 static struct module_attribute modinfo_taint = 979 __ATTR(taint, 0444, show_taint, NULL); 980 981 struct module_attribute *modinfo_attrs[] = { 982 &module_uevent, 983 &modinfo_version, 984 &modinfo_srcversion, 985 &modinfo_initstate, 986 &modinfo_coresize, 987 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 988 &modinfo_datasize, 989 #endif 990 &modinfo_initsize, 991 &modinfo_taint, 992 #ifdef CONFIG_MODULE_UNLOAD 993 &modinfo_refcnt, 994 #endif 995 NULL, 996 }; 997 998 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 999 1000 static const char vermagic[] = VERMAGIC_STRING; 1001 1002 int try_to_force_load(struct module *mod, const char *reason) 1003 { 1004 #ifdef CONFIG_MODULE_FORCE_LOAD 1005 if (!test_taint(TAINT_FORCED_MODULE)) 1006 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1007 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1008 return 0; 1009 #else 1010 return -ENOEXEC; 1011 #endif 1012 } 1013 1014 /* Parse tag=value strings from .modinfo section */ 1015 char *module_next_tag_pair(char *string, unsigned long *secsize) 1016 { 1017 /* Skip non-zero chars */ 1018 while (string[0]) { 1019 string++; 1020 if ((*secsize)-- <= 1) 1021 return NULL; 1022 } 1023 1024 /* Skip any zero padding. */ 1025 while (!string[0]) { 1026 string++; 1027 if ((*secsize)-- <= 1) 1028 return NULL; 1029 } 1030 return string; 1031 } 1032 1033 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1034 char *prev) 1035 { 1036 char *p; 1037 unsigned int taglen = strlen(tag); 1038 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1039 unsigned long size = infosec->sh_size; 1040 1041 /* 1042 * get_modinfo() calls made before rewrite_section_headers() 1043 * must use sh_offset, as sh_addr isn't set! 1044 */ 1045 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1046 1047 if (prev) { 1048 size -= prev - modinfo; 1049 modinfo = module_next_tag_pair(prev, &size); 1050 } 1051 1052 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1053 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1054 return p + taglen + 1; 1055 } 1056 return NULL; 1057 } 1058 1059 static char *get_modinfo(const struct load_info *info, const char *tag) 1060 { 1061 return get_next_modinfo(info, tag, NULL); 1062 } 1063 1064 static int verify_namespace_is_imported(const struct load_info *info, 1065 const struct kernel_symbol *sym, 1066 struct module *mod) 1067 { 1068 const char *namespace; 1069 char *imported_namespace; 1070 1071 namespace = kernel_symbol_namespace(sym); 1072 if (namespace && namespace[0]) { 1073 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1074 if (strcmp(namespace, imported_namespace) == 0) 1075 return 0; 1076 } 1077 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1078 pr_warn( 1079 #else 1080 pr_err( 1081 #endif 1082 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1083 mod->name, kernel_symbol_name(sym), namespace); 1084 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1085 return -EINVAL; 1086 #endif 1087 } 1088 return 0; 1089 } 1090 1091 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1092 { 1093 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1094 return true; 1095 1096 if (mod->using_gplonly_symbols) { 1097 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1098 mod->name, name, owner->name); 1099 return false; 1100 } 1101 1102 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1103 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1104 mod->name, name, owner->name); 1105 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1106 } 1107 return true; 1108 } 1109 1110 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1111 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1112 const struct load_info *info, 1113 const char *name, 1114 char ownername[]) 1115 { 1116 struct find_symbol_arg fsa = { 1117 .name = name, 1118 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1119 .warn = true, 1120 }; 1121 int err; 1122 1123 /* 1124 * The module_mutex should not be a heavily contended lock; 1125 * if we get the occasional sleep here, we'll go an extra iteration 1126 * in the wait_event_interruptible(), which is harmless. 1127 */ 1128 sched_annotate_sleep(); 1129 mutex_lock(&module_mutex); 1130 if (!find_symbol(&fsa)) 1131 goto unlock; 1132 1133 if (fsa.license == GPL_ONLY) 1134 mod->using_gplonly_symbols = true; 1135 1136 if (!inherit_taint(mod, fsa.owner, name)) { 1137 fsa.sym = NULL; 1138 goto getname; 1139 } 1140 1141 if (!check_version(info, name, mod, fsa.crc)) { 1142 fsa.sym = ERR_PTR(-EINVAL); 1143 goto getname; 1144 } 1145 1146 err = verify_namespace_is_imported(info, fsa.sym, mod); 1147 if (err) { 1148 fsa.sym = ERR_PTR(err); 1149 goto getname; 1150 } 1151 1152 err = ref_module(mod, fsa.owner); 1153 if (err) { 1154 fsa.sym = ERR_PTR(err); 1155 goto getname; 1156 } 1157 1158 getname: 1159 /* We must make copy under the lock if we failed to get ref. */ 1160 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1161 unlock: 1162 mutex_unlock(&module_mutex); 1163 return fsa.sym; 1164 } 1165 1166 static const struct kernel_symbol * 1167 resolve_symbol_wait(struct module *mod, 1168 const struct load_info *info, 1169 const char *name) 1170 { 1171 const struct kernel_symbol *ksym; 1172 char owner[MODULE_NAME_LEN]; 1173 1174 if (wait_event_interruptible_timeout(module_wq, 1175 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1176 || PTR_ERR(ksym) != -EBUSY, 1177 30 * HZ) <= 0) { 1178 pr_warn("%s: gave up waiting for init of module %s.\n", 1179 mod->name, owner); 1180 } 1181 return ksym; 1182 } 1183 1184 void __weak module_arch_cleanup(struct module *mod) 1185 { 1186 } 1187 1188 void __weak module_arch_freeing_init(struct module *mod) 1189 { 1190 } 1191 1192 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1193 { 1194 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1195 enum execmem_type execmem_type; 1196 void *ptr; 1197 1198 mod->mem[type].size = size; 1199 1200 if (mod_mem_type_is_data(type)) 1201 execmem_type = EXECMEM_MODULE_DATA; 1202 else 1203 execmem_type = EXECMEM_MODULE_TEXT; 1204 1205 ptr = execmem_alloc(execmem_type, size); 1206 if (!ptr) 1207 return -ENOMEM; 1208 1209 /* 1210 * The pointer to these blocks of memory are stored on the module 1211 * structure and we keep that around so long as the module is 1212 * around. We only free that memory when we unload the module. 1213 * Just mark them as not being a leak then. The .init* ELF 1214 * sections *do* get freed after boot so we *could* treat them 1215 * slightly differently with kmemleak_ignore() and only grey 1216 * them out as they work as typical memory allocations which 1217 * *do* eventually get freed, but let's just keep things simple 1218 * and avoid *any* false positives. 1219 */ 1220 kmemleak_not_leak(ptr); 1221 1222 memset(ptr, 0, size); 1223 mod->mem[type].base = ptr; 1224 1225 return 0; 1226 } 1227 1228 static void module_memory_free(struct module *mod, enum mod_mem_type type, 1229 bool unload_codetags) 1230 { 1231 void *ptr = mod->mem[type].base; 1232 1233 if (!unload_codetags && mod_mem_type_is_core_data(type)) 1234 return; 1235 1236 execmem_free(ptr); 1237 } 1238 1239 static void free_mod_mem(struct module *mod, bool unload_codetags) 1240 { 1241 for_each_mod_mem_type(type) { 1242 struct module_memory *mod_mem = &mod->mem[type]; 1243 1244 if (type == MOD_DATA) 1245 continue; 1246 1247 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1248 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1249 if (mod_mem->size) 1250 module_memory_free(mod, type, unload_codetags); 1251 } 1252 1253 /* MOD_DATA hosts mod, so free it at last */ 1254 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1255 module_memory_free(mod, MOD_DATA, unload_codetags); 1256 } 1257 1258 /* Free a module, remove from lists, etc. */ 1259 static void free_module(struct module *mod) 1260 { 1261 bool unload_codetags; 1262 1263 trace_module_free(mod); 1264 1265 unload_codetags = codetag_unload_module(mod); 1266 if (!unload_codetags) 1267 pr_warn("%s: memory allocation(s) from the module still alive, cannot unload cleanly\n", 1268 mod->name); 1269 1270 mod_sysfs_teardown(mod); 1271 1272 /* 1273 * We leave it in list to prevent duplicate loads, but make sure 1274 * that noone uses it while it's being deconstructed. 1275 */ 1276 mutex_lock(&module_mutex); 1277 mod->state = MODULE_STATE_UNFORMED; 1278 mutex_unlock(&module_mutex); 1279 1280 /* Arch-specific cleanup. */ 1281 module_arch_cleanup(mod); 1282 1283 /* Module unload stuff */ 1284 module_unload_free(mod); 1285 1286 /* Free any allocated parameters. */ 1287 destroy_params(mod->kp, mod->num_kp); 1288 1289 if (is_livepatch_module(mod)) 1290 free_module_elf(mod); 1291 1292 /* Now we can delete it from the lists */ 1293 mutex_lock(&module_mutex); 1294 /* Unlink carefully: kallsyms could be walking list. */ 1295 list_del_rcu(&mod->list); 1296 mod_tree_remove(mod); 1297 /* Remove this module from bug list, this uses list_del_rcu */ 1298 module_bug_cleanup(mod); 1299 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1300 synchronize_rcu(); 1301 if (try_add_tainted_module(mod)) 1302 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1303 mod->name); 1304 mutex_unlock(&module_mutex); 1305 1306 /* This may be empty, but that's OK */ 1307 module_arch_freeing_init(mod); 1308 kfree(mod->args); 1309 percpu_modfree(mod); 1310 1311 free_mod_mem(mod, unload_codetags); 1312 } 1313 1314 void *__symbol_get(const char *symbol) 1315 { 1316 struct find_symbol_arg fsa = { 1317 .name = symbol, 1318 .gplok = true, 1319 .warn = true, 1320 }; 1321 1322 preempt_disable(); 1323 if (!find_symbol(&fsa)) 1324 goto fail; 1325 if (fsa.license != GPL_ONLY) { 1326 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1327 symbol); 1328 goto fail; 1329 } 1330 if (strong_try_module_get(fsa.owner)) 1331 goto fail; 1332 preempt_enable(); 1333 return (void *)kernel_symbol_value(fsa.sym); 1334 fail: 1335 preempt_enable(); 1336 return NULL; 1337 } 1338 EXPORT_SYMBOL_GPL(__symbol_get); 1339 1340 /* 1341 * Ensure that an exported symbol [global namespace] does not already exist 1342 * in the kernel or in some other module's exported symbol table. 1343 * 1344 * You must hold the module_mutex. 1345 */ 1346 static int verify_exported_symbols(struct module *mod) 1347 { 1348 unsigned int i; 1349 const struct kernel_symbol *s; 1350 struct { 1351 const struct kernel_symbol *sym; 1352 unsigned int num; 1353 } arr[] = { 1354 { mod->syms, mod->num_syms }, 1355 { mod->gpl_syms, mod->num_gpl_syms }, 1356 }; 1357 1358 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1359 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1360 struct find_symbol_arg fsa = { 1361 .name = kernel_symbol_name(s), 1362 .gplok = true, 1363 }; 1364 if (find_symbol(&fsa)) { 1365 pr_err("%s: exports duplicate symbol %s" 1366 " (owned by %s)\n", 1367 mod->name, kernel_symbol_name(s), 1368 module_name(fsa.owner)); 1369 return -ENOEXEC; 1370 } 1371 } 1372 } 1373 return 0; 1374 } 1375 1376 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1377 { 1378 /* 1379 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1380 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1381 * i386 has a similar problem but may not deserve a fix. 1382 * 1383 * If we ever have to ignore many symbols, consider refactoring the code to 1384 * only warn if referenced by a relocation. 1385 */ 1386 if (emachine == EM_386 || emachine == EM_X86_64) 1387 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1388 return false; 1389 } 1390 1391 /* Change all symbols so that st_value encodes the pointer directly. */ 1392 static int simplify_symbols(struct module *mod, const struct load_info *info) 1393 { 1394 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1395 Elf_Sym *sym = (void *)symsec->sh_addr; 1396 unsigned long secbase; 1397 unsigned int i; 1398 int ret = 0; 1399 const struct kernel_symbol *ksym; 1400 1401 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1402 const char *name = info->strtab + sym[i].st_name; 1403 1404 switch (sym[i].st_shndx) { 1405 case SHN_COMMON: 1406 /* Ignore common symbols */ 1407 if (!strncmp(name, "__gnu_lto", 9)) 1408 break; 1409 1410 /* 1411 * We compiled with -fno-common. These are not 1412 * supposed to happen. 1413 */ 1414 pr_debug("Common symbol: %s\n", name); 1415 pr_warn("%s: please compile with -fno-common\n", 1416 mod->name); 1417 ret = -ENOEXEC; 1418 break; 1419 1420 case SHN_ABS: 1421 /* Don't need to do anything */ 1422 pr_debug("Absolute symbol: 0x%08lx %s\n", 1423 (long)sym[i].st_value, name); 1424 break; 1425 1426 case SHN_LIVEPATCH: 1427 /* Livepatch symbols are resolved by livepatch */ 1428 break; 1429 1430 case SHN_UNDEF: 1431 ksym = resolve_symbol_wait(mod, info, name); 1432 /* Ok if resolved. */ 1433 if (ksym && !IS_ERR(ksym)) { 1434 sym[i].st_value = kernel_symbol_value(ksym); 1435 break; 1436 } 1437 1438 /* Ok if weak or ignored. */ 1439 if (!ksym && 1440 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1441 ignore_undef_symbol(info->hdr->e_machine, name))) 1442 break; 1443 1444 ret = PTR_ERR(ksym) ?: -ENOENT; 1445 pr_warn("%s: Unknown symbol %s (err %d)\n", 1446 mod->name, name, ret); 1447 break; 1448 1449 default: 1450 /* Divert to percpu allocation if a percpu var. */ 1451 if (sym[i].st_shndx == info->index.pcpu) 1452 secbase = (unsigned long)mod_percpu(mod); 1453 else 1454 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1455 sym[i].st_value += secbase; 1456 break; 1457 } 1458 } 1459 1460 return ret; 1461 } 1462 1463 static int apply_relocations(struct module *mod, const struct load_info *info) 1464 { 1465 unsigned int i; 1466 int err = 0; 1467 1468 /* Now do relocations. */ 1469 for (i = 1; i < info->hdr->e_shnum; i++) { 1470 unsigned int infosec = info->sechdrs[i].sh_info; 1471 1472 /* Not a valid relocation section? */ 1473 if (infosec >= info->hdr->e_shnum) 1474 continue; 1475 1476 /* Don't bother with non-allocated sections */ 1477 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1478 continue; 1479 1480 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1481 err = klp_apply_section_relocs(mod, info->sechdrs, 1482 info->secstrings, 1483 info->strtab, 1484 info->index.sym, i, 1485 NULL); 1486 else if (info->sechdrs[i].sh_type == SHT_REL) 1487 err = apply_relocate(info->sechdrs, info->strtab, 1488 info->index.sym, i, mod); 1489 else if (info->sechdrs[i].sh_type == SHT_RELA) 1490 err = apply_relocate_add(info->sechdrs, info->strtab, 1491 info->index.sym, i, mod); 1492 if (err < 0) 1493 break; 1494 } 1495 return err; 1496 } 1497 1498 /* Additional bytes needed by arch in front of individual sections */ 1499 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1500 unsigned int section) 1501 { 1502 /* default implementation just returns zero */ 1503 return 0; 1504 } 1505 1506 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1507 Elf_Shdr *sechdr, unsigned int section) 1508 { 1509 long offset; 1510 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1511 1512 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1513 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1514 mod->mem[type].size = offset + sechdr->sh_size; 1515 1516 WARN_ON_ONCE(offset & mask); 1517 return offset | mask; 1518 } 1519 1520 bool module_init_layout_section(const char *sname) 1521 { 1522 #ifndef CONFIG_MODULE_UNLOAD 1523 if (module_exit_section(sname)) 1524 return true; 1525 #endif 1526 return module_init_section(sname); 1527 } 1528 1529 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1530 { 1531 unsigned int m, i; 1532 1533 static const unsigned long masks[][2] = { 1534 /* 1535 * NOTE: all executable code must be the first section 1536 * in this array; otherwise modify the text_size 1537 * finder in the two loops below 1538 */ 1539 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1540 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1541 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1542 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1543 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1544 }; 1545 static const int core_m_to_mem_type[] = { 1546 MOD_TEXT, 1547 MOD_RODATA, 1548 MOD_RO_AFTER_INIT, 1549 MOD_DATA, 1550 MOD_DATA, 1551 }; 1552 static const int init_m_to_mem_type[] = { 1553 MOD_INIT_TEXT, 1554 MOD_INIT_RODATA, 1555 MOD_INVALID, 1556 MOD_INIT_DATA, 1557 MOD_INIT_DATA, 1558 }; 1559 1560 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1561 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1562 1563 for (i = 0; i < info->hdr->e_shnum; ++i) { 1564 Elf_Shdr *s = &info->sechdrs[i]; 1565 const char *sname = info->secstrings + s->sh_name; 1566 1567 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1568 || (s->sh_flags & masks[m][1]) 1569 || s->sh_entsize != ~0UL 1570 || is_init != module_init_layout_section(sname)) 1571 continue; 1572 1573 if (WARN_ON_ONCE(type == MOD_INVALID)) 1574 continue; 1575 1576 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1577 pr_debug("\t%s\n", sname); 1578 } 1579 } 1580 } 1581 1582 /* 1583 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1584 * might -- code, read-only data, read-write data, small data. Tally 1585 * sizes, and place the offsets into sh_entsize fields: high bit means it 1586 * belongs in init. 1587 */ 1588 static void layout_sections(struct module *mod, struct load_info *info) 1589 { 1590 unsigned int i; 1591 1592 for (i = 0; i < info->hdr->e_shnum; i++) 1593 info->sechdrs[i].sh_entsize = ~0UL; 1594 1595 pr_debug("Core section allocation order for %s:\n", mod->name); 1596 __layout_sections(mod, info, false); 1597 1598 pr_debug("Init section allocation order for %s:\n", mod->name); 1599 __layout_sections(mod, info, true); 1600 } 1601 1602 static void module_license_taint_check(struct module *mod, const char *license) 1603 { 1604 if (!license) 1605 license = "unspecified"; 1606 1607 if (!license_is_gpl_compatible(license)) { 1608 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1609 pr_warn("%s: module license '%s' taints kernel.\n", 1610 mod->name, license); 1611 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1612 LOCKDEP_NOW_UNRELIABLE); 1613 } 1614 } 1615 1616 static void setup_modinfo(struct module *mod, struct load_info *info) 1617 { 1618 struct module_attribute *attr; 1619 int i; 1620 1621 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1622 if (attr->setup) 1623 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1624 } 1625 } 1626 1627 static void free_modinfo(struct module *mod) 1628 { 1629 struct module_attribute *attr; 1630 int i; 1631 1632 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1633 if (attr->free) 1634 attr->free(mod); 1635 } 1636 } 1637 1638 bool __weak module_init_section(const char *name) 1639 { 1640 return strstarts(name, ".init"); 1641 } 1642 1643 bool __weak module_exit_section(const char *name) 1644 { 1645 return strstarts(name, ".exit"); 1646 } 1647 1648 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1649 { 1650 #if defined(CONFIG_64BIT) 1651 unsigned long long secend; 1652 #else 1653 unsigned long secend; 1654 #endif 1655 1656 /* 1657 * Check for both overflow and offset/size being 1658 * too large. 1659 */ 1660 secend = shdr->sh_offset + shdr->sh_size; 1661 if (secend < shdr->sh_offset || secend > info->len) 1662 return -ENOEXEC; 1663 1664 return 0; 1665 } 1666 1667 /* 1668 * Check userspace passed ELF module against our expectations, and cache 1669 * useful variables for further processing as we go. 1670 * 1671 * This does basic validity checks against section offsets and sizes, the 1672 * section name string table, and the indices used for it (sh_name). 1673 * 1674 * As a last step, since we're already checking the ELF sections we cache 1675 * useful variables which will be used later for our convenience: 1676 * 1677 * o pointers to section headers 1678 * o cache the modinfo symbol section 1679 * o cache the string symbol section 1680 * o cache the module section 1681 * 1682 * As a last step we set info->mod to the temporary copy of the module in 1683 * info->hdr. The final one will be allocated in move_module(). Any 1684 * modifications we make to our copy of the module will be carried over 1685 * to the final minted module. 1686 */ 1687 static int elf_validity_cache_copy(struct load_info *info, int flags) 1688 { 1689 unsigned int i; 1690 Elf_Shdr *shdr, *strhdr; 1691 int err; 1692 unsigned int num_mod_secs = 0, mod_idx; 1693 unsigned int num_info_secs = 0, info_idx; 1694 unsigned int num_sym_secs = 0, sym_idx; 1695 1696 if (info->len < sizeof(*(info->hdr))) { 1697 pr_err("Invalid ELF header len %lu\n", info->len); 1698 goto no_exec; 1699 } 1700 1701 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1702 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1703 goto no_exec; 1704 } 1705 if (info->hdr->e_type != ET_REL) { 1706 pr_err("Invalid ELF header type: %u != %u\n", 1707 info->hdr->e_type, ET_REL); 1708 goto no_exec; 1709 } 1710 if (!elf_check_arch(info->hdr)) { 1711 pr_err("Invalid architecture in ELF header: %u\n", 1712 info->hdr->e_machine); 1713 goto no_exec; 1714 } 1715 if (!module_elf_check_arch(info->hdr)) { 1716 pr_err("Invalid module architecture in ELF header: %u\n", 1717 info->hdr->e_machine); 1718 goto no_exec; 1719 } 1720 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1721 pr_err("Invalid ELF section header size\n"); 1722 goto no_exec; 1723 } 1724 1725 /* 1726 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1727 * known and small. So e_shnum * sizeof(Elf_Shdr) 1728 * will not overflow unsigned long on any platform. 1729 */ 1730 if (info->hdr->e_shoff >= info->len 1731 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1732 info->len - info->hdr->e_shoff)) { 1733 pr_err("Invalid ELF section header overflow\n"); 1734 goto no_exec; 1735 } 1736 1737 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1738 1739 /* 1740 * Verify if the section name table index is valid. 1741 */ 1742 if (info->hdr->e_shstrndx == SHN_UNDEF 1743 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1744 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1745 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1746 info->hdr->e_shnum); 1747 goto no_exec; 1748 } 1749 1750 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1751 err = validate_section_offset(info, strhdr); 1752 if (err < 0) { 1753 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1754 return err; 1755 } 1756 1757 /* 1758 * The section name table must be NUL-terminated, as required 1759 * by the spec. This makes strcmp and pr_* calls that access 1760 * strings in the section safe. 1761 */ 1762 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1763 if (strhdr->sh_size == 0) { 1764 pr_err("empty section name table\n"); 1765 goto no_exec; 1766 } 1767 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1768 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1769 goto no_exec; 1770 } 1771 1772 /* 1773 * The code assumes that section 0 has a length of zero and 1774 * an addr of zero, so check for it. 1775 */ 1776 if (info->sechdrs[0].sh_type != SHT_NULL 1777 || info->sechdrs[0].sh_size != 0 1778 || info->sechdrs[0].sh_addr != 0) { 1779 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1780 info->sechdrs[0].sh_type); 1781 goto no_exec; 1782 } 1783 1784 for (i = 1; i < info->hdr->e_shnum; i++) { 1785 shdr = &info->sechdrs[i]; 1786 switch (shdr->sh_type) { 1787 case SHT_NULL: 1788 case SHT_NOBITS: 1789 continue; 1790 case SHT_SYMTAB: 1791 if (shdr->sh_link == SHN_UNDEF 1792 || shdr->sh_link >= info->hdr->e_shnum) { 1793 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1794 shdr->sh_link, shdr->sh_link, 1795 info->hdr->e_shnum); 1796 goto no_exec; 1797 } 1798 num_sym_secs++; 1799 sym_idx = i; 1800 fallthrough; 1801 default: 1802 err = validate_section_offset(info, shdr); 1803 if (err < 0) { 1804 pr_err("Invalid ELF section in module (section %u type %u)\n", 1805 i, shdr->sh_type); 1806 return err; 1807 } 1808 if (strcmp(info->secstrings + shdr->sh_name, 1809 ".gnu.linkonce.this_module") == 0) { 1810 num_mod_secs++; 1811 mod_idx = i; 1812 } else if (strcmp(info->secstrings + shdr->sh_name, 1813 ".modinfo") == 0) { 1814 num_info_secs++; 1815 info_idx = i; 1816 } 1817 1818 if (shdr->sh_flags & SHF_ALLOC) { 1819 if (shdr->sh_name >= strhdr->sh_size) { 1820 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1821 i, shdr->sh_type); 1822 return -ENOEXEC; 1823 } 1824 } 1825 break; 1826 } 1827 } 1828 1829 if (num_info_secs > 1) { 1830 pr_err("Only one .modinfo section must exist.\n"); 1831 goto no_exec; 1832 } else if (num_info_secs == 1) { 1833 /* Try to find a name early so we can log errors with a module name */ 1834 info->index.info = info_idx; 1835 info->name = get_modinfo(info, "name"); 1836 } 1837 1838 if (num_sym_secs != 1) { 1839 pr_warn("%s: module has no symbols (stripped?)\n", 1840 info->name ?: "(missing .modinfo section or name field)"); 1841 goto no_exec; 1842 } 1843 1844 /* Sets internal symbols and strings. */ 1845 info->index.sym = sym_idx; 1846 shdr = &info->sechdrs[sym_idx]; 1847 info->index.str = shdr->sh_link; 1848 info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset; 1849 1850 /* 1851 * The ".gnu.linkonce.this_module" ELF section is special. It is 1852 * what modpost uses to refer to __this_module and let's use rely 1853 * on THIS_MODULE to point to &__this_module properly. The kernel's 1854 * modpost declares it on each modules's *.mod.c file. If the struct 1855 * module of the kernel changes a full kernel rebuild is required. 1856 * 1857 * We have a few expectaions for this special section, the following 1858 * code validates all this for us: 1859 * 1860 * o Only one section must exist 1861 * o We expect the kernel to always have to allocate it: SHF_ALLOC 1862 * o The section size must match the kernel's run time's struct module 1863 * size 1864 */ 1865 if (num_mod_secs != 1) { 1866 pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n", 1867 info->name ?: "(missing .modinfo section or name field)"); 1868 goto no_exec; 1869 } 1870 1871 shdr = &info->sechdrs[mod_idx]; 1872 1873 /* 1874 * This is already implied on the switch above, however let's be 1875 * pedantic about it. 1876 */ 1877 if (shdr->sh_type == SHT_NOBITS) { 1878 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1879 info->name ?: "(missing .modinfo section or name field)"); 1880 goto no_exec; 1881 } 1882 1883 if (!(shdr->sh_flags & SHF_ALLOC)) { 1884 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1885 info->name ?: "(missing .modinfo section or name field)"); 1886 goto no_exec; 1887 } 1888 1889 if (shdr->sh_size != sizeof(struct module)) { 1890 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1891 info->name ?: "(missing .modinfo section or name field)"); 1892 goto no_exec; 1893 } 1894 1895 info->index.mod = mod_idx; 1896 1897 /* This is temporary: point mod into copy of data. */ 1898 info->mod = (void *)info->hdr + shdr->sh_offset; 1899 1900 /* 1901 * If we didn't load the .modinfo 'name' field earlier, fall back to 1902 * on-disk struct mod 'name' field. 1903 */ 1904 if (!info->name) 1905 info->name = info->mod->name; 1906 1907 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1908 info->index.vers = 0; /* Pretend no __versions section! */ 1909 else 1910 info->index.vers = find_sec(info, "__versions"); 1911 1912 info->index.pcpu = find_pcpusec(info); 1913 1914 return 0; 1915 1916 no_exec: 1917 return -ENOEXEC; 1918 } 1919 1920 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1921 1922 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1923 { 1924 do { 1925 unsigned long n = min(len, COPY_CHUNK_SIZE); 1926 1927 if (copy_from_user(dst, usrc, n) != 0) 1928 return -EFAULT; 1929 cond_resched(); 1930 dst += n; 1931 usrc += n; 1932 len -= n; 1933 } while (len); 1934 return 0; 1935 } 1936 1937 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1938 { 1939 if (!get_modinfo(info, "livepatch")) 1940 /* Nothing more to do */ 1941 return 0; 1942 1943 if (set_livepatch_module(mod)) 1944 return 0; 1945 1946 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1947 mod->name); 1948 return -ENOEXEC; 1949 } 1950 1951 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1952 { 1953 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1954 return; 1955 1956 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1957 mod->name); 1958 } 1959 1960 /* Sets info->hdr and info->len. */ 1961 static int copy_module_from_user(const void __user *umod, unsigned long len, 1962 struct load_info *info) 1963 { 1964 int err; 1965 1966 info->len = len; 1967 if (info->len < sizeof(*(info->hdr))) 1968 return -ENOEXEC; 1969 1970 err = security_kernel_load_data(LOADING_MODULE, true); 1971 if (err) 1972 return err; 1973 1974 /* Suck in entire file: we'll want most of it. */ 1975 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1976 if (!info->hdr) 1977 return -ENOMEM; 1978 1979 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1980 err = -EFAULT; 1981 goto out; 1982 } 1983 1984 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1985 LOADING_MODULE, "init_module"); 1986 out: 1987 if (err) 1988 vfree(info->hdr); 1989 1990 return err; 1991 } 1992 1993 static void free_copy(struct load_info *info, int flags) 1994 { 1995 if (flags & MODULE_INIT_COMPRESSED_FILE) 1996 module_decompress_cleanup(info); 1997 else 1998 vfree(info->hdr); 1999 } 2000 2001 static int rewrite_section_headers(struct load_info *info, int flags) 2002 { 2003 unsigned int i; 2004 2005 /* This should always be true, but let's be sure. */ 2006 info->sechdrs[0].sh_addr = 0; 2007 2008 for (i = 1; i < info->hdr->e_shnum; i++) { 2009 Elf_Shdr *shdr = &info->sechdrs[i]; 2010 2011 /* 2012 * Mark all sections sh_addr with their address in the 2013 * temporary image. 2014 */ 2015 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2016 2017 } 2018 2019 /* Track but don't keep modinfo and version sections. */ 2020 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2021 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2022 2023 return 0; 2024 } 2025 2026 /* 2027 * These calls taint the kernel depending certain module circumstances */ 2028 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2029 { 2030 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2031 2032 if (!get_modinfo(info, "intree")) { 2033 if (!test_taint(TAINT_OOT_MODULE)) 2034 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2035 mod->name); 2036 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2037 } 2038 2039 check_modinfo_retpoline(mod, info); 2040 2041 if (get_modinfo(info, "staging")) { 2042 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2043 pr_warn("%s: module is from the staging directory, the quality " 2044 "is unknown, you have been warned.\n", mod->name); 2045 } 2046 2047 if (is_livepatch_module(mod)) { 2048 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2049 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2050 mod->name); 2051 } 2052 2053 module_license_taint_check(mod, get_modinfo(info, "license")); 2054 2055 if (get_modinfo(info, "test")) { 2056 if (!test_taint(TAINT_TEST)) 2057 pr_warn("%s: loading test module taints kernel.\n", 2058 mod->name); 2059 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2060 } 2061 #ifdef CONFIG_MODULE_SIG 2062 mod->sig_ok = info->sig_ok; 2063 if (!mod->sig_ok) { 2064 pr_notice_once("%s: module verification failed: signature " 2065 "and/or required key missing - tainting " 2066 "kernel\n", mod->name); 2067 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2068 } 2069 #endif 2070 2071 /* 2072 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2073 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2074 * using GPL-only symbols it needs. 2075 */ 2076 if (strcmp(mod->name, "ndiswrapper") == 0) 2077 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2078 2079 /* driverloader was caught wrongly pretending to be under GPL */ 2080 if (strcmp(mod->name, "driverloader") == 0) 2081 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2082 LOCKDEP_NOW_UNRELIABLE); 2083 2084 /* lve claims to be GPL but upstream won't provide source */ 2085 if (strcmp(mod->name, "lve") == 0) 2086 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2087 LOCKDEP_NOW_UNRELIABLE); 2088 2089 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2090 pr_warn("%s: module license taints kernel.\n", mod->name); 2091 2092 } 2093 2094 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2095 { 2096 const char *modmagic = get_modinfo(info, "vermagic"); 2097 int err; 2098 2099 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2100 modmagic = NULL; 2101 2102 /* This is allowed: modprobe --force will invalidate it. */ 2103 if (!modmagic) { 2104 err = try_to_force_load(mod, "bad vermagic"); 2105 if (err) 2106 return err; 2107 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2108 pr_err("%s: version magic '%s' should be '%s'\n", 2109 info->name, modmagic, vermagic); 2110 return -ENOEXEC; 2111 } 2112 2113 err = check_modinfo_livepatch(mod, info); 2114 if (err) 2115 return err; 2116 2117 return 0; 2118 } 2119 2120 static int find_module_sections(struct module *mod, struct load_info *info) 2121 { 2122 mod->kp = section_objs(info, "__param", 2123 sizeof(*mod->kp), &mod->num_kp); 2124 mod->syms = section_objs(info, "__ksymtab", 2125 sizeof(*mod->syms), &mod->num_syms); 2126 mod->crcs = section_addr(info, "__kcrctab"); 2127 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2128 sizeof(*mod->gpl_syms), 2129 &mod->num_gpl_syms); 2130 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2131 2132 #ifdef CONFIG_CONSTRUCTORS 2133 mod->ctors = section_objs(info, ".ctors", 2134 sizeof(*mod->ctors), &mod->num_ctors); 2135 if (!mod->ctors) 2136 mod->ctors = section_objs(info, ".init_array", 2137 sizeof(*mod->ctors), &mod->num_ctors); 2138 else if (find_sec(info, ".init_array")) { 2139 /* 2140 * This shouldn't happen with same compiler and binutils 2141 * building all parts of the module. 2142 */ 2143 pr_warn("%s: has both .ctors and .init_array.\n", 2144 mod->name); 2145 return -EINVAL; 2146 } 2147 #endif 2148 2149 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2150 &mod->noinstr_text_size); 2151 2152 #ifdef CONFIG_TRACEPOINTS 2153 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2154 sizeof(*mod->tracepoints_ptrs), 2155 &mod->num_tracepoints); 2156 #endif 2157 #ifdef CONFIG_TREE_SRCU 2158 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2159 sizeof(*mod->srcu_struct_ptrs), 2160 &mod->num_srcu_structs); 2161 #endif 2162 #ifdef CONFIG_BPF_EVENTS 2163 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2164 sizeof(*mod->bpf_raw_events), 2165 &mod->num_bpf_raw_events); 2166 #endif 2167 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2168 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2169 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2170 &mod->btf_base_data_size); 2171 #endif 2172 #ifdef CONFIG_JUMP_LABEL 2173 mod->jump_entries = section_objs(info, "__jump_table", 2174 sizeof(*mod->jump_entries), 2175 &mod->num_jump_entries); 2176 #endif 2177 #ifdef CONFIG_EVENT_TRACING 2178 mod->trace_events = section_objs(info, "_ftrace_events", 2179 sizeof(*mod->trace_events), 2180 &mod->num_trace_events); 2181 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2182 sizeof(*mod->trace_evals), 2183 &mod->num_trace_evals); 2184 #endif 2185 #ifdef CONFIG_TRACING 2186 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2187 sizeof(*mod->trace_bprintk_fmt_start), 2188 &mod->num_trace_bprintk_fmt); 2189 #endif 2190 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2191 /* sechdrs[0].sh_size is always zero */ 2192 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2193 sizeof(*mod->ftrace_callsites), 2194 &mod->num_ftrace_callsites); 2195 #endif 2196 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2197 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2198 sizeof(*mod->ei_funcs), 2199 &mod->num_ei_funcs); 2200 #endif 2201 #ifdef CONFIG_KPROBES 2202 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2203 &mod->kprobes_text_size); 2204 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2205 sizeof(unsigned long), 2206 &mod->num_kprobe_blacklist); 2207 #endif 2208 #ifdef CONFIG_PRINTK_INDEX 2209 mod->printk_index_start = section_objs(info, ".printk_index", 2210 sizeof(*mod->printk_index_start), 2211 &mod->printk_index_size); 2212 #endif 2213 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2214 mod->static_call_sites = section_objs(info, ".static_call_sites", 2215 sizeof(*mod->static_call_sites), 2216 &mod->num_static_call_sites); 2217 #endif 2218 #if IS_ENABLED(CONFIG_KUNIT) 2219 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2220 sizeof(*mod->kunit_suites), 2221 &mod->num_kunit_suites); 2222 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2223 sizeof(*mod->kunit_init_suites), 2224 &mod->num_kunit_init_suites); 2225 #endif 2226 2227 mod->extable = section_objs(info, "__ex_table", 2228 sizeof(*mod->extable), &mod->num_exentries); 2229 2230 if (section_addr(info, "__obsparm")) 2231 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2232 2233 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2234 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2235 sizeof(*mod->dyndbg_info.descs), 2236 &mod->dyndbg_info.num_descs); 2237 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2238 sizeof(*mod->dyndbg_info.classes), 2239 &mod->dyndbg_info.num_classes); 2240 #endif 2241 2242 return 0; 2243 } 2244 2245 static int move_module(struct module *mod, struct load_info *info) 2246 { 2247 int i; 2248 enum mod_mem_type t = 0; 2249 int ret = -ENOMEM; 2250 2251 for_each_mod_mem_type(type) { 2252 if (!mod->mem[type].size) { 2253 mod->mem[type].base = NULL; 2254 continue; 2255 } 2256 2257 ret = module_memory_alloc(mod, type); 2258 if (ret) { 2259 t = type; 2260 goto out_enomem; 2261 } 2262 } 2263 2264 /* Transfer each section which specifies SHF_ALLOC */ 2265 pr_debug("Final section addresses for %s:\n", mod->name); 2266 for (i = 0; i < info->hdr->e_shnum; i++) { 2267 void *dest; 2268 Elf_Shdr *shdr = &info->sechdrs[i]; 2269 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2270 2271 if (!(shdr->sh_flags & SHF_ALLOC)) 2272 continue; 2273 2274 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK); 2275 2276 if (shdr->sh_type != SHT_NOBITS) { 2277 /* 2278 * Our ELF checker already validated this, but let's 2279 * be pedantic and make the goal clearer. We actually 2280 * end up copying over all modifications made to the 2281 * userspace copy of the entire struct module. 2282 */ 2283 if (i == info->index.mod && 2284 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2285 ret = -ENOEXEC; 2286 goto out_enomem; 2287 } 2288 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2289 } 2290 /* 2291 * Update the userspace copy's ELF section address to point to 2292 * our newly allocated memory as a pure convenience so that 2293 * users of info can keep taking advantage and using the newly 2294 * minted official memory area. 2295 */ 2296 shdr->sh_addr = (unsigned long)dest; 2297 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2298 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2299 } 2300 2301 return 0; 2302 out_enomem: 2303 for (t--; t >= 0; t--) 2304 module_memory_free(mod, t, true); 2305 return ret; 2306 } 2307 2308 static int check_export_symbol_versions(struct module *mod) 2309 { 2310 #ifdef CONFIG_MODVERSIONS 2311 if ((mod->num_syms && !mod->crcs) || 2312 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2313 return try_to_force_load(mod, 2314 "no versions for exported symbols"); 2315 } 2316 #endif 2317 return 0; 2318 } 2319 2320 static void flush_module_icache(const struct module *mod) 2321 { 2322 /* 2323 * Flush the instruction cache, since we've played with text. 2324 * Do it before processing of module parameters, so the module 2325 * can provide parameter accessor functions of its own. 2326 */ 2327 for_each_mod_mem_type(type) { 2328 const struct module_memory *mod_mem = &mod->mem[type]; 2329 2330 if (mod_mem->size) { 2331 flush_icache_range((unsigned long)mod_mem->base, 2332 (unsigned long)mod_mem->base + mod_mem->size); 2333 } 2334 } 2335 } 2336 2337 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2338 { 2339 return true; 2340 } 2341 2342 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2343 Elf_Shdr *sechdrs, 2344 char *secstrings, 2345 struct module *mod) 2346 { 2347 return 0; 2348 } 2349 2350 /* module_blacklist is a comma-separated list of module names */ 2351 static char *module_blacklist; 2352 static bool blacklisted(const char *module_name) 2353 { 2354 const char *p; 2355 size_t len; 2356 2357 if (!module_blacklist) 2358 return false; 2359 2360 for (p = module_blacklist; *p; p += len) { 2361 len = strcspn(p, ","); 2362 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2363 return true; 2364 if (p[len] == ',') 2365 len++; 2366 } 2367 return false; 2368 } 2369 core_param(module_blacklist, module_blacklist, charp, 0400); 2370 2371 static struct module *layout_and_allocate(struct load_info *info, int flags) 2372 { 2373 struct module *mod; 2374 unsigned int ndx; 2375 int err; 2376 2377 /* Allow arches to frob section contents and sizes. */ 2378 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2379 info->secstrings, info->mod); 2380 if (err < 0) 2381 return ERR_PTR(err); 2382 2383 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2384 info->secstrings, info->mod); 2385 if (err < 0) 2386 return ERR_PTR(err); 2387 2388 /* We will do a special allocation for per-cpu sections later. */ 2389 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2390 2391 /* 2392 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2393 * layout_sections() can put it in the right place. 2394 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2395 */ 2396 ndx = find_sec(info, ".data..ro_after_init"); 2397 if (ndx) 2398 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2399 /* 2400 * Mark the __jump_table section as ro_after_init as well: these data 2401 * structures are never modified, with the exception of entries that 2402 * refer to code in the __init section, which are annotated as such 2403 * at module load time. 2404 */ 2405 ndx = find_sec(info, "__jump_table"); 2406 if (ndx) 2407 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2408 2409 /* 2410 * Determine total sizes, and put offsets in sh_entsize. For now 2411 * this is done generically; there doesn't appear to be any 2412 * special cases for the architectures. 2413 */ 2414 layout_sections(info->mod, info); 2415 layout_symtab(info->mod, info); 2416 2417 /* Allocate and move to the final place */ 2418 err = move_module(info->mod, info); 2419 if (err) 2420 return ERR_PTR(err); 2421 2422 /* Module has been copied to its final place now: return it. */ 2423 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2424 kmemleak_load_module(mod, info); 2425 return mod; 2426 } 2427 2428 /* mod is no longer valid after this! */ 2429 static void module_deallocate(struct module *mod, struct load_info *info) 2430 { 2431 percpu_modfree(mod); 2432 module_arch_freeing_init(mod); 2433 2434 free_mod_mem(mod, true); 2435 } 2436 2437 int __weak module_finalize(const Elf_Ehdr *hdr, 2438 const Elf_Shdr *sechdrs, 2439 struct module *me) 2440 { 2441 return 0; 2442 } 2443 2444 static int post_relocation(struct module *mod, const struct load_info *info) 2445 { 2446 /* Sort exception table now relocations are done. */ 2447 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2448 2449 /* Copy relocated percpu area over. */ 2450 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2451 info->sechdrs[info->index.pcpu].sh_size); 2452 2453 /* Setup kallsyms-specific fields. */ 2454 add_kallsyms(mod, info); 2455 2456 /* Arch-specific module finalizing. */ 2457 return module_finalize(info->hdr, info->sechdrs, mod); 2458 } 2459 2460 /* Call module constructors. */ 2461 static void do_mod_ctors(struct module *mod) 2462 { 2463 #ifdef CONFIG_CONSTRUCTORS 2464 unsigned long i; 2465 2466 for (i = 0; i < mod->num_ctors; i++) 2467 mod->ctors[i](); 2468 #endif 2469 } 2470 2471 /* For freeing module_init on success, in case kallsyms traversing */ 2472 struct mod_initfree { 2473 struct llist_node node; 2474 void *init_text; 2475 void *init_data; 2476 void *init_rodata; 2477 }; 2478 2479 static void do_free_init(struct work_struct *w) 2480 { 2481 struct llist_node *pos, *n, *list; 2482 struct mod_initfree *initfree; 2483 2484 list = llist_del_all(&init_free_list); 2485 2486 synchronize_rcu(); 2487 2488 llist_for_each_safe(pos, n, list) { 2489 initfree = container_of(pos, struct mod_initfree, node); 2490 execmem_free(initfree->init_text); 2491 execmem_free(initfree->init_data); 2492 execmem_free(initfree->init_rodata); 2493 kfree(initfree); 2494 } 2495 } 2496 2497 void flush_module_init_free_work(void) 2498 { 2499 flush_work(&init_free_wq); 2500 } 2501 2502 #undef MODULE_PARAM_PREFIX 2503 #define MODULE_PARAM_PREFIX "module." 2504 /* Default value for module->async_probe_requested */ 2505 static bool async_probe; 2506 module_param(async_probe, bool, 0644); 2507 2508 /* 2509 * This is where the real work happens. 2510 * 2511 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2512 * helper command 'lx-symbols'. 2513 */ 2514 static noinline int do_init_module(struct module *mod) 2515 { 2516 int ret = 0; 2517 struct mod_initfree *freeinit; 2518 #if defined(CONFIG_MODULE_STATS) 2519 unsigned int text_size = 0, total_size = 0; 2520 2521 for_each_mod_mem_type(type) { 2522 const struct module_memory *mod_mem = &mod->mem[type]; 2523 if (mod_mem->size) { 2524 total_size += mod_mem->size; 2525 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2526 text_size += mod_mem->size; 2527 } 2528 } 2529 #endif 2530 2531 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2532 if (!freeinit) { 2533 ret = -ENOMEM; 2534 goto fail; 2535 } 2536 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2537 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2538 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2539 2540 do_mod_ctors(mod); 2541 /* Start the module */ 2542 if (mod->init != NULL) 2543 ret = do_one_initcall(mod->init); 2544 if (ret < 0) { 2545 goto fail_free_freeinit; 2546 } 2547 if (ret > 0) { 2548 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2549 "follow 0/-E convention\n" 2550 "%s: loading module anyway...\n", 2551 __func__, mod->name, ret, __func__); 2552 dump_stack(); 2553 } 2554 2555 /* Now it's a first class citizen! */ 2556 mod->state = MODULE_STATE_LIVE; 2557 blocking_notifier_call_chain(&module_notify_list, 2558 MODULE_STATE_LIVE, mod); 2559 2560 /* Delay uevent until module has finished its init routine */ 2561 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2562 2563 /* 2564 * We need to finish all async code before the module init sequence 2565 * is done. This has potential to deadlock if synchronous module 2566 * loading is requested from async (which is not allowed!). 2567 * 2568 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2569 * request_module() from async workers") for more details. 2570 */ 2571 if (!mod->async_probe_requested) 2572 async_synchronize_full(); 2573 2574 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2575 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2576 mutex_lock(&module_mutex); 2577 /* Drop initial reference. */ 2578 module_put(mod); 2579 trim_init_extable(mod); 2580 #ifdef CONFIG_KALLSYMS 2581 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2582 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2583 #endif 2584 ret = module_enable_rodata_ro(mod, true); 2585 if (ret) 2586 goto fail_mutex_unlock; 2587 mod_tree_remove_init(mod); 2588 module_arch_freeing_init(mod); 2589 for_class_mod_mem_type(type, init) { 2590 mod->mem[type].base = NULL; 2591 mod->mem[type].size = 0; 2592 } 2593 2594 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2595 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 2596 mod->btf_data = NULL; 2597 mod->btf_base_data = NULL; 2598 #endif 2599 /* 2600 * We want to free module_init, but be aware that kallsyms may be 2601 * walking this with preempt disabled. In all the failure paths, we 2602 * call synchronize_rcu(), but we don't want to slow down the success 2603 * path. execmem_free() cannot be called in an interrupt, so do the 2604 * work and call synchronize_rcu() in a work queue. 2605 * 2606 * Note that execmem_alloc() on most architectures creates W+X page 2607 * mappings which won't be cleaned up until do_free_init() runs. Any 2608 * code such as mark_rodata_ro() which depends on those mappings to 2609 * be cleaned up needs to sync with the queued work by invoking 2610 * flush_module_init_free_work(). 2611 */ 2612 if (llist_add(&freeinit->node, &init_free_list)) 2613 schedule_work(&init_free_wq); 2614 2615 mutex_unlock(&module_mutex); 2616 wake_up_all(&module_wq); 2617 2618 mod_stat_add_long(text_size, &total_text_size); 2619 mod_stat_add_long(total_size, &total_mod_size); 2620 2621 mod_stat_inc(&modcount); 2622 2623 return 0; 2624 2625 fail_mutex_unlock: 2626 mutex_unlock(&module_mutex); 2627 fail_free_freeinit: 2628 kfree(freeinit); 2629 fail: 2630 /* Try to protect us from buggy refcounters. */ 2631 mod->state = MODULE_STATE_GOING; 2632 synchronize_rcu(); 2633 module_put(mod); 2634 blocking_notifier_call_chain(&module_notify_list, 2635 MODULE_STATE_GOING, mod); 2636 klp_module_going(mod); 2637 ftrace_release_mod(mod); 2638 free_module(mod); 2639 wake_up_all(&module_wq); 2640 2641 return ret; 2642 } 2643 2644 static int may_init_module(void) 2645 { 2646 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2647 return -EPERM; 2648 2649 return 0; 2650 } 2651 2652 /* Is this module of this name done loading? No locks held. */ 2653 static bool finished_loading(const char *name) 2654 { 2655 struct module *mod; 2656 bool ret; 2657 2658 /* 2659 * The module_mutex should not be a heavily contended lock; 2660 * if we get the occasional sleep here, we'll go an extra iteration 2661 * in the wait_event_interruptible(), which is harmless. 2662 */ 2663 sched_annotate_sleep(); 2664 mutex_lock(&module_mutex); 2665 mod = find_module_all(name, strlen(name), true); 2666 ret = !mod || mod->state == MODULE_STATE_LIVE 2667 || mod->state == MODULE_STATE_GOING; 2668 mutex_unlock(&module_mutex); 2669 2670 return ret; 2671 } 2672 2673 /* Must be called with module_mutex held */ 2674 static int module_patient_check_exists(const char *name, 2675 enum fail_dup_mod_reason reason) 2676 { 2677 struct module *old; 2678 int err = 0; 2679 2680 old = find_module_all(name, strlen(name), true); 2681 if (old == NULL) 2682 return 0; 2683 2684 if (old->state == MODULE_STATE_COMING || 2685 old->state == MODULE_STATE_UNFORMED) { 2686 /* Wait in case it fails to load. */ 2687 mutex_unlock(&module_mutex); 2688 err = wait_event_interruptible(module_wq, 2689 finished_loading(name)); 2690 mutex_lock(&module_mutex); 2691 if (err) 2692 return err; 2693 2694 /* The module might have gone in the meantime. */ 2695 old = find_module_all(name, strlen(name), true); 2696 } 2697 2698 if (try_add_failed_module(name, reason)) 2699 pr_warn("Could not add fail-tracking for module: %s\n", name); 2700 2701 /* 2702 * We are here only when the same module was being loaded. Do 2703 * not try to load it again right now. It prevents long delays 2704 * caused by serialized module load failures. It might happen 2705 * when more devices of the same type trigger load of 2706 * a particular module. 2707 */ 2708 if (old && old->state == MODULE_STATE_LIVE) 2709 return -EEXIST; 2710 return -EBUSY; 2711 } 2712 2713 /* 2714 * We try to place it in the list now to make sure it's unique before 2715 * we dedicate too many resources. In particular, temporary percpu 2716 * memory exhaustion. 2717 */ 2718 static int add_unformed_module(struct module *mod) 2719 { 2720 int err; 2721 2722 mod->state = MODULE_STATE_UNFORMED; 2723 2724 mutex_lock(&module_mutex); 2725 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 2726 if (err) 2727 goto out; 2728 2729 mod_update_bounds(mod); 2730 list_add_rcu(&mod->list, &modules); 2731 mod_tree_insert(mod); 2732 err = 0; 2733 2734 out: 2735 mutex_unlock(&module_mutex); 2736 return err; 2737 } 2738 2739 static int complete_formation(struct module *mod, struct load_info *info) 2740 { 2741 int err; 2742 2743 mutex_lock(&module_mutex); 2744 2745 /* Find duplicate symbols (must be called under lock). */ 2746 err = verify_exported_symbols(mod); 2747 if (err < 0) 2748 goto out; 2749 2750 /* These rely on module_mutex for list integrity. */ 2751 module_bug_finalize(info->hdr, info->sechdrs, mod); 2752 module_cfi_finalize(info->hdr, info->sechdrs, mod); 2753 2754 err = module_enable_rodata_ro(mod, false); 2755 if (err) 2756 goto out_strict_rwx; 2757 err = module_enable_data_nx(mod); 2758 if (err) 2759 goto out_strict_rwx; 2760 err = module_enable_text_rox(mod); 2761 if (err) 2762 goto out_strict_rwx; 2763 2764 /* 2765 * Mark state as coming so strong_try_module_get() ignores us, 2766 * but kallsyms etc. can see us. 2767 */ 2768 mod->state = MODULE_STATE_COMING; 2769 mutex_unlock(&module_mutex); 2770 2771 return 0; 2772 2773 out_strict_rwx: 2774 module_bug_cleanup(mod); 2775 out: 2776 mutex_unlock(&module_mutex); 2777 return err; 2778 } 2779 2780 static int prepare_coming_module(struct module *mod) 2781 { 2782 int err; 2783 2784 ftrace_module_enable(mod); 2785 err = klp_module_coming(mod); 2786 if (err) 2787 return err; 2788 2789 err = blocking_notifier_call_chain_robust(&module_notify_list, 2790 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2791 err = notifier_to_errno(err); 2792 if (err) 2793 klp_module_going(mod); 2794 2795 return err; 2796 } 2797 2798 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2799 void *arg) 2800 { 2801 struct module *mod = arg; 2802 int ret; 2803 2804 if (strcmp(param, "async_probe") == 0) { 2805 if (kstrtobool(val, &mod->async_probe_requested)) 2806 mod->async_probe_requested = true; 2807 return 0; 2808 } 2809 2810 /* Check for magic 'dyndbg' arg */ 2811 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2812 if (ret != 0) 2813 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2814 return 0; 2815 } 2816 2817 /* Module within temporary copy, this doesn't do any allocation */ 2818 static int early_mod_check(struct load_info *info, int flags) 2819 { 2820 int err; 2821 2822 /* 2823 * Now that we know we have the correct module name, check 2824 * if it's blacklisted. 2825 */ 2826 if (blacklisted(info->name)) { 2827 pr_err("Module %s is blacklisted\n", info->name); 2828 return -EPERM; 2829 } 2830 2831 err = rewrite_section_headers(info, flags); 2832 if (err) 2833 return err; 2834 2835 /* Check module struct version now, before we try to use module. */ 2836 if (!check_modstruct_version(info, info->mod)) 2837 return -ENOEXEC; 2838 2839 err = check_modinfo(info->mod, info, flags); 2840 if (err) 2841 return err; 2842 2843 mutex_lock(&module_mutex); 2844 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 2845 mutex_unlock(&module_mutex); 2846 2847 return err; 2848 } 2849 2850 /* 2851 * Allocate and load the module: note that size of section 0 is always 2852 * zero, and we rely on this for optional sections. 2853 */ 2854 static int load_module(struct load_info *info, const char __user *uargs, 2855 int flags) 2856 { 2857 struct module *mod; 2858 bool module_allocated = false; 2859 long err = 0; 2860 char *after_dashes; 2861 2862 /* 2863 * Do the signature check (if any) first. All that 2864 * the signature check needs is info->len, it does 2865 * not need any of the section info. That can be 2866 * set up later. This will minimize the chances 2867 * of a corrupt module causing problems before 2868 * we even get to the signature check. 2869 * 2870 * The check will also adjust info->len by stripping 2871 * off the sig length at the end of the module, making 2872 * checks against info->len more correct. 2873 */ 2874 err = module_sig_check(info, flags); 2875 if (err) 2876 goto free_copy; 2877 2878 /* 2879 * Do basic sanity checks against the ELF header and 2880 * sections. Cache useful sections and set the 2881 * info->mod to the userspace passed struct module. 2882 */ 2883 err = elf_validity_cache_copy(info, flags); 2884 if (err) 2885 goto free_copy; 2886 2887 err = early_mod_check(info, flags); 2888 if (err) 2889 goto free_copy; 2890 2891 /* Figure out module layout, and allocate all the memory. */ 2892 mod = layout_and_allocate(info, flags); 2893 if (IS_ERR(mod)) { 2894 err = PTR_ERR(mod); 2895 goto free_copy; 2896 } 2897 2898 module_allocated = true; 2899 2900 audit_log_kern_module(mod->name); 2901 2902 /* Reserve our place in the list. */ 2903 err = add_unformed_module(mod); 2904 if (err) 2905 goto free_module; 2906 2907 /* 2908 * We are tainting your kernel if your module gets into 2909 * the modules linked list somehow. 2910 */ 2911 module_augment_kernel_taints(mod, info); 2912 2913 /* To avoid stressing percpu allocator, do this once we're unique. */ 2914 err = percpu_modalloc(mod, info); 2915 if (err) 2916 goto unlink_mod; 2917 2918 /* Now module is in final location, initialize linked lists, etc. */ 2919 err = module_unload_init(mod); 2920 if (err) 2921 goto unlink_mod; 2922 2923 init_param_lock(mod); 2924 2925 /* 2926 * Now we've got everything in the final locations, we can 2927 * find optional sections. 2928 */ 2929 err = find_module_sections(mod, info); 2930 if (err) 2931 goto free_unload; 2932 2933 err = check_export_symbol_versions(mod); 2934 if (err) 2935 goto free_unload; 2936 2937 /* Set up MODINFO_ATTR fields */ 2938 setup_modinfo(mod, info); 2939 2940 /* Fix up syms, so that st_value is a pointer to location. */ 2941 err = simplify_symbols(mod, info); 2942 if (err < 0) 2943 goto free_modinfo; 2944 2945 err = apply_relocations(mod, info); 2946 if (err < 0) 2947 goto free_modinfo; 2948 2949 err = post_relocation(mod, info); 2950 if (err < 0) 2951 goto free_modinfo; 2952 2953 flush_module_icache(mod); 2954 2955 /* Now copy in args */ 2956 mod->args = strndup_user(uargs, ~0UL >> 1); 2957 if (IS_ERR(mod->args)) { 2958 err = PTR_ERR(mod->args); 2959 goto free_arch_cleanup; 2960 } 2961 2962 init_build_id(mod, info); 2963 2964 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2965 ftrace_module_init(mod); 2966 2967 /* Finally it's fully formed, ready to start executing. */ 2968 err = complete_formation(mod, info); 2969 if (err) 2970 goto ddebug_cleanup; 2971 2972 err = prepare_coming_module(mod); 2973 if (err) 2974 goto bug_cleanup; 2975 2976 mod->async_probe_requested = async_probe; 2977 2978 /* Module is ready to execute: parsing args may do that. */ 2979 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2980 -32768, 32767, mod, 2981 unknown_module_param_cb); 2982 if (IS_ERR(after_dashes)) { 2983 err = PTR_ERR(after_dashes); 2984 goto coming_cleanup; 2985 } else if (after_dashes) { 2986 pr_warn("%s: parameters '%s' after `--' ignored\n", 2987 mod->name, after_dashes); 2988 } 2989 2990 /* Link in to sysfs. */ 2991 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2992 if (err < 0) 2993 goto coming_cleanup; 2994 2995 if (is_livepatch_module(mod)) { 2996 err = copy_module_elf(mod, info); 2997 if (err < 0) 2998 goto sysfs_cleanup; 2999 } 3000 3001 /* Get rid of temporary copy. */ 3002 free_copy(info, flags); 3003 3004 codetag_load_module(mod); 3005 3006 /* Done! */ 3007 trace_module_load(mod); 3008 3009 return do_init_module(mod); 3010 3011 sysfs_cleanup: 3012 mod_sysfs_teardown(mod); 3013 coming_cleanup: 3014 mod->state = MODULE_STATE_GOING; 3015 destroy_params(mod->kp, mod->num_kp); 3016 blocking_notifier_call_chain(&module_notify_list, 3017 MODULE_STATE_GOING, mod); 3018 klp_module_going(mod); 3019 bug_cleanup: 3020 mod->state = MODULE_STATE_GOING; 3021 /* module_bug_cleanup needs module_mutex protection */ 3022 mutex_lock(&module_mutex); 3023 module_bug_cleanup(mod); 3024 mutex_unlock(&module_mutex); 3025 3026 ddebug_cleanup: 3027 ftrace_release_mod(mod); 3028 synchronize_rcu(); 3029 kfree(mod->args); 3030 free_arch_cleanup: 3031 module_arch_cleanup(mod); 3032 free_modinfo: 3033 free_modinfo(mod); 3034 free_unload: 3035 module_unload_free(mod); 3036 unlink_mod: 3037 mutex_lock(&module_mutex); 3038 /* Unlink carefully: kallsyms could be walking list. */ 3039 list_del_rcu(&mod->list); 3040 mod_tree_remove(mod); 3041 wake_up_all(&module_wq); 3042 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3043 synchronize_rcu(); 3044 mutex_unlock(&module_mutex); 3045 free_module: 3046 mod_stat_bump_invalid(info, flags); 3047 /* Free lock-classes; relies on the preceding sync_rcu() */ 3048 for_class_mod_mem_type(type, core_data) { 3049 lockdep_free_key_range(mod->mem[type].base, 3050 mod->mem[type].size); 3051 } 3052 3053 module_deallocate(mod, info); 3054 free_copy: 3055 /* 3056 * The info->len is always set. We distinguish between 3057 * failures once the proper module was allocated and 3058 * before that. 3059 */ 3060 if (!module_allocated) 3061 mod_stat_bump_becoming(info, flags); 3062 free_copy(info, flags); 3063 return err; 3064 } 3065 3066 SYSCALL_DEFINE3(init_module, void __user *, umod, 3067 unsigned long, len, const char __user *, uargs) 3068 { 3069 int err; 3070 struct load_info info = { }; 3071 3072 err = may_init_module(); 3073 if (err) 3074 return err; 3075 3076 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3077 umod, len, uargs); 3078 3079 err = copy_module_from_user(umod, len, &info); 3080 if (err) { 3081 mod_stat_inc(&failed_kreads); 3082 mod_stat_add_long(len, &invalid_kread_bytes); 3083 return err; 3084 } 3085 3086 return load_module(&info, uargs, 0); 3087 } 3088 3089 struct idempotent { 3090 const void *cookie; 3091 struct hlist_node entry; 3092 struct completion complete; 3093 int ret; 3094 }; 3095 3096 #define IDEM_HASH_BITS 8 3097 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3098 static DEFINE_SPINLOCK(idem_lock); 3099 3100 static bool idempotent(struct idempotent *u, const void *cookie) 3101 { 3102 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3103 struct hlist_head *head = idem_hash + hash; 3104 struct idempotent *existing; 3105 bool first; 3106 3107 u->ret = -EINTR; 3108 u->cookie = cookie; 3109 init_completion(&u->complete); 3110 3111 spin_lock(&idem_lock); 3112 first = true; 3113 hlist_for_each_entry(existing, head, entry) { 3114 if (existing->cookie != cookie) 3115 continue; 3116 first = false; 3117 break; 3118 } 3119 hlist_add_head(&u->entry, idem_hash + hash); 3120 spin_unlock(&idem_lock); 3121 3122 return !first; 3123 } 3124 3125 /* 3126 * We were the first one with 'cookie' on the list, and we ended 3127 * up completing the operation. We now need to walk the list, 3128 * remove everybody - which includes ourselves - fill in the return 3129 * value, and then complete the operation. 3130 */ 3131 static int idempotent_complete(struct idempotent *u, int ret) 3132 { 3133 const void *cookie = u->cookie; 3134 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3135 struct hlist_head *head = idem_hash + hash; 3136 struct hlist_node *next; 3137 struct idempotent *pos; 3138 3139 spin_lock(&idem_lock); 3140 hlist_for_each_entry_safe(pos, next, head, entry) { 3141 if (pos->cookie != cookie) 3142 continue; 3143 hlist_del_init(&pos->entry); 3144 pos->ret = ret; 3145 complete(&pos->complete); 3146 } 3147 spin_unlock(&idem_lock); 3148 return ret; 3149 } 3150 3151 /* 3152 * Wait for the idempotent worker. 3153 * 3154 * If we get interrupted, we need to remove ourselves from the 3155 * the idempotent list, and the completion may still come in. 3156 * 3157 * The 'idem_lock' protects against the race, and 'idem.ret' was 3158 * initialized to -EINTR and is thus always the right return 3159 * value even if the idempotent work then completes between 3160 * the wait_for_completion and the cleanup. 3161 */ 3162 static int idempotent_wait_for_completion(struct idempotent *u) 3163 { 3164 if (wait_for_completion_interruptible(&u->complete)) { 3165 spin_lock(&idem_lock); 3166 if (!hlist_unhashed(&u->entry)) 3167 hlist_del(&u->entry); 3168 spin_unlock(&idem_lock); 3169 } 3170 return u->ret; 3171 } 3172 3173 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3174 { 3175 struct load_info info = { }; 3176 void *buf = NULL; 3177 int len; 3178 3179 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3180 if (len < 0) { 3181 mod_stat_inc(&failed_kreads); 3182 return len; 3183 } 3184 3185 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3186 int err = module_decompress(&info, buf, len); 3187 vfree(buf); /* compressed data is no longer needed */ 3188 if (err) { 3189 mod_stat_inc(&failed_decompress); 3190 mod_stat_add_long(len, &invalid_decompress_bytes); 3191 return err; 3192 } 3193 } else { 3194 info.hdr = buf; 3195 info.len = len; 3196 } 3197 3198 return load_module(&info, uargs, flags); 3199 } 3200 3201 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3202 { 3203 struct idempotent idem; 3204 3205 if (!f || !(f->f_mode & FMODE_READ)) 3206 return -EBADF; 3207 3208 /* Are we the winners of the race and get to do this? */ 3209 if (!idempotent(&idem, file_inode(f))) { 3210 int ret = init_module_from_file(f, uargs, flags); 3211 return idempotent_complete(&idem, ret); 3212 } 3213 3214 /* 3215 * Somebody else won the race and is loading the module. 3216 */ 3217 return idempotent_wait_for_completion(&idem); 3218 } 3219 3220 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3221 { 3222 int err; 3223 struct fd f; 3224 3225 err = may_init_module(); 3226 if (err) 3227 return err; 3228 3229 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3230 3231 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3232 |MODULE_INIT_IGNORE_VERMAGIC 3233 |MODULE_INIT_COMPRESSED_FILE)) 3234 return -EINVAL; 3235 3236 f = fdget(fd); 3237 err = idempotent_init_module(f.file, uargs, flags); 3238 fdput(f); 3239 return err; 3240 } 3241 3242 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3243 char *module_flags(struct module *mod, char *buf, bool show_state) 3244 { 3245 int bx = 0; 3246 3247 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3248 if (!mod->taints && !show_state) 3249 goto out; 3250 if (mod->taints || 3251 mod->state == MODULE_STATE_GOING || 3252 mod->state == MODULE_STATE_COMING) { 3253 buf[bx++] = '('; 3254 bx += module_flags_taint(mod->taints, buf + bx); 3255 /* Show a - for module-is-being-unloaded */ 3256 if (mod->state == MODULE_STATE_GOING && show_state) 3257 buf[bx++] = '-'; 3258 /* Show a + for module-is-being-loaded */ 3259 if (mod->state == MODULE_STATE_COMING && show_state) 3260 buf[bx++] = '+'; 3261 buf[bx++] = ')'; 3262 } 3263 out: 3264 buf[bx] = '\0'; 3265 3266 return buf; 3267 } 3268 3269 /* Given an address, look for it in the module exception tables. */ 3270 const struct exception_table_entry *search_module_extables(unsigned long addr) 3271 { 3272 const struct exception_table_entry *e = NULL; 3273 struct module *mod; 3274 3275 preempt_disable(); 3276 mod = __module_address(addr); 3277 if (!mod) 3278 goto out; 3279 3280 if (!mod->num_exentries) 3281 goto out; 3282 3283 e = search_extable(mod->extable, 3284 mod->num_exentries, 3285 addr); 3286 out: 3287 preempt_enable(); 3288 3289 /* 3290 * Now, if we found one, we are running inside it now, hence 3291 * we cannot unload the module, hence no refcnt needed. 3292 */ 3293 return e; 3294 } 3295 3296 /** 3297 * is_module_address() - is this address inside a module? 3298 * @addr: the address to check. 3299 * 3300 * See is_module_text_address() if you simply want to see if the address 3301 * is code (not data). 3302 */ 3303 bool is_module_address(unsigned long addr) 3304 { 3305 bool ret; 3306 3307 preempt_disable(); 3308 ret = __module_address(addr) != NULL; 3309 preempt_enable(); 3310 3311 return ret; 3312 } 3313 3314 /** 3315 * __module_address() - get the module which contains an address. 3316 * @addr: the address. 3317 * 3318 * Must be called with preempt disabled or module mutex held so that 3319 * module doesn't get freed during this. 3320 */ 3321 struct module *__module_address(unsigned long addr) 3322 { 3323 struct module *mod; 3324 3325 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3326 goto lookup; 3327 3328 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3329 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3330 goto lookup; 3331 #endif 3332 3333 return NULL; 3334 3335 lookup: 3336 module_assert_mutex_or_preempt(); 3337 3338 mod = mod_find(addr, &mod_tree); 3339 if (mod) { 3340 BUG_ON(!within_module(addr, mod)); 3341 if (mod->state == MODULE_STATE_UNFORMED) 3342 mod = NULL; 3343 } 3344 return mod; 3345 } 3346 3347 /** 3348 * is_module_text_address() - is this address inside module code? 3349 * @addr: the address to check. 3350 * 3351 * See is_module_address() if you simply want to see if the address is 3352 * anywhere in a module. See kernel_text_address() for testing if an 3353 * address corresponds to kernel or module code. 3354 */ 3355 bool is_module_text_address(unsigned long addr) 3356 { 3357 bool ret; 3358 3359 preempt_disable(); 3360 ret = __module_text_address(addr) != NULL; 3361 preempt_enable(); 3362 3363 return ret; 3364 } 3365 3366 /** 3367 * __module_text_address() - get the module whose code contains an address. 3368 * @addr: the address. 3369 * 3370 * Must be called with preempt disabled or module mutex held so that 3371 * module doesn't get freed during this. 3372 */ 3373 struct module *__module_text_address(unsigned long addr) 3374 { 3375 struct module *mod = __module_address(addr); 3376 if (mod) { 3377 /* Make sure it's within the text section. */ 3378 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3379 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3380 mod = NULL; 3381 } 3382 return mod; 3383 } 3384 3385 /* Don't grab lock, we're oopsing. */ 3386 void print_modules(void) 3387 { 3388 struct module *mod; 3389 char buf[MODULE_FLAGS_BUF_SIZE]; 3390 3391 printk(KERN_DEFAULT "Modules linked in:"); 3392 /* Most callers should already have preempt disabled, but make sure */ 3393 preempt_disable(); 3394 list_for_each_entry_rcu(mod, &modules, list) { 3395 if (mod->state == MODULE_STATE_UNFORMED) 3396 continue; 3397 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3398 } 3399 3400 print_unloaded_tainted_modules(); 3401 preempt_enable(); 3402 if (last_unloaded_module.name[0]) 3403 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3404 last_unloaded_module.taints); 3405 pr_cont("\n"); 3406 } 3407 3408 #ifdef CONFIG_MODULE_DEBUGFS 3409 struct dentry *mod_debugfs_root; 3410 3411 static int module_debugfs_init(void) 3412 { 3413 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3414 return 0; 3415 } 3416 module_init(module_debugfs_init); 3417 #endif 3418