1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 */ 6 7 #define INCLUDE_VERMAGIC 8 9 #include <linux/export.h> 10 #include <linux/extable.h> 11 #include <linux/moduleloader.h> 12 #include <linux/module_signature.h> 13 #include <linux/trace_events.h> 14 #include <linux/init.h> 15 #include <linux/kallsyms.h> 16 #include <linux/buildid.h> 17 #include <linux/fs.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/slab.h> 21 #include <linux/vmalloc.h> 22 #include <linux/elf.h> 23 #include <linux/seq_file.h> 24 #include <linux/syscalls.h> 25 #include <linux/fcntl.h> 26 #include <linux/rcupdate.h> 27 #include <linux/capability.h> 28 #include <linux/cpu.h> 29 #include <linux/moduleparam.h> 30 #include <linux/errno.h> 31 #include <linux/err.h> 32 #include <linux/vermagic.h> 33 #include <linux/notifier.h> 34 #include <linux/sched.h> 35 #include <linux/device.h> 36 #include <linux/string.h> 37 #include <linux/mutex.h> 38 #include <linux/rculist.h> 39 #include <linux/uaccess.h> 40 #include <asm/cacheflush.h> 41 #include <linux/set_memory.h> 42 #include <asm/mmu_context.h> 43 #include <linux/license.h> 44 #include <asm/sections.h> 45 #include <linux/tracepoint.h> 46 #include <linux/ftrace.h> 47 #include <linux/livepatch.h> 48 #include <linux/async.h> 49 #include <linux/percpu.h> 50 #include <linux/kmemleak.h> 51 #include <linux/jump_label.h> 52 #include <linux/pfn.h> 53 #include <linux/bsearch.h> 54 #include <linux/dynamic_debug.h> 55 #include <linux/audit.h> 56 #include <uapi/linux/module.h> 57 #include "internal.h" 58 59 #define CREATE_TRACE_POINTS 60 #include <trace/events/module.h> 61 62 /* 63 * Mutex protects: 64 * 1) List of modules (also safely readable with preempt_disable), 65 * 2) module_use links, 66 * 3) mod_tree.addr_min/mod_tree.addr_max. 67 * (delete and add uses RCU list operations). 68 */ 69 DEFINE_MUTEX(module_mutex); 70 LIST_HEAD(modules); 71 72 /* Work queue for freeing init sections in success case */ 73 static void do_free_init(struct work_struct *w); 74 static DECLARE_WORK(init_free_wq, do_free_init); 75 static LLIST_HEAD(init_free_list); 76 77 struct mod_tree_root mod_tree __cacheline_aligned = { 78 .addr_min = -1UL, 79 }; 80 81 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 82 struct mod_tree_root mod_data_tree __cacheline_aligned = { 83 .addr_min = -1UL, 84 }; 85 #endif 86 87 #define module_addr_min mod_tree.addr_min 88 #define module_addr_max mod_tree.addr_max 89 90 struct symsearch { 91 const struct kernel_symbol *start, *stop; 92 const s32 *crcs; 93 enum mod_license license; 94 }; 95 96 /* 97 * Bounds of module text, for speeding up __module_address. 98 * Protected by module_mutex. 99 */ 100 static void __mod_update_bounds(void *base, unsigned int size, struct mod_tree_root *tree) 101 { 102 unsigned long min = (unsigned long)base; 103 unsigned long max = min + size; 104 105 if (min < tree->addr_min) 106 tree->addr_min = min; 107 if (max > tree->addr_max) 108 tree->addr_max = max; 109 } 110 111 static void mod_update_bounds(struct module *mod) 112 { 113 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size, &mod_tree); 114 if (mod->init_layout.size) 115 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size, &mod_tree); 116 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 117 __mod_update_bounds(mod->data_layout.base, mod->data_layout.size, &mod_data_tree); 118 #endif 119 } 120 121 /* Block module loading/unloading? */ 122 int modules_disabled; 123 core_param(nomodule, modules_disabled, bint, 0); 124 125 /* Waiting for a module to finish initializing? */ 126 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 127 128 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 129 130 int register_module_notifier(struct notifier_block *nb) 131 { 132 return blocking_notifier_chain_register(&module_notify_list, nb); 133 } 134 EXPORT_SYMBOL(register_module_notifier); 135 136 int unregister_module_notifier(struct notifier_block *nb) 137 { 138 return blocking_notifier_chain_unregister(&module_notify_list, nb); 139 } 140 EXPORT_SYMBOL(unregister_module_notifier); 141 142 /* 143 * We require a truly strong try_module_get(): 0 means success. 144 * Otherwise an error is returned due to ongoing or failed 145 * initialization etc. 146 */ 147 static inline int strong_try_module_get(struct module *mod) 148 { 149 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 150 if (mod && mod->state == MODULE_STATE_COMING) 151 return -EBUSY; 152 if (try_module_get(mod)) 153 return 0; 154 else 155 return -ENOENT; 156 } 157 158 static inline void add_taint_module(struct module *mod, unsigned flag, 159 enum lockdep_ok lockdep_ok) 160 { 161 add_taint(flag, lockdep_ok); 162 set_bit(flag, &mod->taints); 163 } 164 165 /* 166 * A thread that wants to hold a reference to a module only while it 167 * is running can call this to safely exit. 168 */ 169 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 170 { 171 module_put(mod); 172 kthread_exit(code); 173 } 174 EXPORT_SYMBOL(__module_put_and_kthread_exit); 175 176 /* Find a module section: 0 means not found. */ 177 static unsigned int find_sec(const struct load_info *info, const char *name) 178 { 179 unsigned int i; 180 181 for (i = 1; i < info->hdr->e_shnum; i++) { 182 Elf_Shdr *shdr = &info->sechdrs[i]; 183 /* Alloc bit cleared means "ignore it." */ 184 if ((shdr->sh_flags & SHF_ALLOC) 185 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 186 return i; 187 } 188 return 0; 189 } 190 191 /* Find a module section, or NULL. */ 192 static void *section_addr(const struct load_info *info, const char *name) 193 { 194 /* Section 0 has sh_addr 0. */ 195 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 196 } 197 198 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 199 static void *section_objs(const struct load_info *info, 200 const char *name, 201 size_t object_size, 202 unsigned int *num) 203 { 204 unsigned int sec = find_sec(info, name); 205 206 /* Section 0 has sh_addr 0 and sh_size 0. */ 207 *num = info->sechdrs[sec].sh_size / object_size; 208 return (void *)info->sechdrs[sec].sh_addr; 209 } 210 211 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 212 static unsigned int find_any_sec(const struct load_info *info, const char *name) 213 { 214 unsigned int i; 215 216 for (i = 1; i < info->hdr->e_shnum; i++) { 217 Elf_Shdr *shdr = &info->sechdrs[i]; 218 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 219 return i; 220 } 221 return 0; 222 } 223 224 /* 225 * Find a module section, or NULL. Fill in number of "objects" in section. 226 * Ignores SHF_ALLOC flag. 227 */ 228 static __maybe_unused void *any_section_objs(const struct load_info *info, 229 const char *name, 230 size_t object_size, 231 unsigned int *num) 232 { 233 unsigned int sec = find_any_sec(info, name); 234 235 /* Section 0 has sh_addr 0 and sh_size 0. */ 236 *num = info->sechdrs[sec].sh_size / object_size; 237 return (void *)info->sechdrs[sec].sh_addr; 238 } 239 240 #ifndef CONFIG_MODVERSIONS 241 #define symversion(base, idx) NULL 242 #else 243 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 244 #endif 245 246 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 247 { 248 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 249 return offset_to_ptr(&sym->name_offset); 250 #else 251 return sym->name; 252 #endif 253 } 254 255 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 256 { 257 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 258 if (!sym->namespace_offset) 259 return NULL; 260 return offset_to_ptr(&sym->namespace_offset); 261 #else 262 return sym->namespace; 263 #endif 264 } 265 266 int cmp_name(const void *name, const void *sym) 267 { 268 return strcmp(name, kernel_symbol_name(sym)); 269 } 270 271 static bool find_exported_symbol_in_section(const struct symsearch *syms, 272 struct module *owner, 273 struct find_symbol_arg *fsa) 274 { 275 struct kernel_symbol *sym; 276 277 if (!fsa->gplok && syms->license == GPL_ONLY) 278 return false; 279 280 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 281 sizeof(struct kernel_symbol), cmp_name); 282 if (!sym) 283 return false; 284 285 fsa->owner = owner; 286 fsa->crc = symversion(syms->crcs, sym - syms->start); 287 fsa->sym = sym; 288 fsa->license = syms->license; 289 290 return true; 291 } 292 293 /* 294 * Find an exported symbol and return it, along with, (optional) crc and 295 * (optional) module which owns it. Needs preempt disabled or module_mutex. 296 */ 297 bool find_symbol(struct find_symbol_arg *fsa) 298 { 299 static const struct symsearch arr[] = { 300 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 301 NOT_GPL_ONLY }, 302 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 303 __start___kcrctab_gpl, 304 GPL_ONLY }, 305 }; 306 struct module *mod; 307 unsigned int i; 308 309 module_assert_mutex_or_preempt(); 310 311 for (i = 0; i < ARRAY_SIZE(arr); i++) 312 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 313 return true; 314 315 list_for_each_entry_rcu(mod, &modules, list, 316 lockdep_is_held(&module_mutex)) { 317 struct symsearch arr[] = { 318 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 319 NOT_GPL_ONLY }, 320 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 321 mod->gpl_crcs, 322 GPL_ONLY }, 323 }; 324 325 if (mod->state == MODULE_STATE_UNFORMED) 326 continue; 327 328 for (i = 0; i < ARRAY_SIZE(arr); i++) 329 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 330 return true; 331 } 332 333 pr_debug("Failed to find symbol %s\n", fsa->name); 334 return false; 335 } 336 337 /* 338 * Search for module by name: must hold module_mutex (or preempt disabled 339 * for read-only access). 340 */ 341 struct module *find_module_all(const char *name, size_t len, 342 bool even_unformed) 343 { 344 struct module *mod; 345 346 module_assert_mutex_or_preempt(); 347 348 list_for_each_entry_rcu(mod, &modules, list, 349 lockdep_is_held(&module_mutex)) { 350 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 351 continue; 352 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 353 return mod; 354 } 355 return NULL; 356 } 357 358 struct module *find_module(const char *name) 359 { 360 return find_module_all(name, strlen(name), false); 361 } 362 363 #ifdef CONFIG_SMP 364 365 static inline void __percpu *mod_percpu(struct module *mod) 366 { 367 return mod->percpu; 368 } 369 370 static int percpu_modalloc(struct module *mod, struct load_info *info) 371 { 372 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 373 unsigned long align = pcpusec->sh_addralign; 374 375 if (!pcpusec->sh_size) 376 return 0; 377 378 if (align > PAGE_SIZE) { 379 pr_warn("%s: per-cpu alignment %li > %li\n", 380 mod->name, align, PAGE_SIZE); 381 align = PAGE_SIZE; 382 } 383 384 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 385 if (!mod->percpu) { 386 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 387 mod->name, (unsigned long)pcpusec->sh_size); 388 return -ENOMEM; 389 } 390 mod->percpu_size = pcpusec->sh_size; 391 return 0; 392 } 393 394 static void percpu_modfree(struct module *mod) 395 { 396 free_percpu(mod->percpu); 397 } 398 399 static unsigned int find_pcpusec(struct load_info *info) 400 { 401 return find_sec(info, ".data..percpu"); 402 } 403 404 static void percpu_modcopy(struct module *mod, 405 const void *from, unsigned long size) 406 { 407 int cpu; 408 409 for_each_possible_cpu(cpu) 410 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 411 } 412 413 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 414 { 415 struct module *mod; 416 unsigned int cpu; 417 418 preempt_disable(); 419 420 list_for_each_entry_rcu(mod, &modules, list) { 421 if (mod->state == MODULE_STATE_UNFORMED) 422 continue; 423 if (!mod->percpu_size) 424 continue; 425 for_each_possible_cpu(cpu) { 426 void *start = per_cpu_ptr(mod->percpu, cpu); 427 void *va = (void *)addr; 428 429 if (va >= start && va < start + mod->percpu_size) { 430 if (can_addr) { 431 *can_addr = (unsigned long) (va - start); 432 *can_addr += (unsigned long) 433 per_cpu_ptr(mod->percpu, 434 get_boot_cpu_id()); 435 } 436 preempt_enable(); 437 return true; 438 } 439 } 440 } 441 442 preempt_enable(); 443 return false; 444 } 445 446 /** 447 * is_module_percpu_address() - test whether address is from module static percpu 448 * @addr: address to test 449 * 450 * Test whether @addr belongs to module static percpu area. 451 * 452 * Return: %true if @addr is from module static percpu area 453 */ 454 bool is_module_percpu_address(unsigned long addr) 455 { 456 return __is_module_percpu_address(addr, NULL); 457 } 458 459 #else /* ... !CONFIG_SMP */ 460 461 static inline void __percpu *mod_percpu(struct module *mod) 462 { 463 return NULL; 464 } 465 static int percpu_modalloc(struct module *mod, struct load_info *info) 466 { 467 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 468 if (info->sechdrs[info->index.pcpu].sh_size != 0) 469 return -ENOMEM; 470 return 0; 471 } 472 static inline void percpu_modfree(struct module *mod) 473 { 474 } 475 static unsigned int find_pcpusec(struct load_info *info) 476 { 477 return 0; 478 } 479 static inline void percpu_modcopy(struct module *mod, 480 const void *from, unsigned long size) 481 { 482 /* pcpusec should be 0, and size of that section should be 0. */ 483 BUG_ON(size != 0); 484 } 485 bool is_module_percpu_address(unsigned long addr) 486 { 487 return false; 488 } 489 490 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 491 { 492 return false; 493 } 494 495 #endif /* CONFIG_SMP */ 496 497 #define MODINFO_ATTR(field) \ 498 static void setup_modinfo_##field(struct module *mod, const char *s) \ 499 { \ 500 mod->field = kstrdup(s, GFP_KERNEL); \ 501 } \ 502 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \ 503 struct module_kobject *mk, char *buffer) \ 504 { \ 505 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 506 } \ 507 static int modinfo_##field##_exists(struct module *mod) \ 508 { \ 509 return mod->field != NULL; \ 510 } \ 511 static void free_modinfo_##field(struct module *mod) \ 512 { \ 513 kfree(mod->field); \ 514 mod->field = NULL; \ 515 } \ 516 static struct module_attribute modinfo_##field = { \ 517 .attr = { .name = __stringify(field), .mode = 0444 }, \ 518 .show = show_modinfo_##field, \ 519 .setup = setup_modinfo_##field, \ 520 .test = modinfo_##field##_exists, \ 521 .free = free_modinfo_##field, \ 522 }; 523 524 MODINFO_ATTR(version); 525 MODINFO_ATTR(srcversion); 526 527 static struct { 528 char name[MODULE_NAME_LEN + 1]; 529 char taints[MODULE_FLAGS_BUF_SIZE]; 530 } last_unloaded_module; 531 532 #ifdef CONFIG_MODULE_UNLOAD 533 534 EXPORT_TRACEPOINT_SYMBOL(module_get); 535 536 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 537 #define MODULE_REF_BASE 1 538 539 /* Init the unload section of the module. */ 540 static int module_unload_init(struct module *mod) 541 { 542 /* 543 * Initialize reference counter to MODULE_REF_BASE. 544 * refcnt == 0 means module is going. 545 */ 546 atomic_set(&mod->refcnt, MODULE_REF_BASE); 547 548 INIT_LIST_HEAD(&mod->source_list); 549 INIT_LIST_HEAD(&mod->target_list); 550 551 /* Hold reference count during initialization. */ 552 atomic_inc(&mod->refcnt); 553 554 return 0; 555 } 556 557 /* Does a already use b? */ 558 static int already_uses(struct module *a, struct module *b) 559 { 560 struct module_use *use; 561 562 list_for_each_entry(use, &b->source_list, source_list) { 563 if (use->source == a) { 564 pr_debug("%s uses %s!\n", a->name, b->name); 565 return 1; 566 } 567 } 568 pr_debug("%s does not use %s!\n", a->name, b->name); 569 return 0; 570 } 571 572 /* 573 * Module a uses b 574 * - we add 'a' as a "source", 'b' as a "target" of module use 575 * - the module_use is added to the list of 'b' sources (so 576 * 'b' can walk the list to see who sourced them), and of 'a' 577 * targets (so 'a' can see what modules it targets). 578 */ 579 static int add_module_usage(struct module *a, struct module *b) 580 { 581 struct module_use *use; 582 583 pr_debug("Allocating new usage for %s.\n", a->name); 584 use = kmalloc(sizeof(*use), GFP_ATOMIC); 585 if (!use) 586 return -ENOMEM; 587 588 use->source = a; 589 use->target = b; 590 list_add(&use->source_list, &b->source_list); 591 list_add(&use->target_list, &a->target_list); 592 return 0; 593 } 594 595 /* Module a uses b: caller needs module_mutex() */ 596 static int ref_module(struct module *a, struct module *b) 597 { 598 int err; 599 600 if (b == NULL || already_uses(a, b)) 601 return 0; 602 603 /* If module isn't available, we fail. */ 604 err = strong_try_module_get(b); 605 if (err) 606 return err; 607 608 err = add_module_usage(a, b); 609 if (err) { 610 module_put(b); 611 return err; 612 } 613 return 0; 614 } 615 616 /* Clear the unload stuff of the module. */ 617 static void module_unload_free(struct module *mod) 618 { 619 struct module_use *use, *tmp; 620 621 mutex_lock(&module_mutex); 622 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 623 struct module *i = use->target; 624 pr_debug("%s unusing %s\n", mod->name, i->name); 625 module_put(i); 626 list_del(&use->source_list); 627 list_del(&use->target_list); 628 kfree(use); 629 } 630 mutex_unlock(&module_mutex); 631 } 632 633 #ifdef CONFIG_MODULE_FORCE_UNLOAD 634 static inline int try_force_unload(unsigned int flags) 635 { 636 int ret = (flags & O_TRUNC); 637 if (ret) 638 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 639 return ret; 640 } 641 #else 642 static inline int try_force_unload(unsigned int flags) 643 { 644 return 0; 645 } 646 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 647 648 /* Try to release refcount of module, 0 means success. */ 649 static int try_release_module_ref(struct module *mod) 650 { 651 int ret; 652 653 /* Try to decrement refcnt which we set at loading */ 654 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 655 BUG_ON(ret < 0); 656 if (ret) 657 /* Someone can put this right now, recover with checking */ 658 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 659 660 return ret; 661 } 662 663 static int try_stop_module(struct module *mod, int flags, int *forced) 664 { 665 /* If it's not unused, quit unless we're forcing. */ 666 if (try_release_module_ref(mod) != 0) { 667 *forced = try_force_unload(flags); 668 if (!(*forced)) 669 return -EWOULDBLOCK; 670 } 671 672 /* Mark it as dying. */ 673 mod->state = MODULE_STATE_GOING; 674 675 return 0; 676 } 677 678 /** 679 * module_refcount() - return the refcount or -1 if unloading 680 * @mod: the module we're checking 681 * 682 * Return: 683 * -1 if the module is in the process of unloading 684 * otherwise the number of references in the kernel to the module 685 */ 686 int module_refcount(struct module *mod) 687 { 688 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 689 } 690 EXPORT_SYMBOL(module_refcount); 691 692 /* This exists whether we can unload or not */ 693 static void free_module(struct module *mod); 694 695 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 696 unsigned int, flags) 697 { 698 struct module *mod; 699 char name[MODULE_NAME_LEN]; 700 char buf[MODULE_FLAGS_BUF_SIZE]; 701 int ret, forced = 0; 702 703 if (!capable(CAP_SYS_MODULE) || modules_disabled) 704 return -EPERM; 705 706 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 707 return -EFAULT; 708 name[MODULE_NAME_LEN-1] = '\0'; 709 710 audit_log_kern_module(name); 711 712 if (mutex_lock_interruptible(&module_mutex) != 0) 713 return -EINTR; 714 715 mod = find_module(name); 716 if (!mod) { 717 ret = -ENOENT; 718 goto out; 719 } 720 721 if (!list_empty(&mod->source_list)) { 722 /* Other modules depend on us: get rid of them first. */ 723 ret = -EWOULDBLOCK; 724 goto out; 725 } 726 727 /* Doing init or already dying? */ 728 if (mod->state != MODULE_STATE_LIVE) { 729 /* FIXME: if (force), slam module count damn the torpedoes */ 730 pr_debug("%s already dying\n", mod->name); 731 ret = -EBUSY; 732 goto out; 733 } 734 735 /* If it has an init func, it must have an exit func to unload */ 736 if (mod->init && !mod->exit) { 737 forced = try_force_unload(flags); 738 if (!forced) { 739 /* This module can't be removed */ 740 ret = -EBUSY; 741 goto out; 742 } 743 } 744 745 ret = try_stop_module(mod, flags, &forced); 746 if (ret != 0) 747 goto out; 748 749 mutex_unlock(&module_mutex); 750 /* Final destruction now no one is using it. */ 751 if (mod->exit != NULL) 752 mod->exit(); 753 blocking_notifier_call_chain(&module_notify_list, 754 MODULE_STATE_GOING, mod); 755 klp_module_going(mod); 756 ftrace_release_mod(mod); 757 758 async_synchronize_full(); 759 760 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 761 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 762 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 763 764 free_module(mod); 765 /* someone could wait for the module in add_unformed_module() */ 766 wake_up_all(&module_wq); 767 return 0; 768 out: 769 mutex_unlock(&module_mutex); 770 return ret; 771 } 772 773 void __symbol_put(const char *symbol) 774 { 775 struct find_symbol_arg fsa = { 776 .name = symbol, 777 .gplok = true, 778 }; 779 780 preempt_disable(); 781 BUG_ON(!find_symbol(&fsa)); 782 module_put(fsa.owner); 783 preempt_enable(); 784 } 785 EXPORT_SYMBOL(__symbol_put); 786 787 /* Note this assumes addr is a function, which it currently always is. */ 788 void symbol_put_addr(void *addr) 789 { 790 struct module *modaddr; 791 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 792 793 if (core_kernel_text(a)) 794 return; 795 796 /* 797 * Even though we hold a reference on the module; we still need to 798 * disable preemption in order to safely traverse the data structure. 799 */ 800 preempt_disable(); 801 modaddr = __module_text_address(a); 802 BUG_ON(!modaddr); 803 module_put(modaddr); 804 preempt_enable(); 805 } 806 EXPORT_SYMBOL_GPL(symbol_put_addr); 807 808 static ssize_t show_refcnt(struct module_attribute *mattr, 809 struct module_kobject *mk, char *buffer) 810 { 811 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 812 } 813 814 static struct module_attribute modinfo_refcnt = 815 __ATTR(refcnt, 0444, show_refcnt, NULL); 816 817 void __module_get(struct module *module) 818 { 819 if (module) { 820 preempt_disable(); 821 atomic_inc(&module->refcnt); 822 trace_module_get(module, _RET_IP_); 823 preempt_enable(); 824 } 825 } 826 EXPORT_SYMBOL(__module_get); 827 828 bool try_module_get(struct module *module) 829 { 830 bool ret = true; 831 832 if (module) { 833 preempt_disable(); 834 /* Note: here, we can fail to get a reference */ 835 if (likely(module_is_live(module) && 836 atomic_inc_not_zero(&module->refcnt) != 0)) 837 trace_module_get(module, _RET_IP_); 838 else 839 ret = false; 840 841 preempt_enable(); 842 } 843 return ret; 844 } 845 EXPORT_SYMBOL(try_module_get); 846 847 void module_put(struct module *module) 848 { 849 int ret; 850 851 if (module) { 852 preempt_disable(); 853 ret = atomic_dec_if_positive(&module->refcnt); 854 WARN_ON(ret < 0); /* Failed to put refcount */ 855 trace_module_put(module, _RET_IP_); 856 preempt_enable(); 857 } 858 } 859 EXPORT_SYMBOL(module_put); 860 861 #else /* !CONFIG_MODULE_UNLOAD */ 862 static inline void module_unload_free(struct module *mod) 863 { 864 } 865 866 static int ref_module(struct module *a, struct module *b) 867 { 868 return strong_try_module_get(b); 869 } 870 871 static inline int module_unload_init(struct module *mod) 872 { 873 return 0; 874 } 875 #endif /* CONFIG_MODULE_UNLOAD */ 876 877 size_t module_flags_taint(unsigned long taints, char *buf) 878 { 879 size_t l = 0; 880 int i; 881 882 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 883 if (taint_flags[i].module && test_bit(i, &taints)) 884 buf[l++] = taint_flags[i].c_true; 885 } 886 887 return l; 888 } 889 890 static ssize_t show_initstate(struct module_attribute *mattr, 891 struct module_kobject *mk, char *buffer) 892 { 893 const char *state = "unknown"; 894 895 switch (mk->mod->state) { 896 case MODULE_STATE_LIVE: 897 state = "live"; 898 break; 899 case MODULE_STATE_COMING: 900 state = "coming"; 901 break; 902 case MODULE_STATE_GOING: 903 state = "going"; 904 break; 905 default: 906 BUG(); 907 } 908 return sprintf(buffer, "%s\n", state); 909 } 910 911 static struct module_attribute modinfo_initstate = 912 __ATTR(initstate, 0444, show_initstate, NULL); 913 914 static ssize_t store_uevent(struct module_attribute *mattr, 915 struct module_kobject *mk, 916 const char *buffer, size_t count) 917 { 918 int rc; 919 920 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 921 return rc ? rc : count; 922 } 923 924 struct module_attribute module_uevent = 925 __ATTR(uevent, 0200, NULL, store_uevent); 926 927 static ssize_t show_coresize(struct module_attribute *mattr, 928 struct module_kobject *mk, char *buffer) 929 { 930 return sprintf(buffer, "%u\n", mk->mod->core_layout.size); 931 } 932 933 static struct module_attribute modinfo_coresize = 934 __ATTR(coresize, 0444, show_coresize, NULL); 935 936 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 937 static ssize_t show_datasize(struct module_attribute *mattr, 938 struct module_kobject *mk, char *buffer) 939 { 940 return sprintf(buffer, "%u\n", mk->mod->data_layout.size); 941 } 942 943 static struct module_attribute modinfo_datasize = 944 __ATTR(datasize, 0444, show_datasize, NULL); 945 #endif 946 947 static ssize_t show_initsize(struct module_attribute *mattr, 948 struct module_kobject *mk, char *buffer) 949 { 950 return sprintf(buffer, "%u\n", mk->mod->init_layout.size); 951 } 952 953 static struct module_attribute modinfo_initsize = 954 __ATTR(initsize, 0444, show_initsize, NULL); 955 956 static ssize_t show_taint(struct module_attribute *mattr, 957 struct module_kobject *mk, char *buffer) 958 { 959 size_t l; 960 961 l = module_flags_taint(mk->mod->taints, buffer); 962 buffer[l++] = '\n'; 963 return l; 964 } 965 966 static struct module_attribute modinfo_taint = 967 __ATTR(taint, 0444, show_taint, NULL); 968 969 struct module_attribute *modinfo_attrs[] = { 970 &module_uevent, 971 &modinfo_version, 972 &modinfo_srcversion, 973 &modinfo_initstate, 974 &modinfo_coresize, 975 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 976 &modinfo_datasize, 977 #endif 978 &modinfo_initsize, 979 &modinfo_taint, 980 #ifdef CONFIG_MODULE_UNLOAD 981 &modinfo_refcnt, 982 #endif 983 NULL, 984 }; 985 986 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 987 988 static const char vermagic[] = VERMAGIC_STRING; 989 990 int try_to_force_load(struct module *mod, const char *reason) 991 { 992 #ifdef CONFIG_MODULE_FORCE_LOAD 993 if (!test_taint(TAINT_FORCED_MODULE)) 994 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 995 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 996 return 0; 997 #else 998 return -ENOEXEC; 999 #endif 1000 } 1001 1002 static char *get_modinfo(const struct load_info *info, const char *tag); 1003 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1004 char *prev); 1005 1006 static int verify_namespace_is_imported(const struct load_info *info, 1007 const struct kernel_symbol *sym, 1008 struct module *mod) 1009 { 1010 const char *namespace; 1011 char *imported_namespace; 1012 1013 namespace = kernel_symbol_namespace(sym); 1014 if (namespace && namespace[0]) { 1015 imported_namespace = get_modinfo(info, "import_ns"); 1016 while (imported_namespace) { 1017 if (strcmp(namespace, imported_namespace) == 0) 1018 return 0; 1019 imported_namespace = get_next_modinfo( 1020 info, "import_ns", imported_namespace); 1021 } 1022 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1023 pr_warn( 1024 #else 1025 pr_err( 1026 #endif 1027 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1028 mod->name, kernel_symbol_name(sym), namespace); 1029 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1030 return -EINVAL; 1031 #endif 1032 } 1033 return 0; 1034 } 1035 1036 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1037 { 1038 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1039 return true; 1040 1041 if (mod->using_gplonly_symbols) { 1042 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1043 mod->name, name, owner->name); 1044 return false; 1045 } 1046 1047 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1048 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1049 mod->name, name, owner->name); 1050 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1051 } 1052 return true; 1053 } 1054 1055 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1056 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1057 const struct load_info *info, 1058 const char *name, 1059 char ownername[]) 1060 { 1061 struct find_symbol_arg fsa = { 1062 .name = name, 1063 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1064 .warn = true, 1065 }; 1066 int err; 1067 1068 /* 1069 * The module_mutex should not be a heavily contended lock; 1070 * if we get the occasional sleep here, we'll go an extra iteration 1071 * in the wait_event_interruptible(), which is harmless. 1072 */ 1073 sched_annotate_sleep(); 1074 mutex_lock(&module_mutex); 1075 if (!find_symbol(&fsa)) 1076 goto unlock; 1077 1078 if (fsa.license == GPL_ONLY) 1079 mod->using_gplonly_symbols = true; 1080 1081 if (!inherit_taint(mod, fsa.owner, name)) { 1082 fsa.sym = NULL; 1083 goto getname; 1084 } 1085 1086 if (!check_version(info, name, mod, fsa.crc)) { 1087 fsa.sym = ERR_PTR(-EINVAL); 1088 goto getname; 1089 } 1090 1091 err = verify_namespace_is_imported(info, fsa.sym, mod); 1092 if (err) { 1093 fsa.sym = ERR_PTR(err); 1094 goto getname; 1095 } 1096 1097 err = ref_module(mod, fsa.owner); 1098 if (err) { 1099 fsa.sym = ERR_PTR(err); 1100 goto getname; 1101 } 1102 1103 getname: 1104 /* We must make copy under the lock if we failed to get ref. */ 1105 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1106 unlock: 1107 mutex_unlock(&module_mutex); 1108 return fsa.sym; 1109 } 1110 1111 static const struct kernel_symbol * 1112 resolve_symbol_wait(struct module *mod, 1113 const struct load_info *info, 1114 const char *name) 1115 { 1116 const struct kernel_symbol *ksym; 1117 char owner[MODULE_NAME_LEN]; 1118 1119 if (wait_event_interruptible_timeout(module_wq, 1120 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1121 || PTR_ERR(ksym) != -EBUSY, 1122 30 * HZ) <= 0) { 1123 pr_warn("%s: gave up waiting for init of module %s.\n", 1124 mod->name, owner); 1125 } 1126 return ksym; 1127 } 1128 1129 void __weak module_memfree(void *module_region) 1130 { 1131 /* 1132 * This memory may be RO, and freeing RO memory in an interrupt is not 1133 * supported by vmalloc. 1134 */ 1135 WARN_ON(in_interrupt()); 1136 vfree(module_region); 1137 } 1138 1139 void __weak module_arch_cleanup(struct module *mod) 1140 { 1141 } 1142 1143 void __weak module_arch_freeing_init(struct module *mod) 1144 { 1145 } 1146 1147 static void cfi_cleanup(struct module *mod); 1148 1149 /* Free a module, remove from lists, etc. */ 1150 static void free_module(struct module *mod) 1151 { 1152 trace_module_free(mod); 1153 1154 mod_sysfs_teardown(mod); 1155 1156 /* 1157 * We leave it in list to prevent duplicate loads, but make sure 1158 * that noone uses it while it's being deconstructed. 1159 */ 1160 mutex_lock(&module_mutex); 1161 mod->state = MODULE_STATE_UNFORMED; 1162 mutex_unlock(&module_mutex); 1163 1164 /* Remove dynamic debug info */ 1165 ddebug_remove_module(mod->name); 1166 1167 /* Arch-specific cleanup. */ 1168 module_arch_cleanup(mod); 1169 1170 /* Module unload stuff */ 1171 module_unload_free(mod); 1172 1173 /* Free any allocated parameters. */ 1174 destroy_params(mod->kp, mod->num_kp); 1175 1176 if (is_livepatch_module(mod)) 1177 free_module_elf(mod); 1178 1179 /* Now we can delete it from the lists */ 1180 mutex_lock(&module_mutex); 1181 /* Unlink carefully: kallsyms could be walking list. */ 1182 list_del_rcu(&mod->list); 1183 mod_tree_remove(mod); 1184 /* Remove this module from bug list, this uses list_del_rcu */ 1185 module_bug_cleanup(mod); 1186 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1187 synchronize_rcu(); 1188 if (try_add_tainted_module(mod)) 1189 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1190 mod->name); 1191 mutex_unlock(&module_mutex); 1192 1193 /* Clean up CFI for the module. */ 1194 cfi_cleanup(mod); 1195 1196 /* This may be empty, but that's OK */ 1197 module_arch_freeing_init(mod); 1198 module_memfree(mod->init_layout.base); 1199 kfree(mod->args); 1200 percpu_modfree(mod); 1201 1202 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1203 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 1204 1205 /* Finally, free the core (containing the module structure) */ 1206 module_memfree(mod->core_layout.base); 1207 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1208 vfree(mod->data_layout.base); 1209 #endif 1210 } 1211 1212 void *__symbol_get(const char *symbol) 1213 { 1214 struct find_symbol_arg fsa = { 1215 .name = symbol, 1216 .gplok = true, 1217 .warn = true, 1218 }; 1219 1220 preempt_disable(); 1221 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) { 1222 preempt_enable(); 1223 return NULL; 1224 } 1225 preempt_enable(); 1226 return (void *)kernel_symbol_value(fsa.sym); 1227 } 1228 EXPORT_SYMBOL_GPL(__symbol_get); 1229 1230 /* 1231 * Ensure that an exported symbol [global namespace] does not already exist 1232 * in the kernel or in some other module's exported symbol table. 1233 * 1234 * You must hold the module_mutex. 1235 */ 1236 static int verify_exported_symbols(struct module *mod) 1237 { 1238 unsigned int i; 1239 const struct kernel_symbol *s; 1240 struct { 1241 const struct kernel_symbol *sym; 1242 unsigned int num; 1243 } arr[] = { 1244 { mod->syms, mod->num_syms }, 1245 { mod->gpl_syms, mod->num_gpl_syms }, 1246 }; 1247 1248 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1249 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1250 struct find_symbol_arg fsa = { 1251 .name = kernel_symbol_name(s), 1252 .gplok = true, 1253 }; 1254 if (find_symbol(&fsa)) { 1255 pr_err("%s: exports duplicate symbol %s" 1256 " (owned by %s)\n", 1257 mod->name, kernel_symbol_name(s), 1258 module_name(fsa.owner)); 1259 return -ENOEXEC; 1260 } 1261 } 1262 } 1263 return 0; 1264 } 1265 1266 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1267 { 1268 /* 1269 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1270 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1271 * i386 has a similar problem but may not deserve a fix. 1272 * 1273 * If we ever have to ignore many symbols, consider refactoring the code to 1274 * only warn if referenced by a relocation. 1275 */ 1276 if (emachine == EM_386 || emachine == EM_X86_64) 1277 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1278 return false; 1279 } 1280 1281 /* Change all symbols so that st_value encodes the pointer directly. */ 1282 static int simplify_symbols(struct module *mod, const struct load_info *info) 1283 { 1284 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1285 Elf_Sym *sym = (void *)symsec->sh_addr; 1286 unsigned long secbase; 1287 unsigned int i; 1288 int ret = 0; 1289 const struct kernel_symbol *ksym; 1290 1291 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1292 const char *name = info->strtab + sym[i].st_name; 1293 1294 switch (sym[i].st_shndx) { 1295 case SHN_COMMON: 1296 /* Ignore common symbols */ 1297 if (!strncmp(name, "__gnu_lto", 9)) 1298 break; 1299 1300 /* 1301 * We compiled with -fno-common. These are not 1302 * supposed to happen. 1303 */ 1304 pr_debug("Common symbol: %s\n", name); 1305 pr_warn("%s: please compile with -fno-common\n", 1306 mod->name); 1307 ret = -ENOEXEC; 1308 break; 1309 1310 case SHN_ABS: 1311 /* Don't need to do anything */ 1312 pr_debug("Absolute symbol: 0x%08lx\n", 1313 (long)sym[i].st_value); 1314 break; 1315 1316 case SHN_LIVEPATCH: 1317 /* Livepatch symbols are resolved by livepatch */ 1318 break; 1319 1320 case SHN_UNDEF: 1321 ksym = resolve_symbol_wait(mod, info, name); 1322 /* Ok if resolved. */ 1323 if (ksym && !IS_ERR(ksym)) { 1324 sym[i].st_value = kernel_symbol_value(ksym); 1325 break; 1326 } 1327 1328 /* Ok if weak or ignored. */ 1329 if (!ksym && 1330 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1331 ignore_undef_symbol(info->hdr->e_machine, name))) 1332 break; 1333 1334 ret = PTR_ERR(ksym) ?: -ENOENT; 1335 pr_warn("%s: Unknown symbol %s (err %d)\n", 1336 mod->name, name, ret); 1337 break; 1338 1339 default: 1340 /* Divert to percpu allocation if a percpu var. */ 1341 if (sym[i].st_shndx == info->index.pcpu) 1342 secbase = (unsigned long)mod_percpu(mod); 1343 else 1344 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1345 sym[i].st_value += secbase; 1346 break; 1347 } 1348 } 1349 1350 return ret; 1351 } 1352 1353 static int apply_relocations(struct module *mod, const struct load_info *info) 1354 { 1355 unsigned int i; 1356 int err = 0; 1357 1358 /* Now do relocations. */ 1359 for (i = 1; i < info->hdr->e_shnum; i++) { 1360 unsigned int infosec = info->sechdrs[i].sh_info; 1361 1362 /* Not a valid relocation section? */ 1363 if (infosec >= info->hdr->e_shnum) 1364 continue; 1365 1366 /* Don't bother with non-allocated sections */ 1367 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1368 continue; 1369 1370 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1371 err = klp_apply_section_relocs(mod, info->sechdrs, 1372 info->secstrings, 1373 info->strtab, 1374 info->index.sym, i, 1375 NULL); 1376 else if (info->sechdrs[i].sh_type == SHT_REL) 1377 err = apply_relocate(info->sechdrs, info->strtab, 1378 info->index.sym, i, mod); 1379 else if (info->sechdrs[i].sh_type == SHT_RELA) 1380 err = apply_relocate_add(info->sechdrs, info->strtab, 1381 info->index.sym, i, mod); 1382 if (err < 0) 1383 break; 1384 } 1385 return err; 1386 } 1387 1388 /* Additional bytes needed by arch in front of individual sections */ 1389 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1390 unsigned int section) 1391 { 1392 /* default implementation just returns zero */ 1393 return 0; 1394 } 1395 1396 /* Update size with this section: return offset. */ 1397 long module_get_offset(struct module *mod, unsigned int *size, 1398 Elf_Shdr *sechdr, unsigned int section) 1399 { 1400 long ret; 1401 1402 *size += arch_mod_section_prepend(mod, section); 1403 ret = ALIGN(*size, sechdr->sh_addralign ?: 1); 1404 *size = ret + sechdr->sh_size; 1405 return ret; 1406 } 1407 1408 static bool module_init_layout_section(const char *sname) 1409 { 1410 #ifndef CONFIG_MODULE_UNLOAD 1411 if (module_exit_section(sname)) 1412 return true; 1413 #endif 1414 return module_init_section(sname); 1415 } 1416 1417 /* 1418 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1419 * might -- code, read-only data, read-write data, small data. Tally 1420 * sizes, and place the offsets into sh_entsize fields: high bit means it 1421 * belongs in init. 1422 */ 1423 static void layout_sections(struct module *mod, struct load_info *info) 1424 { 1425 static unsigned long const masks[][2] = { 1426 /* 1427 * NOTE: all executable code must be the first section 1428 * in this array; otherwise modify the text_size 1429 * finder in the two loops below 1430 */ 1431 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1432 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1433 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1434 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1435 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1436 }; 1437 unsigned int m, i; 1438 1439 for (i = 0; i < info->hdr->e_shnum; i++) 1440 info->sechdrs[i].sh_entsize = ~0UL; 1441 1442 pr_debug("Core section allocation order:\n"); 1443 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1444 for (i = 0; i < info->hdr->e_shnum; ++i) { 1445 Elf_Shdr *s = &info->sechdrs[i]; 1446 const char *sname = info->secstrings + s->sh_name; 1447 unsigned int *sizep; 1448 1449 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1450 || (s->sh_flags & masks[m][1]) 1451 || s->sh_entsize != ~0UL 1452 || module_init_layout_section(sname)) 1453 continue; 1454 sizep = m ? &mod->data_layout.size : &mod->core_layout.size; 1455 s->sh_entsize = module_get_offset(mod, sizep, s, i); 1456 pr_debug("\t%s\n", sname); 1457 } 1458 switch (m) { 1459 case 0: /* executable */ 1460 mod->core_layout.size = strict_align(mod->core_layout.size); 1461 mod->core_layout.text_size = mod->core_layout.size; 1462 break; 1463 case 1: /* RO: text and ro-data */ 1464 mod->data_layout.size = strict_align(mod->data_layout.size); 1465 mod->data_layout.ro_size = mod->data_layout.size; 1466 break; 1467 case 2: /* RO after init */ 1468 mod->data_layout.size = strict_align(mod->data_layout.size); 1469 mod->data_layout.ro_after_init_size = mod->data_layout.size; 1470 break; 1471 case 4: /* whole core */ 1472 mod->data_layout.size = strict_align(mod->data_layout.size); 1473 break; 1474 } 1475 } 1476 1477 pr_debug("Init section allocation order:\n"); 1478 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1479 for (i = 0; i < info->hdr->e_shnum; ++i) { 1480 Elf_Shdr *s = &info->sechdrs[i]; 1481 const char *sname = info->secstrings + s->sh_name; 1482 1483 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1484 || (s->sh_flags & masks[m][1]) 1485 || s->sh_entsize != ~0UL 1486 || !module_init_layout_section(sname)) 1487 continue; 1488 s->sh_entsize = (module_get_offset(mod, &mod->init_layout.size, s, i) 1489 | INIT_OFFSET_MASK); 1490 pr_debug("\t%s\n", sname); 1491 } 1492 switch (m) { 1493 case 0: /* executable */ 1494 mod->init_layout.size = strict_align(mod->init_layout.size); 1495 mod->init_layout.text_size = mod->init_layout.size; 1496 break; 1497 case 1: /* RO: text and ro-data */ 1498 mod->init_layout.size = strict_align(mod->init_layout.size); 1499 mod->init_layout.ro_size = mod->init_layout.size; 1500 break; 1501 case 2: 1502 /* 1503 * RO after init doesn't apply to init_layout (only 1504 * core_layout), so it just takes the value of ro_size. 1505 */ 1506 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size; 1507 break; 1508 case 4: /* whole init */ 1509 mod->init_layout.size = strict_align(mod->init_layout.size); 1510 break; 1511 } 1512 } 1513 } 1514 1515 static void set_license(struct module *mod, const char *license) 1516 { 1517 if (!license) 1518 license = "unspecified"; 1519 1520 if (!license_is_gpl_compatible(license)) { 1521 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1522 pr_warn("%s: module license '%s' taints kernel.\n", 1523 mod->name, license); 1524 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1525 LOCKDEP_NOW_UNRELIABLE); 1526 } 1527 } 1528 1529 /* Parse tag=value strings from .modinfo section */ 1530 static char *next_string(char *string, unsigned long *secsize) 1531 { 1532 /* Skip non-zero chars */ 1533 while (string[0]) { 1534 string++; 1535 if ((*secsize)-- <= 1) 1536 return NULL; 1537 } 1538 1539 /* Skip any zero padding. */ 1540 while (!string[0]) { 1541 string++; 1542 if ((*secsize)-- <= 1) 1543 return NULL; 1544 } 1545 return string; 1546 } 1547 1548 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1549 char *prev) 1550 { 1551 char *p; 1552 unsigned int taglen = strlen(tag); 1553 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1554 unsigned long size = infosec->sh_size; 1555 1556 /* 1557 * get_modinfo() calls made before rewrite_section_headers() 1558 * must use sh_offset, as sh_addr isn't set! 1559 */ 1560 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1561 1562 if (prev) { 1563 size -= prev - modinfo; 1564 modinfo = next_string(prev, &size); 1565 } 1566 1567 for (p = modinfo; p; p = next_string(p, &size)) { 1568 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1569 return p + taglen + 1; 1570 } 1571 return NULL; 1572 } 1573 1574 static char *get_modinfo(const struct load_info *info, const char *tag) 1575 { 1576 return get_next_modinfo(info, tag, NULL); 1577 } 1578 1579 static void setup_modinfo(struct module *mod, struct load_info *info) 1580 { 1581 struct module_attribute *attr; 1582 int i; 1583 1584 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1585 if (attr->setup) 1586 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1587 } 1588 } 1589 1590 static void free_modinfo(struct module *mod) 1591 { 1592 struct module_attribute *attr; 1593 int i; 1594 1595 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1596 if (attr->free) 1597 attr->free(mod); 1598 } 1599 } 1600 1601 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num) 1602 { 1603 if (!debug) 1604 return; 1605 ddebug_add_module(debug, num, mod->name); 1606 } 1607 1608 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug) 1609 { 1610 if (debug) 1611 ddebug_remove_module(mod->name); 1612 } 1613 1614 void * __weak module_alloc(unsigned long size) 1615 { 1616 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END, 1617 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS, 1618 NUMA_NO_NODE, __builtin_return_address(0)); 1619 } 1620 1621 bool __weak module_init_section(const char *name) 1622 { 1623 return strstarts(name, ".init"); 1624 } 1625 1626 bool __weak module_exit_section(const char *name) 1627 { 1628 return strstarts(name, ".exit"); 1629 } 1630 1631 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr) 1632 { 1633 #if defined(CONFIG_64BIT) 1634 unsigned long long secend; 1635 #else 1636 unsigned long secend; 1637 #endif 1638 1639 /* 1640 * Check for both overflow and offset/size being 1641 * too large. 1642 */ 1643 secend = shdr->sh_offset + shdr->sh_size; 1644 if (secend < shdr->sh_offset || secend > info->len) 1645 return -ENOEXEC; 1646 1647 return 0; 1648 } 1649 1650 /* 1651 * Sanity checks against invalid binaries, wrong arch, weird elf version. 1652 * 1653 * Also do basic validity checks against section offsets and sizes, the 1654 * section name string table, and the indices used for it (sh_name). 1655 */ 1656 static int elf_validity_check(struct load_info *info) 1657 { 1658 unsigned int i; 1659 Elf_Shdr *shdr, *strhdr; 1660 int err; 1661 1662 if (info->len < sizeof(*(info->hdr))) { 1663 pr_err("Invalid ELF header len %lu\n", info->len); 1664 goto no_exec; 1665 } 1666 1667 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1668 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1669 goto no_exec; 1670 } 1671 if (info->hdr->e_type != ET_REL) { 1672 pr_err("Invalid ELF header type: %u != %u\n", 1673 info->hdr->e_type, ET_REL); 1674 goto no_exec; 1675 } 1676 if (!elf_check_arch(info->hdr)) { 1677 pr_err("Invalid architecture in ELF header: %u\n", 1678 info->hdr->e_machine); 1679 goto no_exec; 1680 } 1681 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1682 pr_err("Invalid ELF section header size\n"); 1683 goto no_exec; 1684 } 1685 1686 /* 1687 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1688 * known and small. So e_shnum * sizeof(Elf_Shdr) 1689 * will not overflow unsigned long on any platform. 1690 */ 1691 if (info->hdr->e_shoff >= info->len 1692 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1693 info->len - info->hdr->e_shoff)) { 1694 pr_err("Invalid ELF section header overflow\n"); 1695 goto no_exec; 1696 } 1697 1698 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1699 1700 /* 1701 * Verify if the section name table index is valid. 1702 */ 1703 if (info->hdr->e_shstrndx == SHN_UNDEF 1704 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1705 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1706 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1707 info->hdr->e_shnum); 1708 goto no_exec; 1709 } 1710 1711 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1712 err = validate_section_offset(info, strhdr); 1713 if (err < 0) { 1714 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type); 1715 return err; 1716 } 1717 1718 /* 1719 * The section name table must be NUL-terminated, as required 1720 * by the spec. This makes strcmp and pr_* calls that access 1721 * strings in the section safe. 1722 */ 1723 info->secstrings = (void *)info->hdr + strhdr->sh_offset; 1724 if (strhdr->sh_size == 0) { 1725 pr_err("empty section name table\n"); 1726 goto no_exec; 1727 } 1728 if (info->secstrings[strhdr->sh_size - 1] != '\0') { 1729 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1730 goto no_exec; 1731 } 1732 1733 /* 1734 * The code assumes that section 0 has a length of zero and 1735 * an addr of zero, so check for it. 1736 */ 1737 if (info->sechdrs[0].sh_type != SHT_NULL 1738 || info->sechdrs[0].sh_size != 0 1739 || info->sechdrs[0].sh_addr != 0) { 1740 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1741 info->sechdrs[0].sh_type); 1742 goto no_exec; 1743 } 1744 1745 for (i = 1; i < info->hdr->e_shnum; i++) { 1746 shdr = &info->sechdrs[i]; 1747 switch (shdr->sh_type) { 1748 case SHT_NULL: 1749 case SHT_NOBITS: 1750 continue; 1751 case SHT_SYMTAB: 1752 if (shdr->sh_link == SHN_UNDEF 1753 || shdr->sh_link >= info->hdr->e_shnum) { 1754 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 1755 shdr->sh_link, shdr->sh_link, 1756 info->hdr->e_shnum); 1757 goto no_exec; 1758 } 1759 fallthrough; 1760 default: 1761 err = validate_section_offset(info, shdr); 1762 if (err < 0) { 1763 pr_err("Invalid ELF section in module (section %u type %u)\n", 1764 i, shdr->sh_type); 1765 return err; 1766 } 1767 1768 if (shdr->sh_flags & SHF_ALLOC) { 1769 if (shdr->sh_name >= strhdr->sh_size) { 1770 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1771 i, shdr->sh_type); 1772 return -ENOEXEC; 1773 } 1774 } 1775 break; 1776 } 1777 } 1778 1779 return 0; 1780 1781 no_exec: 1782 return -ENOEXEC; 1783 } 1784 1785 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 1786 1787 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 1788 { 1789 do { 1790 unsigned long n = min(len, COPY_CHUNK_SIZE); 1791 1792 if (copy_from_user(dst, usrc, n) != 0) 1793 return -EFAULT; 1794 cond_resched(); 1795 dst += n; 1796 usrc += n; 1797 len -= n; 1798 } while (len); 1799 return 0; 1800 } 1801 1802 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 1803 { 1804 if (!get_modinfo(info, "livepatch")) 1805 /* Nothing more to do */ 1806 return 0; 1807 1808 if (set_livepatch_module(mod)) { 1809 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 1810 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 1811 mod->name); 1812 return 0; 1813 } 1814 1815 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 1816 mod->name); 1817 return -ENOEXEC; 1818 } 1819 1820 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 1821 { 1822 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 1823 return; 1824 1825 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 1826 mod->name); 1827 } 1828 1829 /* Sets info->hdr and info->len. */ 1830 static int copy_module_from_user(const void __user *umod, unsigned long len, 1831 struct load_info *info) 1832 { 1833 int err; 1834 1835 info->len = len; 1836 if (info->len < sizeof(*(info->hdr))) 1837 return -ENOEXEC; 1838 1839 err = security_kernel_load_data(LOADING_MODULE, true); 1840 if (err) 1841 return err; 1842 1843 /* Suck in entire file: we'll want most of it. */ 1844 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 1845 if (!info->hdr) 1846 return -ENOMEM; 1847 1848 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 1849 err = -EFAULT; 1850 goto out; 1851 } 1852 1853 err = security_kernel_post_load_data((char *)info->hdr, info->len, 1854 LOADING_MODULE, "init_module"); 1855 out: 1856 if (err) 1857 vfree(info->hdr); 1858 1859 return err; 1860 } 1861 1862 static void free_copy(struct load_info *info, int flags) 1863 { 1864 if (flags & MODULE_INIT_COMPRESSED_FILE) 1865 module_decompress_cleanup(info); 1866 else 1867 vfree(info->hdr); 1868 } 1869 1870 static int rewrite_section_headers(struct load_info *info, int flags) 1871 { 1872 unsigned int i; 1873 1874 /* This should always be true, but let's be sure. */ 1875 info->sechdrs[0].sh_addr = 0; 1876 1877 for (i = 1; i < info->hdr->e_shnum; i++) { 1878 Elf_Shdr *shdr = &info->sechdrs[i]; 1879 1880 /* 1881 * Mark all sections sh_addr with their address in the 1882 * temporary image. 1883 */ 1884 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 1885 1886 } 1887 1888 /* Track but don't keep modinfo and version sections. */ 1889 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 1890 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 1891 1892 return 0; 1893 } 1894 1895 /* 1896 * Set up our basic convenience variables (pointers to section headers, 1897 * search for module section index etc), and do some basic section 1898 * verification. 1899 * 1900 * Set info->mod to the temporary copy of the module in info->hdr. The final one 1901 * will be allocated in move_module(). 1902 */ 1903 static int setup_load_info(struct load_info *info, int flags) 1904 { 1905 unsigned int i; 1906 1907 /* Try to find a name early so we can log errors with a module name */ 1908 info->index.info = find_sec(info, ".modinfo"); 1909 if (info->index.info) 1910 info->name = get_modinfo(info, "name"); 1911 1912 /* Find internal symbols and strings. */ 1913 for (i = 1; i < info->hdr->e_shnum; i++) { 1914 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 1915 info->index.sym = i; 1916 info->index.str = info->sechdrs[i].sh_link; 1917 info->strtab = (char *)info->hdr 1918 + info->sechdrs[info->index.str].sh_offset; 1919 break; 1920 } 1921 } 1922 1923 if (info->index.sym == 0) { 1924 pr_warn("%s: module has no symbols (stripped?)\n", 1925 info->name ?: "(missing .modinfo section or name field)"); 1926 return -ENOEXEC; 1927 } 1928 1929 info->index.mod = find_sec(info, ".gnu.linkonce.this_module"); 1930 if (!info->index.mod) { 1931 pr_warn("%s: No module found in object\n", 1932 info->name ?: "(missing .modinfo section or name field)"); 1933 return -ENOEXEC; 1934 } 1935 /* This is temporary: point mod into copy of data. */ 1936 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 1937 1938 /* 1939 * If we didn't load the .modinfo 'name' field earlier, fall back to 1940 * on-disk struct mod 'name' field. 1941 */ 1942 if (!info->name) 1943 info->name = info->mod->name; 1944 1945 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) 1946 info->index.vers = 0; /* Pretend no __versions section! */ 1947 else 1948 info->index.vers = find_sec(info, "__versions"); 1949 1950 info->index.pcpu = find_pcpusec(info); 1951 1952 return 0; 1953 } 1954 1955 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 1956 { 1957 const char *modmagic = get_modinfo(info, "vermagic"); 1958 int err; 1959 1960 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 1961 modmagic = NULL; 1962 1963 /* This is allowed: modprobe --force will invalidate it. */ 1964 if (!modmagic) { 1965 err = try_to_force_load(mod, "bad vermagic"); 1966 if (err) 1967 return err; 1968 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 1969 pr_err("%s: version magic '%s' should be '%s'\n", 1970 info->name, modmagic, vermagic); 1971 return -ENOEXEC; 1972 } 1973 1974 if (!get_modinfo(info, "intree")) { 1975 if (!test_taint(TAINT_OOT_MODULE)) 1976 pr_warn("%s: loading out-of-tree module taints kernel.\n", 1977 mod->name); 1978 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 1979 } 1980 1981 check_modinfo_retpoline(mod, info); 1982 1983 if (get_modinfo(info, "staging")) { 1984 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 1985 pr_warn("%s: module is from the staging directory, the quality " 1986 "is unknown, you have been warned.\n", mod->name); 1987 } 1988 1989 err = check_modinfo_livepatch(mod, info); 1990 if (err) 1991 return err; 1992 1993 /* Set up license info based on the info section */ 1994 set_license(mod, get_modinfo(info, "license")); 1995 1996 if (get_modinfo(info, "test")) { 1997 if (!test_taint(TAINT_TEST)) 1998 pr_warn("%s: loading test module taints kernel.\n", 1999 mod->name); 2000 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2001 } 2002 2003 return 0; 2004 } 2005 2006 static int find_module_sections(struct module *mod, struct load_info *info) 2007 { 2008 mod->kp = section_objs(info, "__param", 2009 sizeof(*mod->kp), &mod->num_kp); 2010 mod->syms = section_objs(info, "__ksymtab", 2011 sizeof(*mod->syms), &mod->num_syms); 2012 mod->crcs = section_addr(info, "__kcrctab"); 2013 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2014 sizeof(*mod->gpl_syms), 2015 &mod->num_gpl_syms); 2016 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2017 2018 #ifdef CONFIG_CONSTRUCTORS 2019 mod->ctors = section_objs(info, ".ctors", 2020 sizeof(*mod->ctors), &mod->num_ctors); 2021 if (!mod->ctors) 2022 mod->ctors = section_objs(info, ".init_array", 2023 sizeof(*mod->ctors), &mod->num_ctors); 2024 else if (find_sec(info, ".init_array")) { 2025 /* 2026 * This shouldn't happen with same compiler and binutils 2027 * building all parts of the module. 2028 */ 2029 pr_warn("%s: has both .ctors and .init_array.\n", 2030 mod->name); 2031 return -EINVAL; 2032 } 2033 #endif 2034 2035 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2036 &mod->noinstr_text_size); 2037 2038 #ifdef CONFIG_TRACEPOINTS 2039 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2040 sizeof(*mod->tracepoints_ptrs), 2041 &mod->num_tracepoints); 2042 #endif 2043 #ifdef CONFIG_TREE_SRCU 2044 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2045 sizeof(*mod->srcu_struct_ptrs), 2046 &mod->num_srcu_structs); 2047 #endif 2048 #ifdef CONFIG_BPF_EVENTS 2049 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2050 sizeof(*mod->bpf_raw_events), 2051 &mod->num_bpf_raw_events); 2052 #endif 2053 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2054 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2055 #endif 2056 #ifdef CONFIG_JUMP_LABEL 2057 mod->jump_entries = section_objs(info, "__jump_table", 2058 sizeof(*mod->jump_entries), 2059 &mod->num_jump_entries); 2060 #endif 2061 #ifdef CONFIG_EVENT_TRACING 2062 mod->trace_events = section_objs(info, "_ftrace_events", 2063 sizeof(*mod->trace_events), 2064 &mod->num_trace_events); 2065 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2066 sizeof(*mod->trace_evals), 2067 &mod->num_trace_evals); 2068 #endif 2069 #ifdef CONFIG_TRACING 2070 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2071 sizeof(*mod->trace_bprintk_fmt_start), 2072 &mod->num_trace_bprintk_fmt); 2073 #endif 2074 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2075 /* sechdrs[0].sh_size is always zero */ 2076 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2077 sizeof(*mod->ftrace_callsites), 2078 &mod->num_ftrace_callsites); 2079 #endif 2080 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2081 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2082 sizeof(*mod->ei_funcs), 2083 &mod->num_ei_funcs); 2084 #endif 2085 #ifdef CONFIG_KPROBES 2086 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2087 &mod->kprobes_text_size); 2088 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2089 sizeof(unsigned long), 2090 &mod->num_kprobe_blacklist); 2091 #endif 2092 #ifdef CONFIG_PRINTK_INDEX 2093 mod->printk_index_start = section_objs(info, ".printk_index", 2094 sizeof(*mod->printk_index_start), 2095 &mod->printk_index_size); 2096 #endif 2097 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2098 mod->static_call_sites = section_objs(info, ".static_call_sites", 2099 sizeof(*mod->static_call_sites), 2100 &mod->num_static_call_sites); 2101 #endif 2102 #if IS_ENABLED(CONFIG_KUNIT) 2103 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2104 sizeof(*mod->kunit_suites), 2105 &mod->num_kunit_suites); 2106 #endif 2107 2108 mod->extable = section_objs(info, "__ex_table", 2109 sizeof(*mod->extable), &mod->num_exentries); 2110 2111 if (section_addr(info, "__obsparm")) 2112 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2113 2114 info->debug = section_objs(info, "__dyndbg", 2115 sizeof(*info->debug), &info->num_debug); 2116 2117 return 0; 2118 } 2119 2120 static int move_module(struct module *mod, struct load_info *info) 2121 { 2122 int i; 2123 void *ptr; 2124 2125 /* Do the allocs. */ 2126 ptr = module_alloc(mod->core_layout.size); 2127 /* 2128 * The pointer to this block is stored in the module structure 2129 * which is inside the block. Just mark it as not being a 2130 * leak. 2131 */ 2132 kmemleak_not_leak(ptr); 2133 if (!ptr) 2134 return -ENOMEM; 2135 2136 memset(ptr, 0, mod->core_layout.size); 2137 mod->core_layout.base = ptr; 2138 2139 if (mod->init_layout.size) { 2140 ptr = module_alloc(mod->init_layout.size); 2141 /* 2142 * The pointer to this block is stored in the module structure 2143 * which is inside the block. This block doesn't need to be 2144 * scanned as it contains data and code that will be freed 2145 * after the module is initialized. 2146 */ 2147 kmemleak_ignore(ptr); 2148 if (!ptr) { 2149 module_memfree(mod->core_layout.base); 2150 return -ENOMEM; 2151 } 2152 memset(ptr, 0, mod->init_layout.size); 2153 mod->init_layout.base = ptr; 2154 } else 2155 mod->init_layout.base = NULL; 2156 2157 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2158 /* Do the allocs. */ 2159 ptr = vzalloc(mod->data_layout.size); 2160 /* 2161 * The pointer to this block is stored in the module structure 2162 * which is inside the block. Just mark it as not being a 2163 * leak. 2164 */ 2165 kmemleak_not_leak(ptr); 2166 if (!ptr) { 2167 module_memfree(mod->core_layout.base); 2168 module_memfree(mod->init_layout.base); 2169 return -ENOMEM; 2170 } 2171 2172 mod->data_layout.base = ptr; 2173 #endif 2174 /* Transfer each section which specifies SHF_ALLOC */ 2175 pr_debug("final section addresses:\n"); 2176 for (i = 0; i < info->hdr->e_shnum; i++) { 2177 void *dest; 2178 Elf_Shdr *shdr = &info->sechdrs[i]; 2179 2180 if (!(shdr->sh_flags & SHF_ALLOC)) 2181 continue; 2182 2183 if (shdr->sh_entsize & INIT_OFFSET_MASK) 2184 dest = mod->init_layout.base 2185 + (shdr->sh_entsize & ~INIT_OFFSET_MASK); 2186 else if (!(shdr->sh_flags & SHF_EXECINSTR)) 2187 dest = mod->data_layout.base + shdr->sh_entsize; 2188 else 2189 dest = mod->core_layout.base + shdr->sh_entsize; 2190 2191 if (shdr->sh_type != SHT_NOBITS) 2192 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2193 /* Update sh_addr to point to copy in image. */ 2194 shdr->sh_addr = (unsigned long)dest; 2195 pr_debug("\t0x%lx %s\n", 2196 (long)shdr->sh_addr, info->secstrings + shdr->sh_name); 2197 } 2198 2199 return 0; 2200 } 2201 2202 static int check_module_license_and_versions(struct module *mod) 2203 { 2204 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2205 2206 /* 2207 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2208 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2209 * using GPL-only symbols it needs. 2210 */ 2211 if (strcmp(mod->name, "ndiswrapper") == 0) 2212 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2213 2214 /* driverloader was caught wrongly pretending to be under GPL */ 2215 if (strcmp(mod->name, "driverloader") == 0) 2216 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2217 LOCKDEP_NOW_UNRELIABLE); 2218 2219 /* lve claims to be GPL but upstream won't provide source */ 2220 if (strcmp(mod->name, "lve") == 0) 2221 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2222 LOCKDEP_NOW_UNRELIABLE); 2223 2224 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2225 pr_warn("%s: module license taints kernel.\n", mod->name); 2226 2227 #ifdef CONFIG_MODVERSIONS 2228 if ((mod->num_syms && !mod->crcs) || 2229 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2230 return try_to_force_load(mod, 2231 "no versions for exported symbols"); 2232 } 2233 #endif 2234 return 0; 2235 } 2236 2237 static void flush_module_icache(const struct module *mod) 2238 { 2239 /* 2240 * Flush the instruction cache, since we've played with text. 2241 * Do it before processing of module parameters, so the module 2242 * can provide parameter accessor functions of its own. 2243 */ 2244 if (mod->init_layout.base) 2245 flush_icache_range((unsigned long)mod->init_layout.base, 2246 (unsigned long)mod->init_layout.base 2247 + mod->init_layout.size); 2248 flush_icache_range((unsigned long)mod->core_layout.base, 2249 (unsigned long)mod->core_layout.base + mod->core_layout.size); 2250 } 2251 2252 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2253 Elf_Shdr *sechdrs, 2254 char *secstrings, 2255 struct module *mod) 2256 { 2257 return 0; 2258 } 2259 2260 /* module_blacklist is a comma-separated list of module names */ 2261 static char *module_blacklist; 2262 static bool blacklisted(const char *module_name) 2263 { 2264 const char *p; 2265 size_t len; 2266 2267 if (!module_blacklist) 2268 return false; 2269 2270 for (p = module_blacklist; *p; p += len) { 2271 len = strcspn(p, ","); 2272 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2273 return true; 2274 if (p[len] == ',') 2275 len++; 2276 } 2277 return false; 2278 } 2279 core_param(module_blacklist, module_blacklist, charp, 0400); 2280 2281 static struct module *layout_and_allocate(struct load_info *info, int flags) 2282 { 2283 struct module *mod; 2284 unsigned int ndx; 2285 int err; 2286 2287 err = check_modinfo(info->mod, info, flags); 2288 if (err) 2289 return ERR_PTR(err); 2290 2291 /* Allow arches to frob section contents and sizes. */ 2292 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2293 info->secstrings, info->mod); 2294 if (err < 0) 2295 return ERR_PTR(err); 2296 2297 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2298 info->secstrings, info->mod); 2299 if (err < 0) 2300 return ERR_PTR(err); 2301 2302 /* We will do a special allocation for per-cpu sections later. */ 2303 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2304 2305 /* 2306 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2307 * layout_sections() can put it in the right place. 2308 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2309 */ 2310 ndx = find_sec(info, ".data..ro_after_init"); 2311 if (ndx) 2312 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2313 /* 2314 * Mark the __jump_table section as ro_after_init as well: these data 2315 * structures are never modified, with the exception of entries that 2316 * refer to code in the __init section, which are annotated as such 2317 * at module load time. 2318 */ 2319 ndx = find_sec(info, "__jump_table"); 2320 if (ndx) 2321 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2322 2323 /* 2324 * Determine total sizes, and put offsets in sh_entsize. For now 2325 * this is done generically; there doesn't appear to be any 2326 * special cases for the architectures. 2327 */ 2328 layout_sections(info->mod, info); 2329 layout_symtab(info->mod, info); 2330 2331 /* Allocate and move to the final place */ 2332 err = move_module(info->mod, info); 2333 if (err) 2334 return ERR_PTR(err); 2335 2336 /* Module has been copied to its final place now: return it. */ 2337 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2338 kmemleak_load_module(mod, info); 2339 return mod; 2340 } 2341 2342 /* mod is no longer valid after this! */ 2343 static void module_deallocate(struct module *mod, struct load_info *info) 2344 { 2345 percpu_modfree(mod); 2346 module_arch_freeing_init(mod); 2347 module_memfree(mod->init_layout.base); 2348 module_memfree(mod->core_layout.base); 2349 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 2350 vfree(mod->data_layout.base); 2351 #endif 2352 } 2353 2354 int __weak module_finalize(const Elf_Ehdr *hdr, 2355 const Elf_Shdr *sechdrs, 2356 struct module *me) 2357 { 2358 return 0; 2359 } 2360 2361 static int post_relocation(struct module *mod, const struct load_info *info) 2362 { 2363 /* Sort exception table now relocations are done. */ 2364 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2365 2366 /* Copy relocated percpu area over. */ 2367 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2368 info->sechdrs[info->index.pcpu].sh_size); 2369 2370 /* Setup kallsyms-specific fields. */ 2371 add_kallsyms(mod, info); 2372 2373 /* Arch-specific module finalizing. */ 2374 return module_finalize(info->hdr, info->sechdrs, mod); 2375 } 2376 2377 /* Is this module of this name done loading? No locks held. */ 2378 static bool finished_loading(const char *name) 2379 { 2380 struct module *mod; 2381 bool ret; 2382 2383 /* 2384 * The module_mutex should not be a heavily contended lock; 2385 * if we get the occasional sleep here, we'll go an extra iteration 2386 * in the wait_event_interruptible(), which is harmless. 2387 */ 2388 sched_annotate_sleep(); 2389 mutex_lock(&module_mutex); 2390 mod = find_module_all(name, strlen(name), true); 2391 ret = !mod || mod->state == MODULE_STATE_LIVE; 2392 mutex_unlock(&module_mutex); 2393 2394 return ret; 2395 } 2396 2397 /* Call module constructors. */ 2398 static void do_mod_ctors(struct module *mod) 2399 { 2400 #ifdef CONFIG_CONSTRUCTORS 2401 unsigned long i; 2402 2403 for (i = 0; i < mod->num_ctors; i++) 2404 mod->ctors[i](); 2405 #endif 2406 } 2407 2408 /* For freeing module_init on success, in case kallsyms traversing */ 2409 struct mod_initfree { 2410 struct llist_node node; 2411 void *module_init; 2412 }; 2413 2414 static void do_free_init(struct work_struct *w) 2415 { 2416 struct llist_node *pos, *n, *list; 2417 struct mod_initfree *initfree; 2418 2419 list = llist_del_all(&init_free_list); 2420 2421 synchronize_rcu(); 2422 2423 llist_for_each_safe(pos, n, list) { 2424 initfree = container_of(pos, struct mod_initfree, node); 2425 module_memfree(initfree->module_init); 2426 kfree(initfree); 2427 } 2428 } 2429 2430 #undef MODULE_PARAM_PREFIX 2431 #define MODULE_PARAM_PREFIX "module." 2432 /* Default value for module->async_probe_requested */ 2433 static bool async_probe; 2434 module_param(async_probe, bool, 0644); 2435 2436 /* 2437 * This is where the real work happens. 2438 * 2439 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2440 * helper command 'lx-symbols'. 2441 */ 2442 static noinline int do_init_module(struct module *mod) 2443 { 2444 int ret = 0; 2445 struct mod_initfree *freeinit; 2446 2447 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2448 if (!freeinit) { 2449 ret = -ENOMEM; 2450 goto fail; 2451 } 2452 freeinit->module_init = mod->init_layout.base; 2453 2454 do_mod_ctors(mod); 2455 /* Start the module */ 2456 if (mod->init != NULL) 2457 ret = do_one_initcall(mod->init); 2458 if (ret < 0) { 2459 goto fail_free_freeinit; 2460 } 2461 if (ret > 0) { 2462 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2463 "follow 0/-E convention\n" 2464 "%s: loading module anyway...\n", 2465 __func__, mod->name, ret, __func__); 2466 dump_stack(); 2467 } 2468 2469 /* Now it's a first class citizen! */ 2470 mod->state = MODULE_STATE_LIVE; 2471 blocking_notifier_call_chain(&module_notify_list, 2472 MODULE_STATE_LIVE, mod); 2473 2474 /* Delay uevent until module has finished its init routine */ 2475 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2476 2477 /* 2478 * We need to finish all async code before the module init sequence 2479 * is done. This has potential to deadlock if synchronous module 2480 * loading is requested from async (which is not allowed!). 2481 * 2482 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2483 * request_module() from async workers") for more details. 2484 */ 2485 if (!mod->async_probe_requested) 2486 async_synchronize_full(); 2487 2488 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base + 2489 mod->init_layout.size); 2490 mutex_lock(&module_mutex); 2491 /* Drop initial reference. */ 2492 module_put(mod); 2493 trim_init_extable(mod); 2494 #ifdef CONFIG_KALLSYMS 2495 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2496 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2497 #endif 2498 module_enable_ro(mod, true); 2499 mod_tree_remove_init(mod); 2500 module_arch_freeing_init(mod); 2501 mod->init_layout.base = NULL; 2502 mod->init_layout.size = 0; 2503 mod->init_layout.ro_size = 0; 2504 mod->init_layout.ro_after_init_size = 0; 2505 mod->init_layout.text_size = 0; 2506 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2507 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */ 2508 mod->btf_data = NULL; 2509 #endif 2510 /* 2511 * We want to free module_init, but be aware that kallsyms may be 2512 * walking this with preempt disabled. In all the failure paths, we 2513 * call synchronize_rcu(), but we don't want to slow down the success 2514 * path. module_memfree() cannot be called in an interrupt, so do the 2515 * work and call synchronize_rcu() in a work queue. 2516 * 2517 * Note that module_alloc() on most architectures creates W+X page 2518 * mappings which won't be cleaned up until do_free_init() runs. Any 2519 * code such as mark_rodata_ro() which depends on those mappings to 2520 * be cleaned up needs to sync with the queued work - ie 2521 * rcu_barrier() 2522 */ 2523 if (llist_add(&freeinit->node, &init_free_list)) 2524 schedule_work(&init_free_wq); 2525 2526 mutex_unlock(&module_mutex); 2527 wake_up_all(&module_wq); 2528 2529 return 0; 2530 2531 fail_free_freeinit: 2532 kfree(freeinit); 2533 fail: 2534 /* Try to protect us from buggy refcounters. */ 2535 mod->state = MODULE_STATE_GOING; 2536 synchronize_rcu(); 2537 module_put(mod); 2538 blocking_notifier_call_chain(&module_notify_list, 2539 MODULE_STATE_GOING, mod); 2540 klp_module_going(mod); 2541 ftrace_release_mod(mod); 2542 free_module(mod); 2543 wake_up_all(&module_wq); 2544 return ret; 2545 } 2546 2547 static int may_init_module(void) 2548 { 2549 if (!capable(CAP_SYS_MODULE) || modules_disabled) 2550 return -EPERM; 2551 2552 return 0; 2553 } 2554 2555 /* 2556 * We try to place it in the list now to make sure it's unique before 2557 * we dedicate too many resources. In particular, temporary percpu 2558 * memory exhaustion. 2559 */ 2560 static int add_unformed_module(struct module *mod) 2561 { 2562 int err; 2563 struct module *old; 2564 2565 mod->state = MODULE_STATE_UNFORMED; 2566 2567 again: 2568 mutex_lock(&module_mutex); 2569 old = find_module_all(mod->name, strlen(mod->name), true); 2570 if (old != NULL) { 2571 if (old->state != MODULE_STATE_LIVE) { 2572 /* Wait in case it fails to load. */ 2573 mutex_unlock(&module_mutex); 2574 err = wait_event_interruptible(module_wq, 2575 finished_loading(mod->name)); 2576 if (err) 2577 goto out_unlocked; 2578 goto again; 2579 } 2580 err = -EEXIST; 2581 goto out; 2582 } 2583 mod_update_bounds(mod); 2584 list_add_rcu(&mod->list, &modules); 2585 mod_tree_insert(mod); 2586 err = 0; 2587 2588 out: 2589 mutex_unlock(&module_mutex); 2590 out_unlocked: 2591 return err; 2592 } 2593 2594 static int complete_formation(struct module *mod, struct load_info *info) 2595 { 2596 int err; 2597 2598 mutex_lock(&module_mutex); 2599 2600 /* Find duplicate symbols (must be called under lock). */ 2601 err = verify_exported_symbols(mod); 2602 if (err < 0) 2603 goto out; 2604 2605 /* This relies on module_mutex for list integrity. */ 2606 module_bug_finalize(info->hdr, info->sechdrs, mod); 2607 2608 if (module_check_misalignment(mod)) 2609 goto out_misaligned; 2610 2611 module_enable_ro(mod, false); 2612 module_enable_nx(mod); 2613 module_enable_x(mod); 2614 2615 /* 2616 * Mark state as coming so strong_try_module_get() ignores us, 2617 * but kallsyms etc. can see us. 2618 */ 2619 mod->state = MODULE_STATE_COMING; 2620 mutex_unlock(&module_mutex); 2621 2622 return 0; 2623 2624 out_misaligned: 2625 err = -EINVAL; 2626 out: 2627 mutex_unlock(&module_mutex); 2628 return err; 2629 } 2630 2631 static int prepare_coming_module(struct module *mod) 2632 { 2633 int err; 2634 2635 ftrace_module_enable(mod); 2636 err = klp_module_coming(mod); 2637 if (err) 2638 return err; 2639 2640 err = blocking_notifier_call_chain_robust(&module_notify_list, 2641 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 2642 err = notifier_to_errno(err); 2643 if (err) 2644 klp_module_going(mod); 2645 2646 return err; 2647 } 2648 2649 static int unknown_module_param_cb(char *param, char *val, const char *modname, 2650 void *arg) 2651 { 2652 struct module *mod = arg; 2653 int ret; 2654 2655 if (strcmp(param, "async_probe") == 0) { 2656 if (strtobool(val, &mod->async_probe_requested)) 2657 mod->async_probe_requested = true; 2658 return 0; 2659 } 2660 2661 /* Check for magic 'dyndbg' arg */ 2662 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 2663 if (ret != 0) 2664 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 2665 return 0; 2666 } 2667 2668 static void cfi_init(struct module *mod); 2669 2670 /* 2671 * Allocate and load the module: note that size of section 0 is always 2672 * zero, and we rely on this for optional sections. 2673 */ 2674 static int load_module(struct load_info *info, const char __user *uargs, 2675 int flags) 2676 { 2677 struct module *mod; 2678 long err = 0; 2679 char *after_dashes; 2680 2681 /* 2682 * Do the signature check (if any) first. All that 2683 * the signature check needs is info->len, it does 2684 * not need any of the section info. That can be 2685 * set up later. This will minimize the chances 2686 * of a corrupt module causing problems before 2687 * we even get to the signature check. 2688 * 2689 * The check will also adjust info->len by stripping 2690 * off the sig length at the end of the module, making 2691 * checks against info->len more correct. 2692 */ 2693 err = module_sig_check(info, flags); 2694 if (err) 2695 goto free_copy; 2696 2697 /* 2698 * Do basic sanity checks against the ELF header and 2699 * sections. 2700 */ 2701 err = elf_validity_check(info); 2702 if (err) 2703 goto free_copy; 2704 2705 /* 2706 * Everything checks out, so set up the section info 2707 * in the info structure. 2708 */ 2709 err = setup_load_info(info, flags); 2710 if (err) 2711 goto free_copy; 2712 2713 /* 2714 * Now that we know we have the correct module name, check 2715 * if it's blacklisted. 2716 */ 2717 if (blacklisted(info->name)) { 2718 err = -EPERM; 2719 pr_err("Module %s is blacklisted\n", info->name); 2720 goto free_copy; 2721 } 2722 2723 err = rewrite_section_headers(info, flags); 2724 if (err) 2725 goto free_copy; 2726 2727 /* Check module struct version now, before we try to use module. */ 2728 if (!check_modstruct_version(info, info->mod)) { 2729 err = -ENOEXEC; 2730 goto free_copy; 2731 } 2732 2733 /* Figure out module layout, and allocate all the memory. */ 2734 mod = layout_and_allocate(info, flags); 2735 if (IS_ERR(mod)) { 2736 err = PTR_ERR(mod); 2737 goto free_copy; 2738 } 2739 2740 audit_log_kern_module(mod->name); 2741 2742 /* Reserve our place in the list. */ 2743 err = add_unformed_module(mod); 2744 if (err) 2745 goto free_module; 2746 2747 #ifdef CONFIG_MODULE_SIG 2748 mod->sig_ok = info->sig_ok; 2749 if (!mod->sig_ok) { 2750 pr_notice_once("%s: module verification failed: signature " 2751 "and/or required key missing - tainting " 2752 "kernel\n", mod->name); 2753 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2754 } 2755 #endif 2756 2757 /* To avoid stressing percpu allocator, do this once we're unique. */ 2758 err = percpu_modalloc(mod, info); 2759 if (err) 2760 goto unlink_mod; 2761 2762 /* Now module is in final location, initialize linked lists, etc. */ 2763 err = module_unload_init(mod); 2764 if (err) 2765 goto unlink_mod; 2766 2767 init_param_lock(mod); 2768 2769 /* 2770 * Now we've got everything in the final locations, we can 2771 * find optional sections. 2772 */ 2773 err = find_module_sections(mod, info); 2774 if (err) 2775 goto free_unload; 2776 2777 err = check_module_license_and_versions(mod); 2778 if (err) 2779 goto free_unload; 2780 2781 /* Set up MODINFO_ATTR fields */ 2782 setup_modinfo(mod, info); 2783 2784 /* Fix up syms, so that st_value is a pointer to location. */ 2785 err = simplify_symbols(mod, info); 2786 if (err < 0) 2787 goto free_modinfo; 2788 2789 err = apply_relocations(mod, info); 2790 if (err < 0) 2791 goto free_modinfo; 2792 2793 err = post_relocation(mod, info); 2794 if (err < 0) 2795 goto free_modinfo; 2796 2797 flush_module_icache(mod); 2798 2799 /* Setup CFI for the module. */ 2800 cfi_init(mod); 2801 2802 /* Now copy in args */ 2803 mod->args = strndup_user(uargs, ~0UL >> 1); 2804 if (IS_ERR(mod->args)) { 2805 err = PTR_ERR(mod->args); 2806 goto free_arch_cleanup; 2807 } 2808 2809 init_build_id(mod, info); 2810 dynamic_debug_setup(mod, info->debug, info->num_debug); 2811 2812 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 2813 ftrace_module_init(mod); 2814 2815 /* Finally it's fully formed, ready to start executing. */ 2816 err = complete_formation(mod, info); 2817 if (err) 2818 goto ddebug_cleanup; 2819 2820 err = prepare_coming_module(mod); 2821 if (err) 2822 goto bug_cleanup; 2823 2824 mod->async_probe_requested = async_probe; 2825 2826 /* Module is ready to execute: parsing args may do that. */ 2827 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 2828 -32768, 32767, mod, 2829 unknown_module_param_cb); 2830 if (IS_ERR(after_dashes)) { 2831 err = PTR_ERR(after_dashes); 2832 goto coming_cleanup; 2833 } else if (after_dashes) { 2834 pr_warn("%s: parameters '%s' after `--' ignored\n", 2835 mod->name, after_dashes); 2836 } 2837 2838 /* Link in to sysfs. */ 2839 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 2840 if (err < 0) 2841 goto coming_cleanup; 2842 2843 if (is_livepatch_module(mod)) { 2844 err = copy_module_elf(mod, info); 2845 if (err < 0) 2846 goto sysfs_cleanup; 2847 } 2848 2849 /* Get rid of temporary copy. */ 2850 free_copy(info, flags); 2851 2852 /* Done! */ 2853 trace_module_load(mod); 2854 2855 return do_init_module(mod); 2856 2857 sysfs_cleanup: 2858 mod_sysfs_teardown(mod); 2859 coming_cleanup: 2860 mod->state = MODULE_STATE_GOING; 2861 destroy_params(mod->kp, mod->num_kp); 2862 blocking_notifier_call_chain(&module_notify_list, 2863 MODULE_STATE_GOING, mod); 2864 klp_module_going(mod); 2865 bug_cleanup: 2866 mod->state = MODULE_STATE_GOING; 2867 /* module_bug_cleanup needs module_mutex protection */ 2868 mutex_lock(&module_mutex); 2869 module_bug_cleanup(mod); 2870 mutex_unlock(&module_mutex); 2871 2872 ddebug_cleanup: 2873 ftrace_release_mod(mod); 2874 dynamic_debug_remove(mod, info->debug); 2875 synchronize_rcu(); 2876 kfree(mod->args); 2877 free_arch_cleanup: 2878 cfi_cleanup(mod); 2879 module_arch_cleanup(mod); 2880 free_modinfo: 2881 free_modinfo(mod); 2882 free_unload: 2883 module_unload_free(mod); 2884 unlink_mod: 2885 mutex_lock(&module_mutex); 2886 /* Unlink carefully: kallsyms could be walking list. */ 2887 list_del_rcu(&mod->list); 2888 mod_tree_remove(mod); 2889 wake_up_all(&module_wq); 2890 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 2891 synchronize_rcu(); 2892 mutex_unlock(&module_mutex); 2893 free_module: 2894 /* Free lock-classes; relies on the preceding sync_rcu() */ 2895 lockdep_free_key_range(mod->data_layout.base, mod->data_layout.size); 2896 2897 module_deallocate(mod, info); 2898 free_copy: 2899 free_copy(info, flags); 2900 return err; 2901 } 2902 2903 SYSCALL_DEFINE3(init_module, void __user *, umod, 2904 unsigned long, len, const char __user *, uargs) 2905 { 2906 int err; 2907 struct load_info info = { }; 2908 2909 err = may_init_module(); 2910 if (err) 2911 return err; 2912 2913 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 2914 umod, len, uargs); 2915 2916 err = copy_module_from_user(umod, len, &info); 2917 if (err) 2918 return err; 2919 2920 return load_module(&info, uargs, 0); 2921 } 2922 2923 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 2924 { 2925 struct load_info info = { }; 2926 void *buf = NULL; 2927 int len; 2928 int err; 2929 2930 err = may_init_module(); 2931 if (err) 2932 return err; 2933 2934 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 2935 2936 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 2937 |MODULE_INIT_IGNORE_VERMAGIC 2938 |MODULE_INIT_COMPRESSED_FILE)) 2939 return -EINVAL; 2940 2941 len = kernel_read_file_from_fd(fd, 0, &buf, INT_MAX, NULL, 2942 READING_MODULE); 2943 if (len < 0) 2944 return len; 2945 2946 if (flags & MODULE_INIT_COMPRESSED_FILE) { 2947 err = module_decompress(&info, buf, len); 2948 vfree(buf); /* compressed data is no longer needed */ 2949 if (err) 2950 return err; 2951 } else { 2952 info.hdr = buf; 2953 info.len = len; 2954 } 2955 2956 return load_module(&info, uargs, flags); 2957 } 2958 2959 static inline int within(unsigned long addr, void *start, unsigned long size) 2960 { 2961 return ((void *)addr >= start && (void *)addr < start + size); 2962 } 2963 2964 static void cfi_init(struct module *mod) 2965 { 2966 #ifdef CONFIG_CFI_CLANG 2967 initcall_t *init; 2968 #ifdef CONFIG_MODULE_UNLOAD 2969 exitcall_t *exit; 2970 #endif 2971 2972 rcu_read_lock_sched(); 2973 mod->cfi_check = (cfi_check_fn) 2974 find_kallsyms_symbol_value(mod, "__cfi_check"); 2975 init = (initcall_t *) 2976 find_kallsyms_symbol_value(mod, "__cfi_jt_init_module"); 2977 /* Fix init/exit functions to point to the CFI jump table */ 2978 if (init) 2979 mod->init = *init; 2980 #ifdef CONFIG_MODULE_UNLOAD 2981 exit = (exitcall_t *) 2982 find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module"); 2983 if (exit) 2984 mod->exit = *exit; 2985 #endif 2986 rcu_read_unlock_sched(); 2987 2988 cfi_module_add(mod, mod_tree.addr_min); 2989 #endif 2990 } 2991 2992 static void cfi_cleanup(struct module *mod) 2993 { 2994 #ifdef CONFIG_CFI_CLANG 2995 cfi_module_remove(mod, mod_tree.addr_min); 2996 #endif 2997 } 2998 2999 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3000 char *module_flags(struct module *mod, char *buf, bool show_state) 3001 { 3002 int bx = 0; 3003 3004 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3005 if (!mod->taints && !show_state) 3006 goto out; 3007 if (mod->taints || 3008 mod->state == MODULE_STATE_GOING || 3009 mod->state == MODULE_STATE_COMING) { 3010 buf[bx++] = '('; 3011 bx += module_flags_taint(mod->taints, buf + bx); 3012 /* Show a - for module-is-being-unloaded */ 3013 if (mod->state == MODULE_STATE_GOING && show_state) 3014 buf[bx++] = '-'; 3015 /* Show a + for module-is-being-loaded */ 3016 if (mod->state == MODULE_STATE_COMING && show_state) 3017 buf[bx++] = '+'; 3018 buf[bx++] = ')'; 3019 } 3020 out: 3021 buf[bx] = '\0'; 3022 3023 return buf; 3024 } 3025 3026 /* Given an address, look for it in the module exception tables. */ 3027 const struct exception_table_entry *search_module_extables(unsigned long addr) 3028 { 3029 const struct exception_table_entry *e = NULL; 3030 struct module *mod; 3031 3032 preempt_disable(); 3033 mod = __module_address(addr); 3034 if (!mod) 3035 goto out; 3036 3037 if (!mod->num_exentries) 3038 goto out; 3039 3040 e = search_extable(mod->extable, 3041 mod->num_exentries, 3042 addr); 3043 out: 3044 preempt_enable(); 3045 3046 /* 3047 * Now, if we found one, we are running inside it now, hence 3048 * we cannot unload the module, hence no refcnt needed. 3049 */ 3050 return e; 3051 } 3052 3053 /** 3054 * is_module_address() - is this address inside a module? 3055 * @addr: the address to check. 3056 * 3057 * See is_module_text_address() if you simply want to see if the address 3058 * is code (not data). 3059 */ 3060 bool is_module_address(unsigned long addr) 3061 { 3062 bool ret; 3063 3064 preempt_disable(); 3065 ret = __module_address(addr) != NULL; 3066 preempt_enable(); 3067 3068 return ret; 3069 } 3070 3071 /** 3072 * __module_address() - get the module which contains an address. 3073 * @addr: the address. 3074 * 3075 * Must be called with preempt disabled or module mutex held so that 3076 * module doesn't get freed during this. 3077 */ 3078 struct module *__module_address(unsigned long addr) 3079 { 3080 struct module *mod; 3081 struct mod_tree_root *tree; 3082 3083 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3084 tree = &mod_tree; 3085 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3086 else if (addr >= mod_data_tree.addr_min && addr <= mod_data_tree.addr_max) 3087 tree = &mod_data_tree; 3088 #endif 3089 else 3090 return NULL; 3091 3092 module_assert_mutex_or_preempt(); 3093 3094 mod = mod_find(addr, tree); 3095 if (mod) { 3096 BUG_ON(!within_module(addr, mod)); 3097 if (mod->state == MODULE_STATE_UNFORMED) 3098 mod = NULL; 3099 } 3100 return mod; 3101 } 3102 3103 /** 3104 * is_module_text_address() - is this address inside module code? 3105 * @addr: the address to check. 3106 * 3107 * See is_module_address() if you simply want to see if the address is 3108 * anywhere in a module. See kernel_text_address() for testing if an 3109 * address corresponds to kernel or module code. 3110 */ 3111 bool is_module_text_address(unsigned long addr) 3112 { 3113 bool ret; 3114 3115 preempt_disable(); 3116 ret = __module_text_address(addr) != NULL; 3117 preempt_enable(); 3118 3119 return ret; 3120 } 3121 3122 /** 3123 * __module_text_address() - get the module whose code contains an address. 3124 * @addr: the address. 3125 * 3126 * Must be called with preempt disabled or module mutex held so that 3127 * module doesn't get freed during this. 3128 */ 3129 struct module *__module_text_address(unsigned long addr) 3130 { 3131 struct module *mod = __module_address(addr); 3132 if (mod) { 3133 /* Make sure it's within the text section. */ 3134 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size) 3135 && !within(addr, mod->core_layout.base, mod->core_layout.text_size)) 3136 mod = NULL; 3137 } 3138 return mod; 3139 } 3140 3141 /* Don't grab lock, we're oopsing. */ 3142 void print_modules(void) 3143 { 3144 struct module *mod; 3145 char buf[MODULE_FLAGS_BUF_SIZE]; 3146 3147 printk(KERN_DEFAULT "Modules linked in:"); 3148 /* Most callers should already have preempt disabled, but make sure */ 3149 preempt_disable(); 3150 list_for_each_entry_rcu(mod, &modules, list) { 3151 if (mod->state == MODULE_STATE_UNFORMED) 3152 continue; 3153 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3154 } 3155 3156 print_unloaded_tainted_modules(); 3157 preempt_enable(); 3158 if (last_unloaded_module.name[0]) 3159 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3160 last_unloaded_module.taints); 3161 pr_cont("\n"); 3162 } 3163