1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable within RCU read section), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /** 199 * find_any_unique_sec() - Find a unique section index by name 200 * @info: Load info for the module to scan 201 * @name: Name of the section we're looking for 202 * 203 * Locates a unique section by name. Ignores SHF_ALLOC. 204 * 205 * Return: Section index if found uniquely, zero if absent, negative count 206 * of total instances if multiple were found. 207 */ 208 static int find_any_unique_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int idx; 211 unsigned int count = 0; 212 int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 216 name) == 0) { 217 count++; 218 idx = i; 219 } 220 } 221 if (count == 1) { 222 return idx; 223 } else if (count == 0) { 224 return 0; 225 } else { 226 return -count; 227 } 228 } 229 230 /* Find a module section, or NULL. */ 231 static void *section_addr(const struct load_info *info, const char *name) 232 { 233 /* Section 0 has sh_addr 0. */ 234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 235 } 236 237 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 238 static void *section_objs(const struct load_info *info, 239 const char *name, 240 size_t object_size, 241 unsigned int *num) 242 { 243 unsigned int sec = find_sec(info, name); 244 245 /* Section 0 has sh_addr 0 and sh_size 0. */ 246 *num = info->sechdrs[sec].sh_size / object_size; 247 return (void *)info->sechdrs[sec].sh_addr; 248 } 249 250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 251 static unsigned int find_any_sec(const struct load_info *info, const char *name) 252 { 253 unsigned int i; 254 255 for (i = 1; i < info->hdr->e_shnum; i++) { 256 Elf_Shdr *shdr = &info->sechdrs[i]; 257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 258 return i; 259 } 260 return 0; 261 } 262 263 /* 264 * Find a module section, or NULL. Fill in number of "objects" in section. 265 * Ignores SHF_ALLOC flag. 266 */ 267 static __maybe_unused void *any_section_objs(const struct load_info *info, 268 const char *name, 269 size_t object_size, 270 unsigned int *num) 271 { 272 unsigned int sec = find_any_sec(info, name); 273 274 /* Section 0 has sh_addr 0 and sh_size 0. */ 275 *num = info->sechdrs[sec].sh_size / object_size; 276 return (void *)info->sechdrs[sec].sh_addr; 277 } 278 279 #ifndef CONFIG_MODVERSIONS 280 #define symversion(base, idx) NULL 281 #else 282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 283 #endif 284 285 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 286 { 287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 288 return offset_to_ptr(&sym->name_offset); 289 #else 290 return sym->name; 291 #endif 292 } 293 294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 295 { 296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 297 if (!sym->namespace_offset) 298 return NULL; 299 return offset_to_ptr(&sym->namespace_offset); 300 #else 301 return sym->namespace; 302 #endif 303 } 304 305 int cmp_name(const void *name, const void *sym) 306 { 307 return strcmp(name, kernel_symbol_name(sym)); 308 } 309 310 static bool find_exported_symbol_in_section(const struct symsearch *syms, 311 struct module *owner, 312 struct find_symbol_arg *fsa) 313 { 314 struct kernel_symbol *sym; 315 316 if (!fsa->gplok && syms->license == GPL_ONLY) 317 return false; 318 319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 320 sizeof(struct kernel_symbol), cmp_name); 321 if (!sym) 322 return false; 323 324 fsa->owner = owner; 325 fsa->crc = symversion(syms->crcs, sym - syms->start); 326 fsa->sym = sym; 327 fsa->license = syms->license; 328 329 return true; 330 } 331 332 /* 333 * Find an exported symbol and return it, along with, (optional) crc and 334 * (optional) module which owns it. Needs RCU or module_mutex. 335 */ 336 bool find_symbol(struct find_symbol_arg *fsa) 337 { 338 static const struct symsearch arr[] = { 339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 340 NOT_GPL_ONLY }, 341 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 342 __start___kcrctab_gpl, 343 GPL_ONLY }, 344 }; 345 struct module *mod; 346 unsigned int i; 347 348 for (i = 0; i < ARRAY_SIZE(arr); i++) 349 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 350 return true; 351 352 list_for_each_entry_rcu(mod, &modules, list, 353 lockdep_is_held(&module_mutex)) { 354 struct symsearch arr[] = { 355 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 356 NOT_GPL_ONLY }, 357 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 358 mod->gpl_crcs, 359 GPL_ONLY }, 360 }; 361 362 if (mod->state == MODULE_STATE_UNFORMED) 363 continue; 364 365 for (i = 0; i < ARRAY_SIZE(arr); i++) 366 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 367 return true; 368 } 369 370 pr_debug("Failed to find symbol %s\n", fsa->name); 371 return false; 372 } 373 374 /* 375 * Search for module by name: must hold module_mutex (or RCU for read-only 376 * access). 377 */ 378 struct module *find_module_all(const char *name, size_t len, 379 bool even_unformed) 380 { 381 struct module *mod; 382 383 list_for_each_entry_rcu(mod, &modules, list, 384 lockdep_is_held(&module_mutex)) { 385 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 386 continue; 387 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 388 return mod; 389 } 390 return NULL; 391 } 392 393 struct module *find_module(const char *name) 394 { 395 return find_module_all(name, strlen(name), false); 396 } 397 398 #ifdef CONFIG_SMP 399 400 static inline void __percpu *mod_percpu(struct module *mod) 401 { 402 return mod->percpu; 403 } 404 405 static int percpu_modalloc(struct module *mod, struct load_info *info) 406 { 407 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 408 unsigned long align = pcpusec->sh_addralign; 409 410 if (!pcpusec->sh_size) 411 return 0; 412 413 if (align > PAGE_SIZE) { 414 pr_warn("%s: per-cpu alignment %li > %li\n", 415 mod->name, align, PAGE_SIZE); 416 align = PAGE_SIZE; 417 } 418 419 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 420 if (!mod->percpu) { 421 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 422 mod->name, (unsigned long)pcpusec->sh_size); 423 return -ENOMEM; 424 } 425 mod->percpu_size = pcpusec->sh_size; 426 return 0; 427 } 428 429 static void percpu_modfree(struct module *mod) 430 { 431 free_percpu(mod->percpu); 432 } 433 434 static unsigned int find_pcpusec(struct load_info *info) 435 { 436 return find_sec(info, ".data..percpu"); 437 } 438 439 static void percpu_modcopy(struct module *mod, 440 const void *from, unsigned long size) 441 { 442 int cpu; 443 444 for_each_possible_cpu(cpu) 445 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 446 } 447 448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 449 { 450 struct module *mod; 451 unsigned int cpu; 452 453 guard(rcu)(); 454 list_for_each_entry_rcu(mod, &modules, list) { 455 if (mod->state == MODULE_STATE_UNFORMED) 456 continue; 457 if (!mod->percpu_size) 458 continue; 459 for_each_possible_cpu(cpu) { 460 void *start = per_cpu_ptr(mod->percpu, cpu); 461 void *va = (void *)addr; 462 463 if (va >= start && va < start + mod->percpu_size) { 464 if (can_addr) { 465 *can_addr = (unsigned long) (va - start); 466 *can_addr += (unsigned long) 467 per_cpu_ptr(mod->percpu, 468 get_boot_cpu_id()); 469 } 470 return true; 471 } 472 } 473 } 474 return false; 475 } 476 477 /** 478 * is_module_percpu_address() - test whether address is from module static percpu 479 * @addr: address to test 480 * 481 * Test whether @addr belongs to module static percpu area. 482 * 483 * Return: %true if @addr is from module static percpu area 484 */ 485 bool is_module_percpu_address(unsigned long addr) 486 { 487 return __is_module_percpu_address(addr, NULL); 488 } 489 490 #else /* ... !CONFIG_SMP */ 491 492 static inline void __percpu *mod_percpu(struct module *mod) 493 { 494 return NULL; 495 } 496 static int percpu_modalloc(struct module *mod, struct load_info *info) 497 { 498 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 499 if (info->sechdrs[info->index.pcpu].sh_size != 0) 500 return -ENOMEM; 501 return 0; 502 } 503 static inline void percpu_modfree(struct module *mod) 504 { 505 } 506 static unsigned int find_pcpusec(struct load_info *info) 507 { 508 return 0; 509 } 510 static inline void percpu_modcopy(struct module *mod, 511 const void *from, unsigned long size) 512 { 513 /* pcpusec should be 0, and size of that section should be 0. */ 514 BUG_ON(size != 0); 515 } 516 bool is_module_percpu_address(unsigned long addr) 517 { 518 return false; 519 } 520 521 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 522 { 523 return false; 524 } 525 526 #endif /* CONFIG_SMP */ 527 528 #define MODINFO_ATTR(field) \ 529 static void setup_modinfo_##field(struct module *mod, const char *s) \ 530 { \ 531 mod->field = kstrdup(s, GFP_KERNEL); \ 532 } \ 533 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 534 struct module_kobject *mk, char *buffer) \ 535 { \ 536 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 537 } \ 538 static int modinfo_##field##_exists(struct module *mod) \ 539 { \ 540 return mod->field != NULL; \ 541 } \ 542 static void free_modinfo_##field(struct module *mod) \ 543 { \ 544 kfree(mod->field); \ 545 mod->field = NULL; \ 546 } \ 547 static const struct module_attribute modinfo_##field = { \ 548 .attr = { .name = __stringify(field), .mode = 0444 }, \ 549 .show = show_modinfo_##field, \ 550 .setup = setup_modinfo_##field, \ 551 .test = modinfo_##field##_exists, \ 552 .free = free_modinfo_##field, \ 553 }; 554 555 MODINFO_ATTR(version); 556 MODINFO_ATTR(srcversion); 557 558 static struct { 559 char name[MODULE_NAME_LEN + 1]; 560 char taints[MODULE_FLAGS_BUF_SIZE]; 561 } last_unloaded_module; 562 563 #ifdef CONFIG_MODULE_UNLOAD 564 565 EXPORT_TRACEPOINT_SYMBOL(module_get); 566 567 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 568 #define MODULE_REF_BASE 1 569 570 /* Init the unload section of the module. */ 571 static int module_unload_init(struct module *mod) 572 { 573 /* 574 * Initialize reference counter to MODULE_REF_BASE. 575 * refcnt == 0 means module is going. 576 */ 577 atomic_set(&mod->refcnt, MODULE_REF_BASE); 578 579 INIT_LIST_HEAD(&mod->source_list); 580 INIT_LIST_HEAD(&mod->target_list); 581 582 /* Hold reference count during initialization. */ 583 atomic_inc(&mod->refcnt); 584 585 return 0; 586 } 587 588 /* Does a already use b? */ 589 static int already_uses(struct module *a, struct module *b) 590 { 591 struct module_use *use; 592 593 list_for_each_entry(use, &b->source_list, source_list) { 594 if (use->source == a) 595 return 1; 596 } 597 pr_debug("%s does not use %s!\n", a->name, b->name); 598 return 0; 599 } 600 601 /* 602 * Module a uses b 603 * - we add 'a' as a "source", 'b' as a "target" of module use 604 * - the module_use is added to the list of 'b' sources (so 605 * 'b' can walk the list to see who sourced them), and of 'a' 606 * targets (so 'a' can see what modules it targets). 607 */ 608 static int add_module_usage(struct module *a, struct module *b) 609 { 610 struct module_use *use; 611 612 pr_debug("Allocating new usage for %s.\n", a->name); 613 use = kmalloc(sizeof(*use), GFP_ATOMIC); 614 if (!use) 615 return -ENOMEM; 616 617 use->source = a; 618 use->target = b; 619 list_add(&use->source_list, &b->source_list); 620 list_add(&use->target_list, &a->target_list); 621 return 0; 622 } 623 624 /* Module a uses b: caller needs module_mutex() */ 625 static int ref_module(struct module *a, struct module *b) 626 { 627 int err; 628 629 if (b == NULL || already_uses(a, b)) 630 return 0; 631 632 /* If module isn't available, we fail. */ 633 err = strong_try_module_get(b); 634 if (err) 635 return err; 636 637 err = add_module_usage(a, b); 638 if (err) { 639 module_put(b); 640 return err; 641 } 642 return 0; 643 } 644 645 /* Clear the unload stuff of the module. */ 646 static void module_unload_free(struct module *mod) 647 { 648 struct module_use *use, *tmp; 649 650 mutex_lock(&module_mutex); 651 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 652 struct module *i = use->target; 653 pr_debug("%s unusing %s\n", mod->name, i->name); 654 module_put(i); 655 list_del(&use->source_list); 656 list_del(&use->target_list); 657 kfree(use); 658 } 659 mutex_unlock(&module_mutex); 660 } 661 662 #ifdef CONFIG_MODULE_FORCE_UNLOAD 663 static inline int try_force_unload(unsigned int flags) 664 { 665 int ret = (flags & O_TRUNC); 666 if (ret) 667 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 668 return ret; 669 } 670 #else 671 static inline int try_force_unload(unsigned int flags) 672 { 673 return 0; 674 } 675 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 676 677 /* Try to release refcount of module, 0 means success. */ 678 static int try_release_module_ref(struct module *mod) 679 { 680 int ret; 681 682 /* Try to decrement refcnt which we set at loading */ 683 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 684 BUG_ON(ret < 0); 685 if (ret) 686 /* Someone can put this right now, recover with checking */ 687 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 688 689 return ret; 690 } 691 692 static int try_stop_module(struct module *mod, int flags, int *forced) 693 { 694 /* If it's not unused, quit unless we're forcing. */ 695 if (try_release_module_ref(mod) != 0) { 696 *forced = try_force_unload(flags); 697 if (!(*forced)) 698 return -EWOULDBLOCK; 699 } 700 701 /* Mark it as dying. */ 702 mod->state = MODULE_STATE_GOING; 703 704 return 0; 705 } 706 707 /** 708 * module_refcount() - return the refcount or -1 if unloading 709 * @mod: the module we're checking 710 * 711 * Return: 712 * -1 if the module is in the process of unloading 713 * otherwise the number of references in the kernel to the module 714 */ 715 int module_refcount(struct module *mod) 716 { 717 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 718 } 719 EXPORT_SYMBOL(module_refcount); 720 721 /* This exists whether we can unload or not */ 722 static void free_module(struct module *mod); 723 724 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 725 unsigned int, flags) 726 { 727 struct module *mod; 728 char name[MODULE_NAME_LEN]; 729 char buf[MODULE_FLAGS_BUF_SIZE]; 730 int ret, forced = 0; 731 732 if (!capable(CAP_SYS_MODULE) || modules_disabled) 733 return -EPERM; 734 735 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 736 return -EFAULT; 737 name[MODULE_NAME_LEN-1] = '\0'; 738 739 audit_log_kern_module(name); 740 741 if (mutex_lock_interruptible(&module_mutex) != 0) 742 return -EINTR; 743 744 mod = find_module(name); 745 if (!mod) { 746 ret = -ENOENT; 747 goto out; 748 } 749 750 if (!list_empty(&mod->source_list)) { 751 /* Other modules depend on us: get rid of them first. */ 752 ret = -EWOULDBLOCK; 753 goto out; 754 } 755 756 /* Doing init or already dying? */ 757 if (mod->state != MODULE_STATE_LIVE) { 758 /* FIXME: if (force), slam module count damn the torpedoes */ 759 pr_debug("%s already dying\n", mod->name); 760 ret = -EBUSY; 761 goto out; 762 } 763 764 /* If it has an init func, it must have an exit func to unload */ 765 if (mod->init && !mod->exit) { 766 forced = try_force_unload(flags); 767 if (!forced) { 768 /* This module can't be removed */ 769 ret = -EBUSY; 770 goto out; 771 } 772 } 773 774 ret = try_stop_module(mod, flags, &forced); 775 if (ret != 0) 776 goto out; 777 778 mutex_unlock(&module_mutex); 779 /* Final destruction now no one is using it. */ 780 if (mod->exit != NULL) 781 mod->exit(); 782 blocking_notifier_call_chain(&module_notify_list, 783 MODULE_STATE_GOING, mod); 784 klp_module_going(mod); 785 ftrace_release_mod(mod); 786 787 async_synchronize_full(); 788 789 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 790 strscpy(last_unloaded_module.name, mod->name); 791 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false)); 792 793 free_module(mod); 794 /* someone could wait for the module in add_unformed_module() */ 795 wake_up_all(&module_wq); 796 return 0; 797 out: 798 mutex_unlock(&module_mutex); 799 return ret; 800 } 801 802 void __symbol_put(const char *symbol) 803 { 804 struct find_symbol_arg fsa = { 805 .name = symbol, 806 .gplok = true, 807 }; 808 809 guard(rcu)(); 810 BUG_ON(!find_symbol(&fsa)); 811 module_put(fsa.owner); 812 } 813 EXPORT_SYMBOL(__symbol_put); 814 815 /* Note this assumes addr is a function, which it currently always is. */ 816 void symbol_put_addr(void *addr) 817 { 818 struct module *modaddr; 819 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 820 821 if (core_kernel_text(a)) 822 return; 823 824 /* 825 * Even though we hold a reference on the module; we still need to 826 * RCU read section in order to safely traverse the data structure. 827 */ 828 guard(rcu)(); 829 modaddr = __module_text_address(a); 830 BUG_ON(!modaddr); 831 module_put(modaddr); 832 } 833 EXPORT_SYMBOL_GPL(symbol_put_addr); 834 835 static ssize_t show_refcnt(const struct module_attribute *mattr, 836 struct module_kobject *mk, char *buffer) 837 { 838 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 839 } 840 841 static const struct module_attribute modinfo_refcnt = 842 __ATTR(refcnt, 0444, show_refcnt, NULL); 843 844 void __module_get(struct module *module) 845 { 846 if (module) { 847 atomic_inc(&module->refcnt); 848 trace_module_get(module, _RET_IP_); 849 } 850 } 851 EXPORT_SYMBOL(__module_get); 852 853 bool try_module_get(struct module *module) 854 { 855 bool ret = true; 856 857 if (module) { 858 /* Note: here, we can fail to get a reference */ 859 if (likely(module_is_live(module) && 860 atomic_inc_not_zero(&module->refcnt) != 0)) 861 trace_module_get(module, _RET_IP_); 862 else 863 ret = false; 864 } 865 return ret; 866 } 867 EXPORT_SYMBOL(try_module_get); 868 869 void module_put(struct module *module) 870 { 871 int ret; 872 873 if (module) { 874 ret = atomic_dec_if_positive(&module->refcnt); 875 WARN_ON(ret < 0); /* Failed to put refcount */ 876 trace_module_put(module, _RET_IP_); 877 } 878 } 879 EXPORT_SYMBOL(module_put); 880 881 #else /* !CONFIG_MODULE_UNLOAD */ 882 static inline void module_unload_free(struct module *mod) 883 { 884 } 885 886 static int ref_module(struct module *a, struct module *b) 887 { 888 return strong_try_module_get(b); 889 } 890 891 static inline int module_unload_init(struct module *mod) 892 { 893 return 0; 894 } 895 #endif /* CONFIG_MODULE_UNLOAD */ 896 897 size_t module_flags_taint(unsigned long taints, char *buf) 898 { 899 size_t l = 0; 900 int i; 901 902 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 903 if (taint_flags[i].module && test_bit(i, &taints)) 904 buf[l++] = taint_flags[i].c_true; 905 } 906 907 return l; 908 } 909 910 static ssize_t show_initstate(const struct module_attribute *mattr, 911 struct module_kobject *mk, char *buffer) 912 { 913 const char *state = "unknown"; 914 915 switch (mk->mod->state) { 916 case MODULE_STATE_LIVE: 917 state = "live"; 918 break; 919 case MODULE_STATE_COMING: 920 state = "coming"; 921 break; 922 case MODULE_STATE_GOING: 923 state = "going"; 924 break; 925 default: 926 BUG(); 927 } 928 return sprintf(buffer, "%s\n", state); 929 } 930 931 static const struct module_attribute modinfo_initstate = 932 __ATTR(initstate, 0444, show_initstate, NULL); 933 934 static ssize_t store_uevent(const struct module_attribute *mattr, 935 struct module_kobject *mk, 936 const char *buffer, size_t count) 937 { 938 int rc; 939 940 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 941 return rc ? rc : count; 942 } 943 944 const struct module_attribute module_uevent = 945 __ATTR(uevent, 0200, NULL, store_uevent); 946 947 static ssize_t show_coresize(const struct module_attribute *mattr, 948 struct module_kobject *mk, char *buffer) 949 { 950 unsigned int size = mk->mod->mem[MOD_TEXT].size; 951 952 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 953 for_class_mod_mem_type(type, core_data) 954 size += mk->mod->mem[type].size; 955 } 956 return sprintf(buffer, "%u\n", size); 957 } 958 959 static const struct module_attribute modinfo_coresize = 960 __ATTR(coresize, 0444, show_coresize, NULL); 961 962 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 963 static ssize_t show_datasize(const struct module_attribute *mattr, 964 struct module_kobject *mk, char *buffer) 965 { 966 unsigned int size = 0; 967 968 for_class_mod_mem_type(type, core_data) 969 size += mk->mod->mem[type].size; 970 return sprintf(buffer, "%u\n", size); 971 } 972 973 static const struct module_attribute modinfo_datasize = 974 __ATTR(datasize, 0444, show_datasize, NULL); 975 #endif 976 977 static ssize_t show_initsize(const struct module_attribute *mattr, 978 struct module_kobject *mk, char *buffer) 979 { 980 unsigned int size = 0; 981 982 for_class_mod_mem_type(type, init) 983 size += mk->mod->mem[type].size; 984 return sprintf(buffer, "%u\n", size); 985 } 986 987 static const struct module_attribute modinfo_initsize = 988 __ATTR(initsize, 0444, show_initsize, NULL); 989 990 static ssize_t show_taint(const struct module_attribute *mattr, 991 struct module_kobject *mk, char *buffer) 992 { 993 size_t l; 994 995 l = module_flags_taint(mk->mod->taints, buffer); 996 buffer[l++] = '\n'; 997 return l; 998 } 999 1000 static const struct module_attribute modinfo_taint = 1001 __ATTR(taint, 0444, show_taint, NULL); 1002 1003 const struct module_attribute *const modinfo_attrs[] = { 1004 &module_uevent, 1005 &modinfo_version, 1006 &modinfo_srcversion, 1007 &modinfo_initstate, 1008 &modinfo_coresize, 1009 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1010 &modinfo_datasize, 1011 #endif 1012 &modinfo_initsize, 1013 &modinfo_taint, 1014 #ifdef CONFIG_MODULE_UNLOAD 1015 &modinfo_refcnt, 1016 #endif 1017 NULL, 1018 }; 1019 1020 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1021 1022 static const char vermagic[] = VERMAGIC_STRING; 1023 1024 int try_to_force_load(struct module *mod, const char *reason) 1025 { 1026 #ifdef CONFIG_MODULE_FORCE_LOAD 1027 if (!test_taint(TAINT_FORCED_MODULE)) 1028 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1029 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1030 return 0; 1031 #else 1032 return -ENOEXEC; 1033 #endif 1034 } 1035 1036 /* Parse tag=value strings from .modinfo section */ 1037 char *module_next_tag_pair(char *string, unsigned long *secsize) 1038 { 1039 /* Skip non-zero chars */ 1040 while (string[0]) { 1041 string++; 1042 if ((*secsize)-- <= 1) 1043 return NULL; 1044 } 1045 1046 /* Skip any zero padding. */ 1047 while (!string[0]) { 1048 string++; 1049 if ((*secsize)-- <= 1) 1050 return NULL; 1051 } 1052 return string; 1053 } 1054 1055 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1056 char *prev) 1057 { 1058 char *p; 1059 unsigned int taglen = strlen(tag); 1060 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1061 unsigned long size = infosec->sh_size; 1062 1063 /* 1064 * get_modinfo() calls made before rewrite_section_headers() 1065 * must use sh_offset, as sh_addr isn't set! 1066 */ 1067 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1068 1069 if (prev) { 1070 size -= prev - modinfo; 1071 modinfo = module_next_tag_pair(prev, &size); 1072 } 1073 1074 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1075 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1076 return p + taglen + 1; 1077 } 1078 return NULL; 1079 } 1080 1081 static char *get_modinfo(const struct load_info *info, const char *tag) 1082 { 1083 return get_next_modinfo(info, tag, NULL); 1084 } 1085 1086 static int verify_namespace_is_imported(const struct load_info *info, 1087 const struct kernel_symbol *sym, 1088 struct module *mod) 1089 { 1090 const char *namespace; 1091 char *imported_namespace; 1092 1093 namespace = kernel_symbol_namespace(sym); 1094 if (namespace && namespace[0]) { 1095 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1096 if (strcmp(namespace, imported_namespace) == 0) 1097 return 0; 1098 } 1099 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1100 pr_warn( 1101 #else 1102 pr_err( 1103 #endif 1104 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1105 mod->name, kernel_symbol_name(sym), namespace); 1106 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1107 return -EINVAL; 1108 #endif 1109 } 1110 return 0; 1111 } 1112 1113 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1114 { 1115 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1116 return true; 1117 1118 if (mod->using_gplonly_symbols) { 1119 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1120 mod->name, name, owner->name); 1121 return false; 1122 } 1123 1124 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1125 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1126 mod->name, name, owner->name); 1127 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1128 } 1129 return true; 1130 } 1131 1132 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1133 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1134 const struct load_info *info, 1135 const char *name, 1136 char ownername[]) 1137 { 1138 struct find_symbol_arg fsa = { 1139 .name = name, 1140 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1141 .warn = true, 1142 }; 1143 int err; 1144 1145 /* 1146 * The module_mutex should not be a heavily contended lock; 1147 * if we get the occasional sleep here, we'll go an extra iteration 1148 * in the wait_event_interruptible(), which is harmless. 1149 */ 1150 sched_annotate_sleep(); 1151 mutex_lock(&module_mutex); 1152 if (!find_symbol(&fsa)) 1153 goto unlock; 1154 1155 if (fsa.license == GPL_ONLY) 1156 mod->using_gplonly_symbols = true; 1157 1158 if (!inherit_taint(mod, fsa.owner, name)) { 1159 fsa.sym = NULL; 1160 goto getname; 1161 } 1162 1163 if (!check_version(info, name, mod, fsa.crc)) { 1164 fsa.sym = ERR_PTR(-EINVAL); 1165 goto getname; 1166 } 1167 1168 err = verify_namespace_is_imported(info, fsa.sym, mod); 1169 if (err) { 1170 fsa.sym = ERR_PTR(err); 1171 goto getname; 1172 } 1173 1174 err = ref_module(mod, fsa.owner); 1175 if (err) { 1176 fsa.sym = ERR_PTR(err); 1177 goto getname; 1178 } 1179 1180 getname: 1181 /* We must make copy under the lock if we failed to get ref. */ 1182 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1183 unlock: 1184 mutex_unlock(&module_mutex); 1185 return fsa.sym; 1186 } 1187 1188 static const struct kernel_symbol * 1189 resolve_symbol_wait(struct module *mod, 1190 const struct load_info *info, 1191 const char *name) 1192 { 1193 const struct kernel_symbol *ksym; 1194 char owner[MODULE_NAME_LEN]; 1195 1196 if (wait_event_interruptible_timeout(module_wq, 1197 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1198 || PTR_ERR(ksym) != -EBUSY, 1199 30 * HZ) <= 0) { 1200 pr_warn("%s: gave up waiting for init of module %s.\n", 1201 mod->name, owner); 1202 } 1203 return ksym; 1204 } 1205 1206 void __weak module_arch_cleanup(struct module *mod) 1207 { 1208 } 1209 1210 void __weak module_arch_freeing_init(struct module *mod) 1211 { 1212 } 1213 1214 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1215 { 1216 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1217 enum execmem_type execmem_type; 1218 void *ptr; 1219 1220 mod->mem[type].size = size; 1221 1222 if (mod_mem_type_is_data(type)) 1223 execmem_type = EXECMEM_MODULE_DATA; 1224 else 1225 execmem_type = EXECMEM_MODULE_TEXT; 1226 1227 ptr = execmem_alloc(execmem_type, size); 1228 if (!ptr) 1229 return -ENOMEM; 1230 1231 if (execmem_is_rox(execmem_type)) { 1232 int err = execmem_make_temp_rw(ptr, size); 1233 1234 if (err) { 1235 execmem_free(ptr); 1236 return -ENOMEM; 1237 } 1238 1239 mod->mem[type].is_rox = true; 1240 } 1241 1242 /* 1243 * The pointer to these blocks of memory are stored on the module 1244 * structure and we keep that around so long as the module is 1245 * around. We only free that memory when we unload the module. 1246 * Just mark them as not being a leak then. The .init* ELF 1247 * sections *do* get freed after boot so we *could* treat them 1248 * slightly differently with kmemleak_ignore() and only grey 1249 * them out as they work as typical memory allocations which 1250 * *do* eventually get freed, but let's just keep things simple 1251 * and avoid *any* false positives. 1252 */ 1253 if (!mod->mem[type].is_rox) 1254 kmemleak_not_leak(ptr); 1255 1256 memset(ptr, 0, size); 1257 mod->mem[type].base = ptr; 1258 1259 return 0; 1260 } 1261 1262 static void module_memory_restore_rox(struct module *mod) 1263 { 1264 for_class_mod_mem_type(type, text) { 1265 struct module_memory *mem = &mod->mem[type]; 1266 1267 if (mem->is_rox) 1268 execmem_restore_rox(mem->base, mem->size); 1269 } 1270 } 1271 1272 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1273 { 1274 struct module_memory *mem = &mod->mem[type]; 1275 1276 execmem_free(mem->base); 1277 } 1278 1279 static void free_mod_mem(struct module *mod) 1280 { 1281 for_each_mod_mem_type(type) { 1282 struct module_memory *mod_mem = &mod->mem[type]; 1283 1284 if (type == MOD_DATA) 1285 continue; 1286 1287 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1288 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1289 if (mod_mem->size) 1290 module_memory_free(mod, type); 1291 } 1292 1293 /* MOD_DATA hosts mod, so free it at last */ 1294 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1295 module_memory_free(mod, MOD_DATA); 1296 } 1297 1298 /* Free a module, remove from lists, etc. */ 1299 static void free_module(struct module *mod) 1300 { 1301 trace_module_free(mod); 1302 1303 codetag_unload_module(mod); 1304 1305 mod_sysfs_teardown(mod); 1306 1307 /* 1308 * We leave it in list to prevent duplicate loads, but make sure 1309 * that noone uses it while it's being deconstructed. 1310 */ 1311 mutex_lock(&module_mutex); 1312 mod->state = MODULE_STATE_UNFORMED; 1313 mutex_unlock(&module_mutex); 1314 1315 /* Arch-specific cleanup. */ 1316 module_arch_cleanup(mod); 1317 1318 /* Module unload stuff */ 1319 module_unload_free(mod); 1320 1321 /* Free any allocated parameters. */ 1322 destroy_params(mod->kp, mod->num_kp); 1323 1324 if (is_livepatch_module(mod)) 1325 free_module_elf(mod); 1326 1327 /* Now we can delete it from the lists */ 1328 mutex_lock(&module_mutex); 1329 /* Unlink carefully: kallsyms could be walking list. */ 1330 list_del_rcu(&mod->list); 1331 mod_tree_remove(mod); 1332 /* Remove this module from bug list, this uses list_del_rcu */ 1333 module_bug_cleanup(mod); 1334 /* Wait for RCU synchronizing before releasing mod->list and buglist. */ 1335 synchronize_rcu(); 1336 if (try_add_tainted_module(mod)) 1337 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1338 mod->name); 1339 mutex_unlock(&module_mutex); 1340 1341 /* This may be empty, but that's OK */ 1342 module_arch_freeing_init(mod); 1343 kfree(mod->args); 1344 percpu_modfree(mod); 1345 1346 free_mod_mem(mod); 1347 } 1348 1349 void *__symbol_get(const char *symbol) 1350 { 1351 struct find_symbol_arg fsa = { 1352 .name = symbol, 1353 .gplok = true, 1354 .warn = true, 1355 }; 1356 1357 scoped_guard(rcu) { 1358 if (!find_symbol(&fsa)) 1359 return NULL; 1360 if (fsa.license != GPL_ONLY) { 1361 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1362 symbol); 1363 return NULL; 1364 } 1365 if (strong_try_module_get(fsa.owner)) 1366 return NULL; 1367 } 1368 return (void *)kernel_symbol_value(fsa.sym); 1369 } 1370 EXPORT_SYMBOL_GPL(__symbol_get); 1371 1372 /* 1373 * Ensure that an exported symbol [global namespace] does not already exist 1374 * in the kernel or in some other module's exported symbol table. 1375 * 1376 * You must hold the module_mutex. 1377 */ 1378 static int verify_exported_symbols(struct module *mod) 1379 { 1380 unsigned int i; 1381 const struct kernel_symbol *s; 1382 struct { 1383 const struct kernel_symbol *sym; 1384 unsigned int num; 1385 } arr[] = { 1386 { mod->syms, mod->num_syms }, 1387 { mod->gpl_syms, mod->num_gpl_syms }, 1388 }; 1389 1390 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1391 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1392 struct find_symbol_arg fsa = { 1393 .name = kernel_symbol_name(s), 1394 .gplok = true, 1395 }; 1396 if (find_symbol(&fsa)) { 1397 pr_err("%s: exports duplicate symbol %s" 1398 " (owned by %s)\n", 1399 mod->name, kernel_symbol_name(s), 1400 module_name(fsa.owner)); 1401 return -ENOEXEC; 1402 } 1403 } 1404 } 1405 return 0; 1406 } 1407 1408 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1409 { 1410 /* 1411 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1412 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1413 * i386 has a similar problem but may not deserve a fix. 1414 * 1415 * If we ever have to ignore many symbols, consider refactoring the code to 1416 * only warn if referenced by a relocation. 1417 */ 1418 if (emachine == EM_386 || emachine == EM_X86_64) 1419 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1420 return false; 1421 } 1422 1423 /* Change all symbols so that st_value encodes the pointer directly. */ 1424 static int simplify_symbols(struct module *mod, const struct load_info *info) 1425 { 1426 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1427 Elf_Sym *sym = (void *)symsec->sh_addr; 1428 unsigned long secbase; 1429 unsigned int i; 1430 int ret = 0; 1431 const struct kernel_symbol *ksym; 1432 1433 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1434 const char *name = info->strtab + sym[i].st_name; 1435 1436 switch (sym[i].st_shndx) { 1437 case SHN_COMMON: 1438 /* Ignore common symbols */ 1439 if (!strncmp(name, "__gnu_lto", 9)) 1440 break; 1441 1442 /* 1443 * We compiled with -fno-common. These are not 1444 * supposed to happen. 1445 */ 1446 pr_debug("Common symbol: %s\n", name); 1447 pr_warn("%s: please compile with -fno-common\n", 1448 mod->name); 1449 ret = -ENOEXEC; 1450 break; 1451 1452 case SHN_ABS: 1453 /* Don't need to do anything */ 1454 pr_debug("Absolute symbol: 0x%08lx %s\n", 1455 (long)sym[i].st_value, name); 1456 break; 1457 1458 case SHN_LIVEPATCH: 1459 /* Livepatch symbols are resolved by livepatch */ 1460 break; 1461 1462 case SHN_UNDEF: 1463 ksym = resolve_symbol_wait(mod, info, name); 1464 /* Ok if resolved. */ 1465 if (ksym && !IS_ERR(ksym)) { 1466 sym[i].st_value = kernel_symbol_value(ksym); 1467 break; 1468 } 1469 1470 /* Ok if weak or ignored. */ 1471 if (!ksym && 1472 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1473 ignore_undef_symbol(info->hdr->e_machine, name))) 1474 break; 1475 1476 ret = PTR_ERR(ksym) ?: -ENOENT; 1477 pr_warn("%s: Unknown symbol %s (err %d)\n", 1478 mod->name, name, ret); 1479 break; 1480 1481 default: 1482 /* Divert to percpu allocation if a percpu var. */ 1483 if (sym[i].st_shndx == info->index.pcpu) 1484 secbase = (unsigned long)mod_percpu(mod); 1485 else 1486 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1487 sym[i].st_value += secbase; 1488 break; 1489 } 1490 } 1491 1492 return ret; 1493 } 1494 1495 static int apply_relocations(struct module *mod, const struct load_info *info) 1496 { 1497 unsigned int i; 1498 int err = 0; 1499 1500 /* Now do relocations. */ 1501 for (i = 1; i < info->hdr->e_shnum; i++) { 1502 unsigned int infosec = info->sechdrs[i].sh_info; 1503 1504 /* Not a valid relocation section? */ 1505 if (infosec >= info->hdr->e_shnum) 1506 continue; 1507 1508 /* Don't bother with non-allocated sections */ 1509 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1510 continue; 1511 1512 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1513 err = klp_apply_section_relocs(mod, info->sechdrs, 1514 info->secstrings, 1515 info->strtab, 1516 info->index.sym, i, 1517 NULL); 1518 else if (info->sechdrs[i].sh_type == SHT_REL) 1519 err = apply_relocate(info->sechdrs, info->strtab, 1520 info->index.sym, i, mod); 1521 else if (info->sechdrs[i].sh_type == SHT_RELA) 1522 err = apply_relocate_add(info->sechdrs, info->strtab, 1523 info->index.sym, i, mod); 1524 if (err < 0) 1525 break; 1526 } 1527 return err; 1528 } 1529 1530 /* Additional bytes needed by arch in front of individual sections */ 1531 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1532 unsigned int section) 1533 { 1534 /* default implementation just returns zero */ 1535 return 0; 1536 } 1537 1538 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1539 Elf_Shdr *sechdr, unsigned int section) 1540 { 1541 long offset; 1542 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1543 1544 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1545 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1546 mod->mem[type].size = offset + sechdr->sh_size; 1547 1548 WARN_ON_ONCE(offset & mask); 1549 return offset | mask; 1550 } 1551 1552 bool module_init_layout_section(const char *sname) 1553 { 1554 #ifndef CONFIG_MODULE_UNLOAD 1555 if (module_exit_section(sname)) 1556 return true; 1557 #endif 1558 return module_init_section(sname); 1559 } 1560 1561 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1562 { 1563 unsigned int m, i; 1564 1565 static const unsigned long masks[][2] = { 1566 /* 1567 * NOTE: all executable code must be the first section 1568 * in this array; otherwise modify the text_size 1569 * finder in the two loops below 1570 */ 1571 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1572 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1573 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1574 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1575 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1576 }; 1577 static const int core_m_to_mem_type[] = { 1578 MOD_TEXT, 1579 MOD_RODATA, 1580 MOD_RO_AFTER_INIT, 1581 MOD_DATA, 1582 MOD_DATA, 1583 }; 1584 static const int init_m_to_mem_type[] = { 1585 MOD_INIT_TEXT, 1586 MOD_INIT_RODATA, 1587 MOD_INVALID, 1588 MOD_INIT_DATA, 1589 MOD_INIT_DATA, 1590 }; 1591 1592 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1593 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1594 1595 for (i = 0; i < info->hdr->e_shnum; ++i) { 1596 Elf_Shdr *s = &info->sechdrs[i]; 1597 const char *sname = info->secstrings + s->sh_name; 1598 1599 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1600 || (s->sh_flags & masks[m][1]) 1601 || s->sh_entsize != ~0UL 1602 || is_init != module_init_layout_section(sname)) 1603 continue; 1604 1605 if (WARN_ON_ONCE(type == MOD_INVALID)) 1606 continue; 1607 1608 /* 1609 * Do not allocate codetag memory as we load it into 1610 * preallocated contiguous memory. 1611 */ 1612 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1613 /* 1614 * s->sh_entsize won't be used but populate the 1615 * type field to avoid confusion. 1616 */ 1617 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1618 << SH_ENTSIZE_TYPE_SHIFT; 1619 continue; 1620 } 1621 1622 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1623 pr_debug("\t%s\n", sname); 1624 } 1625 } 1626 } 1627 1628 /* 1629 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1630 * might -- code, read-only data, read-write data, small data. Tally 1631 * sizes, and place the offsets into sh_entsize fields: high bit means it 1632 * belongs in init. 1633 */ 1634 static void layout_sections(struct module *mod, struct load_info *info) 1635 { 1636 unsigned int i; 1637 1638 for (i = 0; i < info->hdr->e_shnum; i++) 1639 info->sechdrs[i].sh_entsize = ~0UL; 1640 1641 pr_debug("Core section allocation order for %s:\n", mod->name); 1642 __layout_sections(mod, info, false); 1643 1644 pr_debug("Init section allocation order for %s:\n", mod->name); 1645 __layout_sections(mod, info, true); 1646 } 1647 1648 static void module_license_taint_check(struct module *mod, const char *license) 1649 { 1650 if (!license) 1651 license = "unspecified"; 1652 1653 if (!license_is_gpl_compatible(license)) { 1654 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1655 pr_warn("%s: module license '%s' taints kernel.\n", 1656 mod->name, license); 1657 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1658 LOCKDEP_NOW_UNRELIABLE); 1659 } 1660 } 1661 1662 static void setup_modinfo(struct module *mod, struct load_info *info) 1663 { 1664 const struct module_attribute *attr; 1665 int i; 1666 1667 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1668 if (attr->setup) 1669 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1670 } 1671 } 1672 1673 static void free_modinfo(struct module *mod) 1674 { 1675 const struct module_attribute *attr; 1676 int i; 1677 1678 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1679 if (attr->free) 1680 attr->free(mod); 1681 } 1682 } 1683 1684 bool __weak module_init_section(const char *name) 1685 { 1686 return strstarts(name, ".init"); 1687 } 1688 1689 bool __weak module_exit_section(const char *name) 1690 { 1691 return strstarts(name, ".exit"); 1692 } 1693 1694 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1695 { 1696 #if defined(CONFIG_64BIT) 1697 unsigned long long secend; 1698 #else 1699 unsigned long secend; 1700 #endif 1701 1702 /* 1703 * Check for both overflow and offset/size being 1704 * too large. 1705 */ 1706 secend = shdr->sh_offset + shdr->sh_size; 1707 if (secend < shdr->sh_offset || secend > info->len) 1708 return -ENOEXEC; 1709 1710 return 0; 1711 } 1712 1713 /** 1714 * elf_validity_ehdr() - Checks an ELF header for module validity 1715 * @info: Load info containing the ELF header to check 1716 * 1717 * Checks whether an ELF header could belong to a valid module. Checks: 1718 * 1719 * * ELF header is within the data the user provided 1720 * * ELF magic is present 1721 * * It is relocatable (not final linked, not core file, etc.) 1722 * * The header's machine type matches what the architecture expects. 1723 * * Optional arch-specific hook for other properties 1724 * - module_elf_check_arch() is currently only used by PPC to check 1725 * ELF ABI version, but may be used by others in the future. 1726 * 1727 * Return: %0 if valid, %-ENOEXEC on failure. 1728 */ 1729 static int elf_validity_ehdr(const struct load_info *info) 1730 { 1731 if (info->len < sizeof(*(info->hdr))) { 1732 pr_err("Invalid ELF header len %lu\n", info->len); 1733 return -ENOEXEC; 1734 } 1735 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1736 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1737 return -ENOEXEC; 1738 } 1739 if (info->hdr->e_type != ET_REL) { 1740 pr_err("Invalid ELF header type: %u != %u\n", 1741 info->hdr->e_type, ET_REL); 1742 return -ENOEXEC; 1743 } 1744 if (!elf_check_arch(info->hdr)) { 1745 pr_err("Invalid architecture in ELF header: %u\n", 1746 info->hdr->e_machine); 1747 return -ENOEXEC; 1748 } 1749 if (!module_elf_check_arch(info->hdr)) { 1750 pr_err("Invalid module architecture in ELF header: %u\n", 1751 info->hdr->e_machine); 1752 return -ENOEXEC; 1753 } 1754 return 0; 1755 } 1756 1757 /** 1758 * elf_validity_cache_sechdrs() - Cache section headers if valid 1759 * @info: Load info to compute section headers from 1760 * 1761 * Checks: 1762 * 1763 * * ELF header is valid (see elf_validity_ehdr()) 1764 * * Section headers are the size we expect 1765 * * Section array fits in the user provided data 1766 * * Section index 0 is NULL 1767 * * Section contents are inbounds 1768 * 1769 * Then updates @info with a &load_info->sechdrs pointer if valid. 1770 * 1771 * Return: %0 if valid, negative error code if validation failed. 1772 */ 1773 static int elf_validity_cache_sechdrs(struct load_info *info) 1774 { 1775 Elf_Shdr *sechdrs; 1776 Elf_Shdr *shdr; 1777 int i; 1778 int err; 1779 1780 err = elf_validity_ehdr(info); 1781 if (err < 0) 1782 return err; 1783 1784 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1785 pr_err("Invalid ELF section header size\n"); 1786 return -ENOEXEC; 1787 } 1788 1789 /* 1790 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1791 * known and small. So e_shnum * sizeof(Elf_Shdr) 1792 * will not overflow unsigned long on any platform. 1793 */ 1794 if (info->hdr->e_shoff >= info->len 1795 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1796 info->len - info->hdr->e_shoff)) { 1797 pr_err("Invalid ELF section header overflow\n"); 1798 return -ENOEXEC; 1799 } 1800 1801 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1802 1803 /* 1804 * The code assumes that section 0 has a length of zero and 1805 * an addr of zero, so check for it. 1806 */ 1807 if (sechdrs[0].sh_type != SHT_NULL 1808 || sechdrs[0].sh_size != 0 1809 || sechdrs[0].sh_addr != 0) { 1810 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1811 sechdrs[0].sh_type); 1812 return -ENOEXEC; 1813 } 1814 1815 /* Validate contents are inbounds */ 1816 for (i = 1; i < info->hdr->e_shnum; i++) { 1817 shdr = &sechdrs[i]; 1818 switch (shdr->sh_type) { 1819 case SHT_NULL: 1820 case SHT_NOBITS: 1821 /* No contents, offset/size don't mean anything */ 1822 continue; 1823 default: 1824 err = validate_section_offset(info, shdr); 1825 if (err < 0) { 1826 pr_err("Invalid ELF section in module (section %u type %u)\n", 1827 i, shdr->sh_type); 1828 return err; 1829 } 1830 } 1831 } 1832 1833 info->sechdrs = sechdrs; 1834 1835 return 0; 1836 } 1837 1838 /** 1839 * elf_validity_cache_secstrings() - Caches section names if valid 1840 * @info: Load info to cache section names from. Must have valid sechdrs. 1841 * 1842 * Specifically checks: 1843 * 1844 * * Section name table index is inbounds of section headers 1845 * * Section name table is not empty 1846 * * Section name table is NUL terminated 1847 * * All section name offsets are inbounds of the section 1848 * 1849 * Then updates @info with a &load_info->secstrings pointer if valid. 1850 * 1851 * Return: %0 if valid, negative error code if validation failed. 1852 */ 1853 static int elf_validity_cache_secstrings(struct load_info *info) 1854 { 1855 Elf_Shdr *strhdr, *shdr; 1856 char *secstrings; 1857 int i; 1858 1859 /* 1860 * Verify if the section name table index is valid. 1861 */ 1862 if (info->hdr->e_shstrndx == SHN_UNDEF 1863 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1864 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1865 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1866 info->hdr->e_shnum); 1867 return -ENOEXEC; 1868 } 1869 1870 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1871 1872 /* 1873 * The section name table must be NUL-terminated, as required 1874 * by the spec. This makes strcmp and pr_* calls that access 1875 * strings in the section safe. 1876 */ 1877 secstrings = (void *)info->hdr + strhdr->sh_offset; 1878 if (strhdr->sh_size == 0) { 1879 pr_err("empty section name table\n"); 1880 return -ENOEXEC; 1881 } 1882 if (secstrings[strhdr->sh_size - 1] != '\0') { 1883 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1884 return -ENOEXEC; 1885 } 1886 1887 for (i = 0; i < info->hdr->e_shnum; i++) { 1888 shdr = &info->sechdrs[i]; 1889 /* SHT_NULL means sh_name has an undefined value */ 1890 if (shdr->sh_type == SHT_NULL) 1891 continue; 1892 if (shdr->sh_name >= strhdr->sh_size) { 1893 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1894 i, shdr->sh_type); 1895 return -ENOEXEC; 1896 } 1897 } 1898 1899 info->secstrings = secstrings; 1900 return 0; 1901 } 1902 1903 /** 1904 * elf_validity_cache_index_info() - Validate and cache modinfo section 1905 * @info: Load info to populate the modinfo index on. 1906 * Must have &load_info->sechdrs and &load_info->secstrings populated 1907 * 1908 * Checks that if there is a .modinfo section, it is unique. 1909 * Then, it caches its index in &load_info->index.info. 1910 * Finally, it tries to populate the name to improve error messages. 1911 * 1912 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1913 */ 1914 static int elf_validity_cache_index_info(struct load_info *info) 1915 { 1916 int info_idx; 1917 1918 info_idx = find_any_unique_sec(info, ".modinfo"); 1919 1920 if (info_idx == 0) 1921 /* Early return, no .modinfo */ 1922 return 0; 1923 1924 if (info_idx < 0) { 1925 pr_err("Only one .modinfo section must exist.\n"); 1926 return -ENOEXEC; 1927 } 1928 1929 info->index.info = info_idx; 1930 /* Try to find a name early so we can log errors with a module name */ 1931 info->name = get_modinfo(info, "name"); 1932 1933 return 0; 1934 } 1935 1936 /** 1937 * elf_validity_cache_index_mod() - Validates and caches this_module section 1938 * @info: Load info to cache this_module on. 1939 * Must have &load_info->sechdrs and &load_info->secstrings populated 1940 * 1941 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 1942 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 1943 * to &__this_module properly. The kernel's modpost declares it on each 1944 * modules's *.mod.c file. If the struct module of the kernel changes a full 1945 * kernel rebuild is required. 1946 * 1947 * We have a few expectations for this special section, this function 1948 * validates all this for us: 1949 * 1950 * * The section has contents 1951 * * The section is unique 1952 * * We expect the kernel to always have to allocate it: SHF_ALLOC 1953 * * The section size must match the kernel's run time's struct module 1954 * size 1955 * 1956 * If all checks pass, the index will be cached in &load_info->index.mod 1957 * 1958 * Return: %0 on validation success, %-ENOEXEC on failure 1959 */ 1960 static int elf_validity_cache_index_mod(struct load_info *info) 1961 { 1962 Elf_Shdr *shdr; 1963 int mod_idx; 1964 1965 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 1966 if (mod_idx <= 0) { 1967 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 1968 info->name ?: "(missing .modinfo section or name field)"); 1969 return -ENOEXEC; 1970 } 1971 1972 shdr = &info->sechdrs[mod_idx]; 1973 1974 if (shdr->sh_type == SHT_NOBITS) { 1975 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1976 info->name ?: "(missing .modinfo section or name field)"); 1977 return -ENOEXEC; 1978 } 1979 1980 if (!(shdr->sh_flags & SHF_ALLOC)) { 1981 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1982 info->name ?: "(missing .modinfo section or name field)"); 1983 return -ENOEXEC; 1984 } 1985 1986 if (shdr->sh_size != sizeof(struct module)) { 1987 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1988 info->name ?: "(missing .modinfo section or name field)"); 1989 return -ENOEXEC; 1990 } 1991 1992 info->index.mod = mod_idx; 1993 1994 return 0; 1995 } 1996 1997 /** 1998 * elf_validity_cache_index_sym() - Validate and cache symtab index 1999 * @info: Load info to cache symtab index in. 2000 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2001 * 2002 * Checks that there is exactly one symbol table, then caches its index in 2003 * &load_info->index.sym. 2004 * 2005 * Return: %0 if valid, %-ENOEXEC on failure. 2006 */ 2007 static int elf_validity_cache_index_sym(struct load_info *info) 2008 { 2009 unsigned int sym_idx; 2010 unsigned int num_sym_secs = 0; 2011 int i; 2012 2013 for (i = 1; i < info->hdr->e_shnum; i++) { 2014 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2015 num_sym_secs++; 2016 sym_idx = i; 2017 } 2018 } 2019 2020 if (num_sym_secs != 1) { 2021 pr_warn("%s: module has no symbols (stripped?)\n", 2022 info->name ?: "(missing .modinfo section or name field)"); 2023 return -ENOEXEC; 2024 } 2025 2026 info->index.sym = sym_idx; 2027 2028 return 0; 2029 } 2030 2031 /** 2032 * elf_validity_cache_index_str() - Validate and cache strtab index 2033 * @info: Load info to cache strtab index in. 2034 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2035 * Must have &load_info->index.sym populated. 2036 * 2037 * Looks at the symbol table's associated string table, makes sure it is 2038 * in-bounds, and caches it. 2039 * 2040 * Return: %0 if valid, %-ENOEXEC on failure. 2041 */ 2042 static int elf_validity_cache_index_str(struct load_info *info) 2043 { 2044 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2045 2046 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2047 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2048 str_idx, str_idx, info->hdr->e_shnum); 2049 return -ENOEXEC; 2050 } 2051 2052 info->index.str = str_idx; 2053 return 0; 2054 } 2055 2056 /** 2057 * elf_validity_cache_index_versions() - Validate and cache version indices 2058 * @info: Load info to cache version indices in. 2059 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2060 * @flags: Load flags, relevant to suppress version loading, see 2061 * uapi/linux/module.h 2062 * 2063 * If we're ignoring modversions based on @flags, zero all version indices 2064 * and return validity. Othewrise check: 2065 * 2066 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2067 * * There is a name present for every crc 2068 * 2069 * Then populate: 2070 * 2071 * * &load_info->index.vers 2072 * * &load_info->index.vers_ext_crc 2073 * * &load_info->index.vers_ext_names 2074 * 2075 * if present. 2076 * 2077 * Return: %0 if valid, %-ENOEXEC on failure. 2078 */ 2079 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2080 { 2081 unsigned int vers_ext_crc; 2082 unsigned int vers_ext_name; 2083 size_t crc_count; 2084 size_t remaining_len; 2085 size_t name_size; 2086 char *name; 2087 2088 /* If modversions were suppressed, pretend we didn't find any */ 2089 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2090 info->index.vers = 0; 2091 info->index.vers_ext_crc = 0; 2092 info->index.vers_ext_name = 0; 2093 return 0; 2094 } 2095 2096 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2097 vers_ext_name = find_sec(info, "__version_ext_names"); 2098 2099 /* If we have one field, we must have the other */ 2100 if (!!vers_ext_crc != !!vers_ext_name) { 2101 pr_err("extended version crc+name presence does not match"); 2102 return -ENOEXEC; 2103 } 2104 2105 /* 2106 * If we have extended version information, we should have the same 2107 * number of entries in every section. 2108 */ 2109 if (vers_ext_crc) { 2110 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2111 name = (void *)info->hdr + 2112 info->sechdrs[vers_ext_name].sh_offset; 2113 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2114 2115 while (crc_count--) { 2116 name_size = strnlen(name, remaining_len) + 1; 2117 if (name_size > remaining_len) { 2118 pr_err("more extended version crcs than names"); 2119 return -ENOEXEC; 2120 } 2121 remaining_len -= name_size; 2122 name += name_size; 2123 } 2124 } 2125 2126 info->index.vers = find_sec(info, "__versions"); 2127 info->index.vers_ext_crc = vers_ext_crc; 2128 info->index.vers_ext_name = vers_ext_name; 2129 return 0; 2130 } 2131 2132 /** 2133 * elf_validity_cache_index() - Resolve, validate, cache section indices 2134 * @info: Load info to read from and update. 2135 * &load_info->sechdrs and &load_info->secstrings must be populated. 2136 * @flags: Load flags, relevant to suppress version loading, see 2137 * uapi/linux/module.h 2138 * 2139 * Populates &load_info->index, validating as it goes. 2140 * See child functions for per-field validation: 2141 * 2142 * * elf_validity_cache_index_info() 2143 * * elf_validity_cache_index_mod() 2144 * * elf_validity_cache_index_sym() 2145 * * elf_validity_cache_index_str() 2146 * * elf_validity_cache_index_versions() 2147 * 2148 * If CONFIG_SMP is enabled, load the percpu section by name with no 2149 * validation. 2150 * 2151 * Return: 0 on success, negative error code if an index failed validation. 2152 */ 2153 static int elf_validity_cache_index(struct load_info *info, int flags) 2154 { 2155 int err; 2156 2157 err = elf_validity_cache_index_info(info); 2158 if (err < 0) 2159 return err; 2160 err = elf_validity_cache_index_mod(info); 2161 if (err < 0) 2162 return err; 2163 err = elf_validity_cache_index_sym(info); 2164 if (err < 0) 2165 return err; 2166 err = elf_validity_cache_index_str(info); 2167 if (err < 0) 2168 return err; 2169 err = elf_validity_cache_index_versions(info, flags); 2170 if (err < 0) 2171 return err; 2172 2173 info->index.pcpu = find_pcpusec(info); 2174 2175 return 0; 2176 } 2177 2178 /** 2179 * elf_validity_cache_strtab() - Validate and cache symbol string table 2180 * @info: Load info to read from and update. 2181 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2182 * Must have &load_info->index populated. 2183 * 2184 * Checks: 2185 * 2186 * * The string table is not empty. 2187 * * The string table starts and ends with NUL (required by ELF spec). 2188 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2189 * string table. 2190 * 2191 * And caches the pointer as &load_info->strtab in @info. 2192 * 2193 * Return: 0 on success, negative error code if a check failed. 2194 */ 2195 static int elf_validity_cache_strtab(struct load_info *info) 2196 { 2197 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2198 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2199 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2200 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2201 int i; 2202 2203 if (str_shdr->sh_size == 0) { 2204 pr_err("empty symbol string table\n"); 2205 return -ENOEXEC; 2206 } 2207 if (strtab[0] != '\0') { 2208 pr_err("symbol string table missing leading NUL\n"); 2209 return -ENOEXEC; 2210 } 2211 if (strtab[str_shdr->sh_size - 1] != '\0') { 2212 pr_err("symbol string table isn't NUL terminated\n"); 2213 return -ENOEXEC; 2214 } 2215 2216 /* 2217 * Now that we know strtab is correctly structured, check symbol 2218 * starts are inbounds before they're used later. 2219 */ 2220 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2221 if (syms[i].st_name >= str_shdr->sh_size) { 2222 pr_err("symbol name out of bounds in string table"); 2223 return -ENOEXEC; 2224 } 2225 } 2226 2227 info->strtab = strtab; 2228 return 0; 2229 } 2230 2231 /* 2232 * Check userspace passed ELF module against our expectations, and cache 2233 * useful variables for further processing as we go. 2234 * 2235 * This does basic validity checks against section offsets and sizes, the 2236 * section name string table, and the indices used for it (sh_name). 2237 * 2238 * As a last step, since we're already checking the ELF sections we cache 2239 * useful variables which will be used later for our convenience: 2240 * 2241 * o pointers to section headers 2242 * o cache the modinfo symbol section 2243 * o cache the string symbol section 2244 * o cache the module section 2245 * 2246 * As a last step we set info->mod to the temporary copy of the module in 2247 * info->hdr. The final one will be allocated in move_module(). Any 2248 * modifications we make to our copy of the module will be carried over 2249 * to the final minted module. 2250 */ 2251 static int elf_validity_cache_copy(struct load_info *info, int flags) 2252 { 2253 int err; 2254 2255 err = elf_validity_cache_sechdrs(info); 2256 if (err < 0) 2257 return err; 2258 err = elf_validity_cache_secstrings(info); 2259 if (err < 0) 2260 return err; 2261 err = elf_validity_cache_index(info, flags); 2262 if (err < 0) 2263 return err; 2264 err = elf_validity_cache_strtab(info); 2265 if (err < 0) 2266 return err; 2267 2268 /* This is temporary: point mod into copy of data. */ 2269 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2270 2271 /* 2272 * If we didn't load the .modinfo 'name' field earlier, fall back to 2273 * on-disk struct mod 'name' field. 2274 */ 2275 if (!info->name) 2276 info->name = info->mod->name; 2277 2278 return 0; 2279 } 2280 2281 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2282 2283 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2284 { 2285 do { 2286 unsigned long n = min(len, COPY_CHUNK_SIZE); 2287 2288 if (copy_from_user(dst, usrc, n) != 0) 2289 return -EFAULT; 2290 cond_resched(); 2291 dst += n; 2292 usrc += n; 2293 len -= n; 2294 } while (len); 2295 return 0; 2296 } 2297 2298 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2299 { 2300 if (!get_modinfo(info, "livepatch")) 2301 /* Nothing more to do */ 2302 return 0; 2303 2304 if (set_livepatch_module(mod)) 2305 return 0; 2306 2307 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2308 mod->name); 2309 return -ENOEXEC; 2310 } 2311 2312 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2313 { 2314 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2315 return; 2316 2317 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2318 mod->name); 2319 } 2320 2321 /* Sets info->hdr and info->len. */ 2322 static int copy_module_from_user(const void __user *umod, unsigned long len, 2323 struct load_info *info) 2324 { 2325 int err; 2326 2327 info->len = len; 2328 if (info->len < sizeof(*(info->hdr))) 2329 return -ENOEXEC; 2330 2331 err = security_kernel_load_data(LOADING_MODULE, true); 2332 if (err) 2333 return err; 2334 2335 /* Suck in entire file: we'll want most of it. */ 2336 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2337 if (!info->hdr) 2338 return -ENOMEM; 2339 2340 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2341 err = -EFAULT; 2342 goto out; 2343 } 2344 2345 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2346 LOADING_MODULE, "init_module"); 2347 out: 2348 if (err) 2349 vfree(info->hdr); 2350 2351 return err; 2352 } 2353 2354 static void free_copy(struct load_info *info, int flags) 2355 { 2356 if (flags & MODULE_INIT_COMPRESSED_FILE) 2357 module_decompress_cleanup(info); 2358 else 2359 vfree(info->hdr); 2360 } 2361 2362 static int rewrite_section_headers(struct load_info *info, int flags) 2363 { 2364 unsigned int i; 2365 2366 /* This should always be true, but let's be sure. */ 2367 info->sechdrs[0].sh_addr = 0; 2368 2369 for (i = 1; i < info->hdr->e_shnum; i++) { 2370 Elf_Shdr *shdr = &info->sechdrs[i]; 2371 2372 /* 2373 * Mark all sections sh_addr with their address in the 2374 * temporary image. 2375 */ 2376 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2377 2378 } 2379 2380 /* Track but don't keep modinfo and version sections. */ 2381 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2382 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2383 ~(unsigned long)SHF_ALLOC; 2384 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2385 ~(unsigned long)SHF_ALLOC; 2386 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2387 2388 return 0; 2389 } 2390 2391 static const char *const module_license_offenders[] = { 2392 /* driverloader was caught wrongly pretending to be under GPL */ 2393 "driverloader", 2394 2395 /* lve claims to be GPL but upstream won't provide source */ 2396 "lve", 2397 }; 2398 2399 /* 2400 * These calls taint the kernel depending certain module circumstances */ 2401 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2402 { 2403 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2404 size_t i; 2405 2406 if (!get_modinfo(info, "intree")) { 2407 if (!test_taint(TAINT_OOT_MODULE)) 2408 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2409 mod->name); 2410 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2411 } 2412 2413 check_modinfo_retpoline(mod, info); 2414 2415 if (get_modinfo(info, "staging")) { 2416 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2417 pr_warn("%s: module is from the staging directory, the quality " 2418 "is unknown, you have been warned.\n", mod->name); 2419 } 2420 2421 if (is_livepatch_module(mod)) { 2422 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2423 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2424 mod->name); 2425 } 2426 2427 module_license_taint_check(mod, get_modinfo(info, "license")); 2428 2429 if (get_modinfo(info, "test")) { 2430 if (!test_taint(TAINT_TEST)) 2431 pr_warn("%s: loading test module taints kernel.\n", 2432 mod->name); 2433 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2434 } 2435 #ifdef CONFIG_MODULE_SIG 2436 mod->sig_ok = info->sig_ok; 2437 if (!mod->sig_ok) { 2438 pr_notice_once("%s: module verification failed: signature " 2439 "and/or required key missing - tainting " 2440 "kernel\n", mod->name); 2441 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2442 } 2443 #endif 2444 2445 /* 2446 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2447 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2448 * using GPL-only symbols it needs. 2449 */ 2450 if (strcmp(mod->name, "ndiswrapper") == 0) 2451 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2452 2453 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2454 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2455 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2456 LOCKDEP_NOW_UNRELIABLE); 2457 } 2458 2459 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2460 pr_warn("%s: module license taints kernel.\n", mod->name); 2461 2462 } 2463 2464 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2465 { 2466 const char *modmagic = get_modinfo(info, "vermagic"); 2467 int err; 2468 2469 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2470 modmagic = NULL; 2471 2472 /* This is allowed: modprobe --force will invalidate it. */ 2473 if (!modmagic) { 2474 err = try_to_force_load(mod, "bad vermagic"); 2475 if (err) 2476 return err; 2477 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2478 pr_err("%s: version magic '%s' should be '%s'\n", 2479 info->name, modmagic, vermagic); 2480 return -ENOEXEC; 2481 } 2482 2483 err = check_modinfo_livepatch(mod, info); 2484 if (err) 2485 return err; 2486 2487 return 0; 2488 } 2489 2490 static int find_module_sections(struct module *mod, struct load_info *info) 2491 { 2492 mod->kp = section_objs(info, "__param", 2493 sizeof(*mod->kp), &mod->num_kp); 2494 mod->syms = section_objs(info, "__ksymtab", 2495 sizeof(*mod->syms), &mod->num_syms); 2496 mod->crcs = section_addr(info, "__kcrctab"); 2497 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2498 sizeof(*mod->gpl_syms), 2499 &mod->num_gpl_syms); 2500 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2501 2502 #ifdef CONFIG_CONSTRUCTORS 2503 mod->ctors = section_objs(info, ".ctors", 2504 sizeof(*mod->ctors), &mod->num_ctors); 2505 if (!mod->ctors) 2506 mod->ctors = section_objs(info, ".init_array", 2507 sizeof(*mod->ctors), &mod->num_ctors); 2508 else if (find_sec(info, ".init_array")) { 2509 /* 2510 * This shouldn't happen with same compiler and binutils 2511 * building all parts of the module. 2512 */ 2513 pr_warn("%s: has both .ctors and .init_array.\n", 2514 mod->name); 2515 return -EINVAL; 2516 } 2517 #endif 2518 2519 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2520 &mod->noinstr_text_size); 2521 2522 #ifdef CONFIG_TRACEPOINTS 2523 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2524 sizeof(*mod->tracepoints_ptrs), 2525 &mod->num_tracepoints); 2526 #endif 2527 #ifdef CONFIG_TREE_SRCU 2528 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2529 sizeof(*mod->srcu_struct_ptrs), 2530 &mod->num_srcu_structs); 2531 #endif 2532 #ifdef CONFIG_BPF_EVENTS 2533 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2534 sizeof(*mod->bpf_raw_events), 2535 &mod->num_bpf_raw_events); 2536 #endif 2537 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2538 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2539 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2540 &mod->btf_base_data_size); 2541 #endif 2542 #ifdef CONFIG_JUMP_LABEL 2543 mod->jump_entries = section_objs(info, "__jump_table", 2544 sizeof(*mod->jump_entries), 2545 &mod->num_jump_entries); 2546 #endif 2547 #ifdef CONFIG_EVENT_TRACING 2548 mod->trace_events = section_objs(info, "_ftrace_events", 2549 sizeof(*mod->trace_events), 2550 &mod->num_trace_events); 2551 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2552 sizeof(*mod->trace_evals), 2553 &mod->num_trace_evals); 2554 #endif 2555 #ifdef CONFIG_TRACING 2556 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2557 sizeof(*mod->trace_bprintk_fmt_start), 2558 &mod->num_trace_bprintk_fmt); 2559 #endif 2560 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2561 /* sechdrs[0].sh_size is always zero */ 2562 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2563 sizeof(*mod->ftrace_callsites), 2564 &mod->num_ftrace_callsites); 2565 #endif 2566 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2567 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2568 sizeof(*mod->ei_funcs), 2569 &mod->num_ei_funcs); 2570 #endif 2571 #ifdef CONFIG_KPROBES 2572 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2573 &mod->kprobes_text_size); 2574 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2575 sizeof(unsigned long), 2576 &mod->num_kprobe_blacklist); 2577 #endif 2578 #ifdef CONFIG_PRINTK_INDEX 2579 mod->printk_index_start = section_objs(info, ".printk_index", 2580 sizeof(*mod->printk_index_start), 2581 &mod->printk_index_size); 2582 #endif 2583 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2584 mod->static_call_sites = section_objs(info, ".static_call_sites", 2585 sizeof(*mod->static_call_sites), 2586 &mod->num_static_call_sites); 2587 #endif 2588 #if IS_ENABLED(CONFIG_KUNIT) 2589 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2590 sizeof(*mod->kunit_suites), 2591 &mod->num_kunit_suites); 2592 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2593 sizeof(*mod->kunit_init_suites), 2594 &mod->num_kunit_init_suites); 2595 #endif 2596 2597 mod->extable = section_objs(info, "__ex_table", 2598 sizeof(*mod->extable), &mod->num_exentries); 2599 2600 if (section_addr(info, "__obsparm")) 2601 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2602 2603 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2604 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2605 sizeof(*mod->dyndbg_info.descs), 2606 &mod->dyndbg_info.num_descs); 2607 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2608 sizeof(*mod->dyndbg_info.classes), 2609 &mod->dyndbg_info.num_classes); 2610 #endif 2611 2612 return 0; 2613 } 2614 2615 static int move_module(struct module *mod, struct load_info *info) 2616 { 2617 int i; 2618 enum mod_mem_type t = 0; 2619 int ret = -ENOMEM; 2620 bool codetag_section_found = false; 2621 2622 for_each_mod_mem_type(type) { 2623 if (!mod->mem[type].size) { 2624 mod->mem[type].base = NULL; 2625 continue; 2626 } 2627 2628 ret = module_memory_alloc(mod, type); 2629 if (ret) { 2630 t = type; 2631 goto out_err; 2632 } 2633 } 2634 2635 /* Transfer each section which specifies SHF_ALLOC */ 2636 pr_debug("Final section addresses for %s:\n", mod->name); 2637 for (i = 0; i < info->hdr->e_shnum; i++) { 2638 void *dest; 2639 Elf_Shdr *shdr = &info->sechdrs[i]; 2640 const char *sname; 2641 2642 if (!(shdr->sh_flags & SHF_ALLOC)) 2643 continue; 2644 2645 sname = info->secstrings + shdr->sh_name; 2646 /* 2647 * Load codetag sections separately as they might still be used 2648 * after module unload. 2649 */ 2650 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2651 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2652 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2653 if (WARN_ON(!dest)) { 2654 ret = -EINVAL; 2655 goto out_err; 2656 } 2657 if (IS_ERR(dest)) { 2658 ret = PTR_ERR(dest); 2659 goto out_err; 2660 } 2661 codetag_section_found = true; 2662 } else { 2663 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2664 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2665 2666 dest = mod->mem[type].base + offset; 2667 } 2668 2669 if (shdr->sh_type != SHT_NOBITS) { 2670 /* 2671 * Our ELF checker already validated this, but let's 2672 * be pedantic and make the goal clearer. We actually 2673 * end up copying over all modifications made to the 2674 * userspace copy of the entire struct module. 2675 */ 2676 if (i == info->index.mod && 2677 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2678 ret = -ENOEXEC; 2679 goto out_err; 2680 } 2681 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2682 } 2683 /* 2684 * Update the userspace copy's ELF section address to point to 2685 * our newly allocated memory as a pure convenience so that 2686 * users of info can keep taking advantage and using the newly 2687 * minted official memory area. 2688 */ 2689 shdr->sh_addr = (unsigned long)dest; 2690 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2691 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2692 } 2693 2694 return 0; 2695 out_err: 2696 module_memory_restore_rox(mod); 2697 for (t--; t >= 0; t--) 2698 module_memory_free(mod, t); 2699 if (codetag_section_found) 2700 codetag_free_module_sections(mod); 2701 2702 return ret; 2703 } 2704 2705 static int check_export_symbol_versions(struct module *mod) 2706 { 2707 #ifdef CONFIG_MODVERSIONS 2708 if ((mod->num_syms && !mod->crcs) || 2709 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2710 return try_to_force_load(mod, 2711 "no versions for exported symbols"); 2712 } 2713 #endif 2714 return 0; 2715 } 2716 2717 static void flush_module_icache(const struct module *mod) 2718 { 2719 /* 2720 * Flush the instruction cache, since we've played with text. 2721 * Do it before processing of module parameters, so the module 2722 * can provide parameter accessor functions of its own. 2723 */ 2724 for_each_mod_mem_type(type) { 2725 const struct module_memory *mod_mem = &mod->mem[type]; 2726 2727 if (mod_mem->size) { 2728 flush_icache_range((unsigned long)mod_mem->base, 2729 (unsigned long)mod_mem->base + mod_mem->size); 2730 } 2731 } 2732 } 2733 2734 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2735 { 2736 return true; 2737 } 2738 2739 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2740 Elf_Shdr *sechdrs, 2741 char *secstrings, 2742 struct module *mod) 2743 { 2744 return 0; 2745 } 2746 2747 /* module_blacklist is a comma-separated list of module names */ 2748 static char *module_blacklist; 2749 static bool blacklisted(const char *module_name) 2750 { 2751 const char *p; 2752 size_t len; 2753 2754 if (!module_blacklist) 2755 return false; 2756 2757 for (p = module_blacklist; *p; p += len) { 2758 len = strcspn(p, ","); 2759 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2760 return true; 2761 if (p[len] == ',') 2762 len++; 2763 } 2764 return false; 2765 } 2766 core_param(module_blacklist, module_blacklist, charp, 0400); 2767 2768 static struct module *layout_and_allocate(struct load_info *info, int flags) 2769 { 2770 struct module *mod; 2771 unsigned int ndx; 2772 int err; 2773 2774 /* Allow arches to frob section contents and sizes. */ 2775 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2776 info->secstrings, info->mod); 2777 if (err < 0) 2778 return ERR_PTR(err); 2779 2780 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2781 info->secstrings, info->mod); 2782 if (err < 0) 2783 return ERR_PTR(err); 2784 2785 /* We will do a special allocation for per-cpu sections later. */ 2786 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2787 2788 /* 2789 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2790 * layout_sections() can put it in the right place. 2791 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2792 */ 2793 ndx = find_sec(info, ".data..ro_after_init"); 2794 if (ndx) 2795 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2796 /* 2797 * Mark the __jump_table section as ro_after_init as well: these data 2798 * structures are never modified, with the exception of entries that 2799 * refer to code in the __init section, which are annotated as such 2800 * at module load time. 2801 */ 2802 ndx = find_sec(info, "__jump_table"); 2803 if (ndx) 2804 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2805 2806 /* 2807 * Determine total sizes, and put offsets in sh_entsize. For now 2808 * this is done generically; there doesn't appear to be any 2809 * special cases for the architectures. 2810 */ 2811 layout_sections(info->mod, info); 2812 layout_symtab(info->mod, info); 2813 2814 /* Allocate and move to the final place */ 2815 err = move_module(info->mod, info); 2816 if (err) 2817 return ERR_PTR(err); 2818 2819 /* Module has been copied to its final place now: return it. */ 2820 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2821 kmemleak_load_module(mod, info); 2822 codetag_module_replaced(info->mod, mod); 2823 2824 return mod; 2825 } 2826 2827 /* mod is no longer valid after this! */ 2828 static void module_deallocate(struct module *mod, struct load_info *info) 2829 { 2830 percpu_modfree(mod); 2831 module_arch_freeing_init(mod); 2832 2833 free_mod_mem(mod); 2834 } 2835 2836 int __weak module_finalize(const Elf_Ehdr *hdr, 2837 const Elf_Shdr *sechdrs, 2838 struct module *me) 2839 { 2840 return 0; 2841 } 2842 2843 static int post_relocation(struct module *mod, const struct load_info *info) 2844 { 2845 /* Sort exception table now relocations are done. */ 2846 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2847 2848 /* Copy relocated percpu area over. */ 2849 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2850 info->sechdrs[info->index.pcpu].sh_size); 2851 2852 /* Setup kallsyms-specific fields. */ 2853 add_kallsyms(mod, info); 2854 2855 /* Arch-specific module finalizing. */ 2856 return module_finalize(info->hdr, info->sechdrs, mod); 2857 } 2858 2859 /* Call module constructors. */ 2860 static void do_mod_ctors(struct module *mod) 2861 { 2862 #ifdef CONFIG_CONSTRUCTORS 2863 unsigned long i; 2864 2865 for (i = 0; i < mod->num_ctors; i++) 2866 mod->ctors[i](); 2867 #endif 2868 } 2869 2870 /* For freeing module_init on success, in case kallsyms traversing */ 2871 struct mod_initfree { 2872 struct llist_node node; 2873 void *init_text; 2874 void *init_data; 2875 void *init_rodata; 2876 }; 2877 2878 static void do_free_init(struct work_struct *w) 2879 { 2880 struct llist_node *pos, *n, *list; 2881 struct mod_initfree *initfree; 2882 2883 list = llist_del_all(&init_free_list); 2884 2885 synchronize_rcu(); 2886 2887 llist_for_each_safe(pos, n, list) { 2888 initfree = container_of(pos, struct mod_initfree, node); 2889 execmem_free(initfree->init_text); 2890 execmem_free(initfree->init_data); 2891 execmem_free(initfree->init_rodata); 2892 kfree(initfree); 2893 } 2894 } 2895 2896 void flush_module_init_free_work(void) 2897 { 2898 flush_work(&init_free_wq); 2899 } 2900 2901 #undef MODULE_PARAM_PREFIX 2902 #define MODULE_PARAM_PREFIX "module." 2903 /* Default value for module->async_probe_requested */ 2904 static bool async_probe; 2905 module_param(async_probe, bool, 0644); 2906 2907 /* 2908 * This is where the real work happens. 2909 * 2910 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2911 * helper command 'lx-symbols'. 2912 */ 2913 static noinline int do_init_module(struct module *mod) 2914 { 2915 int ret = 0; 2916 struct mod_initfree *freeinit; 2917 #if defined(CONFIG_MODULE_STATS) 2918 unsigned int text_size = 0, total_size = 0; 2919 2920 for_each_mod_mem_type(type) { 2921 const struct module_memory *mod_mem = &mod->mem[type]; 2922 if (mod_mem->size) { 2923 total_size += mod_mem->size; 2924 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2925 text_size += mod_mem->size; 2926 } 2927 } 2928 #endif 2929 2930 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2931 if (!freeinit) { 2932 ret = -ENOMEM; 2933 goto fail; 2934 } 2935 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2936 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2937 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2938 2939 do_mod_ctors(mod); 2940 /* Start the module */ 2941 if (mod->init != NULL) 2942 ret = do_one_initcall(mod->init); 2943 if (ret < 0) { 2944 goto fail_free_freeinit; 2945 } 2946 if (ret > 0) { 2947 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2948 "follow 0/-E convention\n" 2949 "%s: loading module anyway...\n", 2950 __func__, mod->name, ret, __func__); 2951 dump_stack(); 2952 } 2953 2954 /* Now it's a first class citizen! */ 2955 mod->state = MODULE_STATE_LIVE; 2956 blocking_notifier_call_chain(&module_notify_list, 2957 MODULE_STATE_LIVE, mod); 2958 2959 /* Delay uevent until module has finished its init routine */ 2960 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2961 2962 /* 2963 * We need to finish all async code before the module init sequence 2964 * is done. This has potential to deadlock if synchronous module 2965 * loading is requested from async (which is not allowed!). 2966 * 2967 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2968 * request_module() from async workers") for more details. 2969 */ 2970 if (!mod->async_probe_requested) 2971 async_synchronize_full(); 2972 2973 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2974 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2975 mutex_lock(&module_mutex); 2976 /* Drop initial reference. */ 2977 module_put(mod); 2978 trim_init_extable(mod); 2979 #ifdef CONFIG_KALLSYMS 2980 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2981 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2982 #endif 2983 ret = module_enable_rodata_ro_after_init(mod); 2984 if (ret) 2985 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 2986 "ro_after_init data might still be writable\n", 2987 mod->name, ret); 2988 2989 mod_tree_remove_init(mod); 2990 module_arch_freeing_init(mod); 2991 for_class_mod_mem_type(type, init) { 2992 mod->mem[type].base = NULL; 2993 mod->mem[type].size = 0; 2994 } 2995 2996 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2997 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 2998 mod->btf_data = NULL; 2999 mod->btf_base_data = NULL; 3000 #endif 3001 /* 3002 * We want to free module_init, but be aware that kallsyms may be 3003 * walking this within an RCU read section. In all the failure paths, we 3004 * call synchronize_rcu(), but we don't want to slow down the success 3005 * path. execmem_free() cannot be called in an interrupt, so do the 3006 * work and call synchronize_rcu() in a work queue. 3007 * 3008 * Note that execmem_alloc() on most architectures creates W+X page 3009 * mappings which won't be cleaned up until do_free_init() runs. Any 3010 * code such as mark_rodata_ro() which depends on those mappings to 3011 * be cleaned up needs to sync with the queued work by invoking 3012 * flush_module_init_free_work(). 3013 */ 3014 if (llist_add(&freeinit->node, &init_free_list)) 3015 schedule_work(&init_free_wq); 3016 3017 mutex_unlock(&module_mutex); 3018 wake_up_all(&module_wq); 3019 3020 mod_stat_add_long(text_size, &total_text_size); 3021 mod_stat_add_long(total_size, &total_mod_size); 3022 3023 mod_stat_inc(&modcount); 3024 3025 return 0; 3026 3027 fail_free_freeinit: 3028 kfree(freeinit); 3029 fail: 3030 /* Try to protect us from buggy refcounters. */ 3031 mod->state = MODULE_STATE_GOING; 3032 synchronize_rcu(); 3033 module_put(mod); 3034 blocking_notifier_call_chain(&module_notify_list, 3035 MODULE_STATE_GOING, mod); 3036 klp_module_going(mod); 3037 ftrace_release_mod(mod); 3038 free_module(mod); 3039 wake_up_all(&module_wq); 3040 3041 return ret; 3042 } 3043 3044 static int may_init_module(void) 3045 { 3046 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3047 return -EPERM; 3048 3049 return 0; 3050 } 3051 3052 /* Is this module of this name done loading? No locks held. */ 3053 static bool finished_loading(const char *name) 3054 { 3055 struct module *mod; 3056 bool ret; 3057 3058 /* 3059 * The module_mutex should not be a heavily contended lock; 3060 * if we get the occasional sleep here, we'll go an extra iteration 3061 * in the wait_event_interruptible(), which is harmless. 3062 */ 3063 sched_annotate_sleep(); 3064 mutex_lock(&module_mutex); 3065 mod = find_module_all(name, strlen(name), true); 3066 ret = !mod || mod->state == MODULE_STATE_LIVE 3067 || mod->state == MODULE_STATE_GOING; 3068 mutex_unlock(&module_mutex); 3069 3070 return ret; 3071 } 3072 3073 /* Must be called with module_mutex held */ 3074 static int module_patient_check_exists(const char *name, 3075 enum fail_dup_mod_reason reason) 3076 { 3077 struct module *old; 3078 int err = 0; 3079 3080 old = find_module_all(name, strlen(name), true); 3081 if (old == NULL) 3082 return 0; 3083 3084 if (old->state == MODULE_STATE_COMING || 3085 old->state == MODULE_STATE_UNFORMED) { 3086 /* Wait in case it fails to load. */ 3087 mutex_unlock(&module_mutex); 3088 err = wait_event_interruptible(module_wq, 3089 finished_loading(name)); 3090 mutex_lock(&module_mutex); 3091 if (err) 3092 return err; 3093 3094 /* The module might have gone in the meantime. */ 3095 old = find_module_all(name, strlen(name), true); 3096 } 3097 3098 if (try_add_failed_module(name, reason)) 3099 pr_warn("Could not add fail-tracking for module: %s\n", name); 3100 3101 /* 3102 * We are here only when the same module was being loaded. Do 3103 * not try to load it again right now. It prevents long delays 3104 * caused by serialized module load failures. It might happen 3105 * when more devices of the same type trigger load of 3106 * a particular module. 3107 */ 3108 if (old && old->state == MODULE_STATE_LIVE) 3109 return -EEXIST; 3110 return -EBUSY; 3111 } 3112 3113 /* 3114 * We try to place it in the list now to make sure it's unique before 3115 * we dedicate too many resources. In particular, temporary percpu 3116 * memory exhaustion. 3117 */ 3118 static int add_unformed_module(struct module *mod) 3119 { 3120 int err; 3121 3122 mod->state = MODULE_STATE_UNFORMED; 3123 3124 mutex_lock(&module_mutex); 3125 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3126 if (err) 3127 goto out; 3128 3129 mod_update_bounds(mod); 3130 list_add_rcu(&mod->list, &modules); 3131 mod_tree_insert(mod); 3132 err = 0; 3133 3134 out: 3135 mutex_unlock(&module_mutex); 3136 return err; 3137 } 3138 3139 static int complete_formation(struct module *mod, struct load_info *info) 3140 { 3141 int err; 3142 3143 mutex_lock(&module_mutex); 3144 3145 /* Find duplicate symbols (must be called under lock). */ 3146 err = verify_exported_symbols(mod); 3147 if (err < 0) 3148 goto out; 3149 3150 /* These rely on module_mutex for list integrity. */ 3151 module_bug_finalize(info->hdr, info->sechdrs, mod); 3152 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3153 3154 err = module_enable_rodata_ro(mod); 3155 if (err) 3156 goto out_strict_rwx; 3157 err = module_enable_data_nx(mod); 3158 if (err) 3159 goto out_strict_rwx; 3160 err = module_enable_text_rox(mod); 3161 if (err) 3162 goto out_strict_rwx; 3163 3164 /* 3165 * Mark state as coming so strong_try_module_get() ignores us, 3166 * but kallsyms etc. can see us. 3167 */ 3168 mod->state = MODULE_STATE_COMING; 3169 mutex_unlock(&module_mutex); 3170 3171 return 0; 3172 3173 out_strict_rwx: 3174 module_bug_cleanup(mod); 3175 out: 3176 mutex_unlock(&module_mutex); 3177 return err; 3178 } 3179 3180 static int prepare_coming_module(struct module *mod) 3181 { 3182 int err; 3183 3184 ftrace_module_enable(mod); 3185 err = klp_module_coming(mod); 3186 if (err) 3187 return err; 3188 3189 err = blocking_notifier_call_chain_robust(&module_notify_list, 3190 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3191 err = notifier_to_errno(err); 3192 if (err) 3193 klp_module_going(mod); 3194 3195 return err; 3196 } 3197 3198 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3199 void *arg) 3200 { 3201 struct module *mod = arg; 3202 int ret; 3203 3204 if (strcmp(param, "async_probe") == 0) { 3205 if (kstrtobool(val, &mod->async_probe_requested)) 3206 mod->async_probe_requested = true; 3207 return 0; 3208 } 3209 3210 /* Check for magic 'dyndbg' arg */ 3211 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3212 if (ret != 0) 3213 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3214 return 0; 3215 } 3216 3217 /* Module within temporary copy, this doesn't do any allocation */ 3218 static int early_mod_check(struct load_info *info, int flags) 3219 { 3220 int err; 3221 3222 /* 3223 * Now that we know we have the correct module name, check 3224 * if it's blacklisted. 3225 */ 3226 if (blacklisted(info->name)) { 3227 pr_err("Module %s is blacklisted\n", info->name); 3228 return -EPERM; 3229 } 3230 3231 err = rewrite_section_headers(info, flags); 3232 if (err) 3233 return err; 3234 3235 /* Check module struct version now, before we try to use module. */ 3236 if (!check_modstruct_version(info, info->mod)) 3237 return -ENOEXEC; 3238 3239 err = check_modinfo(info->mod, info, flags); 3240 if (err) 3241 return err; 3242 3243 mutex_lock(&module_mutex); 3244 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3245 mutex_unlock(&module_mutex); 3246 3247 return err; 3248 } 3249 3250 /* 3251 * Allocate and load the module: note that size of section 0 is always 3252 * zero, and we rely on this for optional sections. 3253 */ 3254 static int load_module(struct load_info *info, const char __user *uargs, 3255 int flags) 3256 { 3257 struct module *mod; 3258 bool module_allocated = false; 3259 long err = 0; 3260 char *after_dashes; 3261 3262 /* 3263 * Do the signature check (if any) first. All that 3264 * the signature check needs is info->len, it does 3265 * not need any of the section info. That can be 3266 * set up later. This will minimize the chances 3267 * of a corrupt module causing problems before 3268 * we even get to the signature check. 3269 * 3270 * The check will also adjust info->len by stripping 3271 * off the sig length at the end of the module, making 3272 * checks against info->len more correct. 3273 */ 3274 err = module_sig_check(info, flags); 3275 if (err) 3276 goto free_copy; 3277 3278 /* 3279 * Do basic sanity checks against the ELF header and 3280 * sections. Cache useful sections and set the 3281 * info->mod to the userspace passed struct module. 3282 */ 3283 err = elf_validity_cache_copy(info, flags); 3284 if (err) 3285 goto free_copy; 3286 3287 err = early_mod_check(info, flags); 3288 if (err) 3289 goto free_copy; 3290 3291 /* Figure out module layout, and allocate all the memory. */ 3292 mod = layout_and_allocate(info, flags); 3293 if (IS_ERR(mod)) { 3294 err = PTR_ERR(mod); 3295 goto free_copy; 3296 } 3297 3298 module_allocated = true; 3299 3300 audit_log_kern_module(mod->name); 3301 3302 /* Reserve our place in the list. */ 3303 err = add_unformed_module(mod); 3304 if (err) 3305 goto free_module; 3306 3307 /* 3308 * We are tainting your kernel if your module gets into 3309 * the modules linked list somehow. 3310 */ 3311 module_augment_kernel_taints(mod, info); 3312 3313 /* To avoid stressing percpu allocator, do this once we're unique. */ 3314 err = percpu_modalloc(mod, info); 3315 if (err) 3316 goto unlink_mod; 3317 3318 /* Now module is in final location, initialize linked lists, etc. */ 3319 err = module_unload_init(mod); 3320 if (err) 3321 goto unlink_mod; 3322 3323 init_param_lock(mod); 3324 3325 /* 3326 * Now we've got everything in the final locations, we can 3327 * find optional sections. 3328 */ 3329 err = find_module_sections(mod, info); 3330 if (err) 3331 goto free_unload; 3332 3333 err = check_export_symbol_versions(mod); 3334 if (err) 3335 goto free_unload; 3336 3337 /* Set up MODINFO_ATTR fields */ 3338 setup_modinfo(mod, info); 3339 3340 /* Fix up syms, so that st_value is a pointer to location. */ 3341 err = simplify_symbols(mod, info); 3342 if (err < 0) 3343 goto free_modinfo; 3344 3345 err = apply_relocations(mod, info); 3346 if (err < 0) 3347 goto free_modinfo; 3348 3349 err = post_relocation(mod, info); 3350 if (err < 0) 3351 goto free_modinfo; 3352 3353 flush_module_icache(mod); 3354 3355 /* Now copy in args */ 3356 mod->args = strndup_user(uargs, ~0UL >> 1); 3357 if (IS_ERR(mod->args)) { 3358 err = PTR_ERR(mod->args); 3359 goto free_arch_cleanup; 3360 } 3361 3362 init_build_id(mod, info); 3363 3364 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3365 ftrace_module_init(mod); 3366 3367 /* Finally it's fully formed, ready to start executing. */ 3368 err = complete_formation(mod, info); 3369 if (err) 3370 goto ddebug_cleanup; 3371 3372 err = prepare_coming_module(mod); 3373 if (err) 3374 goto bug_cleanup; 3375 3376 mod->async_probe_requested = async_probe; 3377 3378 /* Module is ready to execute: parsing args may do that. */ 3379 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3380 -32768, 32767, mod, 3381 unknown_module_param_cb); 3382 if (IS_ERR(after_dashes)) { 3383 err = PTR_ERR(after_dashes); 3384 goto coming_cleanup; 3385 } else if (after_dashes) { 3386 pr_warn("%s: parameters '%s' after `--' ignored\n", 3387 mod->name, after_dashes); 3388 } 3389 3390 /* Link in to sysfs. */ 3391 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3392 if (err < 0) 3393 goto coming_cleanup; 3394 3395 if (is_livepatch_module(mod)) { 3396 err = copy_module_elf(mod, info); 3397 if (err < 0) 3398 goto sysfs_cleanup; 3399 } 3400 3401 /* Get rid of temporary copy. */ 3402 free_copy(info, flags); 3403 3404 codetag_load_module(mod); 3405 3406 /* Done! */ 3407 trace_module_load(mod); 3408 3409 return do_init_module(mod); 3410 3411 sysfs_cleanup: 3412 mod_sysfs_teardown(mod); 3413 coming_cleanup: 3414 mod->state = MODULE_STATE_GOING; 3415 destroy_params(mod->kp, mod->num_kp); 3416 blocking_notifier_call_chain(&module_notify_list, 3417 MODULE_STATE_GOING, mod); 3418 klp_module_going(mod); 3419 bug_cleanup: 3420 mod->state = MODULE_STATE_GOING; 3421 /* module_bug_cleanup needs module_mutex protection */ 3422 mutex_lock(&module_mutex); 3423 module_bug_cleanup(mod); 3424 mutex_unlock(&module_mutex); 3425 3426 ddebug_cleanup: 3427 ftrace_release_mod(mod); 3428 synchronize_rcu(); 3429 kfree(mod->args); 3430 free_arch_cleanup: 3431 module_arch_cleanup(mod); 3432 free_modinfo: 3433 free_modinfo(mod); 3434 free_unload: 3435 module_unload_free(mod); 3436 unlink_mod: 3437 mutex_lock(&module_mutex); 3438 /* Unlink carefully: kallsyms could be walking list. */ 3439 list_del_rcu(&mod->list); 3440 mod_tree_remove(mod); 3441 wake_up_all(&module_wq); 3442 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3443 synchronize_rcu(); 3444 mutex_unlock(&module_mutex); 3445 free_module: 3446 mod_stat_bump_invalid(info, flags); 3447 /* Free lock-classes; relies on the preceding sync_rcu() */ 3448 for_class_mod_mem_type(type, core_data) { 3449 lockdep_free_key_range(mod->mem[type].base, 3450 mod->mem[type].size); 3451 } 3452 3453 module_memory_restore_rox(mod); 3454 module_deallocate(mod, info); 3455 free_copy: 3456 /* 3457 * The info->len is always set. We distinguish between 3458 * failures once the proper module was allocated and 3459 * before that. 3460 */ 3461 if (!module_allocated) 3462 mod_stat_bump_becoming(info, flags); 3463 free_copy(info, flags); 3464 return err; 3465 } 3466 3467 SYSCALL_DEFINE3(init_module, void __user *, umod, 3468 unsigned long, len, const char __user *, uargs) 3469 { 3470 int err; 3471 struct load_info info = { }; 3472 3473 err = may_init_module(); 3474 if (err) 3475 return err; 3476 3477 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3478 umod, len, uargs); 3479 3480 err = copy_module_from_user(umod, len, &info); 3481 if (err) { 3482 mod_stat_inc(&failed_kreads); 3483 mod_stat_add_long(len, &invalid_kread_bytes); 3484 return err; 3485 } 3486 3487 return load_module(&info, uargs, 0); 3488 } 3489 3490 struct idempotent { 3491 const void *cookie; 3492 struct hlist_node entry; 3493 struct completion complete; 3494 int ret; 3495 }; 3496 3497 #define IDEM_HASH_BITS 8 3498 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3499 static DEFINE_SPINLOCK(idem_lock); 3500 3501 static bool idempotent(struct idempotent *u, const void *cookie) 3502 { 3503 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3504 struct hlist_head *head = idem_hash + hash; 3505 struct idempotent *existing; 3506 bool first; 3507 3508 u->ret = -EINTR; 3509 u->cookie = cookie; 3510 init_completion(&u->complete); 3511 3512 spin_lock(&idem_lock); 3513 first = true; 3514 hlist_for_each_entry(existing, head, entry) { 3515 if (existing->cookie != cookie) 3516 continue; 3517 first = false; 3518 break; 3519 } 3520 hlist_add_head(&u->entry, idem_hash + hash); 3521 spin_unlock(&idem_lock); 3522 3523 return !first; 3524 } 3525 3526 /* 3527 * We were the first one with 'cookie' on the list, and we ended 3528 * up completing the operation. We now need to walk the list, 3529 * remove everybody - which includes ourselves - fill in the return 3530 * value, and then complete the operation. 3531 */ 3532 static int idempotent_complete(struct idempotent *u, int ret) 3533 { 3534 const void *cookie = u->cookie; 3535 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3536 struct hlist_head *head = idem_hash + hash; 3537 struct hlist_node *next; 3538 struct idempotent *pos; 3539 3540 spin_lock(&idem_lock); 3541 hlist_for_each_entry_safe(pos, next, head, entry) { 3542 if (pos->cookie != cookie) 3543 continue; 3544 hlist_del_init(&pos->entry); 3545 pos->ret = ret; 3546 complete(&pos->complete); 3547 } 3548 spin_unlock(&idem_lock); 3549 return ret; 3550 } 3551 3552 /* 3553 * Wait for the idempotent worker. 3554 * 3555 * If we get interrupted, we need to remove ourselves from the 3556 * the idempotent list, and the completion may still come in. 3557 * 3558 * The 'idem_lock' protects against the race, and 'idem.ret' was 3559 * initialized to -EINTR and is thus always the right return 3560 * value even if the idempotent work then completes between 3561 * the wait_for_completion and the cleanup. 3562 */ 3563 static int idempotent_wait_for_completion(struct idempotent *u) 3564 { 3565 if (wait_for_completion_interruptible(&u->complete)) { 3566 spin_lock(&idem_lock); 3567 if (!hlist_unhashed(&u->entry)) 3568 hlist_del(&u->entry); 3569 spin_unlock(&idem_lock); 3570 } 3571 return u->ret; 3572 } 3573 3574 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3575 { 3576 struct load_info info = { }; 3577 void *buf = NULL; 3578 int len; 3579 3580 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3581 if (len < 0) { 3582 mod_stat_inc(&failed_kreads); 3583 return len; 3584 } 3585 3586 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3587 int err = module_decompress(&info, buf, len); 3588 vfree(buf); /* compressed data is no longer needed */ 3589 if (err) { 3590 mod_stat_inc(&failed_decompress); 3591 mod_stat_add_long(len, &invalid_decompress_bytes); 3592 return err; 3593 } 3594 } else { 3595 info.hdr = buf; 3596 info.len = len; 3597 } 3598 3599 return load_module(&info, uargs, flags); 3600 } 3601 3602 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3603 { 3604 struct idempotent idem; 3605 3606 if (!(f->f_mode & FMODE_READ)) 3607 return -EBADF; 3608 3609 /* Are we the winners of the race and get to do this? */ 3610 if (!idempotent(&idem, file_inode(f))) { 3611 int ret = init_module_from_file(f, uargs, flags); 3612 return idempotent_complete(&idem, ret); 3613 } 3614 3615 /* 3616 * Somebody else won the race and is loading the module. 3617 */ 3618 return idempotent_wait_for_completion(&idem); 3619 } 3620 3621 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3622 { 3623 int err = may_init_module(); 3624 if (err) 3625 return err; 3626 3627 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3628 3629 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3630 |MODULE_INIT_IGNORE_VERMAGIC 3631 |MODULE_INIT_COMPRESSED_FILE)) 3632 return -EINVAL; 3633 3634 CLASS(fd, f)(fd); 3635 if (fd_empty(f)) 3636 return -EBADF; 3637 return idempotent_init_module(fd_file(f), uargs, flags); 3638 } 3639 3640 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3641 char *module_flags(struct module *mod, char *buf, bool show_state) 3642 { 3643 int bx = 0; 3644 3645 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3646 if (!mod->taints && !show_state) 3647 goto out; 3648 if (mod->taints || 3649 mod->state == MODULE_STATE_GOING || 3650 mod->state == MODULE_STATE_COMING) { 3651 buf[bx++] = '('; 3652 bx += module_flags_taint(mod->taints, buf + bx); 3653 /* Show a - for module-is-being-unloaded */ 3654 if (mod->state == MODULE_STATE_GOING && show_state) 3655 buf[bx++] = '-'; 3656 /* Show a + for module-is-being-loaded */ 3657 if (mod->state == MODULE_STATE_COMING && show_state) 3658 buf[bx++] = '+'; 3659 buf[bx++] = ')'; 3660 } 3661 out: 3662 buf[bx] = '\0'; 3663 3664 return buf; 3665 } 3666 3667 /* Given an address, look for it in the module exception tables. */ 3668 const struct exception_table_entry *search_module_extables(unsigned long addr) 3669 { 3670 struct module *mod; 3671 3672 guard(rcu)(); 3673 mod = __module_address(addr); 3674 if (!mod) 3675 return NULL; 3676 3677 if (!mod->num_exentries) 3678 return NULL; 3679 /* 3680 * The address passed here belongs to a module that is currently 3681 * invoked (we are running inside it). Therefore its module::refcnt 3682 * needs already be >0 to ensure that it is not removed at this stage. 3683 * All other user need to invoke this function within a RCU read 3684 * section. 3685 */ 3686 return search_extable(mod->extable, mod->num_exentries, addr); 3687 } 3688 3689 /** 3690 * is_module_address() - is this address inside a module? 3691 * @addr: the address to check. 3692 * 3693 * See is_module_text_address() if you simply want to see if the address 3694 * is code (not data). 3695 */ 3696 bool is_module_address(unsigned long addr) 3697 { 3698 guard(rcu)(); 3699 return __module_address(addr) != NULL; 3700 } 3701 3702 /** 3703 * __module_address() - get the module which contains an address. 3704 * @addr: the address. 3705 * 3706 * Must be called within RCU read section or module mutex held so that 3707 * module doesn't get freed during this. 3708 */ 3709 struct module *__module_address(unsigned long addr) 3710 { 3711 struct module *mod; 3712 3713 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3714 goto lookup; 3715 3716 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3717 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3718 goto lookup; 3719 #endif 3720 3721 return NULL; 3722 3723 lookup: 3724 mod = mod_find(addr, &mod_tree); 3725 if (mod) { 3726 BUG_ON(!within_module(addr, mod)); 3727 if (mod->state == MODULE_STATE_UNFORMED) 3728 mod = NULL; 3729 } 3730 return mod; 3731 } 3732 3733 /** 3734 * is_module_text_address() - is this address inside module code? 3735 * @addr: the address to check. 3736 * 3737 * See is_module_address() if you simply want to see if the address is 3738 * anywhere in a module. See kernel_text_address() for testing if an 3739 * address corresponds to kernel or module code. 3740 */ 3741 bool is_module_text_address(unsigned long addr) 3742 { 3743 guard(rcu)(); 3744 return __module_text_address(addr) != NULL; 3745 } 3746 3747 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data) 3748 { 3749 struct module *mod; 3750 3751 guard(rcu)(); 3752 list_for_each_entry_rcu(mod, &modules, list) { 3753 if (mod->state == MODULE_STATE_UNFORMED) 3754 continue; 3755 if (func(mod, data)) 3756 break; 3757 } 3758 } 3759 3760 /** 3761 * __module_text_address() - get the module whose code contains an address. 3762 * @addr: the address. 3763 * 3764 * Must be called within RCU read section or module mutex held so that 3765 * module doesn't get freed during this. 3766 */ 3767 struct module *__module_text_address(unsigned long addr) 3768 { 3769 struct module *mod = __module_address(addr); 3770 if (mod) { 3771 /* Make sure it's within the text section. */ 3772 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3773 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3774 mod = NULL; 3775 } 3776 return mod; 3777 } 3778 3779 /* Don't grab lock, we're oopsing. */ 3780 void print_modules(void) 3781 { 3782 struct module *mod; 3783 char buf[MODULE_FLAGS_BUF_SIZE]; 3784 3785 printk(KERN_DEFAULT "Modules linked in:"); 3786 /* Most callers should already have preempt disabled, but make sure */ 3787 guard(rcu)(); 3788 list_for_each_entry_rcu(mod, &modules, list) { 3789 if (mod->state == MODULE_STATE_UNFORMED) 3790 continue; 3791 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3792 } 3793 3794 print_unloaded_tainted_modules(); 3795 if (last_unloaded_module.name[0]) 3796 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3797 last_unloaded_module.taints); 3798 pr_cont("\n"); 3799 } 3800 3801 #ifdef CONFIG_MODULE_DEBUGFS 3802 struct dentry *mod_debugfs_root; 3803 3804 static int module_debugfs_init(void) 3805 { 3806 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3807 return 0; 3808 } 3809 module_init(module_debugfs_init); 3810 #endif 3811