1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable with preempt_disable), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /** 199 * find_any_unique_sec() - Find a unique section index by name 200 * @info: Load info for the module to scan 201 * @name: Name of the section we're looking for 202 * 203 * Locates a unique section by name. Ignores SHF_ALLOC. 204 * 205 * Return: Section index if found uniquely, zero if absent, negative count 206 * of total instances if multiple were found. 207 */ 208 static int find_any_unique_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int idx; 211 unsigned int count = 0; 212 int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 216 name) == 0) { 217 count++; 218 idx = i; 219 } 220 } 221 if (count == 1) { 222 return idx; 223 } else if (count == 0) { 224 return 0; 225 } else { 226 return -count; 227 } 228 } 229 230 /* Find a module section, or NULL. */ 231 static void *section_addr(const struct load_info *info, const char *name) 232 { 233 /* Section 0 has sh_addr 0. */ 234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 235 } 236 237 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 238 static void *section_objs(const struct load_info *info, 239 const char *name, 240 size_t object_size, 241 unsigned int *num) 242 { 243 unsigned int sec = find_sec(info, name); 244 245 /* Section 0 has sh_addr 0 and sh_size 0. */ 246 *num = info->sechdrs[sec].sh_size / object_size; 247 return (void *)info->sechdrs[sec].sh_addr; 248 } 249 250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 251 static unsigned int find_any_sec(const struct load_info *info, const char *name) 252 { 253 unsigned int i; 254 255 for (i = 1; i < info->hdr->e_shnum; i++) { 256 Elf_Shdr *shdr = &info->sechdrs[i]; 257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 258 return i; 259 } 260 return 0; 261 } 262 263 /* 264 * Find a module section, or NULL. Fill in number of "objects" in section. 265 * Ignores SHF_ALLOC flag. 266 */ 267 static __maybe_unused void *any_section_objs(const struct load_info *info, 268 const char *name, 269 size_t object_size, 270 unsigned int *num) 271 { 272 unsigned int sec = find_any_sec(info, name); 273 274 /* Section 0 has sh_addr 0 and sh_size 0. */ 275 *num = info->sechdrs[sec].sh_size / object_size; 276 return (void *)info->sechdrs[sec].sh_addr; 277 } 278 279 #ifndef CONFIG_MODVERSIONS 280 #define symversion(base, idx) NULL 281 #else 282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 283 #endif 284 285 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 286 { 287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 288 return offset_to_ptr(&sym->name_offset); 289 #else 290 return sym->name; 291 #endif 292 } 293 294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 295 { 296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 297 if (!sym->namespace_offset) 298 return NULL; 299 return offset_to_ptr(&sym->namespace_offset); 300 #else 301 return sym->namespace; 302 #endif 303 } 304 305 int cmp_name(const void *name, const void *sym) 306 { 307 return strcmp(name, kernel_symbol_name(sym)); 308 } 309 310 static bool find_exported_symbol_in_section(const struct symsearch *syms, 311 struct module *owner, 312 struct find_symbol_arg *fsa) 313 { 314 struct kernel_symbol *sym; 315 316 if (!fsa->gplok && syms->license == GPL_ONLY) 317 return false; 318 319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 320 sizeof(struct kernel_symbol), cmp_name); 321 if (!sym) 322 return false; 323 324 fsa->owner = owner; 325 fsa->crc = symversion(syms->crcs, sym - syms->start); 326 fsa->sym = sym; 327 fsa->license = syms->license; 328 329 return true; 330 } 331 332 /* 333 * Find an exported symbol and return it, along with, (optional) crc and 334 * (optional) module which owns it. Needs preempt disabled or module_mutex. 335 */ 336 bool find_symbol(struct find_symbol_arg *fsa) 337 { 338 static const struct symsearch arr[] = { 339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 340 NOT_GPL_ONLY }, 341 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 342 __start___kcrctab_gpl, 343 GPL_ONLY }, 344 }; 345 struct module *mod; 346 unsigned int i; 347 348 module_assert_mutex_or_preempt(); 349 350 for (i = 0; i < ARRAY_SIZE(arr); i++) 351 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 352 return true; 353 354 list_for_each_entry_rcu(mod, &modules, list, 355 lockdep_is_held(&module_mutex)) { 356 struct symsearch arr[] = { 357 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 358 NOT_GPL_ONLY }, 359 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 360 mod->gpl_crcs, 361 GPL_ONLY }, 362 }; 363 364 if (mod->state == MODULE_STATE_UNFORMED) 365 continue; 366 367 for (i = 0; i < ARRAY_SIZE(arr); i++) 368 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 369 return true; 370 } 371 372 pr_debug("Failed to find symbol %s\n", fsa->name); 373 return false; 374 } 375 376 /* 377 * Search for module by name: must hold module_mutex (or preempt disabled 378 * for read-only access). 379 */ 380 struct module *find_module_all(const char *name, size_t len, 381 bool even_unformed) 382 { 383 struct module *mod; 384 385 module_assert_mutex_or_preempt(); 386 387 list_for_each_entry_rcu(mod, &modules, list, 388 lockdep_is_held(&module_mutex)) { 389 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 390 continue; 391 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 392 return mod; 393 } 394 return NULL; 395 } 396 397 struct module *find_module(const char *name) 398 { 399 return find_module_all(name, strlen(name), false); 400 } 401 402 #ifdef CONFIG_SMP 403 404 static inline void __percpu *mod_percpu(struct module *mod) 405 { 406 return mod->percpu; 407 } 408 409 static int percpu_modalloc(struct module *mod, struct load_info *info) 410 { 411 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 412 unsigned long align = pcpusec->sh_addralign; 413 414 if (!pcpusec->sh_size) 415 return 0; 416 417 if (align > PAGE_SIZE) { 418 pr_warn("%s: per-cpu alignment %li > %li\n", 419 mod->name, align, PAGE_SIZE); 420 align = PAGE_SIZE; 421 } 422 423 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 424 if (!mod->percpu) { 425 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 426 mod->name, (unsigned long)pcpusec->sh_size); 427 return -ENOMEM; 428 } 429 mod->percpu_size = pcpusec->sh_size; 430 return 0; 431 } 432 433 static void percpu_modfree(struct module *mod) 434 { 435 free_percpu(mod->percpu); 436 } 437 438 static unsigned int find_pcpusec(struct load_info *info) 439 { 440 return find_sec(info, ".data..percpu"); 441 } 442 443 static void percpu_modcopy(struct module *mod, 444 const void *from, unsigned long size) 445 { 446 int cpu; 447 448 for_each_possible_cpu(cpu) 449 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 450 } 451 452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 453 { 454 struct module *mod; 455 unsigned int cpu; 456 457 preempt_disable(); 458 459 list_for_each_entry_rcu(mod, &modules, list) { 460 if (mod->state == MODULE_STATE_UNFORMED) 461 continue; 462 if (!mod->percpu_size) 463 continue; 464 for_each_possible_cpu(cpu) { 465 void *start = per_cpu_ptr(mod->percpu, cpu); 466 void *va = (void *)addr; 467 468 if (va >= start && va < start + mod->percpu_size) { 469 if (can_addr) { 470 *can_addr = (unsigned long) (va - start); 471 *can_addr += (unsigned long) 472 per_cpu_ptr(mod->percpu, 473 get_boot_cpu_id()); 474 } 475 preempt_enable(); 476 return true; 477 } 478 } 479 } 480 481 preempt_enable(); 482 return false; 483 } 484 485 /** 486 * is_module_percpu_address() - test whether address is from module static percpu 487 * @addr: address to test 488 * 489 * Test whether @addr belongs to module static percpu area. 490 * 491 * Return: %true if @addr is from module static percpu area 492 */ 493 bool is_module_percpu_address(unsigned long addr) 494 { 495 return __is_module_percpu_address(addr, NULL); 496 } 497 498 #else /* ... !CONFIG_SMP */ 499 500 static inline void __percpu *mod_percpu(struct module *mod) 501 { 502 return NULL; 503 } 504 static int percpu_modalloc(struct module *mod, struct load_info *info) 505 { 506 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 507 if (info->sechdrs[info->index.pcpu].sh_size != 0) 508 return -ENOMEM; 509 return 0; 510 } 511 static inline void percpu_modfree(struct module *mod) 512 { 513 } 514 static unsigned int find_pcpusec(struct load_info *info) 515 { 516 return 0; 517 } 518 static inline void percpu_modcopy(struct module *mod, 519 const void *from, unsigned long size) 520 { 521 /* pcpusec should be 0, and size of that section should be 0. */ 522 BUG_ON(size != 0); 523 } 524 bool is_module_percpu_address(unsigned long addr) 525 { 526 return false; 527 } 528 529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 530 { 531 return false; 532 } 533 534 #endif /* CONFIG_SMP */ 535 536 #define MODINFO_ATTR(field) \ 537 static void setup_modinfo_##field(struct module *mod, const char *s) \ 538 { \ 539 mod->field = kstrdup(s, GFP_KERNEL); \ 540 } \ 541 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 542 struct module_kobject *mk, char *buffer) \ 543 { \ 544 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 545 } \ 546 static int modinfo_##field##_exists(struct module *mod) \ 547 { \ 548 return mod->field != NULL; \ 549 } \ 550 static void free_modinfo_##field(struct module *mod) \ 551 { \ 552 kfree(mod->field); \ 553 mod->field = NULL; \ 554 } \ 555 static const struct module_attribute modinfo_##field = { \ 556 .attr = { .name = __stringify(field), .mode = 0444 }, \ 557 .show = show_modinfo_##field, \ 558 .setup = setup_modinfo_##field, \ 559 .test = modinfo_##field##_exists, \ 560 .free = free_modinfo_##field, \ 561 }; 562 563 MODINFO_ATTR(version); 564 MODINFO_ATTR(srcversion); 565 566 static struct { 567 char name[MODULE_NAME_LEN + 1]; 568 char taints[MODULE_FLAGS_BUF_SIZE]; 569 } last_unloaded_module; 570 571 #ifdef CONFIG_MODULE_UNLOAD 572 573 EXPORT_TRACEPOINT_SYMBOL(module_get); 574 575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 576 #define MODULE_REF_BASE 1 577 578 /* Init the unload section of the module. */ 579 static int module_unload_init(struct module *mod) 580 { 581 /* 582 * Initialize reference counter to MODULE_REF_BASE. 583 * refcnt == 0 means module is going. 584 */ 585 atomic_set(&mod->refcnt, MODULE_REF_BASE); 586 587 INIT_LIST_HEAD(&mod->source_list); 588 INIT_LIST_HEAD(&mod->target_list); 589 590 /* Hold reference count during initialization. */ 591 atomic_inc(&mod->refcnt); 592 593 return 0; 594 } 595 596 /* Does a already use b? */ 597 static int already_uses(struct module *a, struct module *b) 598 { 599 struct module_use *use; 600 601 list_for_each_entry(use, &b->source_list, source_list) { 602 if (use->source == a) 603 return 1; 604 } 605 pr_debug("%s does not use %s!\n", a->name, b->name); 606 return 0; 607 } 608 609 /* 610 * Module a uses b 611 * - we add 'a' as a "source", 'b' as a "target" of module use 612 * - the module_use is added to the list of 'b' sources (so 613 * 'b' can walk the list to see who sourced them), and of 'a' 614 * targets (so 'a' can see what modules it targets). 615 */ 616 static int add_module_usage(struct module *a, struct module *b) 617 { 618 struct module_use *use; 619 620 pr_debug("Allocating new usage for %s.\n", a->name); 621 use = kmalloc(sizeof(*use), GFP_ATOMIC); 622 if (!use) 623 return -ENOMEM; 624 625 use->source = a; 626 use->target = b; 627 list_add(&use->source_list, &b->source_list); 628 list_add(&use->target_list, &a->target_list); 629 return 0; 630 } 631 632 /* Module a uses b: caller needs module_mutex() */ 633 static int ref_module(struct module *a, struct module *b) 634 { 635 int err; 636 637 if (b == NULL || already_uses(a, b)) 638 return 0; 639 640 /* If module isn't available, we fail. */ 641 err = strong_try_module_get(b); 642 if (err) 643 return err; 644 645 err = add_module_usage(a, b); 646 if (err) { 647 module_put(b); 648 return err; 649 } 650 return 0; 651 } 652 653 /* Clear the unload stuff of the module. */ 654 static void module_unload_free(struct module *mod) 655 { 656 struct module_use *use, *tmp; 657 658 mutex_lock(&module_mutex); 659 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 660 struct module *i = use->target; 661 pr_debug("%s unusing %s\n", mod->name, i->name); 662 module_put(i); 663 list_del(&use->source_list); 664 list_del(&use->target_list); 665 kfree(use); 666 } 667 mutex_unlock(&module_mutex); 668 } 669 670 #ifdef CONFIG_MODULE_FORCE_UNLOAD 671 static inline int try_force_unload(unsigned int flags) 672 { 673 int ret = (flags & O_TRUNC); 674 if (ret) 675 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 676 return ret; 677 } 678 #else 679 static inline int try_force_unload(unsigned int flags) 680 { 681 return 0; 682 } 683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 684 685 /* Try to release refcount of module, 0 means success. */ 686 static int try_release_module_ref(struct module *mod) 687 { 688 int ret; 689 690 /* Try to decrement refcnt which we set at loading */ 691 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 692 BUG_ON(ret < 0); 693 if (ret) 694 /* Someone can put this right now, recover with checking */ 695 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 696 697 return ret; 698 } 699 700 static int try_stop_module(struct module *mod, int flags, int *forced) 701 { 702 /* If it's not unused, quit unless we're forcing. */ 703 if (try_release_module_ref(mod) != 0) { 704 *forced = try_force_unload(flags); 705 if (!(*forced)) 706 return -EWOULDBLOCK; 707 } 708 709 /* Mark it as dying. */ 710 mod->state = MODULE_STATE_GOING; 711 712 return 0; 713 } 714 715 /** 716 * module_refcount() - return the refcount or -1 if unloading 717 * @mod: the module we're checking 718 * 719 * Return: 720 * -1 if the module is in the process of unloading 721 * otherwise the number of references in the kernel to the module 722 */ 723 int module_refcount(struct module *mod) 724 { 725 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 726 } 727 EXPORT_SYMBOL(module_refcount); 728 729 /* This exists whether we can unload or not */ 730 static void free_module(struct module *mod); 731 732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 733 unsigned int, flags) 734 { 735 struct module *mod; 736 char name[MODULE_NAME_LEN]; 737 char buf[MODULE_FLAGS_BUF_SIZE]; 738 int ret, forced = 0; 739 740 if (!capable(CAP_SYS_MODULE) || modules_disabled) 741 return -EPERM; 742 743 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 744 return -EFAULT; 745 name[MODULE_NAME_LEN-1] = '\0'; 746 747 audit_log_kern_module(name); 748 749 if (mutex_lock_interruptible(&module_mutex) != 0) 750 return -EINTR; 751 752 mod = find_module(name); 753 if (!mod) { 754 ret = -ENOENT; 755 goto out; 756 } 757 758 if (!list_empty(&mod->source_list)) { 759 /* Other modules depend on us: get rid of them first. */ 760 ret = -EWOULDBLOCK; 761 goto out; 762 } 763 764 /* Doing init or already dying? */ 765 if (mod->state != MODULE_STATE_LIVE) { 766 /* FIXME: if (force), slam module count damn the torpedoes */ 767 pr_debug("%s already dying\n", mod->name); 768 ret = -EBUSY; 769 goto out; 770 } 771 772 /* If it has an init func, it must have an exit func to unload */ 773 if (mod->init && !mod->exit) { 774 forced = try_force_unload(flags); 775 if (!forced) { 776 /* This module can't be removed */ 777 ret = -EBUSY; 778 goto out; 779 } 780 } 781 782 ret = try_stop_module(mod, flags, &forced); 783 if (ret != 0) 784 goto out; 785 786 mutex_unlock(&module_mutex); 787 /* Final destruction now no one is using it. */ 788 if (mod->exit != NULL) 789 mod->exit(); 790 blocking_notifier_call_chain(&module_notify_list, 791 MODULE_STATE_GOING, mod); 792 klp_module_going(mod); 793 ftrace_release_mod(mod); 794 795 async_synchronize_full(); 796 797 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 798 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 799 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 800 801 free_module(mod); 802 /* someone could wait for the module in add_unformed_module() */ 803 wake_up_all(&module_wq); 804 return 0; 805 out: 806 mutex_unlock(&module_mutex); 807 return ret; 808 } 809 810 void __symbol_put(const char *symbol) 811 { 812 struct find_symbol_arg fsa = { 813 .name = symbol, 814 .gplok = true, 815 }; 816 817 preempt_disable(); 818 BUG_ON(!find_symbol(&fsa)); 819 module_put(fsa.owner); 820 preempt_enable(); 821 } 822 EXPORT_SYMBOL(__symbol_put); 823 824 /* Note this assumes addr is a function, which it currently always is. */ 825 void symbol_put_addr(void *addr) 826 { 827 struct module *modaddr; 828 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 829 830 if (core_kernel_text(a)) 831 return; 832 833 /* 834 * Even though we hold a reference on the module; we still need to 835 * disable preemption in order to safely traverse the data structure. 836 */ 837 preempt_disable(); 838 modaddr = __module_text_address(a); 839 BUG_ON(!modaddr); 840 module_put(modaddr); 841 preempt_enable(); 842 } 843 EXPORT_SYMBOL_GPL(symbol_put_addr); 844 845 static ssize_t show_refcnt(const struct module_attribute *mattr, 846 struct module_kobject *mk, char *buffer) 847 { 848 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 849 } 850 851 static const struct module_attribute modinfo_refcnt = 852 __ATTR(refcnt, 0444, show_refcnt, NULL); 853 854 void __module_get(struct module *module) 855 { 856 if (module) { 857 atomic_inc(&module->refcnt); 858 trace_module_get(module, _RET_IP_); 859 } 860 } 861 EXPORT_SYMBOL(__module_get); 862 863 bool try_module_get(struct module *module) 864 { 865 bool ret = true; 866 867 if (module) { 868 /* Note: here, we can fail to get a reference */ 869 if (likely(module_is_live(module) && 870 atomic_inc_not_zero(&module->refcnt) != 0)) 871 trace_module_get(module, _RET_IP_); 872 else 873 ret = false; 874 } 875 return ret; 876 } 877 EXPORT_SYMBOL(try_module_get); 878 879 void module_put(struct module *module) 880 { 881 int ret; 882 883 if (module) { 884 ret = atomic_dec_if_positive(&module->refcnt); 885 WARN_ON(ret < 0); /* Failed to put refcount */ 886 trace_module_put(module, _RET_IP_); 887 } 888 } 889 EXPORT_SYMBOL(module_put); 890 891 #else /* !CONFIG_MODULE_UNLOAD */ 892 static inline void module_unload_free(struct module *mod) 893 { 894 } 895 896 static int ref_module(struct module *a, struct module *b) 897 { 898 return strong_try_module_get(b); 899 } 900 901 static inline int module_unload_init(struct module *mod) 902 { 903 return 0; 904 } 905 #endif /* CONFIG_MODULE_UNLOAD */ 906 907 size_t module_flags_taint(unsigned long taints, char *buf) 908 { 909 size_t l = 0; 910 int i; 911 912 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 913 if (taint_flags[i].module && test_bit(i, &taints)) 914 buf[l++] = taint_flags[i].c_true; 915 } 916 917 return l; 918 } 919 920 static ssize_t show_initstate(const struct module_attribute *mattr, 921 struct module_kobject *mk, char *buffer) 922 { 923 const char *state = "unknown"; 924 925 switch (mk->mod->state) { 926 case MODULE_STATE_LIVE: 927 state = "live"; 928 break; 929 case MODULE_STATE_COMING: 930 state = "coming"; 931 break; 932 case MODULE_STATE_GOING: 933 state = "going"; 934 break; 935 default: 936 BUG(); 937 } 938 return sprintf(buffer, "%s\n", state); 939 } 940 941 static const struct module_attribute modinfo_initstate = 942 __ATTR(initstate, 0444, show_initstate, NULL); 943 944 static ssize_t store_uevent(const struct module_attribute *mattr, 945 struct module_kobject *mk, 946 const char *buffer, size_t count) 947 { 948 int rc; 949 950 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 951 return rc ? rc : count; 952 } 953 954 const struct module_attribute module_uevent = 955 __ATTR(uevent, 0200, NULL, store_uevent); 956 957 static ssize_t show_coresize(const struct module_attribute *mattr, 958 struct module_kobject *mk, char *buffer) 959 { 960 unsigned int size = mk->mod->mem[MOD_TEXT].size; 961 962 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 963 for_class_mod_mem_type(type, core_data) 964 size += mk->mod->mem[type].size; 965 } 966 return sprintf(buffer, "%u\n", size); 967 } 968 969 static const struct module_attribute modinfo_coresize = 970 __ATTR(coresize, 0444, show_coresize, NULL); 971 972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 973 static ssize_t show_datasize(const struct module_attribute *mattr, 974 struct module_kobject *mk, char *buffer) 975 { 976 unsigned int size = 0; 977 978 for_class_mod_mem_type(type, core_data) 979 size += mk->mod->mem[type].size; 980 return sprintf(buffer, "%u\n", size); 981 } 982 983 static const struct module_attribute modinfo_datasize = 984 __ATTR(datasize, 0444, show_datasize, NULL); 985 #endif 986 987 static ssize_t show_initsize(const struct module_attribute *mattr, 988 struct module_kobject *mk, char *buffer) 989 { 990 unsigned int size = 0; 991 992 for_class_mod_mem_type(type, init) 993 size += mk->mod->mem[type].size; 994 return sprintf(buffer, "%u\n", size); 995 } 996 997 static const struct module_attribute modinfo_initsize = 998 __ATTR(initsize, 0444, show_initsize, NULL); 999 1000 static ssize_t show_taint(const struct module_attribute *mattr, 1001 struct module_kobject *mk, char *buffer) 1002 { 1003 size_t l; 1004 1005 l = module_flags_taint(mk->mod->taints, buffer); 1006 buffer[l++] = '\n'; 1007 return l; 1008 } 1009 1010 static const struct module_attribute modinfo_taint = 1011 __ATTR(taint, 0444, show_taint, NULL); 1012 1013 const struct module_attribute *const modinfo_attrs[] = { 1014 &module_uevent, 1015 &modinfo_version, 1016 &modinfo_srcversion, 1017 &modinfo_initstate, 1018 &modinfo_coresize, 1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1020 &modinfo_datasize, 1021 #endif 1022 &modinfo_initsize, 1023 &modinfo_taint, 1024 #ifdef CONFIG_MODULE_UNLOAD 1025 &modinfo_refcnt, 1026 #endif 1027 NULL, 1028 }; 1029 1030 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1031 1032 static const char vermagic[] = VERMAGIC_STRING; 1033 1034 int try_to_force_load(struct module *mod, const char *reason) 1035 { 1036 #ifdef CONFIG_MODULE_FORCE_LOAD 1037 if (!test_taint(TAINT_FORCED_MODULE)) 1038 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1039 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1040 return 0; 1041 #else 1042 return -ENOEXEC; 1043 #endif 1044 } 1045 1046 /* Parse tag=value strings from .modinfo section */ 1047 char *module_next_tag_pair(char *string, unsigned long *secsize) 1048 { 1049 /* Skip non-zero chars */ 1050 while (string[0]) { 1051 string++; 1052 if ((*secsize)-- <= 1) 1053 return NULL; 1054 } 1055 1056 /* Skip any zero padding. */ 1057 while (!string[0]) { 1058 string++; 1059 if ((*secsize)-- <= 1) 1060 return NULL; 1061 } 1062 return string; 1063 } 1064 1065 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1066 char *prev) 1067 { 1068 char *p; 1069 unsigned int taglen = strlen(tag); 1070 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1071 unsigned long size = infosec->sh_size; 1072 1073 /* 1074 * get_modinfo() calls made before rewrite_section_headers() 1075 * must use sh_offset, as sh_addr isn't set! 1076 */ 1077 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1078 1079 if (prev) { 1080 size -= prev - modinfo; 1081 modinfo = module_next_tag_pair(prev, &size); 1082 } 1083 1084 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1085 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1086 return p + taglen + 1; 1087 } 1088 return NULL; 1089 } 1090 1091 static char *get_modinfo(const struct load_info *info, const char *tag) 1092 { 1093 return get_next_modinfo(info, tag, NULL); 1094 } 1095 1096 static int verify_namespace_is_imported(const struct load_info *info, 1097 const struct kernel_symbol *sym, 1098 struct module *mod) 1099 { 1100 const char *namespace; 1101 char *imported_namespace; 1102 1103 namespace = kernel_symbol_namespace(sym); 1104 if (namespace && namespace[0]) { 1105 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1106 if (strcmp(namespace, imported_namespace) == 0) 1107 return 0; 1108 } 1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1110 pr_warn( 1111 #else 1112 pr_err( 1113 #endif 1114 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1115 mod->name, kernel_symbol_name(sym), namespace); 1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1117 return -EINVAL; 1118 #endif 1119 } 1120 return 0; 1121 } 1122 1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1124 { 1125 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1126 return true; 1127 1128 if (mod->using_gplonly_symbols) { 1129 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1130 mod->name, name, owner->name); 1131 return false; 1132 } 1133 1134 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1135 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1136 mod->name, name, owner->name); 1137 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1138 } 1139 return true; 1140 } 1141 1142 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1143 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1144 const struct load_info *info, 1145 const char *name, 1146 char ownername[]) 1147 { 1148 struct find_symbol_arg fsa = { 1149 .name = name, 1150 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1151 .warn = true, 1152 }; 1153 int err; 1154 1155 /* 1156 * The module_mutex should not be a heavily contended lock; 1157 * if we get the occasional sleep here, we'll go an extra iteration 1158 * in the wait_event_interruptible(), which is harmless. 1159 */ 1160 sched_annotate_sleep(); 1161 mutex_lock(&module_mutex); 1162 if (!find_symbol(&fsa)) 1163 goto unlock; 1164 1165 if (fsa.license == GPL_ONLY) 1166 mod->using_gplonly_symbols = true; 1167 1168 if (!inherit_taint(mod, fsa.owner, name)) { 1169 fsa.sym = NULL; 1170 goto getname; 1171 } 1172 1173 if (!check_version(info, name, mod, fsa.crc)) { 1174 fsa.sym = ERR_PTR(-EINVAL); 1175 goto getname; 1176 } 1177 1178 err = verify_namespace_is_imported(info, fsa.sym, mod); 1179 if (err) { 1180 fsa.sym = ERR_PTR(err); 1181 goto getname; 1182 } 1183 1184 err = ref_module(mod, fsa.owner); 1185 if (err) { 1186 fsa.sym = ERR_PTR(err); 1187 goto getname; 1188 } 1189 1190 getname: 1191 /* We must make copy under the lock if we failed to get ref. */ 1192 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1193 unlock: 1194 mutex_unlock(&module_mutex); 1195 return fsa.sym; 1196 } 1197 1198 static const struct kernel_symbol * 1199 resolve_symbol_wait(struct module *mod, 1200 const struct load_info *info, 1201 const char *name) 1202 { 1203 const struct kernel_symbol *ksym; 1204 char owner[MODULE_NAME_LEN]; 1205 1206 if (wait_event_interruptible_timeout(module_wq, 1207 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1208 || PTR_ERR(ksym) != -EBUSY, 1209 30 * HZ) <= 0) { 1210 pr_warn("%s: gave up waiting for init of module %s.\n", 1211 mod->name, owner); 1212 } 1213 return ksym; 1214 } 1215 1216 void __weak module_arch_cleanup(struct module *mod) 1217 { 1218 } 1219 1220 void __weak module_arch_freeing_init(struct module *mod) 1221 { 1222 } 1223 1224 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1225 { 1226 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1227 enum execmem_type execmem_type; 1228 void *ptr; 1229 1230 mod->mem[type].size = size; 1231 1232 if (mod_mem_type_is_data(type)) 1233 execmem_type = EXECMEM_MODULE_DATA; 1234 else 1235 execmem_type = EXECMEM_MODULE_TEXT; 1236 1237 ptr = execmem_alloc(execmem_type, size); 1238 if (!ptr) 1239 return -ENOMEM; 1240 1241 if (execmem_is_rox(execmem_type)) { 1242 int err = execmem_make_temp_rw(ptr, size); 1243 1244 if (err) { 1245 execmem_free(ptr); 1246 return -ENOMEM; 1247 } 1248 1249 mod->mem[type].is_rox = true; 1250 } 1251 1252 /* 1253 * The pointer to these blocks of memory are stored on the module 1254 * structure and we keep that around so long as the module is 1255 * around. We only free that memory when we unload the module. 1256 * Just mark them as not being a leak then. The .init* ELF 1257 * sections *do* get freed after boot so we *could* treat them 1258 * slightly differently with kmemleak_ignore() and only grey 1259 * them out as they work as typical memory allocations which 1260 * *do* eventually get freed, but let's just keep things simple 1261 * and avoid *any* false positives. 1262 */ 1263 if (!mod->mem[type].is_rox) 1264 kmemleak_not_leak(ptr); 1265 1266 memset(ptr, 0, size); 1267 mod->mem[type].base = ptr; 1268 1269 return 0; 1270 } 1271 1272 static void module_memory_restore_rox(struct module *mod) 1273 { 1274 for_class_mod_mem_type(type, text) { 1275 struct module_memory *mem = &mod->mem[type]; 1276 1277 if (mem->is_rox) 1278 execmem_restore_rox(mem->base, mem->size); 1279 } 1280 } 1281 1282 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1283 { 1284 struct module_memory *mem = &mod->mem[type]; 1285 1286 execmem_free(mem->base); 1287 } 1288 1289 static void free_mod_mem(struct module *mod) 1290 { 1291 for_each_mod_mem_type(type) { 1292 struct module_memory *mod_mem = &mod->mem[type]; 1293 1294 if (type == MOD_DATA) 1295 continue; 1296 1297 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1298 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1299 if (mod_mem->size) 1300 module_memory_free(mod, type); 1301 } 1302 1303 /* MOD_DATA hosts mod, so free it at last */ 1304 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1305 module_memory_free(mod, MOD_DATA); 1306 } 1307 1308 /* Free a module, remove from lists, etc. */ 1309 static void free_module(struct module *mod) 1310 { 1311 trace_module_free(mod); 1312 1313 codetag_unload_module(mod); 1314 1315 mod_sysfs_teardown(mod); 1316 1317 /* 1318 * We leave it in list to prevent duplicate loads, but make sure 1319 * that noone uses it while it's being deconstructed. 1320 */ 1321 mutex_lock(&module_mutex); 1322 mod->state = MODULE_STATE_UNFORMED; 1323 mutex_unlock(&module_mutex); 1324 1325 /* Arch-specific cleanup. */ 1326 module_arch_cleanup(mod); 1327 1328 /* Module unload stuff */ 1329 module_unload_free(mod); 1330 1331 /* Free any allocated parameters. */ 1332 destroy_params(mod->kp, mod->num_kp); 1333 1334 if (is_livepatch_module(mod)) 1335 free_module_elf(mod); 1336 1337 /* Now we can delete it from the lists */ 1338 mutex_lock(&module_mutex); 1339 /* Unlink carefully: kallsyms could be walking list. */ 1340 list_del_rcu(&mod->list); 1341 mod_tree_remove(mod); 1342 /* Remove this module from bug list, this uses list_del_rcu */ 1343 module_bug_cleanup(mod); 1344 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1345 synchronize_rcu(); 1346 if (try_add_tainted_module(mod)) 1347 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1348 mod->name); 1349 mutex_unlock(&module_mutex); 1350 1351 /* This may be empty, but that's OK */ 1352 module_arch_freeing_init(mod); 1353 kfree(mod->args); 1354 percpu_modfree(mod); 1355 1356 free_mod_mem(mod); 1357 } 1358 1359 void *__symbol_get(const char *symbol) 1360 { 1361 struct find_symbol_arg fsa = { 1362 .name = symbol, 1363 .gplok = true, 1364 .warn = true, 1365 }; 1366 1367 preempt_disable(); 1368 if (!find_symbol(&fsa)) 1369 goto fail; 1370 if (fsa.license != GPL_ONLY) { 1371 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1372 symbol); 1373 goto fail; 1374 } 1375 if (strong_try_module_get(fsa.owner)) 1376 goto fail; 1377 preempt_enable(); 1378 return (void *)kernel_symbol_value(fsa.sym); 1379 fail: 1380 preempt_enable(); 1381 return NULL; 1382 } 1383 EXPORT_SYMBOL_GPL(__symbol_get); 1384 1385 /* 1386 * Ensure that an exported symbol [global namespace] does not already exist 1387 * in the kernel or in some other module's exported symbol table. 1388 * 1389 * You must hold the module_mutex. 1390 */ 1391 static int verify_exported_symbols(struct module *mod) 1392 { 1393 unsigned int i; 1394 const struct kernel_symbol *s; 1395 struct { 1396 const struct kernel_symbol *sym; 1397 unsigned int num; 1398 } arr[] = { 1399 { mod->syms, mod->num_syms }, 1400 { mod->gpl_syms, mod->num_gpl_syms }, 1401 }; 1402 1403 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1404 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1405 struct find_symbol_arg fsa = { 1406 .name = kernel_symbol_name(s), 1407 .gplok = true, 1408 }; 1409 if (find_symbol(&fsa)) { 1410 pr_err("%s: exports duplicate symbol %s" 1411 " (owned by %s)\n", 1412 mod->name, kernel_symbol_name(s), 1413 module_name(fsa.owner)); 1414 return -ENOEXEC; 1415 } 1416 } 1417 } 1418 return 0; 1419 } 1420 1421 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1422 { 1423 /* 1424 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1425 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1426 * i386 has a similar problem but may not deserve a fix. 1427 * 1428 * If we ever have to ignore many symbols, consider refactoring the code to 1429 * only warn if referenced by a relocation. 1430 */ 1431 if (emachine == EM_386 || emachine == EM_X86_64) 1432 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1433 return false; 1434 } 1435 1436 /* Change all symbols so that st_value encodes the pointer directly. */ 1437 static int simplify_symbols(struct module *mod, const struct load_info *info) 1438 { 1439 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1440 Elf_Sym *sym = (void *)symsec->sh_addr; 1441 unsigned long secbase; 1442 unsigned int i; 1443 int ret = 0; 1444 const struct kernel_symbol *ksym; 1445 1446 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1447 const char *name = info->strtab + sym[i].st_name; 1448 1449 switch (sym[i].st_shndx) { 1450 case SHN_COMMON: 1451 /* Ignore common symbols */ 1452 if (!strncmp(name, "__gnu_lto", 9)) 1453 break; 1454 1455 /* 1456 * We compiled with -fno-common. These are not 1457 * supposed to happen. 1458 */ 1459 pr_debug("Common symbol: %s\n", name); 1460 pr_warn("%s: please compile with -fno-common\n", 1461 mod->name); 1462 ret = -ENOEXEC; 1463 break; 1464 1465 case SHN_ABS: 1466 /* Don't need to do anything */ 1467 pr_debug("Absolute symbol: 0x%08lx %s\n", 1468 (long)sym[i].st_value, name); 1469 break; 1470 1471 case SHN_LIVEPATCH: 1472 /* Livepatch symbols are resolved by livepatch */ 1473 break; 1474 1475 case SHN_UNDEF: 1476 ksym = resolve_symbol_wait(mod, info, name); 1477 /* Ok if resolved. */ 1478 if (ksym && !IS_ERR(ksym)) { 1479 sym[i].st_value = kernel_symbol_value(ksym); 1480 break; 1481 } 1482 1483 /* Ok if weak or ignored. */ 1484 if (!ksym && 1485 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1486 ignore_undef_symbol(info->hdr->e_machine, name))) 1487 break; 1488 1489 ret = PTR_ERR(ksym) ?: -ENOENT; 1490 pr_warn("%s: Unknown symbol %s (err %d)\n", 1491 mod->name, name, ret); 1492 break; 1493 1494 default: 1495 /* Divert to percpu allocation if a percpu var. */ 1496 if (sym[i].st_shndx == info->index.pcpu) 1497 secbase = (unsigned long)mod_percpu(mod); 1498 else 1499 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1500 sym[i].st_value += secbase; 1501 break; 1502 } 1503 } 1504 1505 return ret; 1506 } 1507 1508 static int apply_relocations(struct module *mod, const struct load_info *info) 1509 { 1510 unsigned int i; 1511 int err = 0; 1512 1513 /* Now do relocations. */ 1514 for (i = 1; i < info->hdr->e_shnum; i++) { 1515 unsigned int infosec = info->sechdrs[i].sh_info; 1516 1517 /* Not a valid relocation section? */ 1518 if (infosec >= info->hdr->e_shnum) 1519 continue; 1520 1521 /* Don't bother with non-allocated sections */ 1522 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1523 continue; 1524 1525 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1526 err = klp_apply_section_relocs(mod, info->sechdrs, 1527 info->secstrings, 1528 info->strtab, 1529 info->index.sym, i, 1530 NULL); 1531 else if (info->sechdrs[i].sh_type == SHT_REL) 1532 err = apply_relocate(info->sechdrs, info->strtab, 1533 info->index.sym, i, mod); 1534 else if (info->sechdrs[i].sh_type == SHT_RELA) 1535 err = apply_relocate_add(info->sechdrs, info->strtab, 1536 info->index.sym, i, mod); 1537 if (err < 0) 1538 break; 1539 } 1540 return err; 1541 } 1542 1543 /* Additional bytes needed by arch in front of individual sections */ 1544 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1545 unsigned int section) 1546 { 1547 /* default implementation just returns zero */ 1548 return 0; 1549 } 1550 1551 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1552 Elf_Shdr *sechdr, unsigned int section) 1553 { 1554 long offset; 1555 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1556 1557 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1558 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1559 mod->mem[type].size = offset + sechdr->sh_size; 1560 1561 WARN_ON_ONCE(offset & mask); 1562 return offset | mask; 1563 } 1564 1565 bool module_init_layout_section(const char *sname) 1566 { 1567 #ifndef CONFIG_MODULE_UNLOAD 1568 if (module_exit_section(sname)) 1569 return true; 1570 #endif 1571 return module_init_section(sname); 1572 } 1573 1574 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1575 { 1576 unsigned int m, i; 1577 1578 static const unsigned long masks[][2] = { 1579 /* 1580 * NOTE: all executable code must be the first section 1581 * in this array; otherwise modify the text_size 1582 * finder in the two loops below 1583 */ 1584 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1585 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1586 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1587 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1588 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1589 }; 1590 static const int core_m_to_mem_type[] = { 1591 MOD_TEXT, 1592 MOD_RODATA, 1593 MOD_RO_AFTER_INIT, 1594 MOD_DATA, 1595 MOD_DATA, 1596 }; 1597 static const int init_m_to_mem_type[] = { 1598 MOD_INIT_TEXT, 1599 MOD_INIT_RODATA, 1600 MOD_INVALID, 1601 MOD_INIT_DATA, 1602 MOD_INIT_DATA, 1603 }; 1604 1605 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1606 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1607 1608 for (i = 0; i < info->hdr->e_shnum; ++i) { 1609 Elf_Shdr *s = &info->sechdrs[i]; 1610 const char *sname = info->secstrings + s->sh_name; 1611 1612 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1613 || (s->sh_flags & masks[m][1]) 1614 || s->sh_entsize != ~0UL 1615 || is_init != module_init_layout_section(sname)) 1616 continue; 1617 1618 if (WARN_ON_ONCE(type == MOD_INVALID)) 1619 continue; 1620 1621 /* 1622 * Do not allocate codetag memory as we load it into 1623 * preallocated contiguous memory. 1624 */ 1625 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1626 /* 1627 * s->sh_entsize won't be used but populate the 1628 * type field to avoid confusion. 1629 */ 1630 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1631 << SH_ENTSIZE_TYPE_SHIFT; 1632 continue; 1633 } 1634 1635 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1636 pr_debug("\t%s\n", sname); 1637 } 1638 } 1639 } 1640 1641 /* 1642 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1643 * might -- code, read-only data, read-write data, small data. Tally 1644 * sizes, and place the offsets into sh_entsize fields: high bit means it 1645 * belongs in init. 1646 */ 1647 static void layout_sections(struct module *mod, struct load_info *info) 1648 { 1649 unsigned int i; 1650 1651 for (i = 0; i < info->hdr->e_shnum; i++) 1652 info->sechdrs[i].sh_entsize = ~0UL; 1653 1654 pr_debug("Core section allocation order for %s:\n", mod->name); 1655 __layout_sections(mod, info, false); 1656 1657 pr_debug("Init section allocation order for %s:\n", mod->name); 1658 __layout_sections(mod, info, true); 1659 } 1660 1661 static void module_license_taint_check(struct module *mod, const char *license) 1662 { 1663 if (!license) 1664 license = "unspecified"; 1665 1666 if (!license_is_gpl_compatible(license)) { 1667 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1668 pr_warn("%s: module license '%s' taints kernel.\n", 1669 mod->name, license); 1670 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1671 LOCKDEP_NOW_UNRELIABLE); 1672 } 1673 } 1674 1675 static void setup_modinfo(struct module *mod, struct load_info *info) 1676 { 1677 const struct module_attribute *attr; 1678 int i; 1679 1680 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1681 if (attr->setup) 1682 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1683 } 1684 } 1685 1686 static void free_modinfo(struct module *mod) 1687 { 1688 const struct module_attribute *attr; 1689 int i; 1690 1691 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1692 if (attr->free) 1693 attr->free(mod); 1694 } 1695 } 1696 1697 bool __weak module_init_section(const char *name) 1698 { 1699 return strstarts(name, ".init"); 1700 } 1701 1702 bool __weak module_exit_section(const char *name) 1703 { 1704 return strstarts(name, ".exit"); 1705 } 1706 1707 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1708 { 1709 #if defined(CONFIG_64BIT) 1710 unsigned long long secend; 1711 #else 1712 unsigned long secend; 1713 #endif 1714 1715 /* 1716 * Check for both overflow and offset/size being 1717 * too large. 1718 */ 1719 secend = shdr->sh_offset + shdr->sh_size; 1720 if (secend < shdr->sh_offset || secend > info->len) 1721 return -ENOEXEC; 1722 1723 return 0; 1724 } 1725 1726 /** 1727 * elf_validity_ehdr() - Checks an ELF header for module validity 1728 * @info: Load info containing the ELF header to check 1729 * 1730 * Checks whether an ELF header could belong to a valid module. Checks: 1731 * 1732 * * ELF header is within the data the user provided 1733 * * ELF magic is present 1734 * * It is relocatable (not final linked, not core file, etc.) 1735 * * The header's machine type matches what the architecture expects. 1736 * * Optional arch-specific hook for other properties 1737 * - module_elf_check_arch() is currently only used by PPC to check 1738 * ELF ABI version, but may be used by others in the future. 1739 * 1740 * Return: %0 if valid, %-ENOEXEC on failure. 1741 */ 1742 static int elf_validity_ehdr(const struct load_info *info) 1743 { 1744 if (info->len < sizeof(*(info->hdr))) { 1745 pr_err("Invalid ELF header len %lu\n", info->len); 1746 return -ENOEXEC; 1747 } 1748 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1749 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1750 return -ENOEXEC; 1751 } 1752 if (info->hdr->e_type != ET_REL) { 1753 pr_err("Invalid ELF header type: %u != %u\n", 1754 info->hdr->e_type, ET_REL); 1755 return -ENOEXEC; 1756 } 1757 if (!elf_check_arch(info->hdr)) { 1758 pr_err("Invalid architecture in ELF header: %u\n", 1759 info->hdr->e_machine); 1760 return -ENOEXEC; 1761 } 1762 if (!module_elf_check_arch(info->hdr)) { 1763 pr_err("Invalid module architecture in ELF header: %u\n", 1764 info->hdr->e_machine); 1765 return -ENOEXEC; 1766 } 1767 return 0; 1768 } 1769 1770 /** 1771 * elf_validity_cache_sechdrs() - Cache section headers if valid 1772 * @info: Load info to compute section headers from 1773 * 1774 * Checks: 1775 * 1776 * * ELF header is valid (see elf_validity_ehdr()) 1777 * * Section headers are the size we expect 1778 * * Section array fits in the user provided data 1779 * * Section index 0 is NULL 1780 * * Section contents are inbounds 1781 * 1782 * Then updates @info with a &load_info->sechdrs pointer if valid. 1783 * 1784 * Return: %0 if valid, negative error code if validation failed. 1785 */ 1786 static int elf_validity_cache_sechdrs(struct load_info *info) 1787 { 1788 Elf_Shdr *sechdrs; 1789 Elf_Shdr *shdr; 1790 int i; 1791 int err; 1792 1793 err = elf_validity_ehdr(info); 1794 if (err < 0) 1795 return err; 1796 1797 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1798 pr_err("Invalid ELF section header size\n"); 1799 return -ENOEXEC; 1800 } 1801 1802 /* 1803 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1804 * known and small. So e_shnum * sizeof(Elf_Shdr) 1805 * will not overflow unsigned long on any platform. 1806 */ 1807 if (info->hdr->e_shoff >= info->len 1808 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1809 info->len - info->hdr->e_shoff)) { 1810 pr_err("Invalid ELF section header overflow\n"); 1811 return -ENOEXEC; 1812 } 1813 1814 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1815 1816 /* 1817 * The code assumes that section 0 has a length of zero and 1818 * an addr of zero, so check for it. 1819 */ 1820 if (sechdrs[0].sh_type != SHT_NULL 1821 || sechdrs[0].sh_size != 0 1822 || sechdrs[0].sh_addr != 0) { 1823 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1824 sechdrs[0].sh_type); 1825 return -ENOEXEC; 1826 } 1827 1828 /* Validate contents are inbounds */ 1829 for (i = 1; i < info->hdr->e_shnum; i++) { 1830 shdr = &sechdrs[i]; 1831 switch (shdr->sh_type) { 1832 case SHT_NULL: 1833 case SHT_NOBITS: 1834 /* No contents, offset/size don't mean anything */ 1835 continue; 1836 default: 1837 err = validate_section_offset(info, shdr); 1838 if (err < 0) { 1839 pr_err("Invalid ELF section in module (section %u type %u)\n", 1840 i, shdr->sh_type); 1841 return err; 1842 } 1843 } 1844 } 1845 1846 info->sechdrs = sechdrs; 1847 1848 return 0; 1849 } 1850 1851 /** 1852 * elf_validity_cache_secstrings() - Caches section names if valid 1853 * @info: Load info to cache section names from. Must have valid sechdrs. 1854 * 1855 * Specifically checks: 1856 * 1857 * * Section name table index is inbounds of section headers 1858 * * Section name table is not empty 1859 * * Section name table is NUL terminated 1860 * * All section name offsets are inbounds of the section 1861 * 1862 * Then updates @info with a &load_info->secstrings pointer if valid. 1863 * 1864 * Return: %0 if valid, negative error code if validation failed. 1865 */ 1866 static int elf_validity_cache_secstrings(struct load_info *info) 1867 { 1868 Elf_Shdr *strhdr, *shdr; 1869 char *secstrings; 1870 int i; 1871 1872 /* 1873 * Verify if the section name table index is valid. 1874 */ 1875 if (info->hdr->e_shstrndx == SHN_UNDEF 1876 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1877 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1878 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1879 info->hdr->e_shnum); 1880 return -ENOEXEC; 1881 } 1882 1883 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1884 1885 /* 1886 * The section name table must be NUL-terminated, as required 1887 * by the spec. This makes strcmp and pr_* calls that access 1888 * strings in the section safe. 1889 */ 1890 secstrings = (void *)info->hdr + strhdr->sh_offset; 1891 if (strhdr->sh_size == 0) { 1892 pr_err("empty section name table\n"); 1893 return -ENOEXEC; 1894 } 1895 if (secstrings[strhdr->sh_size - 1] != '\0') { 1896 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1897 return -ENOEXEC; 1898 } 1899 1900 for (i = 0; i < info->hdr->e_shnum; i++) { 1901 shdr = &info->sechdrs[i]; 1902 /* SHT_NULL means sh_name has an undefined value */ 1903 if (shdr->sh_type == SHT_NULL) 1904 continue; 1905 if (shdr->sh_name >= strhdr->sh_size) { 1906 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1907 i, shdr->sh_type); 1908 return -ENOEXEC; 1909 } 1910 } 1911 1912 info->secstrings = secstrings; 1913 return 0; 1914 } 1915 1916 /** 1917 * elf_validity_cache_index_info() - Validate and cache modinfo section 1918 * @info: Load info to populate the modinfo index on. 1919 * Must have &load_info->sechdrs and &load_info->secstrings populated 1920 * 1921 * Checks that if there is a .modinfo section, it is unique. 1922 * Then, it caches its index in &load_info->index.info. 1923 * Finally, it tries to populate the name to improve error messages. 1924 * 1925 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1926 */ 1927 static int elf_validity_cache_index_info(struct load_info *info) 1928 { 1929 int info_idx; 1930 1931 info_idx = find_any_unique_sec(info, ".modinfo"); 1932 1933 if (info_idx == 0) 1934 /* Early return, no .modinfo */ 1935 return 0; 1936 1937 if (info_idx < 0) { 1938 pr_err("Only one .modinfo section must exist.\n"); 1939 return -ENOEXEC; 1940 } 1941 1942 info->index.info = info_idx; 1943 /* Try to find a name early so we can log errors with a module name */ 1944 info->name = get_modinfo(info, "name"); 1945 1946 return 0; 1947 } 1948 1949 /** 1950 * elf_validity_cache_index_mod() - Validates and caches this_module section 1951 * @info: Load info to cache this_module on. 1952 * Must have &load_info->sechdrs and &load_info->secstrings populated 1953 * 1954 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 1955 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 1956 * to &__this_module properly. The kernel's modpost declares it on each 1957 * modules's *.mod.c file. If the struct module of the kernel changes a full 1958 * kernel rebuild is required. 1959 * 1960 * We have a few expectations for this special section, this function 1961 * validates all this for us: 1962 * 1963 * * The section has contents 1964 * * The section is unique 1965 * * We expect the kernel to always have to allocate it: SHF_ALLOC 1966 * * The section size must match the kernel's run time's struct module 1967 * size 1968 * 1969 * If all checks pass, the index will be cached in &load_info->index.mod 1970 * 1971 * Return: %0 on validation success, %-ENOEXEC on failure 1972 */ 1973 static int elf_validity_cache_index_mod(struct load_info *info) 1974 { 1975 Elf_Shdr *shdr; 1976 int mod_idx; 1977 1978 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 1979 if (mod_idx <= 0) { 1980 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 1981 info->name ?: "(missing .modinfo section or name field)"); 1982 return -ENOEXEC; 1983 } 1984 1985 shdr = &info->sechdrs[mod_idx]; 1986 1987 if (shdr->sh_type == SHT_NOBITS) { 1988 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1989 info->name ?: "(missing .modinfo section or name field)"); 1990 return -ENOEXEC; 1991 } 1992 1993 if (!(shdr->sh_flags & SHF_ALLOC)) { 1994 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1995 info->name ?: "(missing .modinfo section or name field)"); 1996 return -ENOEXEC; 1997 } 1998 1999 if (shdr->sh_size != sizeof(struct module)) { 2000 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 2001 info->name ?: "(missing .modinfo section or name field)"); 2002 return -ENOEXEC; 2003 } 2004 2005 info->index.mod = mod_idx; 2006 2007 return 0; 2008 } 2009 2010 /** 2011 * elf_validity_cache_index_sym() - Validate and cache symtab index 2012 * @info: Load info to cache symtab index in. 2013 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2014 * 2015 * Checks that there is exactly one symbol table, then caches its index in 2016 * &load_info->index.sym. 2017 * 2018 * Return: %0 if valid, %-ENOEXEC on failure. 2019 */ 2020 static int elf_validity_cache_index_sym(struct load_info *info) 2021 { 2022 unsigned int sym_idx; 2023 unsigned int num_sym_secs = 0; 2024 int i; 2025 2026 for (i = 1; i < info->hdr->e_shnum; i++) { 2027 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2028 num_sym_secs++; 2029 sym_idx = i; 2030 } 2031 } 2032 2033 if (num_sym_secs != 1) { 2034 pr_warn("%s: module has no symbols (stripped?)\n", 2035 info->name ?: "(missing .modinfo section or name field)"); 2036 return -ENOEXEC; 2037 } 2038 2039 info->index.sym = sym_idx; 2040 2041 return 0; 2042 } 2043 2044 /** 2045 * elf_validity_cache_index_str() - Validate and cache strtab index 2046 * @info: Load info to cache strtab index in. 2047 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2048 * Must have &load_info->index.sym populated. 2049 * 2050 * Looks at the symbol table's associated string table, makes sure it is 2051 * in-bounds, and caches it. 2052 * 2053 * Return: %0 if valid, %-ENOEXEC on failure. 2054 */ 2055 static int elf_validity_cache_index_str(struct load_info *info) 2056 { 2057 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2058 2059 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2060 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2061 str_idx, str_idx, info->hdr->e_shnum); 2062 return -ENOEXEC; 2063 } 2064 2065 info->index.str = str_idx; 2066 return 0; 2067 } 2068 2069 /** 2070 * elf_validity_cache_index_versions() - Validate and cache version indices 2071 * @info: Load info to cache version indices in. 2072 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2073 * @flags: Load flags, relevant to suppress version loading, see 2074 * uapi/linux/module.h 2075 * 2076 * If we're ignoring modversions based on @flags, zero all version indices 2077 * and return validity. Othewrise check: 2078 * 2079 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2080 * * There is a name present for every crc 2081 * 2082 * Then populate: 2083 * 2084 * * &load_info->index.vers 2085 * * &load_info->index.vers_ext_crc 2086 * * &load_info->index.vers_ext_names 2087 * 2088 * if present. 2089 * 2090 * Return: %0 if valid, %-ENOEXEC on failure. 2091 */ 2092 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2093 { 2094 unsigned int vers_ext_crc; 2095 unsigned int vers_ext_name; 2096 size_t crc_count; 2097 size_t remaining_len; 2098 size_t name_size; 2099 char *name; 2100 2101 /* If modversions were suppressed, pretend we didn't find any */ 2102 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2103 info->index.vers = 0; 2104 info->index.vers_ext_crc = 0; 2105 info->index.vers_ext_name = 0; 2106 return 0; 2107 } 2108 2109 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2110 vers_ext_name = find_sec(info, "__version_ext_names"); 2111 2112 /* If we have one field, we must have the other */ 2113 if (!!vers_ext_crc != !!vers_ext_name) { 2114 pr_err("extended version crc+name presence does not match"); 2115 return -ENOEXEC; 2116 } 2117 2118 /* 2119 * If we have extended version information, we should have the same 2120 * number of entries in every section. 2121 */ 2122 if (vers_ext_crc) { 2123 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2124 name = (void *)info->hdr + 2125 info->sechdrs[vers_ext_name].sh_offset; 2126 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2127 2128 while (crc_count--) { 2129 name_size = strnlen(name, remaining_len) + 1; 2130 if (name_size > remaining_len) { 2131 pr_err("more extended version crcs than names"); 2132 return -ENOEXEC; 2133 } 2134 remaining_len -= name_size; 2135 name += name_size; 2136 } 2137 } 2138 2139 info->index.vers = find_sec(info, "__versions"); 2140 info->index.vers_ext_crc = vers_ext_crc; 2141 info->index.vers_ext_name = vers_ext_name; 2142 return 0; 2143 } 2144 2145 /** 2146 * elf_validity_cache_index() - Resolve, validate, cache section indices 2147 * @info: Load info to read from and update. 2148 * &load_info->sechdrs and &load_info->secstrings must be populated. 2149 * @flags: Load flags, relevant to suppress version loading, see 2150 * uapi/linux/module.h 2151 * 2152 * Populates &load_info->index, validating as it goes. 2153 * See child functions for per-field validation: 2154 * 2155 * * elf_validity_cache_index_info() 2156 * * elf_validity_cache_index_mod() 2157 * * elf_validity_cache_index_sym() 2158 * * elf_validity_cache_index_str() 2159 * * elf_validity_cache_index_versions() 2160 * 2161 * If CONFIG_SMP is enabled, load the percpu section by name with no 2162 * validation. 2163 * 2164 * Return: 0 on success, negative error code if an index failed validation. 2165 */ 2166 static int elf_validity_cache_index(struct load_info *info, int flags) 2167 { 2168 int err; 2169 2170 err = elf_validity_cache_index_info(info); 2171 if (err < 0) 2172 return err; 2173 err = elf_validity_cache_index_mod(info); 2174 if (err < 0) 2175 return err; 2176 err = elf_validity_cache_index_sym(info); 2177 if (err < 0) 2178 return err; 2179 err = elf_validity_cache_index_str(info); 2180 if (err < 0) 2181 return err; 2182 err = elf_validity_cache_index_versions(info, flags); 2183 if (err < 0) 2184 return err; 2185 2186 info->index.pcpu = find_pcpusec(info); 2187 2188 return 0; 2189 } 2190 2191 /** 2192 * elf_validity_cache_strtab() - Validate and cache symbol string table 2193 * @info: Load info to read from and update. 2194 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2195 * Must have &load_info->index populated. 2196 * 2197 * Checks: 2198 * 2199 * * The string table is not empty. 2200 * * The string table starts and ends with NUL (required by ELF spec). 2201 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2202 * string table. 2203 * 2204 * And caches the pointer as &load_info->strtab in @info. 2205 * 2206 * Return: 0 on success, negative error code if a check failed. 2207 */ 2208 static int elf_validity_cache_strtab(struct load_info *info) 2209 { 2210 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2211 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2212 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2213 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2214 int i; 2215 2216 if (str_shdr->sh_size == 0) { 2217 pr_err("empty symbol string table\n"); 2218 return -ENOEXEC; 2219 } 2220 if (strtab[0] != '\0') { 2221 pr_err("symbol string table missing leading NUL\n"); 2222 return -ENOEXEC; 2223 } 2224 if (strtab[str_shdr->sh_size - 1] != '\0') { 2225 pr_err("symbol string table isn't NUL terminated\n"); 2226 return -ENOEXEC; 2227 } 2228 2229 /* 2230 * Now that we know strtab is correctly structured, check symbol 2231 * starts are inbounds before they're used later. 2232 */ 2233 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2234 if (syms[i].st_name >= str_shdr->sh_size) { 2235 pr_err("symbol name out of bounds in string table"); 2236 return -ENOEXEC; 2237 } 2238 } 2239 2240 info->strtab = strtab; 2241 return 0; 2242 } 2243 2244 /* 2245 * Check userspace passed ELF module against our expectations, and cache 2246 * useful variables for further processing as we go. 2247 * 2248 * This does basic validity checks against section offsets and sizes, the 2249 * section name string table, and the indices used for it (sh_name). 2250 * 2251 * As a last step, since we're already checking the ELF sections we cache 2252 * useful variables which will be used later for our convenience: 2253 * 2254 * o pointers to section headers 2255 * o cache the modinfo symbol section 2256 * o cache the string symbol section 2257 * o cache the module section 2258 * 2259 * As a last step we set info->mod to the temporary copy of the module in 2260 * info->hdr. The final one will be allocated in move_module(). Any 2261 * modifications we make to our copy of the module will be carried over 2262 * to the final minted module. 2263 */ 2264 static int elf_validity_cache_copy(struct load_info *info, int flags) 2265 { 2266 int err; 2267 2268 err = elf_validity_cache_sechdrs(info); 2269 if (err < 0) 2270 return err; 2271 err = elf_validity_cache_secstrings(info); 2272 if (err < 0) 2273 return err; 2274 err = elf_validity_cache_index(info, flags); 2275 if (err < 0) 2276 return err; 2277 err = elf_validity_cache_strtab(info); 2278 if (err < 0) 2279 return err; 2280 2281 /* This is temporary: point mod into copy of data. */ 2282 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2283 2284 /* 2285 * If we didn't load the .modinfo 'name' field earlier, fall back to 2286 * on-disk struct mod 'name' field. 2287 */ 2288 if (!info->name) 2289 info->name = info->mod->name; 2290 2291 return 0; 2292 } 2293 2294 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2295 2296 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2297 { 2298 do { 2299 unsigned long n = min(len, COPY_CHUNK_SIZE); 2300 2301 if (copy_from_user(dst, usrc, n) != 0) 2302 return -EFAULT; 2303 cond_resched(); 2304 dst += n; 2305 usrc += n; 2306 len -= n; 2307 } while (len); 2308 return 0; 2309 } 2310 2311 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2312 { 2313 if (!get_modinfo(info, "livepatch")) 2314 /* Nothing more to do */ 2315 return 0; 2316 2317 if (set_livepatch_module(mod)) 2318 return 0; 2319 2320 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2321 mod->name); 2322 return -ENOEXEC; 2323 } 2324 2325 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2326 { 2327 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2328 return; 2329 2330 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2331 mod->name); 2332 } 2333 2334 /* Sets info->hdr and info->len. */ 2335 static int copy_module_from_user(const void __user *umod, unsigned long len, 2336 struct load_info *info) 2337 { 2338 int err; 2339 2340 info->len = len; 2341 if (info->len < sizeof(*(info->hdr))) 2342 return -ENOEXEC; 2343 2344 err = security_kernel_load_data(LOADING_MODULE, true); 2345 if (err) 2346 return err; 2347 2348 /* Suck in entire file: we'll want most of it. */ 2349 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2350 if (!info->hdr) 2351 return -ENOMEM; 2352 2353 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2354 err = -EFAULT; 2355 goto out; 2356 } 2357 2358 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2359 LOADING_MODULE, "init_module"); 2360 out: 2361 if (err) 2362 vfree(info->hdr); 2363 2364 return err; 2365 } 2366 2367 static void free_copy(struct load_info *info, int flags) 2368 { 2369 if (flags & MODULE_INIT_COMPRESSED_FILE) 2370 module_decompress_cleanup(info); 2371 else 2372 vfree(info->hdr); 2373 } 2374 2375 static int rewrite_section_headers(struct load_info *info, int flags) 2376 { 2377 unsigned int i; 2378 2379 /* This should always be true, but let's be sure. */ 2380 info->sechdrs[0].sh_addr = 0; 2381 2382 for (i = 1; i < info->hdr->e_shnum; i++) { 2383 Elf_Shdr *shdr = &info->sechdrs[i]; 2384 2385 /* 2386 * Mark all sections sh_addr with their address in the 2387 * temporary image. 2388 */ 2389 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2390 2391 } 2392 2393 /* Track but don't keep modinfo and version sections. */ 2394 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2395 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2396 ~(unsigned long)SHF_ALLOC; 2397 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2398 ~(unsigned long)SHF_ALLOC; 2399 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2400 2401 return 0; 2402 } 2403 2404 static const char *const module_license_offenders[] = { 2405 /* driverloader was caught wrongly pretending to be under GPL */ 2406 "driverloader", 2407 2408 /* lve claims to be GPL but upstream won't provide source */ 2409 "lve", 2410 }; 2411 2412 /* 2413 * These calls taint the kernel depending certain module circumstances */ 2414 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2415 { 2416 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2417 size_t i; 2418 2419 if (!get_modinfo(info, "intree")) { 2420 if (!test_taint(TAINT_OOT_MODULE)) 2421 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2422 mod->name); 2423 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2424 } 2425 2426 check_modinfo_retpoline(mod, info); 2427 2428 if (get_modinfo(info, "staging")) { 2429 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2430 pr_warn("%s: module is from the staging directory, the quality " 2431 "is unknown, you have been warned.\n", mod->name); 2432 } 2433 2434 if (is_livepatch_module(mod)) { 2435 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2436 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2437 mod->name); 2438 } 2439 2440 module_license_taint_check(mod, get_modinfo(info, "license")); 2441 2442 if (get_modinfo(info, "test")) { 2443 if (!test_taint(TAINT_TEST)) 2444 pr_warn("%s: loading test module taints kernel.\n", 2445 mod->name); 2446 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2447 } 2448 #ifdef CONFIG_MODULE_SIG 2449 mod->sig_ok = info->sig_ok; 2450 if (!mod->sig_ok) { 2451 pr_notice_once("%s: module verification failed: signature " 2452 "and/or required key missing - tainting " 2453 "kernel\n", mod->name); 2454 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2455 } 2456 #endif 2457 2458 /* 2459 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2460 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2461 * using GPL-only symbols it needs. 2462 */ 2463 if (strcmp(mod->name, "ndiswrapper") == 0) 2464 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2465 2466 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2467 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2468 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2469 LOCKDEP_NOW_UNRELIABLE); 2470 } 2471 2472 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2473 pr_warn("%s: module license taints kernel.\n", mod->name); 2474 2475 } 2476 2477 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2478 { 2479 const char *modmagic = get_modinfo(info, "vermagic"); 2480 int err; 2481 2482 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2483 modmagic = NULL; 2484 2485 /* This is allowed: modprobe --force will invalidate it. */ 2486 if (!modmagic) { 2487 err = try_to_force_load(mod, "bad vermagic"); 2488 if (err) 2489 return err; 2490 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2491 pr_err("%s: version magic '%s' should be '%s'\n", 2492 info->name, modmagic, vermagic); 2493 return -ENOEXEC; 2494 } 2495 2496 err = check_modinfo_livepatch(mod, info); 2497 if (err) 2498 return err; 2499 2500 return 0; 2501 } 2502 2503 static int find_module_sections(struct module *mod, struct load_info *info) 2504 { 2505 mod->kp = section_objs(info, "__param", 2506 sizeof(*mod->kp), &mod->num_kp); 2507 mod->syms = section_objs(info, "__ksymtab", 2508 sizeof(*mod->syms), &mod->num_syms); 2509 mod->crcs = section_addr(info, "__kcrctab"); 2510 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2511 sizeof(*mod->gpl_syms), 2512 &mod->num_gpl_syms); 2513 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2514 2515 #ifdef CONFIG_CONSTRUCTORS 2516 mod->ctors = section_objs(info, ".ctors", 2517 sizeof(*mod->ctors), &mod->num_ctors); 2518 if (!mod->ctors) 2519 mod->ctors = section_objs(info, ".init_array", 2520 sizeof(*mod->ctors), &mod->num_ctors); 2521 else if (find_sec(info, ".init_array")) { 2522 /* 2523 * This shouldn't happen with same compiler and binutils 2524 * building all parts of the module. 2525 */ 2526 pr_warn("%s: has both .ctors and .init_array.\n", 2527 mod->name); 2528 return -EINVAL; 2529 } 2530 #endif 2531 2532 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2533 &mod->noinstr_text_size); 2534 2535 #ifdef CONFIG_TRACEPOINTS 2536 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2537 sizeof(*mod->tracepoints_ptrs), 2538 &mod->num_tracepoints); 2539 #endif 2540 #ifdef CONFIG_TREE_SRCU 2541 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2542 sizeof(*mod->srcu_struct_ptrs), 2543 &mod->num_srcu_structs); 2544 #endif 2545 #ifdef CONFIG_BPF_EVENTS 2546 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2547 sizeof(*mod->bpf_raw_events), 2548 &mod->num_bpf_raw_events); 2549 #endif 2550 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2551 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2552 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2553 &mod->btf_base_data_size); 2554 #endif 2555 #ifdef CONFIG_JUMP_LABEL 2556 mod->jump_entries = section_objs(info, "__jump_table", 2557 sizeof(*mod->jump_entries), 2558 &mod->num_jump_entries); 2559 #endif 2560 #ifdef CONFIG_EVENT_TRACING 2561 mod->trace_events = section_objs(info, "_ftrace_events", 2562 sizeof(*mod->trace_events), 2563 &mod->num_trace_events); 2564 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2565 sizeof(*mod->trace_evals), 2566 &mod->num_trace_evals); 2567 #endif 2568 #ifdef CONFIG_TRACING 2569 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2570 sizeof(*mod->trace_bprintk_fmt_start), 2571 &mod->num_trace_bprintk_fmt); 2572 #endif 2573 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2574 /* sechdrs[0].sh_size is always zero */ 2575 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2576 sizeof(*mod->ftrace_callsites), 2577 &mod->num_ftrace_callsites); 2578 #endif 2579 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2580 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2581 sizeof(*mod->ei_funcs), 2582 &mod->num_ei_funcs); 2583 #endif 2584 #ifdef CONFIG_KPROBES 2585 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2586 &mod->kprobes_text_size); 2587 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2588 sizeof(unsigned long), 2589 &mod->num_kprobe_blacklist); 2590 #endif 2591 #ifdef CONFIG_PRINTK_INDEX 2592 mod->printk_index_start = section_objs(info, ".printk_index", 2593 sizeof(*mod->printk_index_start), 2594 &mod->printk_index_size); 2595 #endif 2596 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2597 mod->static_call_sites = section_objs(info, ".static_call_sites", 2598 sizeof(*mod->static_call_sites), 2599 &mod->num_static_call_sites); 2600 #endif 2601 #if IS_ENABLED(CONFIG_KUNIT) 2602 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2603 sizeof(*mod->kunit_suites), 2604 &mod->num_kunit_suites); 2605 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2606 sizeof(*mod->kunit_init_suites), 2607 &mod->num_kunit_init_suites); 2608 #endif 2609 2610 mod->extable = section_objs(info, "__ex_table", 2611 sizeof(*mod->extable), &mod->num_exentries); 2612 2613 if (section_addr(info, "__obsparm")) 2614 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2615 2616 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2617 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2618 sizeof(*mod->dyndbg_info.descs), 2619 &mod->dyndbg_info.num_descs); 2620 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2621 sizeof(*mod->dyndbg_info.classes), 2622 &mod->dyndbg_info.num_classes); 2623 #endif 2624 2625 return 0; 2626 } 2627 2628 static int move_module(struct module *mod, struct load_info *info) 2629 { 2630 int i; 2631 enum mod_mem_type t = 0; 2632 int ret = -ENOMEM; 2633 bool codetag_section_found = false; 2634 2635 for_each_mod_mem_type(type) { 2636 if (!mod->mem[type].size) { 2637 mod->mem[type].base = NULL; 2638 continue; 2639 } 2640 2641 ret = module_memory_alloc(mod, type); 2642 if (ret) { 2643 t = type; 2644 goto out_err; 2645 } 2646 } 2647 2648 /* Transfer each section which specifies SHF_ALLOC */ 2649 pr_debug("Final section addresses for %s:\n", mod->name); 2650 for (i = 0; i < info->hdr->e_shnum; i++) { 2651 void *dest; 2652 Elf_Shdr *shdr = &info->sechdrs[i]; 2653 const char *sname; 2654 2655 if (!(shdr->sh_flags & SHF_ALLOC)) 2656 continue; 2657 2658 sname = info->secstrings + shdr->sh_name; 2659 /* 2660 * Load codetag sections separately as they might still be used 2661 * after module unload. 2662 */ 2663 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2664 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2665 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2666 if (WARN_ON(!dest)) { 2667 ret = -EINVAL; 2668 goto out_err; 2669 } 2670 if (IS_ERR(dest)) { 2671 ret = PTR_ERR(dest); 2672 goto out_err; 2673 } 2674 codetag_section_found = true; 2675 } else { 2676 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2677 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2678 2679 dest = mod->mem[type].base + offset; 2680 } 2681 2682 if (shdr->sh_type != SHT_NOBITS) { 2683 /* 2684 * Our ELF checker already validated this, but let's 2685 * be pedantic and make the goal clearer. We actually 2686 * end up copying over all modifications made to the 2687 * userspace copy of the entire struct module. 2688 */ 2689 if (i == info->index.mod && 2690 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2691 ret = -ENOEXEC; 2692 goto out_err; 2693 } 2694 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2695 } 2696 /* 2697 * Update the userspace copy's ELF section address to point to 2698 * our newly allocated memory as a pure convenience so that 2699 * users of info can keep taking advantage and using the newly 2700 * minted official memory area. 2701 */ 2702 shdr->sh_addr = (unsigned long)dest; 2703 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2704 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2705 } 2706 2707 return 0; 2708 out_err: 2709 module_memory_restore_rox(mod); 2710 for (t--; t >= 0; t--) 2711 module_memory_free(mod, t); 2712 if (codetag_section_found) 2713 codetag_free_module_sections(mod); 2714 2715 return ret; 2716 } 2717 2718 static int check_export_symbol_versions(struct module *mod) 2719 { 2720 #ifdef CONFIG_MODVERSIONS 2721 if ((mod->num_syms && !mod->crcs) || 2722 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2723 return try_to_force_load(mod, 2724 "no versions for exported symbols"); 2725 } 2726 #endif 2727 return 0; 2728 } 2729 2730 static void flush_module_icache(const struct module *mod) 2731 { 2732 /* 2733 * Flush the instruction cache, since we've played with text. 2734 * Do it before processing of module parameters, so the module 2735 * can provide parameter accessor functions of its own. 2736 */ 2737 for_each_mod_mem_type(type) { 2738 const struct module_memory *mod_mem = &mod->mem[type]; 2739 2740 if (mod_mem->size) { 2741 flush_icache_range((unsigned long)mod_mem->base, 2742 (unsigned long)mod_mem->base + mod_mem->size); 2743 } 2744 } 2745 } 2746 2747 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2748 { 2749 return true; 2750 } 2751 2752 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2753 Elf_Shdr *sechdrs, 2754 char *secstrings, 2755 struct module *mod) 2756 { 2757 return 0; 2758 } 2759 2760 /* module_blacklist is a comma-separated list of module names */ 2761 static char *module_blacklist; 2762 static bool blacklisted(const char *module_name) 2763 { 2764 const char *p; 2765 size_t len; 2766 2767 if (!module_blacklist) 2768 return false; 2769 2770 for (p = module_blacklist; *p; p += len) { 2771 len = strcspn(p, ","); 2772 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2773 return true; 2774 if (p[len] == ',') 2775 len++; 2776 } 2777 return false; 2778 } 2779 core_param(module_blacklist, module_blacklist, charp, 0400); 2780 2781 static struct module *layout_and_allocate(struct load_info *info, int flags) 2782 { 2783 struct module *mod; 2784 unsigned int ndx; 2785 int err; 2786 2787 /* Allow arches to frob section contents and sizes. */ 2788 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2789 info->secstrings, info->mod); 2790 if (err < 0) 2791 return ERR_PTR(err); 2792 2793 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2794 info->secstrings, info->mod); 2795 if (err < 0) 2796 return ERR_PTR(err); 2797 2798 /* We will do a special allocation for per-cpu sections later. */ 2799 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2800 2801 /* 2802 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2803 * layout_sections() can put it in the right place. 2804 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2805 */ 2806 ndx = find_sec(info, ".data..ro_after_init"); 2807 if (ndx) 2808 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2809 /* 2810 * Mark the __jump_table section as ro_after_init as well: these data 2811 * structures are never modified, with the exception of entries that 2812 * refer to code in the __init section, which are annotated as such 2813 * at module load time. 2814 */ 2815 ndx = find_sec(info, "__jump_table"); 2816 if (ndx) 2817 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2818 2819 /* 2820 * Determine total sizes, and put offsets in sh_entsize. For now 2821 * this is done generically; there doesn't appear to be any 2822 * special cases for the architectures. 2823 */ 2824 layout_sections(info->mod, info); 2825 layout_symtab(info->mod, info); 2826 2827 /* Allocate and move to the final place */ 2828 err = move_module(info->mod, info); 2829 if (err) 2830 return ERR_PTR(err); 2831 2832 /* Module has been copied to its final place now: return it. */ 2833 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2834 kmemleak_load_module(mod, info); 2835 codetag_module_replaced(info->mod, mod); 2836 2837 return mod; 2838 } 2839 2840 /* mod is no longer valid after this! */ 2841 static void module_deallocate(struct module *mod, struct load_info *info) 2842 { 2843 percpu_modfree(mod); 2844 module_arch_freeing_init(mod); 2845 2846 free_mod_mem(mod); 2847 } 2848 2849 int __weak module_finalize(const Elf_Ehdr *hdr, 2850 const Elf_Shdr *sechdrs, 2851 struct module *me) 2852 { 2853 return 0; 2854 } 2855 2856 static int post_relocation(struct module *mod, const struct load_info *info) 2857 { 2858 /* Sort exception table now relocations are done. */ 2859 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2860 2861 /* Copy relocated percpu area over. */ 2862 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2863 info->sechdrs[info->index.pcpu].sh_size); 2864 2865 /* Setup kallsyms-specific fields. */ 2866 add_kallsyms(mod, info); 2867 2868 /* Arch-specific module finalizing. */ 2869 return module_finalize(info->hdr, info->sechdrs, mod); 2870 } 2871 2872 /* Call module constructors. */ 2873 static void do_mod_ctors(struct module *mod) 2874 { 2875 #ifdef CONFIG_CONSTRUCTORS 2876 unsigned long i; 2877 2878 for (i = 0; i < mod->num_ctors; i++) 2879 mod->ctors[i](); 2880 #endif 2881 } 2882 2883 /* For freeing module_init on success, in case kallsyms traversing */ 2884 struct mod_initfree { 2885 struct llist_node node; 2886 void *init_text; 2887 void *init_data; 2888 void *init_rodata; 2889 }; 2890 2891 static void do_free_init(struct work_struct *w) 2892 { 2893 struct llist_node *pos, *n, *list; 2894 struct mod_initfree *initfree; 2895 2896 list = llist_del_all(&init_free_list); 2897 2898 synchronize_rcu(); 2899 2900 llist_for_each_safe(pos, n, list) { 2901 initfree = container_of(pos, struct mod_initfree, node); 2902 execmem_free(initfree->init_text); 2903 execmem_free(initfree->init_data); 2904 execmem_free(initfree->init_rodata); 2905 kfree(initfree); 2906 } 2907 } 2908 2909 void flush_module_init_free_work(void) 2910 { 2911 flush_work(&init_free_wq); 2912 } 2913 2914 #undef MODULE_PARAM_PREFIX 2915 #define MODULE_PARAM_PREFIX "module." 2916 /* Default value for module->async_probe_requested */ 2917 static bool async_probe; 2918 module_param(async_probe, bool, 0644); 2919 2920 /* 2921 * This is where the real work happens. 2922 * 2923 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2924 * helper command 'lx-symbols'. 2925 */ 2926 static noinline int do_init_module(struct module *mod) 2927 { 2928 int ret = 0; 2929 struct mod_initfree *freeinit; 2930 #if defined(CONFIG_MODULE_STATS) 2931 unsigned int text_size = 0, total_size = 0; 2932 2933 for_each_mod_mem_type(type) { 2934 const struct module_memory *mod_mem = &mod->mem[type]; 2935 if (mod_mem->size) { 2936 total_size += mod_mem->size; 2937 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2938 text_size += mod_mem->size; 2939 } 2940 } 2941 #endif 2942 2943 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2944 if (!freeinit) { 2945 ret = -ENOMEM; 2946 goto fail; 2947 } 2948 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2949 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2950 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2951 2952 do_mod_ctors(mod); 2953 /* Start the module */ 2954 if (mod->init != NULL) 2955 ret = do_one_initcall(mod->init); 2956 if (ret < 0) { 2957 goto fail_free_freeinit; 2958 } 2959 if (ret > 0) { 2960 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2961 "follow 0/-E convention\n" 2962 "%s: loading module anyway...\n", 2963 __func__, mod->name, ret, __func__); 2964 dump_stack(); 2965 } 2966 2967 /* Now it's a first class citizen! */ 2968 mod->state = MODULE_STATE_LIVE; 2969 blocking_notifier_call_chain(&module_notify_list, 2970 MODULE_STATE_LIVE, mod); 2971 2972 /* Delay uevent until module has finished its init routine */ 2973 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2974 2975 /* 2976 * We need to finish all async code before the module init sequence 2977 * is done. This has potential to deadlock if synchronous module 2978 * loading is requested from async (which is not allowed!). 2979 * 2980 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2981 * request_module() from async workers") for more details. 2982 */ 2983 if (!mod->async_probe_requested) 2984 async_synchronize_full(); 2985 2986 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2987 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2988 mutex_lock(&module_mutex); 2989 /* Drop initial reference. */ 2990 module_put(mod); 2991 trim_init_extable(mod); 2992 #ifdef CONFIG_KALLSYMS 2993 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2994 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2995 #endif 2996 ret = module_enable_rodata_ro_after_init(mod); 2997 if (ret) 2998 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 2999 "ro_after_init data might still be writable\n", 3000 mod->name, ret); 3001 3002 mod_tree_remove_init(mod); 3003 module_arch_freeing_init(mod); 3004 for_class_mod_mem_type(type, init) { 3005 mod->mem[type].base = NULL; 3006 mod->mem[type].size = 0; 3007 } 3008 3009 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 3010 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 3011 mod->btf_data = NULL; 3012 mod->btf_base_data = NULL; 3013 #endif 3014 /* 3015 * We want to free module_init, but be aware that kallsyms may be 3016 * walking this with preempt disabled. In all the failure paths, we 3017 * call synchronize_rcu(), but we don't want to slow down the success 3018 * path. execmem_free() cannot be called in an interrupt, so do the 3019 * work and call synchronize_rcu() in a work queue. 3020 * 3021 * Note that execmem_alloc() on most architectures creates W+X page 3022 * mappings which won't be cleaned up until do_free_init() runs. Any 3023 * code such as mark_rodata_ro() which depends on those mappings to 3024 * be cleaned up needs to sync with the queued work by invoking 3025 * flush_module_init_free_work(). 3026 */ 3027 if (llist_add(&freeinit->node, &init_free_list)) 3028 schedule_work(&init_free_wq); 3029 3030 mutex_unlock(&module_mutex); 3031 wake_up_all(&module_wq); 3032 3033 mod_stat_add_long(text_size, &total_text_size); 3034 mod_stat_add_long(total_size, &total_mod_size); 3035 3036 mod_stat_inc(&modcount); 3037 3038 return 0; 3039 3040 fail_free_freeinit: 3041 kfree(freeinit); 3042 fail: 3043 /* Try to protect us from buggy refcounters. */ 3044 mod->state = MODULE_STATE_GOING; 3045 synchronize_rcu(); 3046 module_put(mod); 3047 blocking_notifier_call_chain(&module_notify_list, 3048 MODULE_STATE_GOING, mod); 3049 klp_module_going(mod); 3050 ftrace_release_mod(mod); 3051 free_module(mod); 3052 wake_up_all(&module_wq); 3053 3054 return ret; 3055 } 3056 3057 static int may_init_module(void) 3058 { 3059 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3060 return -EPERM; 3061 3062 return 0; 3063 } 3064 3065 /* Is this module of this name done loading? No locks held. */ 3066 static bool finished_loading(const char *name) 3067 { 3068 struct module *mod; 3069 bool ret; 3070 3071 /* 3072 * The module_mutex should not be a heavily contended lock; 3073 * if we get the occasional sleep here, we'll go an extra iteration 3074 * in the wait_event_interruptible(), which is harmless. 3075 */ 3076 sched_annotate_sleep(); 3077 mutex_lock(&module_mutex); 3078 mod = find_module_all(name, strlen(name), true); 3079 ret = !mod || mod->state == MODULE_STATE_LIVE 3080 || mod->state == MODULE_STATE_GOING; 3081 mutex_unlock(&module_mutex); 3082 3083 return ret; 3084 } 3085 3086 /* Must be called with module_mutex held */ 3087 static int module_patient_check_exists(const char *name, 3088 enum fail_dup_mod_reason reason) 3089 { 3090 struct module *old; 3091 int err = 0; 3092 3093 old = find_module_all(name, strlen(name), true); 3094 if (old == NULL) 3095 return 0; 3096 3097 if (old->state == MODULE_STATE_COMING || 3098 old->state == MODULE_STATE_UNFORMED) { 3099 /* Wait in case it fails to load. */ 3100 mutex_unlock(&module_mutex); 3101 err = wait_event_interruptible(module_wq, 3102 finished_loading(name)); 3103 mutex_lock(&module_mutex); 3104 if (err) 3105 return err; 3106 3107 /* The module might have gone in the meantime. */ 3108 old = find_module_all(name, strlen(name), true); 3109 } 3110 3111 if (try_add_failed_module(name, reason)) 3112 pr_warn("Could not add fail-tracking for module: %s\n", name); 3113 3114 /* 3115 * We are here only when the same module was being loaded. Do 3116 * not try to load it again right now. It prevents long delays 3117 * caused by serialized module load failures. It might happen 3118 * when more devices of the same type trigger load of 3119 * a particular module. 3120 */ 3121 if (old && old->state == MODULE_STATE_LIVE) 3122 return -EEXIST; 3123 return -EBUSY; 3124 } 3125 3126 /* 3127 * We try to place it in the list now to make sure it's unique before 3128 * we dedicate too many resources. In particular, temporary percpu 3129 * memory exhaustion. 3130 */ 3131 static int add_unformed_module(struct module *mod) 3132 { 3133 int err; 3134 3135 mod->state = MODULE_STATE_UNFORMED; 3136 3137 mutex_lock(&module_mutex); 3138 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3139 if (err) 3140 goto out; 3141 3142 mod_update_bounds(mod); 3143 list_add_rcu(&mod->list, &modules); 3144 mod_tree_insert(mod); 3145 err = 0; 3146 3147 out: 3148 mutex_unlock(&module_mutex); 3149 return err; 3150 } 3151 3152 static int complete_formation(struct module *mod, struct load_info *info) 3153 { 3154 int err; 3155 3156 mutex_lock(&module_mutex); 3157 3158 /* Find duplicate symbols (must be called under lock). */ 3159 err = verify_exported_symbols(mod); 3160 if (err < 0) 3161 goto out; 3162 3163 /* These rely on module_mutex for list integrity. */ 3164 module_bug_finalize(info->hdr, info->sechdrs, mod); 3165 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3166 3167 err = module_enable_rodata_ro(mod); 3168 if (err) 3169 goto out_strict_rwx; 3170 err = module_enable_data_nx(mod); 3171 if (err) 3172 goto out_strict_rwx; 3173 err = module_enable_text_rox(mod); 3174 if (err) 3175 goto out_strict_rwx; 3176 3177 /* 3178 * Mark state as coming so strong_try_module_get() ignores us, 3179 * but kallsyms etc. can see us. 3180 */ 3181 mod->state = MODULE_STATE_COMING; 3182 mutex_unlock(&module_mutex); 3183 3184 return 0; 3185 3186 out_strict_rwx: 3187 module_bug_cleanup(mod); 3188 out: 3189 mutex_unlock(&module_mutex); 3190 return err; 3191 } 3192 3193 static int prepare_coming_module(struct module *mod) 3194 { 3195 int err; 3196 3197 ftrace_module_enable(mod); 3198 err = klp_module_coming(mod); 3199 if (err) 3200 return err; 3201 3202 err = blocking_notifier_call_chain_robust(&module_notify_list, 3203 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3204 err = notifier_to_errno(err); 3205 if (err) 3206 klp_module_going(mod); 3207 3208 return err; 3209 } 3210 3211 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3212 void *arg) 3213 { 3214 struct module *mod = arg; 3215 int ret; 3216 3217 if (strcmp(param, "async_probe") == 0) { 3218 if (kstrtobool(val, &mod->async_probe_requested)) 3219 mod->async_probe_requested = true; 3220 return 0; 3221 } 3222 3223 /* Check for magic 'dyndbg' arg */ 3224 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3225 if (ret != 0) 3226 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3227 return 0; 3228 } 3229 3230 /* Module within temporary copy, this doesn't do any allocation */ 3231 static int early_mod_check(struct load_info *info, int flags) 3232 { 3233 int err; 3234 3235 /* 3236 * Now that we know we have the correct module name, check 3237 * if it's blacklisted. 3238 */ 3239 if (blacklisted(info->name)) { 3240 pr_err("Module %s is blacklisted\n", info->name); 3241 return -EPERM; 3242 } 3243 3244 err = rewrite_section_headers(info, flags); 3245 if (err) 3246 return err; 3247 3248 /* Check module struct version now, before we try to use module. */ 3249 if (!check_modstruct_version(info, info->mod)) 3250 return -ENOEXEC; 3251 3252 err = check_modinfo(info->mod, info, flags); 3253 if (err) 3254 return err; 3255 3256 mutex_lock(&module_mutex); 3257 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3258 mutex_unlock(&module_mutex); 3259 3260 return err; 3261 } 3262 3263 /* 3264 * Allocate and load the module: note that size of section 0 is always 3265 * zero, and we rely on this for optional sections. 3266 */ 3267 static int load_module(struct load_info *info, const char __user *uargs, 3268 int flags) 3269 { 3270 struct module *mod; 3271 bool module_allocated = false; 3272 long err = 0; 3273 char *after_dashes; 3274 3275 /* 3276 * Do the signature check (if any) first. All that 3277 * the signature check needs is info->len, it does 3278 * not need any of the section info. That can be 3279 * set up later. This will minimize the chances 3280 * of a corrupt module causing problems before 3281 * we even get to the signature check. 3282 * 3283 * The check will also adjust info->len by stripping 3284 * off the sig length at the end of the module, making 3285 * checks against info->len more correct. 3286 */ 3287 err = module_sig_check(info, flags); 3288 if (err) 3289 goto free_copy; 3290 3291 /* 3292 * Do basic sanity checks against the ELF header and 3293 * sections. Cache useful sections and set the 3294 * info->mod to the userspace passed struct module. 3295 */ 3296 err = elf_validity_cache_copy(info, flags); 3297 if (err) 3298 goto free_copy; 3299 3300 err = early_mod_check(info, flags); 3301 if (err) 3302 goto free_copy; 3303 3304 /* Figure out module layout, and allocate all the memory. */ 3305 mod = layout_and_allocate(info, flags); 3306 if (IS_ERR(mod)) { 3307 err = PTR_ERR(mod); 3308 goto free_copy; 3309 } 3310 3311 module_allocated = true; 3312 3313 audit_log_kern_module(mod->name); 3314 3315 /* Reserve our place in the list. */ 3316 err = add_unformed_module(mod); 3317 if (err) 3318 goto free_module; 3319 3320 /* 3321 * We are tainting your kernel if your module gets into 3322 * the modules linked list somehow. 3323 */ 3324 module_augment_kernel_taints(mod, info); 3325 3326 /* To avoid stressing percpu allocator, do this once we're unique. */ 3327 err = percpu_modalloc(mod, info); 3328 if (err) 3329 goto unlink_mod; 3330 3331 /* Now module is in final location, initialize linked lists, etc. */ 3332 err = module_unload_init(mod); 3333 if (err) 3334 goto unlink_mod; 3335 3336 init_param_lock(mod); 3337 3338 /* 3339 * Now we've got everything in the final locations, we can 3340 * find optional sections. 3341 */ 3342 err = find_module_sections(mod, info); 3343 if (err) 3344 goto free_unload; 3345 3346 err = check_export_symbol_versions(mod); 3347 if (err) 3348 goto free_unload; 3349 3350 /* Set up MODINFO_ATTR fields */ 3351 setup_modinfo(mod, info); 3352 3353 /* Fix up syms, so that st_value is a pointer to location. */ 3354 err = simplify_symbols(mod, info); 3355 if (err < 0) 3356 goto free_modinfo; 3357 3358 err = apply_relocations(mod, info); 3359 if (err < 0) 3360 goto free_modinfo; 3361 3362 err = post_relocation(mod, info); 3363 if (err < 0) 3364 goto free_modinfo; 3365 3366 flush_module_icache(mod); 3367 3368 /* Now copy in args */ 3369 mod->args = strndup_user(uargs, ~0UL >> 1); 3370 if (IS_ERR(mod->args)) { 3371 err = PTR_ERR(mod->args); 3372 goto free_arch_cleanup; 3373 } 3374 3375 init_build_id(mod, info); 3376 3377 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3378 ftrace_module_init(mod); 3379 3380 /* Finally it's fully formed, ready to start executing. */ 3381 err = complete_formation(mod, info); 3382 if (err) 3383 goto ddebug_cleanup; 3384 3385 err = prepare_coming_module(mod); 3386 if (err) 3387 goto bug_cleanup; 3388 3389 mod->async_probe_requested = async_probe; 3390 3391 /* Module is ready to execute: parsing args may do that. */ 3392 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3393 -32768, 32767, mod, 3394 unknown_module_param_cb); 3395 if (IS_ERR(after_dashes)) { 3396 err = PTR_ERR(after_dashes); 3397 goto coming_cleanup; 3398 } else if (after_dashes) { 3399 pr_warn("%s: parameters '%s' after `--' ignored\n", 3400 mod->name, after_dashes); 3401 } 3402 3403 /* Link in to sysfs. */ 3404 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3405 if (err < 0) 3406 goto coming_cleanup; 3407 3408 if (is_livepatch_module(mod)) { 3409 err = copy_module_elf(mod, info); 3410 if (err < 0) 3411 goto sysfs_cleanup; 3412 } 3413 3414 /* Get rid of temporary copy. */ 3415 free_copy(info, flags); 3416 3417 codetag_load_module(mod); 3418 3419 /* Done! */ 3420 trace_module_load(mod); 3421 3422 return do_init_module(mod); 3423 3424 sysfs_cleanup: 3425 mod_sysfs_teardown(mod); 3426 coming_cleanup: 3427 mod->state = MODULE_STATE_GOING; 3428 destroy_params(mod->kp, mod->num_kp); 3429 blocking_notifier_call_chain(&module_notify_list, 3430 MODULE_STATE_GOING, mod); 3431 klp_module_going(mod); 3432 bug_cleanup: 3433 mod->state = MODULE_STATE_GOING; 3434 /* module_bug_cleanup needs module_mutex protection */ 3435 mutex_lock(&module_mutex); 3436 module_bug_cleanup(mod); 3437 mutex_unlock(&module_mutex); 3438 3439 ddebug_cleanup: 3440 ftrace_release_mod(mod); 3441 synchronize_rcu(); 3442 kfree(mod->args); 3443 free_arch_cleanup: 3444 module_arch_cleanup(mod); 3445 free_modinfo: 3446 free_modinfo(mod); 3447 free_unload: 3448 module_unload_free(mod); 3449 unlink_mod: 3450 mutex_lock(&module_mutex); 3451 /* Unlink carefully: kallsyms could be walking list. */ 3452 list_del_rcu(&mod->list); 3453 mod_tree_remove(mod); 3454 wake_up_all(&module_wq); 3455 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3456 synchronize_rcu(); 3457 mutex_unlock(&module_mutex); 3458 free_module: 3459 mod_stat_bump_invalid(info, flags); 3460 /* Free lock-classes; relies on the preceding sync_rcu() */ 3461 for_class_mod_mem_type(type, core_data) { 3462 lockdep_free_key_range(mod->mem[type].base, 3463 mod->mem[type].size); 3464 } 3465 3466 module_memory_restore_rox(mod); 3467 module_deallocate(mod, info); 3468 free_copy: 3469 /* 3470 * The info->len is always set. We distinguish between 3471 * failures once the proper module was allocated and 3472 * before that. 3473 */ 3474 if (!module_allocated) 3475 mod_stat_bump_becoming(info, flags); 3476 free_copy(info, flags); 3477 return err; 3478 } 3479 3480 SYSCALL_DEFINE3(init_module, void __user *, umod, 3481 unsigned long, len, const char __user *, uargs) 3482 { 3483 int err; 3484 struct load_info info = { }; 3485 3486 err = may_init_module(); 3487 if (err) 3488 return err; 3489 3490 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3491 umod, len, uargs); 3492 3493 err = copy_module_from_user(umod, len, &info); 3494 if (err) { 3495 mod_stat_inc(&failed_kreads); 3496 mod_stat_add_long(len, &invalid_kread_bytes); 3497 return err; 3498 } 3499 3500 return load_module(&info, uargs, 0); 3501 } 3502 3503 struct idempotent { 3504 const void *cookie; 3505 struct hlist_node entry; 3506 struct completion complete; 3507 int ret; 3508 }; 3509 3510 #define IDEM_HASH_BITS 8 3511 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3512 static DEFINE_SPINLOCK(idem_lock); 3513 3514 static bool idempotent(struct idempotent *u, const void *cookie) 3515 { 3516 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3517 struct hlist_head *head = idem_hash + hash; 3518 struct idempotent *existing; 3519 bool first; 3520 3521 u->ret = -EINTR; 3522 u->cookie = cookie; 3523 init_completion(&u->complete); 3524 3525 spin_lock(&idem_lock); 3526 first = true; 3527 hlist_for_each_entry(existing, head, entry) { 3528 if (existing->cookie != cookie) 3529 continue; 3530 first = false; 3531 break; 3532 } 3533 hlist_add_head(&u->entry, idem_hash + hash); 3534 spin_unlock(&idem_lock); 3535 3536 return !first; 3537 } 3538 3539 /* 3540 * We were the first one with 'cookie' on the list, and we ended 3541 * up completing the operation. We now need to walk the list, 3542 * remove everybody - which includes ourselves - fill in the return 3543 * value, and then complete the operation. 3544 */ 3545 static int idempotent_complete(struct idempotent *u, int ret) 3546 { 3547 const void *cookie = u->cookie; 3548 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3549 struct hlist_head *head = idem_hash + hash; 3550 struct hlist_node *next; 3551 struct idempotent *pos; 3552 3553 spin_lock(&idem_lock); 3554 hlist_for_each_entry_safe(pos, next, head, entry) { 3555 if (pos->cookie != cookie) 3556 continue; 3557 hlist_del_init(&pos->entry); 3558 pos->ret = ret; 3559 complete(&pos->complete); 3560 } 3561 spin_unlock(&idem_lock); 3562 return ret; 3563 } 3564 3565 /* 3566 * Wait for the idempotent worker. 3567 * 3568 * If we get interrupted, we need to remove ourselves from the 3569 * the idempotent list, and the completion may still come in. 3570 * 3571 * The 'idem_lock' protects against the race, and 'idem.ret' was 3572 * initialized to -EINTR and is thus always the right return 3573 * value even if the idempotent work then completes between 3574 * the wait_for_completion and the cleanup. 3575 */ 3576 static int idempotent_wait_for_completion(struct idempotent *u) 3577 { 3578 if (wait_for_completion_interruptible(&u->complete)) { 3579 spin_lock(&idem_lock); 3580 if (!hlist_unhashed(&u->entry)) 3581 hlist_del(&u->entry); 3582 spin_unlock(&idem_lock); 3583 } 3584 return u->ret; 3585 } 3586 3587 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3588 { 3589 struct load_info info = { }; 3590 void *buf = NULL; 3591 int len; 3592 3593 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3594 if (len < 0) { 3595 mod_stat_inc(&failed_kreads); 3596 return len; 3597 } 3598 3599 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3600 int err = module_decompress(&info, buf, len); 3601 vfree(buf); /* compressed data is no longer needed */ 3602 if (err) { 3603 mod_stat_inc(&failed_decompress); 3604 mod_stat_add_long(len, &invalid_decompress_bytes); 3605 return err; 3606 } 3607 } else { 3608 info.hdr = buf; 3609 info.len = len; 3610 } 3611 3612 return load_module(&info, uargs, flags); 3613 } 3614 3615 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3616 { 3617 struct idempotent idem; 3618 3619 if (!(f->f_mode & FMODE_READ)) 3620 return -EBADF; 3621 3622 /* Are we the winners of the race and get to do this? */ 3623 if (!idempotent(&idem, file_inode(f))) { 3624 int ret = init_module_from_file(f, uargs, flags); 3625 return idempotent_complete(&idem, ret); 3626 } 3627 3628 /* 3629 * Somebody else won the race and is loading the module. 3630 */ 3631 return idempotent_wait_for_completion(&idem); 3632 } 3633 3634 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3635 { 3636 int err = may_init_module(); 3637 if (err) 3638 return err; 3639 3640 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3641 3642 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3643 |MODULE_INIT_IGNORE_VERMAGIC 3644 |MODULE_INIT_COMPRESSED_FILE)) 3645 return -EINVAL; 3646 3647 CLASS(fd, f)(fd); 3648 if (fd_empty(f)) 3649 return -EBADF; 3650 return idempotent_init_module(fd_file(f), uargs, flags); 3651 } 3652 3653 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3654 char *module_flags(struct module *mod, char *buf, bool show_state) 3655 { 3656 int bx = 0; 3657 3658 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3659 if (!mod->taints && !show_state) 3660 goto out; 3661 if (mod->taints || 3662 mod->state == MODULE_STATE_GOING || 3663 mod->state == MODULE_STATE_COMING) { 3664 buf[bx++] = '('; 3665 bx += module_flags_taint(mod->taints, buf + bx); 3666 /* Show a - for module-is-being-unloaded */ 3667 if (mod->state == MODULE_STATE_GOING && show_state) 3668 buf[bx++] = '-'; 3669 /* Show a + for module-is-being-loaded */ 3670 if (mod->state == MODULE_STATE_COMING && show_state) 3671 buf[bx++] = '+'; 3672 buf[bx++] = ')'; 3673 } 3674 out: 3675 buf[bx] = '\0'; 3676 3677 return buf; 3678 } 3679 3680 /* Given an address, look for it in the module exception tables. */ 3681 const struct exception_table_entry *search_module_extables(unsigned long addr) 3682 { 3683 const struct exception_table_entry *e = NULL; 3684 struct module *mod; 3685 3686 preempt_disable(); 3687 mod = __module_address(addr); 3688 if (!mod) 3689 goto out; 3690 3691 if (!mod->num_exentries) 3692 goto out; 3693 3694 e = search_extable(mod->extable, 3695 mod->num_exentries, 3696 addr); 3697 out: 3698 preempt_enable(); 3699 3700 /* 3701 * Now, if we found one, we are running inside it now, hence 3702 * we cannot unload the module, hence no refcnt needed. 3703 */ 3704 return e; 3705 } 3706 3707 /** 3708 * is_module_address() - is this address inside a module? 3709 * @addr: the address to check. 3710 * 3711 * See is_module_text_address() if you simply want to see if the address 3712 * is code (not data). 3713 */ 3714 bool is_module_address(unsigned long addr) 3715 { 3716 bool ret; 3717 3718 preempt_disable(); 3719 ret = __module_address(addr) != NULL; 3720 preempt_enable(); 3721 3722 return ret; 3723 } 3724 3725 /** 3726 * __module_address() - get the module which contains an address. 3727 * @addr: the address. 3728 * 3729 * Must be called with preempt disabled or module mutex held so that 3730 * module doesn't get freed during this. 3731 */ 3732 struct module *__module_address(unsigned long addr) 3733 { 3734 struct module *mod; 3735 3736 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3737 goto lookup; 3738 3739 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3740 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3741 goto lookup; 3742 #endif 3743 3744 return NULL; 3745 3746 lookup: 3747 module_assert_mutex_or_preempt(); 3748 3749 mod = mod_find(addr, &mod_tree); 3750 if (mod) { 3751 BUG_ON(!within_module(addr, mod)); 3752 if (mod->state == MODULE_STATE_UNFORMED) 3753 mod = NULL; 3754 } 3755 return mod; 3756 } 3757 3758 /** 3759 * is_module_text_address() - is this address inside module code? 3760 * @addr: the address to check. 3761 * 3762 * See is_module_address() if you simply want to see if the address is 3763 * anywhere in a module. See kernel_text_address() for testing if an 3764 * address corresponds to kernel or module code. 3765 */ 3766 bool is_module_text_address(unsigned long addr) 3767 { 3768 bool ret; 3769 3770 preempt_disable(); 3771 ret = __module_text_address(addr) != NULL; 3772 preempt_enable(); 3773 3774 return ret; 3775 } 3776 3777 /** 3778 * __module_text_address() - get the module whose code contains an address. 3779 * @addr: the address. 3780 * 3781 * Must be called with preempt disabled or module mutex held so that 3782 * module doesn't get freed during this. 3783 */ 3784 struct module *__module_text_address(unsigned long addr) 3785 { 3786 struct module *mod = __module_address(addr); 3787 if (mod) { 3788 /* Make sure it's within the text section. */ 3789 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3790 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3791 mod = NULL; 3792 } 3793 return mod; 3794 } 3795 3796 /* Don't grab lock, we're oopsing. */ 3797 void print_modules(void) 3798 { 3799 struct module *mod; 3800 char buf[MODULE_FLAGS_BUF_SIZE]; 3801 3802 printk(KERN_DEFAULT "Modules linked in:"); 3803 /* Most callers should already have preempt disabled, but make sure */ 3804 preempt_disable(); 3805 list_for_each_entry_rcu(mod, &modules, list) { 3806 if (mod->state == MODULE_STATE_UNFORMED) 3807 continue; 3808 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3809 } 3810 3811 print_unloaded_tainted_modules(); 3812 preempt_enable(); 3813 if (last_unloaded_module.name[0]) 3814 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3815 last_unloaded_module.taints); 3816 pr_cont("\n"); 3817 } 3818 3819 #ifdef CONFIG_MODULE_DEBUGFS 3820 struct dentry *mod_debugfs_root; 3821 3822 static int module_debugfs_init(void) 3823 { 3824 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3825 return 0; 3826 } 3827 module_init(module_debugfs_init); 3828 #endif 3829