1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable with preempt_disable), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const s32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /** 199 * find_any_unique_sec() - Find a unique section index by name 200 * @info: Load info for the module to scan 201 * @name: Name of the section we're looking for 202 * 203 * Locates a unique section by name. Ignores SHF_ALLOC. 204 * 205 * Return: Section index if found uniquely, zero if absent, negative count 206 * of total instances if multiple were found. 207 */ 208 static int find_any_unique_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int idx; 211 unsigned int count = 0; 212 int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 216 name) == 0) { 217 count++; 218 idx = i; 219 } 220 } 221 if (count == 1) { 222 return idx; 223 } else if (count == 0) { 224 return 0; 225 } else { 226 return -count; 227 } 228 } 229 230 /* Find a module section, or NULL. */ 231 static void *section_addr(const struct load_info *info, const char *name) 232 { 233 /* Section 0 has sh_addr 0. */ 234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 235 } 236 237 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 238 static void *section_objs(const struct load_info *info, 239 const char *name, 240 size_t object_size, 241 unsigned int *num) 242 { 243 unsigned int sec = find_sec(info, name); 244 245 /* Section 0 has sh_addr 0 and sh_size 0. */ 246 *num = info->sechdrs[sec].sh_size / object_size; 247 return (void *)info->sechdrs[sec].sh_addr; 248 } 249 250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 251 static unsigned int find_any_sec(const struct load_info *info, const char *name) 252 { 253 unsigned int i; 254 255 for (i = 1; i < info->hdr->e_shnum; i++) { 256 Elf_Shdr *shdr = &info->sechdrs[i]; 257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 258 return i; 259 } 260 return 0; 261 } 262 263 /* 264 * Find a module section, or NULL. Fill in number of "objects" in section. 265 * Ignores SHF_ALLOC flag. 266 */ 267 static __maybe_unused void *any_section_objs(const struct load_info *info, 268 const char *name, 269 size_t object_size, 270 unsigned int *num) 271 { 272 unsigned int sec = find_any_sec(info, name); 273 274 /* Section 0 has sh_addr 0 and sh_size 0. */ 275 *num = info->sechdrs[sec].sh_size / object_size; 276 return (void *)info->sechdrs[sec].sh_addr; 277 } 278 279 #ifndef CONFIG_MODVERSIONS 280 #define symversion(base, idx) NULL 281 #else 282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 283 #endif 284 285 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 286 { 287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 288 return offset_to_ptr(&sym->name_offset); 289 #else 290 return sym->name; 291 #endif 292 } 293 294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 295 { 296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 297 if (!sym->namespace_offset) 298 return NULL; 299 return offset_to_ptr(&sym->namespace_offset); 300 #else 301 return sym->namespace; 302 #endif 303 } 304 305 int cmp_name(const void *name, const void *sym) 306 { 307 return strcmp(name, kernel_symbol_name(sym)); 308 } 309 310 static bool find_exported_symbol_in_section(const struct symsearch *syms, 311 struct module *owner, 312 struct find_symbol_arg *fsa) 313 { 314 struct kernel_symbol *sym; 315 316 if (!fsa->gplok && syms->license == GPL_ONLY) 317 return false; 318 319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 320 sizeof(struct kernel_symbol), cmp_name); 321 if (!sym) 322 return false; 323 324 fsa->owner = owner; 325 fsa->crc = symversion(syms->crcs, sym - syms->start); 326 fsa->sym = sym; 327 fsa->license = syms->license; 328 329 return true; 330 } 331 332 /* 333 * Find an exported symbol and return it, along with, (optional) crc and 334 * (optional) module which owns it. Needs preempt disabled or module_mutex. 335 */ 336 bool find_symbol(struct find_symbol_arg *fsa) 337 { 338 static const struct symsearch arr[] = { 339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 340 NOT_GPL_ONLY }, 341 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 342 __start___kcrctab_gpl, 343 GPL_ONLY }, 344 }; 345 struct module *mod; 346 unsigned int i; 347 348 module_assert_mutex_or_preempt(); 349 350 for (i = 0; i < ARRAY_SIZE(arr); i++) 351 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 352 return true; 353 354 list_for_each_entry_rcu(mod, &modules, list, 355 lockdep_is_held(&module_mutex)) { 356 struct symsearch arr[] = { 357 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 358 NOT_GPL_ONLY }, 359 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 360 mod->gpl_crcs, 361 GPL_ONLY }, 362 }; 363 364 if (mod->state == MODULE_STATE_UNFORMED) 365 continue; 366 367 for (i = 0; i < ARRAY_SIZE(arr); i++) 368 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 369 return true; 370 } 371 372 pr_debug("Failed to find symbol %s\n", fsa->name); 373 return false; 374 } 375 376 /* 377 * Search for module by name: must hold module_mutex (or preempt disabled 378 * for read-only access). 379 */ 380 struct module *find_module_all(const char *name, size_t len, 381 bool even_unformed) 382 { 383 struct module *mod; 384 385 module_assert_mutex_or_preempt(); 386 387 list_for_each_entry_rcu(mod, &modules, list, 388 lockdep_is_held(&module_mutex)) { 389 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 390 continue; 391 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 392 return mod; 393 } 394 return NULL; 395 } 396 397 struct module *find_module(const char *name) 398 { 399 return find_module_all(name, strlen(name), false); 400 } 401 402 #ifdef CONFIG_SMP 403 404 static inline void __percpu *mod_percpu(struct module *mod) 405 { 406 return mod->percpu; 407 } 408 409 static int percpu_modalloc(struct module *mod, struct load_info *info) 410 { 411 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 412 unsigned long align = pcpusec->sh_addralign; 413 414 if (!pcpusec->sh_size) 415 return 0; 416 417 if (align > PAGE_SIZE) { 418 pr_warn("%s: per-cpu alignment %li > %li\n", 419 mod->name, align, PAGE_SIZE); 420 align = PAGE_SIZE; 421 } 422 423 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 424 if (!mod->percpu) { 425 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 426 mod->name, (unsigned long)pcpusec->sh_size); 427 return -ENOMEM; 428 } 429 mod->percpu_size = pcpusec->sh_size; 430 return 0; 431 } 432 433 static void percpu_modfree(struct module *mod) 434 { 435 free_percpu(mod->percpu); 436 } 437 438 static unsigned int find_pcpusec(struct load_info *info) 439 { 440 return find_sec(info, ".data..percpu"); 441 } 442 443 static void percpu_modcopy(struct module *mod, 444 const void *from, unsigned long size) 445 { 446 int cpu; 447 448 for_each_possible_cpu(cpu) 449 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 450 } 451 452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 453 { 454 struct module *mod; 455 unsigned int cpu; 456 457 preempt_disable(); 458 459 list_for_each_entry_rcu(mod, &modules, list) { 460 if (mod->state == MODULE_STATE_UNFORMED) 461 continue; 462 if (!mod->percpu_size) 463 continue; 464 for_each_possible_cpu(cpu) { 465 void *start = per_cpu_ptr(mod->percpu, cpu); 466 void *va = (void *)addr; 467 468 if (va >= start && va < start + mod->percpu_size) { 469 if (can_addr) { 470 *can_addr = (unsigned long) (va - start); 471 *can_addr += (unsigned long) 472 per_cpu_ptr(mod->percpu, 473 get_boot_cpu_id()); 474 } 475 preempt_enable(); 476 return true; 477 } 478 } 479 } 480 481 preempt_enable(); 482 return false; 483 } 484 485 /** 486 * is_module_percpu_address() - test whether address is from module static percpu 487 * @addr: address to test 488 * 489 * Test whether @addr belongs to module static percpu area. 490 * 491 * Return: %true if @addr is from module static percpu area 492 */ 493 bool is_module_percpu_address(unsigned long addr) 494 { 495 return __is_module_percpu_address(addr, NULL); 496 } 497 498 #else /* ... !CONFIG_SMP */ 499 500 static inline void __percpu *mod_percpu(struct module *mod) 501 { 502 return NULL; 503 } 504 static int percpu_modalloc(struct module *mod, struct load_info *info) 505 { 506 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 507 if (info->sechdrs[info->index.pcpu].sh_size != 0) 508 return -ENOMEM; 509 return 0; 510 } 511 static inline void percpu_modfree(struct module *mod) 512 { 513 } 514 static unsigned int find_pcpusec(struct load_info *info) 515 { 516 return 0; 517 } 518 static inline void percpu_modcopy(struct module *mod, 519 const void *from, unsigned long size) 520 { 521 /* pcpusec should be 0, and size of that section should be 0. */ 522 BUG_ON(size != 0); 523 } 524 bool is_module_percpu_address(unsigned long addr) 525 { 526 return false; 527 } 528 529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 530 { 531 return false; 532 } 533 534 #endif /* CONFIG_SMP */ 535 536 #define MODINFO_ATTR(field) \ 537 static void setup_modinfo_##field(struct module *mod, const char *s) \ 538 { \ 539 mod->field = kstrdup(s, GFP_KERNEL); \ 540 } \ 541 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 542 struct module_kobject *mk, char *buffer) \ 543 { \ 544 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 545 } \ 546 static int modinfo_##field##_exists(struct module *mod) \ 547 { \ 548 return mod->field != NULL; \ 549 } \ 550 static void free_modinfo_##field(struct module *mod) \ 551 { \ 552 kfree(mod->field); \ 553 mod->field = NULL; \ 554 } \ 555 static struct module_attribute modinfo_##field = { \ 556 .attr = { .name = __stringify(field), .mode = 0444 }, \ 557 .show = show_modinfo_##field, \ 558 .setup = setup_modinfo_##field, \ 559 .test = modinfo_##field##_exists, \ 560 .free = free_modinfo_##field, \ 561 }; 562 563 MODINFO_ATTR(version); 564 MODINFO_ATTR(srcversion); 565 566 static struct { 567 char name[MODULE_NAME_LEN + 1]; 568 char taints[MODULE_FLAGS_BUF_SIZE]; 569 } last_unloaded_module; 570 571 #ifdef CONFIG_MODULE_UNLOAD 572 573 EXPORT_TRACEPOINT_SYMBOL(module_get); 574 575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 576 #define MODULE_REF_BASE 1 577 578 /* Init the unload section of the module. */ 579 static int module_unload_init(struct module *mod) 580 { 581 /* 582 * Initialize reference counter to MODULE_REF_BASE. 583 * refcnt == 0 means module is going. 584 */ 585 atomic_set(&mod->refcnt, MODULE_REF_BASE); 586 587 INIT_LIST_HEAD(&mod->source_list); 588 INIT_LIST_HEAD(&mod->target_list); 589 590 /* Hold reference count during initialization. */ 591 atomic_inc(&mod->refcnt); 592 593 return 0; 594 } 595 596 /* Does a already use b? */ 597 static int already_uses(struct module *a, struct module *b) 598 { 599 struct module_use *use; 600 601 list_for_each_entry(use, &b->source_list, source_list) { 602 if (use->source == a) 603 return 1; 604 } 605 pr_debug("%s does not use %s!\n", a->name, b->name); 606 return 0; 607 } 608 609 /* 610 * Module a uses b 611 * - we add 'a' as a "source", 'b' as a "target" of module use 612 * - the module_use is added to the list of 'b' sources (so 613 * 'b' can walk the list to see who sourced them), and of 'a' 614 * targets (so 'a' can see what modules it targets). 615 */ 616 static int add_module_usage(struct module *a, struct module *b) 617 { 618 struct module_use *use; 619 620 pr_debug("Allocating new usage for %s.\n", a->name); 621 use = kmalloc(sizeof(*use), GFP_ATOMIC); 622 if (!use) 623 return -ENOMEM; 624 625 use->source = a; 626 use->target = b; 627 list_add(&use->source_list, &b->source_list); 628 list_add(&use->target_list, &a->target_list); 629 return 0; 630 } 631 632 /* Module a uses b: caller needs module_mutex() */ 633 static int ref_module(struct module *a, struct module *b) 634 { 635 int err; 636 637 if (b == NULL || already_uses(a, b)) 638 return 0; 639 640 /* If module isn't available, we fail. */ 641 err = strong_try_module_get(b); 642 if (err) 643 return err; 644 645 err = add_module_usage(a, b); 646 if (err) { 647 module_put(b); 648 return err; 649 } 650 return 0; 651 } 652 653 /* Clear the unload stuff of the module. */ 654 static void module_unload_free(struct module *mod) 655 { 656 struct module_use *use, *tmp; 657 658 mutex_lock(&module_mutex); 659 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 660 struct module *i = use->target; 661 pr_debug("%s unusing %s\n", mod->name, i->name); 662 module_put(i); 663 list_del(&use->source_list); 664 list_del(&use->target_list); 665 kfree(use); 666 } 667 mutex_unlock(&module_mutex); 668 } 669 670 #ifdef CONFIG_MODULE_FORCE_UNLOAD 671 static inline int try_force_unload(unsigned int flags) 672 { 673 int ret = (flags & O_TRUNC); 674 if (ret) 675 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 676 return ret; 677 } 678 #else 679 static inline int try_force_unload(unsigned int flags) 680 { 681 return 0; 682 } 683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 684 685 /* Try to release refcount of module, 0 means success. */ 686 static int try_release_module_ref(struct module *mod) 687 { 688 int ret; 689 690 /* Try to decrement refcnt which we set at loading */ 691 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 692 BUG_ON(ret < 0); 693 if (ret) 694 /* Someone can put this right now, recover with checking */ 695 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 696 697 return ret; 698 } 699 700 static int try_stop_module(struct module *mod, int flags, int *forced) 701 { 702 /* If it's not unused, quit unless we're forcing. */ 703 if (try_release_module_ref(mod) != 0) { 704 *forced = try_force_unload(flags); 705 if (!(*forced)) 706 return -EWOULDBLOCK; 707 } 708 709 /* Mark it as dying. */ 710 mod->state = MODULE_STATE_GOING; 711 712 return 0; 713 } 714 715 /** 716 * module_refcount() - return the refcount or -1 if unloading 717 * @mod: the module we're checking 718 * 719 * Return: 720 * -1 if the module is in the process of unloading 721 * otherwise the number of references in the kernel to the module 722 */ 723 int module_refcount(struct module *mod) 724 { 725 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 726 } 727 EXPORT_SYMBOL(module_refcount); 728 729 /* This exists whether we can unload or not */ 730 static void free_module(struct module *mod); 731 732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 733 unsigned int, flags) 734 { 735 struct module *mod; 736 char name[MODULE_NAME_LEN]; 737 char buf[MODULE_FLAGS_BUF_SIZE]; 738 int ret, forced = 0; 739 740 if (!capable(CAP_SYS_MODULE) || modules_disabled) 741 return -EPERM; 742 743 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 744 return -EFAULT; 745 name[MODULE_NAME_LEN-1] = '\0'; 746 747 audit_log_kern_module(name); 748 749 if (mutex_lock_interruptible(&module_mutex) != 0) 750 return -EINTR; 751 752 mod = find_module(name); 753 if (!mod) { 754 ret = -ENOENT; 755 goto out; 756 } 757 758 if (!list_empty(&mod->source_list)) { 759 /* Other modules depend on us: get rid of them first. */ 760 ret = -EWOULDBLOCK; 761 goto out; 762 } 763 764 /* Doing init or already dying? */ 765 if (mod->state != MODULE_STATE_LIVE) { 766 /* FIXME: if (force), slam module count damn the torpedoes */ 767 pr_debug("%s already dying\n", mod->name); 768 ret = -EBUSY; 769 goto out; 770 } 771 772 /* If it has an init func, it must have an exit func to unload */ 773 if (mod->init && !mod->exit) { 774 forced = try_force_unload(flags); 775 if (!forced) { 776 /* This module can't be removed */ 777 ret = -EBUSY; 778 goto out; 779 } 780 } 781 782 ret = try_stop_module(mod, flags, &forced); 783 if (ret != 0) 784 goto out; 785 786 mutex_unlock(&module_mutex); 787 /* Final destruction now no one is using it. */ 788 if (mod->exit != NULL) 789 mod->exit(); 790 blocking_notifier_call_chain(&module_notify_list, 791 MODULE_STATE_GOING, mod); 792 klp_module_going(mod); 793 ftrace_release_mod(mod); 794 795 async_synchronize_full(); 796 797 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 798 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 799 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 800 801 free_module(mod); 802 /* someone could wait for the module in add_unformed_module() */ 803 wake_up_all(&module_wq); 804 return 0; 805 out: 806 mutex_unlock(&module_mutex); 807 return ret; 808 } 809 810 void __symbol_put(const char *symbol) 811 { 812 struct find_symbol_arg fsa = { 813 .name = symbol, 814 .gplok = true, 815 }; 816 817 preempt_disable(); 818 BUG_ON(!find_symbol(&fsa)); 819 module_put(fsa.owner); 820 preempt_enable(); 821 } 822 EXPORT_SYMBOL(__symbol_put); 823 824 /* Note this assumes addr is a function, which it currently always is. */ 825 void symbol_put_addr(void *addr) 826 { 827 struct module *modaddr; 828 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 829 830 if (core_kernel_text(a)) 831 return; 832 833 /* 834 * Even though we hold a reference on the module; we still need to 835 * disable preemption in order to safely traverse the data structure. 836 */ 837 preempt_disable(); 838 modaddr = __module_text_address(a); 839 BUG_ON(!modaddr); 840 module_put(modaddr); 841 preempt_enable(); 842 } 843 EXPORT_SYMBOL_GPL(symbol_put_addr); 844 845 static ssize_t show_refcnt(struct module_attribute *mattr, 846 struct module_kobject *mk, char *buffer) 847 { 848 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 849 } 850 851 static struct module_attribute modinfo_refcnt = 852 __ATTR(refcnt, 0444, show_refcnt, NULL); 853 854 void __module_get(struct module *module) 855 { 856 if (module) { 857 atomic_inc(&module->refcnt); 858 trace_module_get(module, _RET_IP_); 859 } 860 } 861 EXPORT_SYMBOL(__module_get); 862 863 bool try_module_get(struct module *module) 864 { 865 bool ret = true; 866 867 if (module) { 868 /* Note: here, we can fail to get a reference */ 869 if (likely(module_is_live(module) && 870 atomic_inc_not_zero(&module->refcnt) != 0)) 871 trace_module_get(module, _RET_IP_); 872 else 873 ret = false; 874 } 875 return ret; 876 } 877 EXPORT_SYMBOL(try_module_get); 878 879 void module_put(struct module *module) 880 { 881 int ret; 882 883 if (module) { 884 ret = atomic_dec_if_positive(&module->refcnt); 885 WARN_ON(ret < 0); /* Failed to put refcount */ 886 trace_module_put(module, _RET_IP_); 887 } 888 } 889 EXPORT_SYMBOL(module_put); 890 891 #else /* !CONFIG_MODULE_UNLOAD */ 892 static inline void module_unload_free(struct module *mod) 893 { 894 } 895 896 static int ref_module(struct module *a, struct module *b) 897 { 898 return strong_try_module_get(b); 899 } 900 901 static inline int module_unload_init(struct module *mod) 902 { 903 return 0; 904 } 905 #endif /* CONFIG_MODULE_UNLOAD */ 906 907 size_t module_flags_taint(unsigned long taints, char *buf) 908 { 909 size_t l = 0; 910 int i; 911 912 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 913 if (taint_flags[i].module && test_bit(i, &taints)) 914 buf[l++] = taint_flags[i].c_true; 915 } 916 917 return l; 918 } 919 920 static ssize_t show_initstate(struct module_attribute *mattr, 921 struct module_kobject *mk, char *buffer) 922 { 923 const char *state = "unknown"; 924 925 switch (mk->mod->state) { 926 case MODULE_STATE_LIVE: 927 state = "live"; 928 break; 929 case MODULE_STATE_COMING: 930 state = "coming"; 931 break; 932 case MODULE_STATE_GOING: 933 state = "going"; 934 break; 935 default: 936 BUG(); 937 } 938 return sprintf(buffer, "%s\n", state); 939 } 940 941 static struct module_attribute modinfo_initstate = 942 __ATTR(initstate, 0444, show_initstate, NULL); 943 944 static ssize_t store_uevent(struct module_attribute *mattr, 945 struct module_kobject *mk, 946 const char *buffer, size_t count) 947 { 948 int rc; 949 950 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 951 return rc ? rc : count; 952 } 953 954 struct module_attribute module_uevent = 955 __ATTR(uevent, 0200, NULL, store_uevent); 956 957 static ssize_t show_coresize(struct module_attribute *mattr, 958 struct module_kobject *mk, char *buffer) 959 { 960 unsigned int size = mk->mod->mem[MOD_TEXT].size; 961 962 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 963 for_class_mod_mem_type(type, core_data) 964 size += mk->mod->mem[type].size; 965 } 966 return sprintf(buffer, "%u\n", size); 967 } 968 969 static struct module_attribute modinfo_coresize = 970 __ATTR(coresize, 0444, show_coresize, NULL); 971 972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 973 static ssize_t show_datasize(struct module_attribute *mattr, 974 struct module_kobject *mk, char *buffer) 975 { 976 unsigned int size = 0; 977 978 for_class_mod_mem_type(type, core_data) 979 size += mk->mod->mem[type].size; 980 return sprintf(buffer, "%u\n", size); 981 } 982 983 static struct module_attribute modinfo_datasize = 984 __ATTR(datasize, 0444, show_datasize, NULL); 985 #endif 986 987 static ssize_t show_initsize(struct module_attribute *mattr, 988 struct module_kobject *mk, char *buffer) 989 { 990 unsigned int size = 0; 991 992 for_class_mod_mem_type(type, init) 993 size += mk->mod->mem[type].size; 994 return sprintf(buffer, "%u\n", size); 995 } 996 997 static struct module_attribute modinfo_initsize = 998 __ATTR(initsize, 0444, show_initsize, NULL); 999 1000 static ssize_t show_taint(struct module_attribute *mattr, 1001 struct module_kobject *mk, char *buffer) 1002 { 1003 size_t l; 1004 1005 l = module_flags_taint(mk->mod->taints, buffer); 1006 buffer[l++] = '\n'; 1007 return l; 1008 } 1009 1010 static struct module_attribute modinfo_taint = 1011 __ATTR(taint, 0444, show_taint, NULL); 1012 1013 struct module_attribute *modinfo_attrs[] = { 1014 &module_uevent, 1015 &modinfo_version, 1016 &modinfo_srcversion, 1017 &modinfo_initstate, 1018 &modinfo_coresize, 1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1020 &modinfo_datasize, 1021 #endif 1022 &modinfo_initsize, 1023 &modinfo_taint, 1024 #ifdef CONFIG_MODULE_UNLOAD 1025 &modinfo_refcnt, 1026 #endif 1027 NULL, 1028 }; 1029 1030 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1031 1032 static const char vermagic[] = VERMAGIC_STRING; 1033 1034 int try_to_force_load(struct module *mod, const char *reason) 1035 { 1036 #ifdef CONFIG_MODULE_FORCE_LOAD 1037 if (!test_taint(TAINT_FORCED_MODULE)) 1038 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1039 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1040 return 0; 1041 #else 1042 return -ENOEXEC; 1043 #endif 1044 } 1045 1046 /* Parse tag=value strings from .modinfo section */ 1047 char *module_next_tag_pair(char *string, unsigned long *secsize) 1048 { 1049 /* Skip non-zero chars */ 1050 while (string[0]) { 1051 string++; 1052 if ((*secsize)-- <= 1) 1053 return NULL; 1054 } 1055 1056 /* Skip any zero padding. */ 1057 while (!string[0]) { 1058 string++; 1059 if ((*secsize)-- <= 1) 1060 return NULL; 1061 } 1062 return string; 1063 } 1064 1065 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1066 char *prev) 1067 { 1068 char *p; 1069 unsigned int taglen = strlen(tag); 1070 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1071 unsigned long size = infosec->sh_size; 1072 1073 /* 1074 * get_modinfo() calls made before rewrite_section_headers() 1075 * must use sh_offset, as sh_addr isn't set! 1076 */ 1077 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1078 1079 if (prev) { 1080 size -= prev - modinfo; 1081 modinfo = module_next_tag_pair(prev, &size); 1082 } 1083 1084 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1085 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1086 return p + taglen + 1; 1087 } 1088 return NULL; 1089 } 1090 1091 static char *get_modinfo(const struct load_info *info, const char *tag) 1092 { 1093 return get_next_modinfo(info, tag, NULL); 1094 } 1095 1096 static int verify_namespace_is_imported(const struct load_info *info, 1097 const struct kernel_symbol *sym, 1098 struct module *mod) 1099 { 1100 const char *namespace; 1101 char *imported_namespace; 1102 1103 namespace = kernel_symbol_namespace(sym); 1104 if (namespace && namespace[0]) { 1105 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1106 if (strcmp(namespace, imported_namespace) == 0) 1107 return 0; 1108 } 1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1110 pr_warn( 1111 #else 1112 pr_err( 1113 #endif 1114 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1115 mod->name, kernel_symbol_name(sym), namespace); 1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1117 return -EINVAL; 1118 #endif 1119 } 1120 return 0; 1121 } 1122 1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1124 { 1125 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1126 return true; 1127 1128 if (mod->using_gplonly_symbols) { 1129 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1130 mod->name, name, owner->name); 1131 return false; 1132 } 1133 1134 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1135 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1136 mod->name, name, owner->name); 1137 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1138 } 1139 return true; 1140 } 1141 1142 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1143 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1144 const struct load_info *info, 1145 const char *name, 1146 char ownername[]) 1147 { 1148 struct find_symbol_arg fsa = { 1149 .name = name, 1150 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1151 .warn = true, 1152 }; 1153 int err; 1154 1155 /* 1156 * The module_mutex should not be a heavily contended lock; 1157 * if we get the occasional sleep here, we'll go an extra iteration 1158 * in the wait_event_interruptible(), which is harmless. 1159 */ 1160 sched_annotate_sleep(); 1161 mutex_lock(&module_mutex); 1162 if (!find_symbol(&fsa)) 1163 goto unlock; 1164 1165 if (fsa.license == GPL_ONLY) 1166 mod->using_gplonly_symbols = true; 1167 1168 if (!inherit_taint(mod, fsa.owner, name)) { 1169 fsa.sym = NULL; 1170 goto getname; 1171 } 1172 1173 if (!check_version(info, name, mod, fsa.crc)) { 1174 fsa.sym = ERR_PTR(-EINVAL); 1175 goto getname; 1176 } 1177 1178 err = verify_namespace_is_imported(info, fsa.sym, mod); 1179 if (err) { 1180 fsa.sym = ERR_PTR(err); 1181 goto getname; 1182 } 1183 1184 err = ref_module(mod, fsa.owner); 1185 if (err) { 1186 fsa.sym = ERR_PTR(err); 1187 goto getname; 1188 } 1189 1190 getname: 1191 /* We must make copy under the lock if we failed to get ref. */ 1192 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1193 unlock: 1194 mutex_unlock(&module_mutex); 1195 return fsa.sym; 1196 } 1197 1198 static const struct kernel_symbol * 1199 resolve_symbol_wait(struct module *mod, 1200 const struct load_info *info, 1201 const char *name) 1202 { 1203 const struct kernel_symbol *ksym; 1204 char owner[MODULE_NAME_LEN]; 1205 1206 if (wait_event_interruptible_timeout(module_wq, 1207 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1208 || PTR_ERR(ksym) != -EBUSY, 1209 30 * HZ) <= 0) { 1210 pr_warn("%s: gave up waiting for init of module %s.\n", 1211 mod->name, owner); 1212 } 1213 return ksym; 1214 } 1215 1216 void __weak module_arch_cleanup(struct module *mod) 1217 { 1218 } 1219 1220 void __weak module_arch_freeing_init(struct module *mod) 1221 { 1222 } 1223 1224 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1225 { 1226 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1227 enum execmem_type execmem_type; 1228 void *ptr; 1229 1230 mod->mem[type].size = size; 1231 1232 if (mod_mem_type_is_data(type)) 1233 execmem_type = EXECMEM_MODULE_DATA; 1234 else 1235 execmem_type = EXECMEM_MODULE_TEXT; 1236 1237 ptr = execmem_alloc(execmem_type, size); 1238 if (!ptr) 1239 return -ENOMEM; 1240 1241 /* 1242 * The pointer to these blocks of memory are stored on the module 1243 * structure and we keep that around so long as the module is 1244 * around. We only free that memory when we unload the module. 1245 * Just mark them as not being a leak then. The .init* ELF 1246 * sections *do* get freed after boot so we *could* treat them 1247 * slightly differently with kmemleak_ignore() and only grey 1248 * them out as they work as typical memory allocations which 1249 * *do* eventually get freed, but let's just keep things simple 1250 * and avoid *any* false positives. 1251 */ 1252 kmemleak_not_leak(ptr); 1253 1254 memset(ptr, 0, size); 1255 mod->mem[type].base = ptr; 1256 1257 return 0; 1258 } 1259 1260 static void module_memory_free(struct module *mod, enum mod_mem_type type, 1261 bool unload_codetags) 1262 { 1263 void *ptr = mod->mem[type].base; 1264 1265 if (!unload_codetags && mod_mem_type_is_core_data(type)) 1266 return; 1267 1268 execmem_free(ptr); 1269 } 1270 1271 static void free_mod_mem(struct module *mod, bool unload_codetags) 1272 { 1273 for_each_mod_mem_type(type) { 1274 struct module_memory *mod_mem = &mod->mem[type]; 1275 1276 if (type == MOD_DATA) 1277 continue; 1278 1279 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1280 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1281 if (mod_mem->size) 1282 module_memory_free(mod, type, unload_codetags); 1283 } 1284 1285 /* MOD_DATA hosts mod, so free it at last */ 1286 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1287 module_memory_free(mod, MOD_DATA, unload_codetags); 1288 } 1289 1290 /* Free a module, remove from lists, etc. */ 1291 static void free_module(struct module *mod) 1292 { 1293 bool unload_codetags; 1294 1295 trace_module_free(mod); 1296 1297 unload_codetags = codetag_unload_module(mod); 1298 if (!unload_codetags) 1299 pr_warn("%s: memory allocation(s) from the module still alive, cannot unload cleanly\n", 1300 mod->name); 1301 1302 mod_sysfs_teardown(mod); 1303 1304 /* 1305 * We leave it in list to prevent duplicate loads, but make sure 1306 * that noone uses it while it's being deconstructed. 1307 */ 1308 mutex_lock(&module_mutex); 1309 mod->state = MODULE_STATE_UNFORMED; 1310 mutex_unlock(&module_mutex); 1311 1312 /* Arch-specific cleanup. */ 1313 module_arch_cleanup(mod); 1314 1315 /* Module unload stuff */ 1316 module_unload_free(mod); 1317 1318 /* Free any allocated parameters. */ 1319 destroy_params(mod->kp, mod->num_kp); 1320 1321 if (is_livepatch_module(mod)) 1322 free_module_elf(mod); 1323 1324 /* Now we can delete it from the lists */ 1325 mutex_lock(&module_mutex); 1326 /* Unlink carefully: kallsyms could be walking list. */ 1327 list_del_rcu(&mod->list); 1328 mod_tree_remove(mod); 1329 /* Remove this module from bug list, this uses list_del_rcu */ 1330 module_bug_cleanup(mod); 1331 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1332 synchronize_rcu(); 1333 if (try_add_tainted_module(mod)) 1334 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1335 mod->name); 1336 mutex_unlock(&module_mutex); 1337 1338 /* This may be empty, but that's OK */ 1339 module_arch_freeing_init(mod); 1340 kfree(mod->args); 1341 percpu_modfree(mod); 1342 1343 free_mod_mem(mod, unload_codetags); 1344 } 1345 1346 void *__symbol_get(const char *symbol) 1347 { 1348 struct find_symbol_arg fsa = { 1349 .name = symbol, 1350 .gplok = true, 1351 .warn = true, 1352 }; 1353 1354 preempt_disable(); 1355 if (!find_symbol(&fsa)) 1356 goto fail; 1357 if (fsa.license != GPL_ONLY) { 1358 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1359 symbol); 1360 goto fail; 1361 } 1362 if (strong_try_module_get(fsa.owner)) 1363 goto fail; 1364 preempt_enable(); 1365 return (void *)kernel_symbol_value(fsa.sym); 1366 fail: 1367 preempt_enable(); 1368 return NULL; 1369 } 1370 EXPORT_SYMBOL_GPL(__symbol_get); 1371 1372 /* 1373 * Ensure that an exported symbol [global namespace] does not already exist 1374 * in the kernel or in some other module's exported symbol table. 1375 * 1376 * You must hold the module_mutex. 1377 */ 1378 static int verify_exported_symbols(struct module *mod) 1379 { 1380 unsigned int i; 1381 const struct kernel_symbol *s; 1382 struct { 1383 const struct kernel_symbol *sym; 1384 unsigned int num; 1385 } arr[] = { 1386 { mod->syms, mod->num_syms }, 1387 { mod->gpl_syms, mod->num_gpl_syms }, 1388 }; 1389 1390 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1391 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1392 struct find_symbol_arg fsa = { 1393 .name = kernel_symbol_name(s), 1394 .gplok = true, 1395 }; 1396 if (find_symbol(&fsa)) { 1397 pr_err("%s: exports duplicate symbol %s" 1398 " (owned by %s)\n", 1399 mod->name, kernel_symbol_name(s), 1400 module_name(fsa.owner)); 1401 return -ENOEXEC; 1402 } 1403 } 1404 } 1405 return 0; 1406 } 1407 1408 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1409 { 1410 /* 1411 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1412 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1413 * i386 has a similar problem but may not deserve a fix. 1414 * 1415 * If we ever have to ignore many symbols, consider refactoring the code to 1416 * only warn if referenced by a relocation. 1417 */ 1418 if (emachine == EM_386 || emachine == EM_X86_64) 1419 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1420 return false; 1421 } 1422 1423 /* Change all symbols so that st_value encodes the pointer directly. */ 1424 static int simplify_symbols(struct module *mod, const struct load_info *info) 1425 { 1426 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1427 Elf_Sym *sym = (void *)symsec->sh_addr; 1428 unsigned long secbase; 1429 unsigned int i; 1430 int ret = 0; 1431 const struct kernel_symbol *ksym; 1432 1433 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1434 const char *name = info->strtab + sym[i].st_name; 1435 1436 switch (sym[i].st_shndx) { 1437 case SHN_COMMON: 1438 /* Ignore common symbols */ 1439 if (!strncmp(name, "__gnu_lto", 9)) 1440 break; 1441 1442 /* 1443 * We compiled with -fno-common. These are not 1444 * supposed to happen. 1445 */ 1446 pr_debug("Common symbol: %s\n", name); 1447 pr_warn("%s: please compile with -fno-common\n", 1448 mod->name); 1449 ret = -ENOEXEC; 1450 break; 1451 1452 case SHN_ABS: 1453 /* Don't need to do anything */ 1454 pr_debug("Absolute symbol: 0x%08lx %s\n", 1455 (long)sym[i].st_value, name); 1456 break; 1457 1458 case SHN_LIVEPATCH: 1459 /* Livepatch symbols are resolved by livepatch */ 1460 break; 1461 1462 case SHN_UNDEF: 1463 ksym = resolve_symbol_wait(mod, info, name); 1464 /* Ok if resolved. */ 1465 if (ksym && !IS_ERR(ksym)) { 1466 sym[i].st_value = kernel_symbol_value(ksym); 1467 break; 1468 } 1469 1470 /* Ok if weak or ignored. */ 1471 if (!ksym && 1472 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1473 ignore_undef_symbol(info->hdr->e_machine, name))) 1474 break; 1475 1476 ret = PTR_ERR(ksym) ?: -ENOENT; 1477 pr_warn("%s: Unknown symbol %s (err %d)\n", 1478 mod->name, name, ret); 1479 break; 1480 1481 default: 1482 /* Divert to percpu allocation if a percpu var. */ 1483 if (sym[i].st_shndx == info->index.pcpu) 1484 secbase = (unsigned long)mod_percpu(mod); 1485 else 1486 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1487 sym[i].st_value += secbase; 1488 break; 1489 } 1490 } 1491 1492 return ret; 1493 } 1494 1495 static int apply_relocations(struct module *mod, const struct load_info *info) 1496 { 1497 unsigned int i; 1498 int err = 0; 1499 1500 /* Now do relocations. */ 1501 for (i = 1; i < info->hdr->e_shnum; i++) { 1502 unsigned int infosec = info->sechdrs[i].sh_info; 1503 1504 /* Not a valid relocation section? */ 1505 if (infosec >= info->hdr->e_shnum) 1506 continue; 1507 1508 /* Don't bother with non-allocated sections */ 1509 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1510 continue; 1511 1512 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1513 err = klp_apply_section_relocs(mod, info->sechdrs, 1514 info->secstrings, 1515 info->strtab, 1516 info->index.sym, i, 1517 NULL); 1518 else if (info->sechdrs[i].sh_type == SHT_REL) 1519 err = apply_relocate(info->sechdrs, info->strtab, 1520 info->index.sym, i, mod); 1521 else if (info->sechdrs[i].sh_type == SHT_RELA) 1522 err = apply_relocate_add(info->sechdrs, info->strtab, 1523 info->index.sym, i, mod); 1524 if (err < 0) 1525 break; 1526 } 1527 return err; 1528 } 1529 1530 /* Additional bytes needed by arch in front of individual sections */ 1531 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1532 unsigned int section) 1533 { 1534 /* default implementation just returns zero */ 1535 return 0; 1536 } 1537 1538 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1539 Elf_Shdr *sechdr, unsigned int section) 1540 { 1541 long offset; 1542 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1543 1544 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1545 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1546 mod->mem[type].size = offset + sechdr->sh_size; 1547 1548 WARN_ON_ONCE(offset & mask); 1549 return offset | mask; 1550 } 1551 1552 bool module_init_layout_section(const char *sname) 1553 { 1554 #ifndef CONFIG_MODULE_UNLOAD 1555 if (module_exit_section(sname)) 1556 return true; 1557 #endif 1558 return module_init_section(sname); 1559 } 1560 1561 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1562 { 1563 unsigned int m, i; 1564 1565 static const unsigned long masks[][2] = { 1566 /* 1567 * NOTE: all executable code must be the first section 1568 * in this array; otherwise modify the text_size 1569 * finder in the two loops below 1570 */ 1571 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1572 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1573 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1574 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1575 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1576 }; 1577 static const int core_m_to_mem_type[] = { 1578 MOD_TEXT, 1579 MOD_RODATA, 1580 MOD_RO_AFTER_INIT, 1581 MOD_DATA, 1582 MOD_DATA, 1583 }; 1584 static const int init_m_to_mem_type[] = { 1585 MOD_INIT_TEXT, 1586 MOD_INIT_RODATA, 1587 MOD_INVALID, 1588 MOD_INIT_DATA, 1589 MOD_INIT_DATA, 1590 }; 1591 1592 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1593 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1594 1595 for (i = 0; i < info->hdr->e_shnum; ++i) { 1596 Elf_Shdr *s = &info->sechdrs[i]; 1597 const char *sname = info->secstrings + s->sh_name; 1598 1599 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1600 || (s->sh_flags & masks[m][1]) 1601 || s->sh_entsize != ~0UL 1602 || is_init != module_init_layout_section(sname)) 1603 continue; 1604 1605 if (WARN_ON_ONCE(type == MOD_INVALID)) 1606 continue; 1607 1608 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1609 pr_debug("\t%s\n", sname); 1610 } 1611 } 1612 } 1613 1614 /* 1615 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1616 * might -- code, read-only data, read-write data, small data. Tally 1617 * sizes, and place the offsets into sh_entsize fields: high bit means it 1618 * belongs in init. 1619 */ 1620 static void layout_sections(struct module *mod, struct load_info *info) 1621 { 1622 unsigned int i; 1623 1624 for (i = 0; i < info->hdr->e_shnum; i++) 1625 info->sechdrs[i].sh_entsize = ~0UL; 1626 1627 pr_debug("Core section allocation order for %s:\n", mod->name); 1628 __layout_sections(mod, info, false); 1629 1630 pr_debug("Init section allocation order for %s:\n", mod->name); 1631 __layout_sections(mod, info, true); 1632 } 1633 1634 static void module_license_taint_check(struct module *mod, const char *license) 1635 { 1636 if (!license) 1637 license = "unspecified"; 1638 1639 if (!license_is_gpl_compatible(license)) { 1640 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1641 pr_warn("%s: module license '%s' taints kernel.\n", 1642 mod->name, license); 1643 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1644 LOCKDEP_NOW_UNRELIABLE); 1645 } 1646 } 1647 1648 static void setup_modinfo(struct module *mod, struct load_info *info) 1649 { 1650 struct module_attribute *attr; 1651 int i; 1652 1653 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1654 if (attr->setup) 1655 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1656 } 1657 } 1658 1659 static void free_modinfo(struct module *mod) 1660 { 1661 struct module_attribute *attr; 1662 int i; 1663 1664 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1665 if (attr->free) 1666 attr->free(mod); 1667 } 1668 } 1669 1670 bool __weak module_init_section(const char *name) 1671 { 1672 return strstarts(name, ".init"); 1673 } 1674 1675 bool __weak module_exit_section(const char *name) 1676 { 1677 return strstarts(name, ".exit"); 1678 } 1679 1680 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1681 { 1682 #if defined(CONFIG_64BIT) 1683 unsigned long long secend; 1684 #else 1685 unsigned long secend; 1686 #endif 1687 1688 /* 1689 * Check for both overflow and offset/size being 1690 * too large. 1691 */ 1692 secend = shdr->sh_offset + shdr->sh_size; 1693 if (secend < shdr->sh_offset || secend > info->len) 1694 return -ENOEXEC; 1695 1696 return 0; 1697 } 1698 1699 /** 1700 * elf_validity_ehdr() - Checks an ELF header for module validity 1701 * @info: Load info containing the ELF header to check 1702 * 1703 * Checks whether an ELF header could belong to a valid module. Checks: 1704 * 1705 * * ELF header is within the data the user provided 1706 * * ELF magic is present 1707 * * It is relocatable (not final linked, not core file, etc.) 1708 * * The header's machine type matches what the architecture expects. 1709 * * Optional arch-specific hook for other properties 1710 * - module_elf_check_arch() is currently only used by PPC to check 1711 * ELF ABI version, but may be used by others in the future. 1712 * 1713 * Return: %0 if valid, %-ENOEXEC on failure. 1714 */ 1715 static int elf_validity_ehdr(const struct load_info *info) 1716 { 1717 if (info->len < sizeof(*(info->hdr))) { 1718 pr_err("Invalid ELF header len %lu\n", info->len); 1719 return -ENOEXEC; 1720 } 1721 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1722 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1723 return -ENOEXEC; 1724 } 1725 if (info->hdr->e_type != ET_REL) { 1726 pr_err("Invalid ELF header type: %u != %u\n", 1727 info->hdr->e_type, ET_REL); 1728 return -ENOEXEC; 1729 } 1730 if (!elf_check_arch(info->hdr)) { 1731 pr_err("Invalid architecture in ELF header: %u\n", 1732 info->hdr->e_machine); 1733 return -ENOEXEC; 1734 } 1735 if (!module_elf_check_arch(info->hdr)) { 1736 pr_err("Invalid module architecture in ELF header: %u\n", 1737 info->hdr->e_machine); 1738 return -ENOEXEC; 1739 } 1740 return 0; 1741 } 1742 1743 /** 1744 * elf_validity_cache_sechdrs() - Cache section headers if valid 1745 * @info: Load info to compute section headers from 1746 * 1747 * Checks: 1748 * 1749 * * ELF header is valid (see elf_validity_ehdr()) 1750 * * Section headers are the size we expect 1751 * * Section array fits in the user provided data 1752 * * Section index 0 is NULL 1753 * * Section contents are inbounds 1754 * 1755 * Then updates @info with a &load_info->sechdrs pointer if valid. 1756 * 1757 * Return: %0 if valid, negative error code if validation failed. 1758 */ 1759 static int elf_validity_cache_sechdrs(struct load_info *info) 1760 { 1761 Elf_Shdr *sechdrs; 1762 Elf_Shdr *shdr; 1763 int i; 1764 int err; 1765 1766 err = elf_validity_ehdr(info); 1767 if (err < 0) 1768 return err; 1769 1770 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1771 pr_err("Invalid ELF section header size\n"); 1772 return -ENOEXEC; 1773 } 1774 1775 /* 1776 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1777 * known and small. So e_shnum * sizeof(Elf_Shdr) 1778 * will not overflow unsigned long on any platform. 1779 */ 1780 if (info->hdr->e_shoff >= info->len 1781 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1782 info->len - info->hdr->e_shoff)) { 1783 pr_err("Invalid ELF section header overflow\n"); 1784 return -ENOEXEC; 1785 } 1786 1787 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1788 1789 /* 1790 * The code assumes that section 0 has a length of zero and 1791 * an addr of zero, so check for it. 1792 */ 1793 if (sechdrs[0].sh_type != SHT_NULL 1794 || sechdrs[0].sh_size != 0 1795 || sechdrs[0].sh_addr != 0) { 1796 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1797 sechdrs[0].sh_type); 1798 return -ENOEXEC; 1799 } 1800 1801 /* Validate contents are inbounds */ 1802 for (i = 1; i < info->hdr->e_shnum; i++) { 1803 shdr = &sechdrs[i]; 1804 switch (shdr->sh_type) { 1805 case SHT_NULL: 1806 case SHT_NOBITS: 1807 /* No contents, offset/size don't mean anything */ 1808 continue; 1809 default: 1810 err = validate_section_offset(info, shdr); 1811 if (err < 0) { 1812 pr_err("Invalid ELF section in module (section %u type %u)\n", 1813 i, shdr->sh_type); 1814 return err; 1815 } 1816 } 1817 } 1818 1819 info->sechdrs = sechdrs; 1820 1821 return 0; 1822 } 1823 1824 /** 1825 * elf_validity_cache_secstrings() - Caches section names if valid 1826 * @info: Load info to cache section names from. Must have valid sechdrs. 1827 * 1828 * Specifically checks: 1829 * 1830 * * Section name table index is inbounds of section headers 1831 * * Section name table is not empty 1832 * * Section name table is NUL terminated 1833 * * All section name offsets are inbounds of the section 1834 * 1835 * Then updates @info with a &load_info->secstrings pointer if valid. 1836 * 1837 * Return: %0 if valid, negative error code if validation failed. 1838 */ 1839 static int elf_validity_cache_secstrings(struct load_info *info) 1840 { 1841 Elf_Shdr *strhdr, *shdr; 1842 char *secstrings; 1843 int i; 1844 1845 /* 1846 * Verify if the section name table index is valid. 1847 */ 1848 if (info->hdr->e_shstrndx == SHN_UNDEF 1849 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1850 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1851 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1852 info->hdr->e_shnum); 1853 return -ENOEXEC; 1854 } 1855 1856 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1857 1858 /* 1859 * The section name table must be NUL-terminated, as required 1860 * by the spec. This makes strcmp and pr_* calls that access 1861 * strings in the section safe. 1862 */ 1863 secstrings = (void *)info->hdr + strhdr->sh_offset; 1864 if (strhdr->sh_size == 0) { 1865 pr_err("empty section name table\n"); 1866 return -ENOEXEC; 1867 } 1868 if (secstrings[strhdr->sh_size - 1] != '\0') { 1869 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1870 return -ENOEXEC; 1871 } 1872 1873 for (i = 0; i < info->hdr->e_shnum; i++) { 1874 shdr = &info->sechdrs[i]; 1875 /* SHT_NULL means sh_name has an undefined value */ 1876 if (shdr->sh_type == SHT_NULL) 1877 continue; 1878 if (shdr->sh_name >= strhdr->sh_size) { 1879 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1880 i, shdr->sh_type); 1881 return -ENOEXEC; 1882 } 1883 } 1884 1885 info->secstrings = secstrings; 1886 return 0; 1887 } 1888 1889 /** 1890 * elf_validity_cache_index_info() - Validate and cache modinfo section 1891 * @info: Load info to populate the modinfo index on. 1892 * Must have &load_info->sechdrs and &load_info->secstrings populated 1893 * 1894 * Checks that if there is a .modinfo section, it is unique. 1895 * Then, it caches its index in &load_info->index.info. 1896 * Finally, it tries to populate the name to improve error messages. 1897 * 1898 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1899 */ 1900 static int elf_validity_cache_index_info(struct load_info *info) 1901 { 1902 int info_idx; 1903 1904 info_idx = find_any_unique_sec(info, ".modinfo"); 1905 1906 if (info_idx == 0) 1907 /* Early return, no .modinfo */ 1908 return 0; 1909 1910 if (info_idx < 0) { 1911 pr_err("Only one .modinfo section must exist.\n"); 1912 return -ENOEXEC; 1913 } 1914 1915 info->index.info = info_idx; 1916 /* Try to find a name early so we can log errors with a module name */ 1917 info->name = get_modinfo(info, "name"); 1918 1919 return 0; 1920 } 1921 1922 /** 1923 * elf_validity_cache_index_mod() - Validates and caches this_module section 1924 * @info: Load info to cache this_module on. 1925 * Must have &load_info->sechdrs and &load_info->secstrings populated 1926 * 1927 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 1928 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 1929 * to &__this_module properly. The kernel's modpost declares it on each 1930 * modules's *.mod.c file. If the struct module of the kernel changes a full 1931 * kernel rebuild is required. 1932 * 1933 * We have a few expectations for this special section, this function 1934 * validates all this for us: 1935 * 1936 * * The section has contents 1937 * * The section is unique 1938 * * We expect the kernel to always have to allocate it: SHF_ALLOC 1939 * * The section size must match the kernel's run time's struct module 1940 * size 1941 * 1942 * If all checks pass, the index will be cached in &load_info->index.mod 1943 * 1944 * Return: %0 on validation success, %-ENOEXEC on failure 1945 */ 1946 static int elf_validity_cache_index_mod(struct load_info *info) 1947 { 1948 Elf_Shdr *shdr; 1949 int mod_idx; 1950 1951 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 1952 if (mod_idx <= 0) { 1953 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 1954 info->name ?: "(missing .modinfo section or name field)"); 1955 return -ENOEXEC; 1956 } 1957 1958 shdr = &info->sechdrs[mod_idx]; 1959 1960 if (shdr->sh_type == SHT_NOBITS) { 1961 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1962 info->name ?: "(missing .modinfo section or name field)"); 1963 return -ENOEXEC; 1964 } 1965 1966 if (!(shdr->sh_flags & SHF_ALLOC)) { 1967 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1968 info->name ?: "(missing .modinfo section or name field)"); 1969 return -ENOEXEC; 1970 } 1971 1972 if (shdr->sh_size != sizeof(struct module)) { 1973 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1974 info->name ?: "(missing .modinfo section or name field)"); 1975 return -ENOEXEC; 1976 } 1977 1978 info->index.mod = mod_idx; 1979 1980 return 0; 1981 } 1982 1983 /** 1984 * elf_validity_cache_index_sym() - Validate and cache symtab index 1985 * @info: Load info to cache symtab index in. 1986 * Must have &load_info->sechdrs and &load_info->secstrings populated. 1987 * 1988 * Checks that there is exactly one symbol table, then caches its index in 1989 * &load_info->index.sym. 1990 * 1991 * Return: %0 if valid, %-ENOEXEC on failure. 1992 */ 1993 static int elf_validity_cache_index_sym(struct load_info *info) 1994 { 1995 unsigned int sym_idx; 1996 unsigned int num_sym_secs = 0; 1997 int i; 1998 1999 for (i = 1; i < info->hdr->e_shnum; i++) { 2000 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2001 num_sym_secs++; 2002 sym_idx = i; 2003 } 2004 } 2005 2006 if (num_sym_secs != 1) { 2007 pr_warn("%s: module has no symbols (stripped?)\n", 2008 info->name ?: "(missing .modinfo section or name field)"); 2009 return -ENOEXEC; 2010 } 2011 2012 info->index.sym = sym_idx; 2013 2014 return 0; 2015 } 2016 2017 /** 2018 * elf_validity_cache_index_str() - Validate and cache strtab index 2019 * @info: Load info to cache strtab index in. 2020 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2021 * Must have &load_info->index.sym populated. 2022 * 2023 * Looks at the symbol table's associated string table, makes sure it is 2024 * in-bounds, and caches it. 2025 * 2026 * Return: %0 if valid, %-ENOEXEC on failure. 2027 */ 2028 static int elf_validity_cache_index_str(struct load_info *info) 2029 { 2030 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2031 2032 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2033 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2034 str_idx, str_idx, info->hdr->e_shnum); 2035 return -ENOEXEC; 2036 } 2037 2038 info->index.str = str_idx; 2039 return 0; 2040 } 2041 2042 /** 2043 * elf_validity_cache_index() - Resolve, validate, cache section indices 2044 * @info: Load info to read from and update. 2045 * &load_info->sechdrs and &load_info->secstrings must be populated. 2046 * @flags: Load flags, relevant to suppress version loading, see 2047 * uapi/linux/module.h 2048 * 2049 * Populates &load_info->index, validating as it goes. 2050 * See child functions for per-field validation: 2051 * 2052 * * elf_validity_cache_index_info() 2053 * * elf_validity_cache_index_mod() 2054 * * elf_validity_cache_index_sym() 2055 * * elf_validity_cache_index_str() 2056 * 2057 * If versioning is not suppressed via flags, load the version index from 2058 * a section called "__versions" with no validation. 2059 * 2060 * If CONFIG_SMP is enabled, load the percpu section by name with no 2061 * validation. 2062 * 2063 * Return: 0 on success, negative error code if an index failed validation. 2064 */ 2065 static int elf_validity_cache_index(struct load_info *info, int flags) 2066 { 2067 int err; 2068 2069 err = elf_validity_cache_index_info(info); 2070 if (err < 0) 2071 return err; 2072 err = elf_validity_cache_index_mod(info); 2073 if (err < 0) 2074 return err; 2075 err = elf_validity_cache_index_sym(info); 2076 if (err < 0) 2077 return err; 2078 err = elf_validity_cache_index_str(info); 2079 if (err < 0) 2080 return err; 2081 2082 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 2083 info->index.vers = 0; /* Pretend no __versions section! */ 2084 else 2085 info->index.vers = find_sec(info, "__versions"); 2086 2087 info->index.pcpu = find_pcpusec(info); 2088 2089 return 0; 2090 } 2091 2092 /** 2093 * elf_validity_cache_strtab() - Validate and cache symbol string table 2094 * @info: Load info to read from and update. 2095 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2096 * Must have &load_info->index populated. 2097 * 2098 * Checks: 2099 * 2100 * * The string table is not empty. 2101 * * The string table starts and ends with NUL (required by ELF spec). 2102 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2103 * string table. 2104 * 2105 * And caches the pointer as &load_info->strtab in @info. 2106 * 2107 * Return: 0 on success, negative error code if a check failed. 2108 */ 2109 static int elf_validity_cache_strtab(struct load_info *info) 2110 { 2111 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2112 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2113 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2114 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2115 int i; 2116 2117 if (str_shdr->sh_size == 0) { 2118 pr_err("empty symbol string table\n"); 2119 return -ENOEXEC; 2120 } 2121 if (strtab[0] != '\0') { 2122 pr_err("symbol string table missing leading NUL\n"); 2123 return -ENOEXEC; 2124 } 2125 if (strtab[str_shdr->sh_size - 1] != '\0') { 2126 pr_err("symbol string table isn't NUL terminated\n"); 2127 return -ENOEXEC; 2128 } 2129 2130 /* 2131 * Now that we know strtab is correctly structured, check symbol 2132 * starts are inbounds before they're used later. 2133 */ 2134 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2135 if (syms[i].st_name >= str_shdr->sh_size) { 2136 pr_err("symbol name out of bounds in string table"); 2137 return -ENOEXEC; 2138 } 2139 } 2140 2141 info->strtab = strtab; 2142 return 0; 2143 } 2144 2145 /* 2146 * Check userspace passed ELF module against our expectations, and cache 2147 * useful variables for further processing as we go. 2148 * 2149 * This does basic validity checks against section offsets and sizes, the 2150 * section name string table, and the indices used for it (sh_name). 2151 * 2152 * As a last step, since we're already checking the ELF sections we cache 2153 * useful variables which will be used later for our convenience: 2154 * 2155 * o pointers to section headers 2156 * o cache the modinfo symbol section 2157 * o cache the string symbol section 2158 * o cache the module section 2159 * 2160 * As a last step we set info->mod to the temporary copy of the module in 2161 * info->hdr. The final one will be allocated in move_module(). Any 2162 * modifications we make to our copy of the module will be carried over 2163 * to the final minted module. 2164 */ 2165 static int elf_validity_cache_copy(struct load_info *info, int flags) 2166 { 2167 int err; 2168 2169 err = elf_validity_cache_sechdrs(info); 2170 if (err < 0) 2171 return err; 2172 err = elf_validity_cache_secstrings(info); 2173 if (err < 0) 2174 return err; 2175 err = elf_validity_cache_index(info, flags); 2176 if (err < 0) 2177 return err; 2178 err = elf_validity_cache_strtab(info); 2179 if (err < 0) 2180 return err; 2181 2182 /* This is temporary: point mod into copy of data. */ 2183 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2184 2185 /* 2186 * If we didn't load the .modinfo 'name' field earlier, fall back to 2187 * on-disk struct mod 'name' field. 2188 */ 2189 if (!info->name) 2190 info->name = info->mod->name; 2191 2192 return 0; 2193 } 2194 2195 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2196 2197 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2198 { 2199 do { 2200 unsigned long n = min(len, COPY_CHUNK_SIZE); 2201 2202 if (copy_from_user(dst, usrc, n) != 0) 2203 return -EFAULT; 2204 cond_resched(); 2205 dst += n; 2206 usrc += n; 2207 len -= n; 2208 } while (len); 2209 return 0; 2210 } 2211 2212 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2213 { 2214 if (!get_modinfo(info, "livepatch")) 2215 /* Nothing more to do */ 2216 return 0; 2217 2218 if (set_livepatch_module(mod)) 2219 return 0; 2220 2221 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2222 mod->name); 2223 return -ENOEXEC; 2224 } 2225 2226 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2227 { 2228 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2229 return; 2230 2231 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2232 mod->name); 2233 } 2234 2235 /* Sets info->hdr and info->len. */ 2236 static int copy_module_from_user(const void __user *umod, unsigned long len, 2237 struct load_info *info) 2238 { 2239 int err; 2240 2241 info->len = len; 2242 if (info->len < sizeof(*(info->hdr))) 2243 return -ENOEXEC; 2244 2245 err = security_kernel_load_data(LOADING_MODULE, true); 2246 if (err) 2247 return err; 2248 2249 /* Suck in entire file: we'll want most of it. */ 2250 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2251 if (!info->hdr) 2252 return -ENOMEM; 2253 2254 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2255 err = -EFAULT; 2256 goto out; 2257 } 2258 2259 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2260 LOADING_MODULE, "init_module"); 2261 out: 2262 if (err) 2263 vfree(info->hdr); 2264 2265 return err; 2266 } 2267 2268 static void free_copy(struct load_info *info, int flags) 2269 { 2270 if (flags & MODULE_INIT_COMPRESSED_FILE) 2271 module_decompress_cleanup(info); 2272 else 2273 vfree(info->hdr); 2274 } 2275 2276 static int rewrite_section_headers(struct load_info *info, int flags) 2277 { 2278 unsigned int i; 2279 2280 /* This should always be true, but let's be sure. */ 2281 info->sechdrs[0].sh_addr = 0; 2282 2283 for (i = 1; i < info->hdr->e_shnum; i++) { 2284 Elf_Shdr *shdr = &info->sechdrs[i]; 2285 2286 /* 2287 * Mark all sections sh_addr with their address in the 2288 * temporary image. 2289 */ 2290 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2291 2292 } 2293 2294 /* Track but don't keep modinfo and version sections. */ 2295 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2296 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2297 2298 return 0; 2299 } 2300 2301 /* 2302 * These calls taint the kernel depending certain module circumstances */ 2303 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2304 { 2305 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2306 2307 if (!get_modinfo(info, "intree")) { 2308 if (!test_taint(TAINT_OOT_MODULE)) 2309 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2310 mod->name); 2311 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2312 } 2313 2314 check_modinfo_retpoline(mod, info); 2315 2316 if (get_modinfo(info, "staging")) { 2317 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2318 pr_warn("%s: module is from the staging directory, the quality " 2319 "is unknown, you have been warned.\n", mod->name); 2320 } 2321 2322 if (is_livepatch_module(mod)) { 2323 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2324 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2325 mod->name); 2326 } 2327 2328 module_license_taint_check(mod, get_modinfo(info, "license")); 2329 2330 if (get_modinfo(info, "test")) { 2331 if (!test_taint(TAINT_TEST)) 2332 pr_warn("%s: loading test module taints kernel.\n", 2333 mod->name); 2334 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2335 } 2336 #ifdef CONFIG_MODULE_SIG 2337 mod->sig_ok = info->sig_ok; 2338 if (!mod->sig_ok) { 2339 pr_notice_once("%s: module verification failed: signature " 2340 "and/or required key missing - tainting " 2341 "kernel\n", mod->name); 2342 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2343 } 2344 #endif 2345 2346 /* 2347 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2348 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2349 * using GPL-only symbols it needs. 2350 */ 2351 if (strcmp(mod->name, "ndiswrapper") == 0) 2352 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2353 2354 /* driverloader was caught wrongly pretending to be under GPL */ 2355 if (strcmp(mod->name, "driverloader") == 0) 2356 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2357 LOCKDEP_NOW_UNRELIABLE); 2358 2359 /* lve claims to be GPL but upstream won't provide source */ 2360 if (strcmp(mod->name, "lve") == 0) 2361 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2362 LOCKDEP_NOW_UNRELIABLE); 2363 2364 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2365 pr_warn("%s: module license taints kernel.\n", mod->name); 2366 2367 } 2368 2369 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2370 { 2371 const char *modmagic = get_modinfo(info, "vermagic"); 2372 int err; 2373 2374 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2375 modmagic = NULL; 2376 2377 /* This is allowed: modprobe --force will invalidate it. */ 2378 if (!modmagic) { 2379 err = try_to_force_load(mod, "bad vermagic"); 2380 if (err) 2381 return err; 2382 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2383 pr_err("%s: version magic '%s' should be '%s'\n", 2384 info->name, modmagic, vermagic); 2385 return -ENOEXEC; 2386 } 2387 2388 err = check_modinfo_livepatch(mod, info); 2389 if (err) 2390 return err; 2391 2392 return 0; 2393 } 2394 2395 static int find_module_sections(struct module *mod, struct load_info *info) 2396 { 2397 mod->kp = section_objs(info, "__param", 2398 sizeof(*mod->kp), &mod->num_kp); 2399 mod->syms = section_objs(info, "__ksymtab", 2400 sizeof(*mod->syms), &mod->num_syms); 2401 mod->crcs = section_addr(info, "__kcrctab"); 2402 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2403 sizeof(*mod->gpl_syms), 2404 &mod->num_gpl_syms); 2405 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2406 2407 #ifdef CONFIG_CONSTRUCTORS 2408 mod->ctors = section_objs(info, ".ctors", 2409 sizeof(*mod->ctors), &mod->num_ctors); 2410 if (!mod->ctors) 2411 mod->ctors = section_objs(info, ".init_array", 2412 sizeof(*mod->ctors), &mod->num_ctors); 2413 else if (find_sec(info, ".init_array")) { 2414 /* 2415 * This shouldn't happen with same compiler and binutils 2416 * building all parts of the module. 2417 */ 2418 pr_warn("%s: has both .ctors and .init_array.\n", 2419 mod->name); 2420 return -EINVAL; 2421 } 2422 #endif 2423 2424 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2425 &mod->noinstr_text_size); 2426 2427 #ifdef CONFIG_TRACEPOINTS 2428 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2429 sizeof(*mod->tracepoints_ptrs), 2430 &mod->num_tracepoints); 2431 #endif 2432 #ifdef CONFIG_TREE_SRCU 2433 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2434 sizeof(*mod->srcu_struct_ptrs), 2435 &mod->num_srcu_structs); 2436 #endif 2437 #ifdef CONFIG_BPF_EVENTS 2438 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2439 sizeof(*mod->bpf_raw_events), 2440 &mod->num_bpf_raw_events); 2441 #endif 2442 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2443 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2444 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2445 &mod->btf_base_data_size); 2446 #endif 2447 #ifdef CONFIG_JUMP_LABEL 2448 mod->jump_entries = section_objs(info, "__jump_table", 2449 sizeof(*mod->jump_entries), 2450 &mod->num_jump_entries); 2451 #endif 2452 #ifdef CONFIG_EVENT_TRACING 2453 mod->trace_events = section_objs(info, "_ftrace_events", 2454 sizeof(*mod->trace_events), 2455 &mod->num_trace_events); 2456 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2457 sizeof(*mod->trace_evals), 2458 &mod->num_trace_evals); 2459 #endif 2460 #ifdef CONFIG_TRACING 2461 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2462 sizeof(*mod->trace_bprintk_fmt_start), 2463 &mod->num_trace_bprintk_fmt); 2464 #endif 2465 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2466 /* sechdrs[0].sh_size is always zero */ 2467 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2468 sizeof(*mod->ftrace_callsites), 2469 &mod->num_ftrace_callsites); 2470 #endif 2471 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2472 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2473 sizeof(*mod->ei_funcs), 2474 &mod->num_ei_funcs); 2475 #endif 2476 #ifdef CONFIG_KPROBES 2477 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2478 &mod->kprobes_text_size); 2479 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2480 sizeof(unsigned long), 2481 &mod->num_kprobe_blacklist); 2482 #endif 2483 #ifdef CONFIG_PRINTK_INDEX 2484 mod->printk_index_start = section_objs(info, ".printk_index", 2485 sizeof(*mod->printk_index_start), 2486 &mod->printk_index_size); 2487 #endif 2488 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2489 mod->static_call_sites = section_objs(info, ".static_call_sites", 2490 sizeof(*mod->static_call_sites), 2491 &mod->num_static_call_sites); 2492 #endif 2493 #if IS_ENABLED(CONFIG_KUNIT) 2494 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2495 sizeof(*mod->kunit_suites), 2496 &mod->num_kunit_suites); 2497 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2498 sizeof(*mod->kunit_init_suites), 2499 &mod->num_kunit_init_suites); 2500 #endif 2501 2502 mod->extable = section_objs(info, "__ex_table", 2503 sizeof(*mod->extable), &mod->num_exentries); 2504 2505 if (section_addr(info, "__obsparm")) 2506 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2507 2508 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2509 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2510 sizeof(*mod->dyndbg_info.descs), 2511 &mod->dyndbg_info.num_descs); 2512 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2513 sizeof(*mod->dyndbg_info.classes), 2514 &mod->dyndbg_info.num_classes); 2515 #endif 2516 2517 return 0; 2518 } 2519 2520 static int move_module(struct module *mod, struct load_info *info) 2521 { 2522 int i; 2523 enum mod_mem_type t = 0; 2524 int ret = -ENOMEM; 2525 2526 for_each_mod_mem_type(type) { 2527 if (!mod->mem[type].size) { 2528 mod->mem[type].base = NULL; 2529 continue; 2530 } 2531 2532 ret = module_memory_alloc(mod, type); 2533 if (ret) { 2534 t = type; 2535 goto out_enomem; 2536 } 2537 } 2538 2539 /* Transfer each section which specifies SHF_ALLOC */ 2540 pr_debug("Final section addresses for %s:\n", mod->name); 2541 for (i = 0; i < info->hdr->e_shnum; i++) { 2542 void *dest; 2543 Elf_Shdr *shdr = &info->sechdrs[i]; 2544 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2545 2546 if (!(shdr->sh_flags & SHF_ALLOC)) 2547 continue; 2548 2549 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK); 2550 2551 if (shdr->sh_type != SHT_NOBITS) { 2552 /* 2553 * Our ELF checker already validated this, but let's 2554 * be pedantic and make the goal clearer. We actually 2555 * end up copying over all modifications made to the 2556 * userspace copy of the entire struct module. 2557 */ 2558 if (i == info->index.mod && 2559 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2560 ret = -ENOEXEC; 2561 goto out_enomem; 2562 } 2563 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2564 } 2565 /* 2566 * Update the userspace copy's ELF section address to point to 2567 * our newly allocated memory as a pure convenience so that 2568 * users of info can keep taking advantage and using the newly 2569 * minted official memory area. 2570 */ 2571 shdr->sh_addr = (unsigned long)dest; 2572 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2573 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2574 } 2575 2576 return 0; 2577 out_enomem: 2578 for (t--; t >= 0; t--) 2579 module_memory_free(mod, t, true); 2580 return ret; 2581 } 2582 2583 static int check_export_symbol_versions(struct module *mod) 2584 { 2585 #ifdef CONFIG_MODVERSIONS 2586 if ((mod->num_syms && !mod->crcs) || 2587 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2588 return try_to_force_load(mod, 2589 "no versions for exported symbols"); 2590 } 2591 #endif 2592 return 0; 2593 } 2594 2595 static void flush_module_icache(const struct module *mod) 2596 { 2597 /* 2598 * Flush the instruction cache, since we've played with text. 2599 * Do it before processing of module parameters, so the module 2600 * can provide parameter accessor functions of its own. 2601 */ 2602 for_each_mod_mem_type(type) { 2603 const struct module_memory *mod_mem = &mod->mem[type]; 2604 2605 if (mod_mem->size) { 2606 flush_icache_range((unsigned long)mod_mem->base, 2607 (unsigned long)mod_mem->base + mod_mem->size); 2608 } 2609 } 2610 } 2611 2612 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2613 { 2614 return true; 2615 } 2616 2617 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2618 Elf_Shdr *sechdrs, 2619 char *secstrings, 2620 struct module *mod) 2621 { 2622 return 0; 2623 } 2624 2625 /* module_blacklist is a comma-separated list of module names */ 2626 static char *module_blacklist; 2627 static bool blacklisted(const char *module_name) 2628 { 2629 const char *p; 2630 size_t len; 2631 2632 if (!module_blacklist) 2633 return false; 2634 2635 for (p = module_blacklist; *p; p += len) { 2636 len = strcspn(p, ","); 2637 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2638 return true; 2639 if (p[len] == ',') 2640 len++; 2641 } 2642 return false; 2643 } 2644 core_param(module_blacklist, module_blacklist, charp, 0400); 2645 2646 static struct module *layout_and_allocate(struct load_info *info, int flags) 2647 { 2648 struct module *mod; 2649 unsigned int ndx; 2650 int err; 2651 2652 /* Allow arches to frob section contents and sizes. */ 2653 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2654 info->secstrings, info->mod); 2655 if (err < 0) 2656 return ERR_PTR(err); 2657 2658 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2659 info->secstrings, info->mod); 2660 if (err < 0) 2661 return ERR_PTR(err); 2662 2663 /* We will do a special allocation for per-cpu sections later. */ 2664 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2665 2666 /* 2667 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2668 * layout_sections() can put it in the right place. 2669 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2670 */ 2671 ndx = find_sec(info, ".data..ro_after_init"); 2672 if (ndx) 2673 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2674 /* 2675 * Mark the __jump_table section as ro_after_init as well: these data 2676 * structures are never modified, with the exception of entries that 2677 * refer to code in the __init section, which are annotated as such 2678 * at module load time. 2679 */ 2680 ndx = find_sec(info, "__jump_table"); 2681 if (ndx) 2682 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2683 2684 /* 2685 * Determine total sizes, and put offsets in sh_entsize. For now 2686 * this is done generically; there doesn't appear to be any 2687 * special cases for the architectures. 2688 */ 2689 layout_sections(info->mod, info); 2690 layout_symtab(info->mod, info); 2691 2692 /* Allocate and move to the final place */ 2693 err = move_module(info->mod, info); 2694 if (err) 2695 return ERR_PTR(err); 2696 2697 /* Module has been copied to its final place now: return it. */ 2698 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2699 kmemleak_load_module(mod, info); 2700 return mod; 2701 } 2702 2703 /* mod is no longer valid after this! */ 2704 static void module_deallocate(struct module *mod, struct load_info *info) 2705 { 2706 percpu_modfree(mod); 2707 module_arch_freeing_init(mod); 2708 2709 free_mod_mem(mod, true); 2710 } 2711 2712 int __weak module_finalize(const Elf_Ehdr *hdr, 2713 const Elf_Shdr *sechdrs, 2714 struct module *me) 2715 { 2716 return 0; 2717 } 2718 2719 static int post_relocation(struct module *mod, const struct load_info *info) 2720 { 2721 /* Sort exception table now relocations are done. */ 2722 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2723 2724 /* Copy relocated percpu area over. */ 2725 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2726 info->sechdrs[info->index.pcpu].sh_size); 2727 2728 /* Setup kallsyms-specific fields. */ 2729 add_kallsyms(mod, info); 2730 2731 /* Arch-specific module finalizing. */ 2732 return module_finalize(info->hdr, info->sechdrs, mod); 2733 } 2734 2735 /* Call module constructors. */ 2736 static void do_mod_ctors(struct module *mod) 2737 { 2738 #ifdef CONFIG_CONSTRUCTORS 2739 unsigned long i; 2740 2741 for (i = 0; i < mod->num_ctors; i++) 2742 mod->ctors[i](); 2743 #endif 2744 } 2745 2746 /* For freeing module_init on success, in case kallsyms traversing */ 2747 struct mod_initfree { 2748 struct llist_node node; 2749 void *init_text; 2750 void *init_data; 2751 void *init_rodata; 2752 }; 2753 2754 static void do_free_init(struct work_struct *w) 2755 { 2756 struct llist_node *pos, *n, *list; 2757 struct mod_initfree *initfree; 2758 2759 list = llist_del_all(&init_free_list); 2760 2761 synchronize_rcu(); 2762 2763 llist_for_each_safe(pos, n, list) { 2764 initfree = container_of(pos, struct mod_initfree, node); 2765 execmem_free(initfree->init_text); 2766 execmem_free(initfree->init_data); 2767 execmem_free(initfree->init_rodata); 2768 kfree(initfree); 2769 } 2770 } 2771 2772 void flush_module_init_free_work(void) 2773 { 2774 flush_work(&init_free_wq); 2775 } 2776 2777 #undef MODULE_PARAM_PREFIX 2778 #define MODULE_PARAM_PREFIX "module." 2779 /* Default value for module->async_probe_requested */ 2780 static bool async_probe; 2781 module_param(async_probe, bool, 0644); 2782 2783 /* 2784 * This is where the real work happens. 2785 * 2786 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2787 * helper command 'lx-symbols'. 2788 */ 2789 static noinline int do_init_module(struct module *mod) 2790 { 2791 int ret = 0; 2792 struct mod_initfree *freeinit; 2793 #if defined(CONFIG_MODULE_STATS) 2794 unsigned int text_size = 0, total_size = 0; 2795 2796 for_each_mod_mem_type(type) { 2797 const struct module_memory *mod_mem = &mod->mem[type]; 2798 if (mod_mem->size) { 2799 total_size += mod_mem->size; 2800 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2801 text_size += mod_mem->size; 2802 } 2803 } 2804 #endif 2805 2806 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2807 if (!freeinit) { 2808 ret = -ENOMEM; 2809 goto fail; 2810 } 2811 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2812 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2813 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2814 2815 do_mod_ctors(mod); 2816 /* Start the module */ 2817 if (mod->init != NULL) 2818 ret = do_one_initcall(mod->init); 2819 if (ret < 0) { 2820 goto fail_free_freeinit; 2821 } 2822 if (ret > 0) { 2823 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2824 "follow 0/-E convention\n" 2825 "%s: loading module anyway...\n", 2826 __func__, mod->name, ret, __func__); 2827 dump_stack(); 2828 } 2829 2830 /* Now it's a first class citizen! */ 2831 mod->state = MODULE_STATE_LIVE; 2832 blocking_notifier_call_chain(&module_notify_list, 2833 MODULE_STATE_LIVE, mod); 2834 2835 /* Delay uevent until module has finished its init routine */ 2836 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2837 2838 /* 2839 * We need to finish all async code before the module init sequence 2840 * is done. This has potential to deadlock if synchronous module 2841 * loading is requested from async (which is not allowed!). 2842 * 2843 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2844 * request_module() from async workers") for more details. 2845 */ 2846 if (!mod->async_probe_requested) 2847 async_synchronize_full(); 2848 2849 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2850 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2851 mutex_lock(&module_mutex); 2852 /* Drop initial reference. */ 2853 module_put(mod); 2854 trim_init_extable(mod); 2855 #ifdef CONFIG_KALLSYMS 2856 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2857 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2858 #endif 2859 ret = module_enable_rodata_ro(mod, true); 2860 if (ret) 2861 goto fail_mutex_unlock; 2862 mod_tree_remove_init(mod); 2863 module_arch_freeing_init(mod); 2864 for_class_mod_mem_type(type, init) { 2865 mod->mem[type].base = NULL; 2866 mod->mem[type].size = 0; 2867 } 2868 2869 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2870 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 2871 mod->btf_data = NULL; 2872 mod->btf_base_data = NULL; 2873 #endif 2874 /* 2875 * We want to free module_init, but be aware that kallsyms may be 2876 * walking this with preempt disabled. In all the failure paths, we 2877 * call synchronize_rcu(), but we don't want to slow down the success 2878 * path. execmem_free() cannot be called in an interrupt, so do the 2879 * work and call synchronize_rcu() in a work queue. 2880 * 2881 * Note that execmem_alloc() on most architectures creates W+X page 2882 * mappings which won't be cleaned up until do_free_init() runs. Any 2883 * code such as mark_rodata_ro() which depends on those mappings to 2884 * be cleaned up needs to sync with the queued work by invoking 2885 * flush_module_init_free_work(). 2886 */ 2887 if (llist_add(&freeinit->node, &init_free_list)) 2888 schedule_work(&init_free_wq); 2889 2890 mutex_unlock(&module_mutex); 2891 wake_up_all(&module_wq); 2892 2893 mod_stat_add_long(text_size, &total_text_size); 2894 mod_stat_add_long(total_size, &total_mod_size); 2895 2896 mod_stat_inc(&modcount); 2897 2898 return 0; 2899 2900 fail_mutex_unlock: 2901 mutex_unlock(&module_mutex); 2902 fail_free_freeinit: 2903 kfree(freeinit); 2904 fail: 2905 /* Try to protect us from buggy refcounters. */ 2906 mod->state = MODULE_STATE_GOING; 2907 synchronize_rcu(); 2908 module_put(mod); 2909 blocking_notifier_call_chain(&module_notify_list, 2910 MODULE_STATE_GOING, mod); 2911 klp_module_going(mod); 2912 ftrace_release_mod(mod); 2913 free_module(mod); 2914 wake_up_all(&module_wq); 2915 2916 return ret; 2917 } 2918 2919 static int may_init_module(void) 2920 { 2921 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2922 return -EPERM; 2923 2924 return 0; 2925 } 2926 2927 /* Is this module of this name done loading? No locks held. */ 2928 static bool finished_loading(const char *name) 2929 { 2930 struct module *mod; 2931 bool ret; 2932 2933 /* 2934 * The module_mutex should not be a heavily contended lock; 2935 * if we get the occasional sleep here, we'll go an extra iteration 2936 * in the wait_event_interruptible(), which is harmless. 2937 */ 2938 sched_annotate_sleep(); 2939 mutex_lock(&module_mutex); 2940 mod = find_module_all(name, strlen(name), true); 2941 ret = !mod || mod->state == MODULE_STATE_LIVE 2942 || mod->state == MODULE_STATE_GOING; 2943 mutex_unlock(&module_mutex); 2944 2945 return ret; 2946 } 2947 2948 /* Must be called with module_mutex held */ 2949 static int module_patient_check_exists(const char *name, 2950 enum fail_dup_mod_reason reason) 2951 { 2952 struct module *old; 2953 int err = 0; 2954 2955 old = find_module_all(name, strlen(name), true); 2956 if (old == NULL) 2957 return 0; 2958 2959 if (old->state == MODULE_STATE_COMING || 2960 old->state == MODULE_STATE_UNFORMED) { 2961 /* Wait in case it fails to load. */ 2962 mutex_unlock(&module_mutex); 2963 err = wait_event_interruptible(module_wq, 2964 finished_loading(name)); 2965 mutex_lock(&module_mutex); 2966 if (err) 2967 return err; 2968 2969 /* The module might have gone in the meantime. */ 2970 old = find_module_all(name, strlen(name), true); 2971 } 2972 2973 if (try_add_failed_module(name, reason)) 2974 pr_warn("Could not add fail-tracking for module: %s\n", name); 2975 2976 /* 2977 * We are here only when the same module was being loaded. Do 2978 * not try to load it again right now. It prevents long delays 2979 * caused by serialized module load failures. It might happen 2980 * when more devices of the same type trigger load of 2981 * a particular module. 2982 */ 2983 if (old && old->state == MODULE_STATE_LIVE) 2984 return -EEXIST; 2985 return -EBUSY; 2986 } 2987 2988 /* 2989 * We try to place it in the list now to make sure it's unique before 2990 * we dedicate too many resources. In particular, temporary percpu 2991 * memory exhaustion. 2992 */ 2993 static int add_unformed_module(struct module *mod) 2994 { 2995 int err; 2996 2997 mod->state = MODULE_STATE_UNFORMED; 2998 2999 mutex_lock(&module_mutex); 3000 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3001 if (err) 3002 goto out; 3003 3004 mod_update_bounds(mod); 3005 list_add_rcu(&mod->list, &modules); 3006 mod_tree_insert(mod); 3007 err = 0; 3008 3009 out: 3010 mutex_unlock(&module_mutex); 3011 return err; 3012 } 3013 3014 static int complete_formation(struct module *mod, struct load_info *info) 3015 { 3016 int err; 3017 3018 mutex_lock(&module_mutex); 3019 3020 /* Find duplicate symbols (must be called under lock). */ 3021 err = verify_exported_symbols(mod); 3022 if (err < 0) 3023 goto out; 3024 3025 /* These rely on module_mutex for list integrity. */ 3026 module_bug_finalize(info->hdr, info->sechdrs, mod); 3027 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3028 3029 err = module_enable_rodata_ro(mod, false); 3030 if (err) 3031 goto out_strict_rwx; 3032 err = module_enable_data_nx(mod); 3033 if (err) 3034 goto out_strict_rwx; 3035 err = module_enable_text_rox(mod); 3036 if (err) 3037 goto out_strict_rwx; 3038 3039 /* 3040 * Mark state as coming so strong_try_module_get() ignores us, 3041 * but kallsyms etc. can see us. 3042 */ 3043 mod->state = MODULE_STATE_COMING; 3044 mutex_unlock(&module_mutex); 3045 3046 return 0; 3047 3048 out_strict_rwx: 3049 module_bug_cleanup(mod); 3050 out: 3051 mutex_unlock(&module_mutex); 3052 return err; 3053 } 3054 3055 static int prepare_coming_module(struct module *mod) 3056 { 3057 int err; 3058 3059 ftrace_module_enable(mod); 3060 err = klp_module_coming(mod); 3061 if (err) 3062 return err; 3063 3064 err = blocking_notifier_call_chain_robust(&module_notify_list, 3065 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3066 err = notifier_to_errno(err); 3067 if (err) 3068 klp_module_going(mod); 3069 3070 return err; 3071 } 3072 3073 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3074 void *arg) 3075 { 3076 struct module *mod = arg; 3077 int ret; 3078 3079 if (strcmp(param, "async_probe") == 0) { 3080 if (kstrtobool(val, &mod->async_probe_requested)) 3081 mod->async_probe_requested = true; 3082 return 0; 3083 } 3084 3085 /* Check for magic 'dyndbg' arg */ 3086 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3087 if (ret != 0) 3088 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3089 return 0; 3090 } 3091 3092 /* Module within temporary copy, this doesn't do any allocation */ 3093 static int early_mod_check(struct load_info *info, int flags) 3094 { 3095 int err; 3096 3097 /* 3098 * Now that we know we have the correct module name, check 3099 * if it's blacklisted. 3100 */ 3101 if (blacklisted(info->name)) { 3102 pr_err("Module %s is blacklisted\n", info->name); 3103 return -EPERM; 3104 } 3105 3106 err = rewrite_section_headers(info, flags); 3107 if (err) 3108 return err; 3109 3110 /* Check module struct version now, before we try to use module. */ 3111 if (!check_modstruct_version(info, info->mod)) 3112 return -ENOEXEC; 3113 3114 err = check_modinfo(info->mod, info, flags); 3115 if (err) 3116 return err; 3117 3118 mutex_lock(&module_mutex); 3119 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3120 mutex_unlock(&module_mutex); 3121 3122 return err; 3123 } 3124 3125 /* 3126 * Allocate and load the module: note that size of section 0 is always 3127 * zero, and we rely on this for optional sections. 3128 */ 3129 static int load_module(struct load_info *info, const char __user *uargs, 3130 int flags) 3131 { 3132 struct module *mod; 3133 bool module_allocated = false; 3134 long err = 0; 3135 char *after_dashes; 3136 3137 /* 3138 * Do the signature check (if any) first. All that 3139 * the signature check needs is info->len, it does 3140 * not need any of the section info. That can be 3141 * set up later. This will minimize the chances 3142 * of a corrupt module causing problems before 3143 * we even get to the signature check. 3144 * 3145 * The check will also adjust info->len by stripping 3146 * off the sig length at the end of the module, making 3147 * checks against info->len more correct. 3148 */ 3149 err = module_sig_check(info, flags); 3150 if (err) 3151 goto free_copy; 3152 3153 /* 3154 * Do basic sanity checks against the ELF header and 3155 * sections. Cache useful sections and set the 3156 * info->mod to the userspace passed struct module. 3157 */ 3158 err = elf_validity_cache_copy(info, flags); 3159 if (err) 3160 goto free_copy; 3161 3162 err = early_mod_check(info, flags); 3163 if (err) 3164 goto free_copy; 3165 3166 /* Figure out module layout, and allocate all the memory. */ 3167 mod = layout_and_allocate(info, flags); 3168 if (IS_ERR(mod)) { 3169 err = PTR_ERR(mod); 3170 goto free_copy; 3171 } 3172 3173 module_allocated = true; 3174 3175 audit_log_kern_module(mod->name); 3176 3177 /* Reserve our place in the list. */ 3178 err = add_unformed_module(mod); 3179 if (err) 3180 goto free_module; 3181 3182 /* 3183 * We are tainting your kernel if your module gets into 3184 * the modules linked list somehow. 3185 */ 3186 module_augment_kernel_taints(mod, info); 3187 3188 /* To avoid stressing percpu allocator, do this once we're unique. */ 3189 err = percpu_modalloc(mod, info); 3190 if (err) 3191 goto unlink_mod; 3192 3193 /* Now module is in final location, initialize linked lists, etc. */ 3194 err = module_unload_init(mod); 3195 if (err) 3196 goto unlink_mod; 3197 3198 init_param_lock(mod); 3199 3200 /* 3201 * Now we've got everything in the final locations, we can 3202 * find optional sections. 3203 */ 3204 err = find_module_sections(mod, info); 3205 if (err) 3206 goto free_unload; 3207 3208 err = check_export_symbol_versions(mod); 3209 if (err) 3210 goto free_unload; 3211 3212 /* Set up MODINFO_ATTR fields */ 3213 setup_modinfo(mod, info); 3214 3215 /* Fix up syms, so that st_value is a pointer to location. */ 3216 err = simplify_symbols(mod, info); 3217 if (err < 0) 3218 goto free_modinfo; 3219 3220 err = apply_relocations(mod, info); 3221 if (err < 0) 3222 goto free_modinfo; 3223 3224 err = post_relocation(mod, info); 3225 if (err < 0) 3226 goto free_modinfo; 3227 3228 flush_module_icache(mod); 3229 3230 /* Now copy in args */ 3231 mod->args = strndup_user(uargs, ~0UL >> 1); 3232 if (IS_ERR(mod->args)) { 3233 err = PTR_ERR(mod->args); 3234 goto free_arch_cleanup; 3235 } 3236 3237 init_build_id(mod, info); 3238 3239 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3240 ftrace_module_init(mod); 3241 3242 /* Finally it's fully formed, ready to start executing. */ 3243 err = complete_formation(mod, info); 3244 if (err) 3245 goto ddebug_cleanup; 3246 3247 err = prepare_coming_module(mod); 3248 if (err) 3249 goto bug_cleanup; 3250 3251 mod->async_probe_requested = async_probe; 3252 3253 /* Module is ready to execute: parsing args may do that. */ 3254 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3255 -32768, 32767, mod, 3256 unknown_module_param_cb); 3257 if (IS_ERR(after_dashes)) { 3258 err = PTR_ERR(after_dashes); 3259 goto coming_cleanup; 3260 } else if (after_dashes) { 3261 pr_warn("%s: parameters '%s' after `--' ignored\n", 3262 mod->name, after_dashes); 3263 } 3264 3265 /* Link in to sysfs. */ 3266 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3267 if (err < 0) 3268 goto coming_cleanup; 3269 3270 if (is_livepatch_module(mod)) { 3271 err = copy_module_elf(mod, info); 3272 if (err < 0) 3273 goto sysfs_cleanup; 3274 } 3275 3276 /* Get rid of temporary copy. */ 3277 free_copy(info, flags); 3278 3279 codetag_load_module(mod); 3280 3281 /* Done! */ 3282 trace_module_load(mod); 3283 3284 return do_init_module(mod); 3285 3286 sysfs_cleanup: 3287 mod_sysfs_teardown(mod); 3288 coming_cleanup: 3289 mod->state = MODULE_STATE_GOING; 3290 destroy_params(mod->kp, mod->num_kp); 3291 blocking_notifier_call_chain(&module_notify_list, 3292 MODULE_STATE_GOING, mod); 3293 klp_module_going(mod); 3294 bug_cleanup: 3295 mod->state = MODULE_STATE_GOING; 3296 /* module_bug_cleanup needs module_mutex protection */ 3297 mutex_lock(&module_mutex); 3298 module_bug_cleanup(mod); 3299 mutex_unlock(&module_mutex); 3300 3301 ddebug_cleanup: 3302 ftrace_release_mod(mod); 3303 synchronize_rcu(); 3304 kfree(mod->args); 3305 free_arch_cleanup: 3306 module_arch_cleanup(mod); 3307 free_modinfo: 3308 free_modinfo(mod); 3309 free_unload: 3310 module_unload_free(mod); 3311 unlink_mod: 3312 mutex_lock(&module_mutex); 3313 /* Unlink carefully: kallsyms could be walking list. */ 3314 list_del_rcu(&mod->list); 3315 mod_tree_remove(mod); 3316 wake_up_all(&module_wq); 3317 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3318 synchronize_rcu(); 3319 mutex_unlock(&module_mutex); 3320 free_module: 3321 mod_stat_bump_invalid(info, flags); 3322 /* Free lock-classes; relies on the preceding sync_rcu() */ 3323 for_class_mod_mem_type(type, core_data) { 3324 lockdep_free_key_range(mod->mem[type].base, 3325 mod->mem[type].size); 3326 } 3327 3328 module_deallocate(mod, info); 3329 free_copy: 3330 /* 3331 * The info->len is always set. We distinguish between 3332 * failures once the proper module was allocated and 3333 * before that. 3334 */ 3335 if (!module_allocated) 3336 mod_stat_bump_becoming(info, flags); 3337 free_copy(info, flags); 3338 return err; 3339 } 3340 3341 SYSCALL_DEFINE3(init_module, void __user *, umod, 3342 unsigned long, len, const char __user *, uargs) 3343 { 3344 int err; 3345 struct load_info info = { }; 3346 3347 err = may_init_module(); 3348 if (err) 3349 return err; 3350 3351 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3352 umod, len, uargs); 3353 3354 err = copy_module_from_user(umod, len, &info); 3355 if (err) { 3356 mod_stat_inc(&failed_kreads); 3357 mod_stat_add_long(len, &invalid_kread_bytes); 3358 return err; 3359 } 3360 3361 return load_module(&info, uargs, 0); 3362 } 3363 3364 struct idempotent { 3365 const void *cookie; 3366 struct hlist_node entry; 3367 struct completion complete; 3368 int ret; 3369 }; 3370 3371 #define IDEM_HASH_BITS 8 3372 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3373 static DEFINE_SPINLOCK(idem_lock); 3374 3375 static bool idempotent(struct idempotent *u, const void *cookie) 3376 { 3377 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3378 struct hlist_head *head = idem_hash + hash; 3379 struct idempotent *existing; 3380 bool first; 3381 3382 u->ret = -EINTR; 3383 u->cookie = cookie; 3384 init_completion(&u->complete); 3385 3386 spin_lock(&idem_lock); 3387 first = true; 3388 hlist_for_each_entry(existing, head, entry) { 3389 if (existing->cookie != cookie) 3390 continue; 3391 first = false; 3392 break; 3393 } 3394 hlist_add_head(&u->entry, idem_hash + hash); 3395 spin_unlock(&idem_lock); 3396 3397 return !first; 3398 } 3399 3400 /* 3401 * We were the first one with 'cookie' on the list, and we ended 3402 * up completing the operation. We now need to walk the list, 3403 * remove everybody - which includes ourselves - fill in the return 3404 * value, and then complete the operation. 3405 */ 3406 static int idempotent_complete(struct idempotent *u, int ret) 3407 { 3408 const void *cookie = u->cookie; 3409 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3410 struct hlist_head *head = idem_hash + hash; 3411 struct hlist_node *next; 3412 struct idempotent *pos; 3413 3414 spin_lock(&idem_lock); 3415 hlist_for_each_entry_safe(pos, next, head, entry) { 3416 if (pos->cookie != cookie) 3417 continue; 3418 hlist_del_init(&pos->entry); 3419 pos->ret = ret; 3420 complete(&pos->complete); 3421 } 3422 spin_unlock(&idem_lock); 3423 return ret; 3424 } 3425 3426 /* 3427 * Wait for the idempotent worker. 3428 * 3429 * If we get interrupted, we need to remove ourselves from the 3430 * the idempotent list, and the completion may still come in. 3431 * 3432 * The 'idem_lock' protects against the race, and 'idem.ret' was 3433 * initialized to -EINTR and is thus always the right return 3434 * value even if the idempotent work then completes between 3435 * the wait_for_completion and the cleanup. 3436 */ 3437 static int idempotent_wait_for_completion(struct idempotent *u) 3438 { 3439 if (wait_for_completion_interruptible(&u->complete)) { 3440 spin_lock(&idem_lock); 3441 if (!hlist_unhashed(&u->entry)) 3442 hlist_del(&u->entry); 3443 spin_unlock(&idem_lock); 3444 } 3445 return u->ret; 3446 } 3447 3448 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3449 { 3450 struct load_info info = { }; 3451 void *buf = NULL; 3452 int len; 3453 3454 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3455 if (len < 0) { 3456 mod_stat_inc(&failed_kreads); 3457 return len; 3458 } 3459 3460 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3461 int err = module_decompress(&info, buf, len); 3462 vfree(buf); /* compressed data is no longer needed */ 3463 if (err) { 3464 mod_stat_inc(&failed_decompress); 3465 mod_stat_add_long(len, &invalid_decompress_bytes); 3466 return err; 3467 } 3468 } else { 3469 info.hdr = buf; 3470 info.len = len; 3471 } 3472 3473 return load_module(&info, uargs, flags); 3474 } 3475 3476 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3477 { 3478 struct idempotent idem; 3479 3480 if (!f || !(f->f_mode & FMODE_READ)) 3481 return -EBADF; 3482 3483 /* Are we the winners of the race and get to do this? */ 3484 if (!idempotent(&idem, file_inode(f))) { 3485 int ret = init_module_from_file(f, uargs, flags); 3486 return idempotent_complete(&idem, ret); 3487 } 3488 3489 /* 3490 * Somebody else won the race and is loading the module. 3491 */ 3492 return idempotent_wait_for_completion(&idem); 3493 } 3494 3495 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3496 { 3497 int err; 3498 struct fd f; 3499 3500 err = may_init_module(); 3501 if (err) 3502 return err; 3503 3504 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3505 3506 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3507 |MODULE_INIT_IGNORE_VERMAGIC 3508 |MODULE_INIT_COMPRESSED_FILE)) 3509 return -EINVAL; 3510 3511 f = fdget(fd); 3512 err = idempotent_init_module(fd_file(f), uargs, flags); 3513 fdput(f); 3514 return err; 3515 } 3516 3517 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3518 char *module_flags(struct module *mod, char *buf, bool show_state) 3519 { 3520 int bx = 0; 3521 3522 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3523 if (!mod->taints && !show_state) 3524 goto out; 3525 if (mod->taints || 3526 mod->state == MODULE_STATE_GOING || 3527 mod->state == MODULE_STATE_COMING) { 3528 buf[bx++] = '('; 3529 bx += module_flags_taint(mod->taints, buf + bx); 3530 /* Show a - for module-is-being-unloaded */ 3531 if (mod->state == MODULE_STATE_GOING && show_state) 3532 buf[bx++] = '-'; 3533 /* Show a + for module-is-being-loaded */ 3534 if (mod->state == MODULE_STATE_COMING && show_state) 3535 buf[bx++] = '+'; 3536 buf[bx++] = ')'; 3537 } 3538 out: 3539 buf[bx] = '\0'; 3540 3541 return buf; 3542 } 3543 3544 /* Given an address, look for it in the module exception tables. */ 3545 const struct exception_table_entry *search_module_extables(unsigned long addr) 3546 { 3547 const struct exception_table_entry *e = NULL; 3548 struct module *mod; 3549 3550 preempt_disable(); 3551 mod = __module_address(addr); 3552 if (!mod) 3553 goto out; 3554 3555 if (!mod->num_exentries) 3556 goto out; 3557 3558 e = search_extable(mod->extable, 3559 mod->num_exentries, 3560 addr); 3561 out: 3562 preempt_enable(); 3563 3564 /* 3565 * Now, if we found one, we are running inside it now, hence 3566 * we cannot unload the module, hence no refcnt needed. 3567 */ 3568 return e; 3569 } 3570 3571 /** 3572 * is_module_address() - is this address inside a module? 3573 * @addr: the address to check. 3574 * 3575 * See is_module_text_address() if you simply want to see if the address 3576 * is code (not data). 3577 */ 3578 bool is_module_address(unsigned long addr) 3579 { 3580 bool ret; 3581 3582 preempt_disable(); 3583 ret = __module_address(addr) != NULL; 3584 preempt_enable(); 3585 3586 return ret; 3587 } 3588 3589 /** 3590 * __module_address() - get the module which contains an address. 3591 * @addr: the address. 3592 * 3593 * Must be called with preempt disabled or module mutex held so that 3594 * module doesn't get freed during this. 3595 */ 3596 struct module *__module_address(unsigned long addr) 3597 { 3598 struct module *mod; 3599 3600 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3601 goto lookup; 3602 3603 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3604 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3605 goto lookup; 3606 #endif 3607 3608 return NULL; 3609 3610 lookup: 3611 module_assert_mutex_or_preempt(); 3612 3613 mod = mod_find(addr, &mod_tree); 3614 if (mod) { 3615 BUG_ON(!within_module(addr, mod)); 3616 if (mod->state == MODULE_STATE_UNFORMED) 3617 mod = NULL; 3618 } 3619 return mod; 3620 } 3621 3622 /** 3623 * is_module_text_address() - is this address inside module code? 3624 * @addr: the address to check. 3625 * 3626 * See is_module_address() if you simply want to see if the address is 3627 * anywhere in a module. See kernel_text_address() for testing if an 3628 * address corresponds to kernel or module code. 3629 */ 3630 bool is_module_text_address(unsigned long addr) 3631 { 3632 bool ret; 3633 3634 preempt_disable(); 3635 ret = __module_text_address(addr) != NULL; 3636 preempt_enable(); 3637 3638 return ret; 3639 } 3640 3641 /** 3642 * __module_text_address() - get the module whose code contains an address. 3643 * @addr: the address. 3644 * 3645 * Must be called with preempt disabled or module mutex held so that 3646 * module doesn't get freed during this. 3647 */ 3648 struct module *__module_text_address(unsigned long addr) 3649 { 3650 struct module *mod = __module_address(addr); 3651 if (mod) { 3652 /* Make sure it's within the text section. */ 3653 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3654 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3655 mod = NULL; 3656 } 3657 return mod; 3658 } 3659 3660 /* Don't grab lock, we're oopsing. */ 3661 void print_modules(void) 3662 { 3663 struct module *mod; 3664 char buf[MODULE_FLAGS_BUF_SIZE]; 3665 3666 printk(KERN_DEFAULT "Modules linked in:"); 3667 /* Most callers should already have preempt disabled, but make sure */ 3668 preempt_disable(); 3669 list_for_each_entry_rcu(mod, &modules, list) { 3670 if (mod->state == MODULE_STATE_UNFORMED) 3671 continue; 3672 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3673 } 3674 3675 print_unloaded_tainted_modules(); 3676 preempt_enable(); 3677 if (last_unloaded_module.name[0]) 3678 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3679 last_unloaded_module.taints); 3680 pr_cont("\n"); 3681 } 3682 3683 #ifdef CONFIG_MODULE_DEBUGFS 3684 struct dentry *mod_debugfs_root; 3685 3686 static int module_debugfs_init(void) 3687 { 3688 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3689 return 0; 3690 } 3691 module_init(module_debugfs_init); 3692 #endif 3693