1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable with preempt_disable),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const s32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148
149 /*
150 * We require a truly strong try_module_get(): 0 means success.
151 * Otherwise an error is returned due to ongoing or failed
152 * initialization etc.
153 */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 if (mod && mod->state == MODULE_STATE_COMING)
158 return -EBUSY;
159 if (try_module_get(mod))
160 return 0;
161 else
162 return -ENOENT;
163 }
164
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 enum lockdep_ok lockdep_ok)
167 {
168 add_taint(flag, lockdep_ok);
169 set_bit(flag, &mod->taints);
170 }
171
172 /*
173 * A thread that wants to hold a reference to a module only while it
174 * is running can call this to safely exit.
175 */
__module_put_and_kthread_exit(struct module * mod,long code)176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 module_put(mod);
179 kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182
183 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 unsigned int i;
187
188 for (i = 1; i < info->hdr->e_shnum; i++) {
189 Elf_Shdr *shdr = &info->sechdrs[i];
190 /* Alloc bit cleared means "ignore it." */
191 if ((shdr->sh_flags & SHF_ALLOC)
192 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 return i;
194 }
195 return 0;
196 }
197
198 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)199 static void *section_addr(const struct load_info *info, const char *name)
200 {
201 /* Section 0 has sh_addr 0. */
202 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
203 }
204
205 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)206 static void *section_objs(const struct load_info *info,
207 const char *name,
208 size_t object_size,
209 unsigned int *num)
210 {
211 unsigned int sec = find_sec(info, name);
212
213 /* Section 0 has sh_addr 0 and sh_size 0. */
214 *num = info->sechdrs[sec].sh_size / object_size;
215 return (void *)info->sechdrs[sec].sh_addr;
216 }
217
218 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)219 static unsigned int find_any_sec(const struct load_info *info, const char *name)
220 {
221 unsigned int i;
222
223 for (i = 1; i < info->hdr->e_shnum; i++) {
224 Elf_Shdr *shdr = &info->sechdrs[i];
225 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
226 return i;
227 }
228 return 0;
229 }
230
231 /*
232 * Find a module section, or NULL. Fill in number of "objects" in section.
233 * Ignores SHF_ALLOC flag.
234 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)235 static __maybe_unused void *any_section_objs(const struct load_info *info,
236 const char *name,
237 size_t object_size,
238 unsigned int *num)
239 {
240 unsigned int sec = find_any_sec(info, name);
241
242 /* Section 0 has sh_addr 0 and sh_size 0. */
243 *num = info->sechdrs[sec].sh_size / object_size;
244 return (void *)info->sechdrs[sec].sh_addr;
245 }
246
247 #ifndef CONFIG_MODVERSIONS
248 #define symversion(base, idx) NULL
249 #else
250 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
251 #endif
252
kernel_symbol_name(const struct kernel_symbol * sym)253 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
254 {
255 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
256 return offset_to_ptr(&sym->name_offset);
257 #else
258 return sym->name;
259 #endif
260 }
261
kernel_symbol_namespace(const struct kernel_symbol * sym)262 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
263 {
264 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
265 if (!sym->namespace_offset)
266 return NULL;
267 return offset_to_ptr(&sym->namespace_offset);
268 #else
269 return sym->namespace;
270 #endif
271 }
272
cmp_name(const void * name,const void * sym)273 int cmp_name(const void *name, const void *sym)
274 {
275 return strcmp(name, kernel_symbol_name(sym));
276 }
277
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)278 static bool find_exported_symbol_in_section(const struct symsearch *syms,
279 struct module *owner,
280 struct find_symbol_arg *fsa)
281 {
282 struct kernel_symbol *sym;
283
284 if (!fsa->gplok && syms->license == GPL_ONLY)
285 return false;
286
287 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
288 sizeof(struct kernel_symbol), cmp_name);
289 if (!sym)
290 return false;
291
292 fsa->owner = owner;
293 fsa->crc = symversion(syms->crcs, sym - syms->start);
294 fsa->sym = sym;
295 fsa->license = syms->license;
296
297 return true;
298 }
299
300 /*
301 * Find an exported symbol and return it, along with, (optional) crc and
302 * (optional) module which owns it. Needs preempt disabled or module_mutex.
303 */
find_symbol(struct find_symbol_arg * fsa)304 bool find_symbol(struct find_symbol_arg *fsa)
305 {
306 static const struct symsearch arr[] = {
307 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
308 NOT_GPL_ONLY },
309 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
310 __start___kcrctab_gpl,
311 GPL_ONLY },
312 };
313 struct module *mod;
314 unsigned int i;
315
316 module_assert_mutex_or_preempt();
317
318 for (i = 0; i < ARRAY_SIZE(arr); i++)
319 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
320 return true;
321
322 list_for_each_entry_rcu(mod, &modules, list,
323 lockdep_is_held(&module_mutex)) {
324 struct symsearch arr[] = {
325 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
326 NOT_GPL_ONLY },
327 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
328 mod->gpl_crcs,
329 GPL_ONLY },
330 };
331
332 if (mod->state == MODULE_STATE_UNFORMED)
333 continue;
334
335 for (i = 0; i < ARRAY_SIZE(arr); i++)
336 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
337 return true;
338 }
339
340 pr_debug("Failed to find symbol %s\n", fsa->name);
341 return false;
342 }
343
344 /*
345 * Search for module by name: must hold module_mutex (or preempt disabled
346 * for read-only access).
347 */
find_module_all(const char * name,size_t len,bool even_unformed)348 struct module *find_module_all(const char *name, size_t len,
349 bool even_unformed)
350 {
351 struct module *mod;
352
353 module_assert_mutex_or_preempt();
354
355 list_for_each_entry_rcu(mod, &modules, list,
356 lockdep_is_held(&module_mutex)) {
357 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
358 continue;
359 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
360 return mod;
361 }
362 return NULL;
363 }
364
find_module(const char * name)365 struct module *find_module(const char *name)
366 {
367 return find_module_all(name, strlen(name), false);
368 }
369
370 #ifdef CONFIG_SMP
371
mod_percpu(struct module * mod)372 static inline void __percpu *mod_percpu(struct module *mod)
373 {
374 return mod->percpu;
375 }
376
percpu_modalloc(struct module * mod,struct load_info * info)377 static int percpu_modalloc(struct module *mod, struct load_info *info)
378 {
379 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
380 unsigned long align = pcpusec->sh_addralign;
381
382 if (!pcpusec->sh_size)
383 return 0;
384
385 if (align > PAGE_SIZE) {
386 pr_warn("%s: per-cpu alignment %li > %li\n",
387 mod->name, align, PAGE_SIZE);
388 align = PAGE_SIZE;
389 }
390
391 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
392 if (!mod->percpu) {
393 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
394 mod->name, (unsigned long)pcpusec->sh_size);
395 return -ENOMEM;
396 }
397 mod->percpu_size = pcpusec->sh_size;
398 return 0;
399 }
400
percpu_modfree(struct module * mod)401 static void percpu_modfree(struct module *mod)
402 {
403 free_percpu(mod->percpu);
404 }
405
find_pcpusec(struct load_info * info)406 static unsigned int find_pcpusec(struct load_info *info)
407 {
408 return find_sec(info, ".data..percpu");
409 }
410
percpu_modcopy(struct module * mod,const void * from,unsigned long size)411 static void percpu_modcopy(struct module *mod,
412 const void *from, unsigned long size)
413 {
414 int cpu;
415
416 for_each_possible_cpu(cpu)
417 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
418 }
419
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)420 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
421 {
422 struct module *mod;
423 unsigned int cpu;
424
425 preempt_disable();
426
427 list_for_each_entry_rcu(mod, &modules, list) {
428 if (mod->state == MODULE_STATE_UNFORMED)
429 continue;
430 if (!mod->percpu_size)
431 continue;
432 for_each_possible_cpu(cpu) {
433 void *start = per_cpu_ptr(mod->percpu, cpu);
434 void *va = (void *)addr;
435
436 if (va >= start && va < start + mod->percpu_size) {
437 if (can_addr) {
438 *can_addr = (unsigned long) (va - start);
439 *can_addr += (unsigned long)
440 per_cpu_ptr(mod->percpu,
441 get_boot_cpu_id());
442 }
443 preempt_enable();
444 return true;
445 }
446 }
447 }
448
449 preempt_enable();
450 return false;
451 }
452
453 /**
454 * is_module_percpu_address() - test whether address is from module static percpu
455 * @addr: address to test
456 *
457 * Test whether @addr belongs to module static percpu area.
458 *
459 * Return: %true if @addr is from module static percpu area
460 */
is_module_percpu_address(unsigned long addr)461 bool is_module_percpu_address(unsigned long addr)
462 {
463 return __is_module_percpu_address(addr, NULL);
464 }
465
466 #else /* ... !CONFIG_SMP */
467
mod_percpu(struct module * mod)468 static inline void __percpu *mod_percpu(struct module *mod)
469 {
470 return NULL;
471 }
percpu_modalloc(struct module * mod,struct load_info * info)472 static int percpu_modalloc(struct module *mod, struct load_info *info)
473 {
474 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
475 if (info->sechdrs[info->index.pcpu].sh_size != 0)
476 return -ENOMEM;
477 return 0;
478 }
percpu_modfree(struct module * mod)479 static inline void percpu_modfree(struct module *mod)
480 {
481 }
find_pcpusec(struct load_info * info)482 static unsigned int find_pcpusec(struct load_info *info)
483 {
484 return 0;
485 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)486 static inline void percpu_modcopy(struct module *mod,
487 const void *from, unsigned long size)
488 {
489 /* pcpusec should be 0, and size of that section should be 0. */
490 BUG_ON(size != 0);
491 }
is_module_percpu_address(unsigned long addr)492 bool is_module_percpu_address(unsigned long addr)
493 {
494 return false;
495 }
496
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)497 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
498 {
499 return false;
500 }
501
502 #endif /* CONFIG_SMP */
503
504 #define MODINFO_ATTR(field) \
505 static void setup_modinfo_##field(struct module *mod, const char *s) \
506 { \
507 mod->field = kstrdup(s, GFP_KERNEL); \
508 } \
509 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
510 struct module_kobject *mk, char *buffer) \
511 { \
512 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
513 } \
514 static int modinfo_##field##_exists(struct module *mod) \
515 { \
516 return mod->field != NULL; \
517 } \
518 static void free_modinfo_##field(struct module *mod) \
519 { \
520 kfree(mod->field); \
521 mod->field = NULL; \
522 } \
523 static struct module_attribute modinfo_##field = { \
524 .attr = { .name = __stringify(field), .mode = 0444 }, \
525 .show = show_modinfo_##field, \
526 .setup = setup_modinfo_##field, \
527 .test = modinfo_##field##_exists, \
528 .free = free_modinfo_##field, \
529 };
530
531 MODINFO_ATTR(version);
532 MODINFO_ATTR(srcversion);
533
534 static struct {
535 char name[MODULE_NAME_LEN + 1];
536 char taints[MODULE_FLAGS_BUF_SIZE];
537 } last_unloaded_module;
538
539 #ifdef CONFIG_MODULE_UNLOAD
540
541 EXPORT_TRACEPOINT_SYMBOL(module_get);
542
543 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
544 #define MODULE_REF_BASE 1
545
546 /* Init the unload section of the module. */
module_unload_init(struct module * mod)547 static int module_unload_init(struct module *mod)
548 {
549 /*
550 * Initialize reference counter to MODULE_REF_BASE.
551 * refcnt == 0 means module is going.
552 */
553 atomic_set(&mod->refcnt, MODULE_REF_BASE);
554
555 INIT_LIST_HEAD(&mod->source_list);
556 INIT_LIST_HEAD(&mod->target_list);
557
558 /* Hold reference count during initialization. */
559 atomic_inc(&mod->refcnt);
560
561 return 0;
562 }
563
564 /* Does a already use b? */
already_uses(struct module * a,struct module * b)565 static int already_uses(struct module *a, struct module *b)
566 {
567 struct module_use *use;
568
569 list_for_each_entry(use, &b->source_list, source_list) {
570 if (use->source == a)
571 return 1;
572 }
573 pr_debug("%s does not use %s!\n", a->name, b->name);
574 return 0;
575 }
576
577 /*
578 * Module a uses b
579 * - we add 'a' as a "source", 'b' as a "target" of module use
580 * - the module_use is added to the list of 'b' sources (so
581 * 'b' can walk the list to see who sourced them), and of 'a'
582 * targets (so 'a' can see what modules it targets).
583 */
add_module_usage(struct module * a,struct module * b)584 static int add_module_usage(struct module *a, struct module *b)
585 {
586 struct module_use *use;
587
588 pr_debug("Allocating new usage for %s.\n", a->name);
589 use = kmalloc(sizeof(*use), GFP_ATOMIC);
590 if (!use)
591 return -ENOMEM;
592
593 use->source = a;
594 use->target = b;
595 list_add(&use->source_list, &b->source_list);
596 list_add(&use->target_list, &a->target_list);
597 return 0;
598 }
599
600 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)601 static int ref_module(struct module *a, struct module *b)
602 {
603 int err;
604
605 if (b == NULL || already_uses(a, b))
606 return 0;
607
608 /* If module isn't available, we fail. */
609 err = strong_try_module_get(b);
610 if (err)
611 return err;
612
613 err = add_module_usage(a, b);
614 if (err) {
615 module_put(b);
616 return err;
617 }
618 return 0;
619 }
620
621 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)622 static void module_unload_free(struct module *mod)
623 {
624 struct module_use *use, *tmp;
625
626 mutex_lock(&module_mutex);
627 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
628 struct module *i = use->target;
629 pr_debug("%s unusing %s\n", mod->name, i->name);
630 module_put(i);
631 list_del(&use->source_list);
632 list_del(&use->target_list);
633 kfree(use);
634 }
635 mutex_unlock(&module_mutex);
636 }
637
638 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)639 static inline int try_force_unload(unsigned int flags)
640 {
641 int ret = (flags & O_TRUNC);
642 if (ret)
643 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
644 return ret;
645 }
646 #else
try_force_unload(unsigned int flags)647 static inline int try_force_unload(unsigned int flags)
648 {
649 return 0;
650 }
651 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
652
653 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)654 static int try_release_module_ref(struct module *mod)
655 {
656 int ret;
657
658 /* Try to decrement refcnt which we set at loading */
659 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
660 BUG_ON(ret < 0);
661 if (ret)
662 /* Someone can put this right now, recover with checking */
663 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
664
665 return ret;
666 }
667
try_stop_module(struct module * mod,int flags,int * forced)668 static int try_stop_module(struct module *mod, int flags, int *forced)
669 {
670 /* If it's not unused, quit unless we're forcing. */
671 if (try_release_module_ref(mod) != 0) {
672 *forced = try_force_unload(flags);
673 if (!(*forced))
674 return -EWOULDBLOCK;
675 }
676
677 /* Mark it as dying. */
678 mod->state = MODULE_STATE_GOING;
679
680 return 0;
681 }
682
683 /**
684 * module_refcount() - return the refcount or -1 if unloading
685 * @mod: the module we're checking
686 *
687 * Return:
688 * -1 if the module is in the process of unloading
689 * otherwise the number of references in the kernel to the module
690 */
module_refcount(struct module * mod)691 int module_refcount(struct module *mod)
692 {
693 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
694 }
695 EXPORT_SYMBOL(module_refcount);
696
697 /* This exists whether we can unload or not */
698 static void free_module(struct module *mod);
699
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)700 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
701 unsigned int, flags)
702 {
703 struct module *mod;
704 char name[MODULE_NAME_LEN];
705 char buf[MODULE_FLAGS_BUF_SIZE];
706 int ret, forced = 0;
707
708 if (!capable(CAP_SYS_MODULE) || modules_disabled)
709 return -EPERM;
710
711 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
712 return -EFAULT;
713 name[MODULE_NAME_LEN-1] = '\0';
714
715 audit_log_kern_module(name);
716
717 if (mutex_lock_interruptible(&module_mutex) != 0)
718 return -EINTR;
719
720 mod = find_module(name);
721 if (!mod) {
722 ret = -ENOENT;
723 goto out;
724 }
725
726 if (!list_empty(&mod->source_list)) {
727 /* Other modules depend on us: get rid of them first. */
728 ret = -EWOULDBLOCK;
729 goto out;
730 }
731
732 /* Doing init or already dying? */
733 if (mod->state != MODULE_STATE_LIVE) {
734 /* FIXME: if (force), slam module count damn the torpedoes */
735 pr_debug("%s already dying\n", mod->name);
736 ret = -EBUSY;
737 goto out;
738 }
739
740 /* If it has an init func, it must have an exit func to unload */
741 if (mod->init && !mod->exit) {
742 forced = try_force_unload(flags);
743 if (!forced) {
744 /* This module can't be removed */
745 ret = -EBUSY;
746 goto out;
747 }
748 }
749
750 ret = try_stop_module(mod, flags, &forced);
751 if (ret != 0)
752 goto out;
753
754 mutex_unlock(&module_mutex);
755 /* Final destruction now no one is using it. */
756 if (mod->exit != NULL)
757 mod->exit();
758 blocking_notifier_call_chain(&module_notify_list,
759 MODULE_STATE_GOING, mod);
760 klp_module_going(mod);
761 ftrace_release_mod(mod);
762
763 async_synchronize_full();
764
765 /* Store the name and taints of the last unloaded module for diagnostic purposes */
766 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
767 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
768
769 free_module(mod);
770 /* someone could wait for the module in add_unformed_module() */
771 wake_up_all(&module_wq);
772 return 0;
773 out:
774 mutex_unlock(&module_mutex);
775 return ret;
776 }
777
__symbol_put(const char * symbol)778 void __symbol_put(const char *symbol)
779 {
780 struct find_symbol_arg fsa = {
781 .name = symbol,
782 .gplok = true,
783 };
784
785 preempt_disable();
786 BUG_ON(!find_symbol(&fsa));
787 module_put(fsa.owner);
788 preempt_enable();
789 }
790 EXPORT_SYMBOL(__symbol_put);
791
792 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)793 void symbol_put_addr(void *addr)
794 {
795 struct module *modaddr;
796 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
797
798 if (core_kernel_text(a))
799 return;
800
801 /*
802 * Even though we hold a reference on the module; we still need to
803 * disable preemption in order to safely traverse the data structure.
804 */
805 preempt_disable();
806 modaddr = __module_text_address(a);
807 BUG_ON(!modaddr);
808 module_put(modaddr);
809 preempt_enable();
810 }
811 EXPORT_SYMBOL_GPL(symbol_put_addr);
812
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)813 static ssize_t show_refcnt(struct module_attribute *mattr,
814 struct module_kobject *mk, char *buffer)
815 {
816 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
817 }
818
819 static struct module_attribute modinfo_refcnt =
820 __ATTR(refcnt, 0444, show_refcnt, NULL);
821
__module_get(struct module * module)822 void __module_get(struct module *module)
823 {
824 if (module) {
825 atomic_inc(&module->refcnt);
826 trace_module_get(module, _RET_IP_);
827 }
828 }
829 EXPORT_SYMBOL(__module_get);
830
try_module_get(struct module * module)831 bool try_module_get(struct module *module)
832 {
833 bool ret = true;
834
835 if (module) {
836 /* Note: here, we can fail to get a reference */
837 if (likely(module_is_live(module) &&
838 atomic_inc_not_zero(&module->refcnt) != 0))
839 trace_module_get(module, _RET_IP_);
840 else
841 ret = false;
842 }
843 return ret;
844 }
845 EXPORT_SYMBOL(try_module_get);
846
module_put(struct module * module)847 void module_put(struct module *module)
848 {
849 int ret;
850
851 if (module) {
852 ret = atomic_dec_if_positive(&module->refcnt);
853 WARN_ON(ret < 0); /* Failed to put refcount */
854 trace_module_put(module, _RET_IP_);
855 }
856 }
857 EXPORT_SYMBOL(module_put);
858
859 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)860 static inline void module_unload_free(struct module *mod)
861 {
862 }
863
ref_module(struct module * a,struct module * b)864 static int ref_module(struct module *a, struct module *b)
865 {
866 return strong_try_module_get(b);
867 }
868
module_unload_init(struct module * mod)869 static inline int module_unload_init(struct module *mod)
870 {
871 return 0;
872 }
873 #endif /* CONFIG_MODULE_UNLOAD */
874
module_flags_taint(unsigned long taints,char * buf)875 size_t module_flags_taint(unsigned long taints, char *buf)
876 {
877 size_t l = 0;
878 int i;
879
880 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
881 if (taint_flags[i].module && test_bit(i, &taints))
882 buf[l++] = taint_flags[i].c_true;
883 }
884
885 return l;
886 }
887
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)888 static ssize_t show_initstate(struct module_attribute *mattr,
889 struct module_kobject *mk, char *buffer)
890 {
891 const char *state = "unknown";
892
893 switch (mk->mod->state) {
894 case MODULE_STATE_LIVE:
895 state = "live";
896 break;
897 case MODULE_STATE_COMING:
898 state = "coming";
899 break;
900 case MODULE_STATE_GOING:
901 state = "going";
902 break;
903 default:
904 BUG();
905 }
906 return sprintf(buffer, "%s\n", state);
907 }
908
909 static struct module_attribute modinfo_initstate =
910 __ATTR(initstate, 0444, show_initstate, NULL);
911
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)912 static ssize_t store_uevent(struct module_attribute *mattr,
913 struct module_kobject *mk,
914 const char *buffer, size_t count)
915 {
916 int rc;
917
918 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
919 return rc ? rc : count;
920 }
921
922 struct module_attribute module_uevent =
923 __ATTR(uevent, 0200, NULL, store_uevent);
924
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)925 static ssize_t show_coresize(struct module_attribute *mattr,
926 struct module_kobject *mk, char *buffer)
927 {
928 unsigned int size = mk->mod->mem[MOD_TEXT].size;
929
930 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
931 for_class_mod_mem_type(type, core_data)
932 size += mk->mod->mem[type].size;
933 }
934 return sprintf(buffer, "%u\n", size);
935 }
936
937 static struct module_attribute modinfo_coresize =
938 __ATTR(coresize, 0444, show_coresize, NULL);
939
940 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)941 static ssize_t show_datasize(struct module_attribute *mattr,
942 struct module_kobject *mk, char *buffer)
943 {
944 unsigned int size = 0;
945
946 for_class_mod_mem_type(type, core_data)
947 size += mk->mod->mem[type].size;
948 return sprintf(buffer, "%u\n", size);
949 }
950
951 static struct module_attribute modinfo_datasize =
952 __ATTR(datasize, 0444, show_datasize, NULL);
953 #endif
954
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)955 static ssize_t show_initsize(struct module_attribute *mattr,
956 struct module_kobject *mk, char *buffer)
957 {
958 unsigned int size = 0;
959
960 for_class_mod_mem_type(type, init)
961 size += mk->mod->mem[type].size;
962 return sprintf(buffer, "%u\n", size);
963 }
964
965 static struct module_attribute modinfo_initsize =
966 __ATTR(initsize, 0444, show_initsize, NULL);
967
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)968 static ssize_t show_taint(struct module_attribute *mattr,
969 struct module_kobject *mk, char *buffer)
970 {
971 size_t l;
972
973 l = module_flags_taint(mk->mod->taints, buffer);
974 buffer[l++] = '\n';
975 return l;
976 }
977
978 static struct module_attribute modinfo_taint =
979 __ATTR(taint, 0444, show_taint, NULL);
980
981 struct module_attribute *modinfo_attrs[] = {
982 &module_uevent,
983 &modinfo_version,
984 &modinfo_srcversion,
985 &modinfo_initstate,
986 &modinfo_coresize,
987 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
988 &modinfo_datasize,
989 #endif
990 &modinfo_initsize,
991 &modinfo_taint,
992 #ifdef CONFIG_MODULE_UNLOAD
993 &modinfo_refcnt,
994 #endif
995 NULL,
996 };
997
998 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
999
1000 static const char vermagic[] = VERMAGIC_STRING;
1001
try_to_force_load(struct module * mod,const char * reason)1002 int try_to_force_load(struct module *mod, const char *reason)
1003 {
1004 #ifdef CONFIG_MODULE_FORCE_LOAD
1005 if (!test_taint(TAINT_FORCED_MODULE))
1006 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1007 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1008 return 0;
1009 #else
1010 return -ENOEXEC;
1011 #endif
1012 }
1013
1014 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1015 char *module_next_tag_pair(char *string, unsigned long *secsize)
1016 {
1017 /* Skip non-zero chars */
1018 while (string[0]) {
1019 string++;
1020 if ((*secsize)-- <= 1)
1021 return NULL;
1022 }
1023
1024 /* Skip any zero padding. */
1025 while (!string[0]) {
1026 string++;
1027 if ((*secsize)-- <= 1)
1028 return NULL;
1029 }
1030 return string;
1031 }
1032
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1033 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1034 char *prev)
1035 {
1036 char *p;
1037 unsigned int taglen = strlen(tag);
1038 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1039 unsigned long size = infosec->sh_size;
1040
1041 /*
1042 * get_modinfo() calls made before rewrite_section_headers()
1043 * must use sh_offset, as sh_addr isn't set!
1044 */
1045 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1046
1047 if (prev) {
1048 size -= prev - modinfo;
1049 modinfo = module_next_tag_pair(prev, &size);
1050 }
1051
1052 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1053 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1054 return p + taglen + 1;
1055 }
1056 return NULL;
1057 }
1058
get_modinfo(const struct load_info * info,const char * tag)1059 static char *get_modinfo(const struct load_info *info, const char *tag)
1060 {
1061 return get_next_modinfo(info, tag, NULL);
1062 }
1063
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1064 static int verify_namespace_is_imported(const struct load_info *info,
1065 const struct kernel_symbol *sym,
1066 struct module *mod)
1067 {
1068 const char *namespace;
1069 char *imported_namespace;
1070
1071 namespace = kernel_symbol_namespace(sym);
1072 if (namespace && namespace[0]) {
1073 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1074 if (strcmp(namespace, imported_namespace) == 0)
1075 return 0;
1076 }
1077 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1078 pr_warn(
1079 #else
1080 pr_err(
1081 #endif
1082 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1083 mod->name, kernel_symbol_name(sym), namespace);
1084 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1085 return -EINVAL;
1086 #endif
1087 }
1088 return 0;
1089 }
1090
inherit_taint(struct module * mod,struct module * owner,const char * name)1091 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1092 {
1093 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1094 return true;
1095
1096 if (mod->using_gplonly_symbols) {
1097 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1098 mod->name, name, owner->name);
1099 return false;
1100 }
1101
1102 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1103 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1104 mod->name, name, owner->name);
1105 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1106 }
1107 return true;
1108 }
1109
1110 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1111 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1112 const struct load_info *info,
1113 const char *name,
1114 char ownername[])
1115 {
1116 struct find_symbol_arg fsa = {
1117 .name = name,
1118 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1119 .warn = true,
1120 };
1121 int err;
1122
1123 /*
1124 * The module_mutex should not be a heavily contended lock;
1125 * if we get the occasional sleep here, we'll go an extra iteration
1126 * in the wait_event_interruptible(), which is harmless.
1127 */
1128 sched_annotate_sleep();
1129 mutex_lock(&module_mutex);
1130 if (!find_symbol(&fsa))
1131 goto unlock;
1132
1133 if (fsa.license == GPL_ONLY)
1134 mod->using_gplonly_symbols = true;
1135
1136 if (!inherit_taint(mod, fsa.owner, name)) {
1137 fsa.sym = NULL;
1138 goto getname;
1139 }
1140
1141 if (!check_version(info, name, mod, fsa.crc)) {
1142 fsa.sym = ERR_PTR(-EINVAL);
1143 goto getname;
1144 }
1145
1146 err = verify_namespace_is_imported(info, fsa.sym, mod);
1147 if (err) {
1148 fsa.sym = ERR_PTR(err);
1149 goto getname;
1150 }
1151
1152 err = ref_module(mod, fsa.owner);
1153 if (err) {
1154 fsa.sym = ERR_PTR(err);
1155 goto getname;
1156 }
1157
1158 getname:
1159 /* We must make copy under the lock if we failed to get ref. */
1160 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1161 unlock:
1162 mutex_unlock(&module_mutex);
1163 return fsa.sym;
1164 }
1165
1166 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1167 resolve_symbol_wait(struct module *mod,
1168 const struct load_info *info,
1169 const char *name)
1170 {
1171 const struct kernel_symbol *ksym;
1172 char owner[MODULE_NAME_LEN];
1173
1174 if (wait_event_interruptible_timeout(module_wq,
1175 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1176 || PTR_ERR(ksym) != -EBUSY,
1177 30 * HZ) <= 0) {
1178 pr_warn("%s: gave up waiting for init of module %s.\n",
1179 mod->name, owner);
1180 }
1181 return ksym;
1182 }
1183
module_arch_cleanup(struct module * mod)1184 void __weak module_arch_cleanup(struct module *mod)
1185 {
1186 }
1187
module_arch_freeing_init(struct module * mod)1188 void __weak module_arch_freeing_init(struct module *mod)
1189 {
1190 }
1191
module_memory_alloc(struct module * mod,enum mod_mem_type type)1192 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1193 {
1194 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1195 enum execmem_type execmem_type;
1196 void *ptr;
1197
1198 mod->mem[type].size = size;
1199
1200 if (mod_mem_type_is_data(type))
1201 execmem_type = EXECMEM_MODULE_DATA;
1202 else
1203 execmem_type = EXECMEM_MODULE_TEXT;
1204
1205 ptr = execmem_alloc(execmem_type, size);
1206 if (!ptr)
1207 return -ENOMEM;
1208
1209 /*
1210 * The pointer to these blocks of memory are stored on the module
1211 * structure and we keep that around so long as the module is
1212 * around. We only free that memory when we unload the module.
1213 * Just mark them as not being a leak then. The .init* ELF
1214 * sections *do* get freed after boot so we *could* treat them
1215 * slightly differently with kmemleak_ignore() and only grey
1216 * them out as they work as typical memory allocations which
1217 * *do* eventually get freed, but let's just keep things simple
1218 * and avoid *any* false positives.
1219 */
1220 kmemleak_not_leak(ptr);
1221
1222 memset(ptr, 0, size);
1223 mod->mem[type].base = ptr;
1224
1225 return 0;
1226 }
1227
module_memory_free(struct module * mod,enum mod_mem_type type,bool unload_codetags)1228 static void module_memory_free(struct module *mod, enum mod_mem_type type,
1229 bool unload_codetags)
1230 {
1231 void *ptr = mod->mem[type].base;
1232
1233 if (!unload_codetags && mod_mem_type_is_core_data(type))
1234 return;
1235
1236 execmem_free(ptr);
1237 }
1238
free_mod_mem(struct module * mod,bool unload_codetags)1239 static void free_mod_mem(struct module *mod, bool unload_codetags)
1240 {
1241 for_each_mod_mem_type(type) {
1242 struct module_memory *mod_mem = &mod->mem[type];
1243
1244 if (type == MOD_DATA)
1245 continue;
1246
1247 /* Free lock-classes; relies on the preceding sync_rcu(). */
1248 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1249 if (mod_mem->size)
1250 module_memory_free(mod, type, unload_codetags);
1251 }
1252
1253 /* MOD_DATA hosts mod, so free it at last */
1254 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1255 module_memory_free(mod, MOD_DATA, unload_codetags);
1256 }
1257
1258 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1259 static void free_module(struct module *mod)
1260 {
1261 bool unload_codetags;
1262
1263 trace_module_free(mod);
1264
1265 unload_codetags = codetag_unload_module(mod);
1266 if (!unload_codetags)
1267 pr_warn("%s: memory allocation(s) from the module still alive, cannot unload cleanly\n",
1268 mod->name);
1269
1270 mod_sysfs_teardown(mod);
1271
1272 /*
1273 * We leave it in list to prevent duplicate loads, but make sure
1274 * that noone uses it while it's being deconstructed.
1275 */
1276 mutex_lock(&module_mutex);
1277 mod->state = MODULE_STATE_UNFORMED;
1278 mutex_unlock(&module_mutex);
1279
1280 /* Arch-specific cleanup. */
1281 module_arch_cleanup(mod);
1282
1283 /* Module unload stuff */
1284 module_unload_free(mod);
1285
1286 /* Free any allocated parameters. */
1287 destroy_params(mod->kp, mod->num_kp);
1288
1289 if (is_livepatch_module(mod))
1290 free_module_elf(mod);
1291
1292 /* Now we can delete it from the lists */
1293 mutex_lock(&module_mutex);
1294 /* Unlink carefully: kallsyms could be walking list. */
1295 list_del_rcu(&mod->list);
1296 mod_tree_remove(mod);
1297 /* Remove this module from bug list, this uses list_del_rcu */
1298 module_bug_cleanup(mod);
1299 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1300 synchronize_rcu();
1301 if (try_add_tainted_module(mod))
1302 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1303 mod->name);
1304 mutex_unlock(&module_mutex);
1305
1306 /* This may be empty, but that's OK */
1307 module_arch_freeing_init(mod);
1308 kfree(mod->args);
1309 percpu_modfree(mod);
1310
1311 free_mod_mem(mod, unload_codetags);
1312 }
1313
__symbol_get(const char * symbol)1314 void *__symbol_get(const char *symbol)
1315 {
1316 struct find_symbol_arg fsa = {
1317 .name = symbol,
1318 .gplok = true,
1319 .warn = true,
1320 };
1321
1322 preempt_disable();
1323 if (!find_symbol(&fsa))
1324 goto fail;
1325 if (fsa.license != GPL_ONLY) {
1326 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1327 symbol);
1328 goto fail;
1329 }
1330 if (strong_try_module_get(fsa.owner))
1331 goto fail;
1332 preempt_enable();
1333 return (void *)kernel_symbol_value(fsa.sym);
1334 fail:
1335 preempt_enable();
1336 return NULL;
1337 }
1338 EXPORT_SYMBOL_GPL(__symbol_get);
1339
1340 /*
1341 * Ensure that an exported symbol [global namespace] does not already exist
1342 * in the kernel or in some other module's exported symbol table.
1343 *
1344 * You must hold the module_mutex.
1345 */
verify_exported_symbols(struct module * mod)1346 static int verify_exported_symbols(struct module *mod)
1347 {
1348 unsigned int i;
1349 const struct kernel_symbol *s;
1350 struct {
1351 const struct kernel_symbol *sym;
1352 unsigned int num;
1353 } arr[] = {
1354 { mod->syms, mod->num_syms },
1355 { mod->gpl_syms, mod->num_gpl_syms },
1356 };
1357
1358 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1359 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1360 struct find_symbol_arg fsa = {
1361 .name = kernel_symbol_name(s),
1362 .gplok = true,
1363 };
1364 if (find_symbol(&fsa)) {
1365 pr_err("%s: exports duplicate symbol %s"
1366 " (owned by %s)\n",
1367 mod->name, kernel_symbol_name(s),
1368 module_name(fsa.owner));
1369 return -ENOEXEC;
1370 }
1371 }
1372 }
1373 return 0;
1374 }
1375
ignore_undef_symbol(Elf_Half emachine,const char * name)1376 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1377 {
1378 /*
1379 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1380 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1381 * i386 has a similar problem but may not deserve a fix.
1382 *
1383 * If we ever have to ignore many symbols, consider refactoring the code to
1384 * only warn if referenced by a relocation.
1385 */
1386 if (emachine == EM_386 || emachine == EM_X86_64)
1387 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1388 return false;
1389 }
1390
1391 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1392 static int simplify_symbols(struct module *mod, const struct load_info *info)
1393 {
1394 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1395 Elf_Sym *sym = (void *)symsec->sh_addr;
1396 unsigned long secbase;
1397 unsigned int i;
1398 int ret = 0;
1399 const struct kernel_symbol *ksym;
1400
1401 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1402 const char *name = info->strtab + sym[i].st_name;
1403
1404 switch (sym[i].st_shndx) {
1405 case SHN_COMMON:
1406 /* Ignore common symbols */
1407 if (!strncmp(name, "__gnu_lto", 9))
1408 break;
1409
1410 /*
1411 * We compiled with -fno-common. These are not
1412 * supposed to happen.
1413 */
1414 pr_debug("Common symbol: %s\n", name);
1415 pr_warn("%s: please compile with -fno-common\n",
1416 mod->name);
1417 ret = -ENOEXEC;
1418 break;
1419
1420 case SHN_ABS:
1421 /* Don't need to do anything */
1422 pr_debug("Absolute symbol: 0x%08lx %s\n",
1423 (long)sym[i].st_value, name);
1424 break;
1425
1426 case SHN_LIVEPATCH:
1427 /* Livepatch symbols are resolved by livepatch */
1428 break;
1429
1430 case SHN_UNDEF:
1431 ksym = resolve_symbol_wait(mod, info, name);
1432 /* Ok if resolved. */
1433 if (ksym && !IS_ERR(ksym)) {
1434 sym[i].st_value = kernel_symbol_value(ksym);
1435 break;
1436 }
1437
1438 /* Ok if weak or ignored. */
1439 if (!ksym &&
1440 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1441 ignore_undef_symbol(info->hdr->e_machine, name)))
1442 break;
1443
1444 ret = PTR_ERR(ksym) ?: -ENOENT;
1445 pr_warn("%s: Unknown symbol %s (err %d)\n",
1446 mod->name, name, ret);
1447 break;
1448
1449 default:
1450 /* Divert to percpu allocation if a percpu var. */
1451 if (sym[i].st_shndx == info->index.pcpu)
1452 secbase = (unsigned long)mod_percpu(mod);
1453 else
1454 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1455 sym[i].st_value += secbase;
1456 break;
1457 }
1458 }
1459
1460 return ret;
1461 }
1462
apply_relocations(struct module * mod,const struct load_info * info)1463 static int apply_relocations(struct module *mod, const struct load_info *info)
1464 {
1465 unsigned int i;
1466 int err = 0;
1467
1468 /* Now do relocations. */
1469 for (i = 1; i < info->hdr->e_shnum; i++) {
1470 unsigned int infosec = info->sechdrs[i].sh_info;
1471
1472 /* Not a valid relocation section? */
1473 if (infosec >= info->hdr->e_shnum)
1474 continue;
1475
1476 /* Don't bother with non-allocated sections */
1477 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1478 continue;
1479
1480 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1481 err = klp_apply_section_relocs(mod, info->sechdrs,
1482 info->secstrings,
1483 info->strtab,
1484 info->index.sym, i,
1485 NULL);
1486 else if (info->sechdrs[i].sh_type == SHT_REL)
1487 err = apply_relocate(info->sechdrs, info->strtab,
1488 info->index.sym, i, mod);
1489 else if (info->sechdrs[i].sh_type == SHT_RELA)
1490 err = apply_relocate_add(info->sechdrs, info->strtab,
1491 info->index.sym, i, mod);
1492 if (err < 0)
1493 break;
1494 }
1495 return err;
1496 }
1497
1498 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1499 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1500 unsigned int section)
1501 {
1502 /* default implementation just returns zero */
1503 return 0;
1504 }
1505
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1506 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1507 Elf_Shdr *sechdr, unsigned int section)
1508 {
1509 long offset;
1510 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1511
1512 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1513 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1514 mod->mem[type].size = offset + sechdr->sh_size;
1515
1516 WARN_ON_ONCE(offset & mask);
1517 return offset | mask;
1518 }
1519
module_init_layout_section(const char * sname)1520 bool module_init_layout_section(const char *sname)
1521 {
1522 #ifndef CONFIG_MODULE_UNLOAD
1523 if (module_exit_section(sname))
1524 return true;
1525 #endif
1526 return module_init_section(sname);
1527 }
1528
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1529 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1530 {
1531 unsigned int m, i;
1532
1533 static const unsigned long masks[][2] = {
1534 /*
1535 * NOTE: all executable code must be the first section
1536 * in this array; otherwise modify the text_size
1537 * finder in the two loops below
1538 */
1539 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1540 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1541 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1542 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1543 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1544 };
1545 static const int core_m_to_mem_type[] = {
1546 MOD_TEXT,
1547 MOD_RODATA,
1548 MOD_RO_AFTER_INIT,
1549 MOD_DATA,
1550 MOD_DATA,
1551 };
1552 static const int init_m_to_mem_type[] = {
1553 MOD_INIT_TEXT,
1554 MOD_INIT_RODATA,
1555 MOD_INVALID,
1556 MOD_INIT_DATA,
1557 MOD_INIT_DATA,
1558 };
1559
1560 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1561 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1562
1563 for (i = 0; i < info->hdr->e_shnum; ++i) {
1564 Elf_Shdr *s = &info->sechdrs[i];
1565 const char *sname = info->secstrings + s->sh_name;
1566
1567 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1568 || (s->sh_flags & masks[m][1])
1569 || s->sh_entsize != ~0UL
1570 || is_init != module_init_layout_section(sname))
1571 continue;
1572
1573 if (WARN_ON_ONCE(type == MOD_INVALID))
1574 continue;
1575
1576 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1577 pr_debug("\t%s\n", sname);
1578 }
1579 }
1580 }
1581
1582 /*
1583 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1584 * might -- code, read-only data, read-write data, small data. Tally
1585 * sizes, and place the offsets into sh_entsize fields: high bit means it
1586 * belongs in init.
1587 */
layout_sections(struct module * mod,struct load_info * info)1588 static void layout_sections(struct module *mod, struct load_info *info)
1589 {
1590 unsigned int i;
1591
1592 for (i = 0; i < info->hdr->e_shnum; i++)
1593 info->sechdrs[i].sh_entsize = ~0UL;
1594
1595 pr_debug("Core section allocation order for %s:\n", mod->name);
1596 __layout_sections(mod, info, false);
1597
1598 pr_debug("Init section allocation order for %s:\n", mod->name);
1599 __layout_sections(mod, info, true);
1600 }
1601
module_license_taint_check(struct module * mod,const char * license)1602 static void module_license_taint_check(struct module *mod, const char *license)
1603 {
1604 if (!license)
1605 license = "unspecified";
1606
1607 if (!license_is_gpl_compatible(license)) {
1608 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1609 pr_warn("%s: module license '%s' taints kernel.\n",
1610 mod->name, license);
1611 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1612 LOCKDEP_NOW_UNRELIABLE);
1613 }
1614 }
1615
setup_modinfo(struct module * mod,struct load_info * info)1616 static void setup_modinfo(struct module *mod, struct load_info *info)
1617 {
1618 struct module_attribute *attr;
1619 int i;
1620
1621 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1622 if (attr->setup)
1623 attr->setup(mod, get_modinfo(info, attr->attr.name));
1624 }
1625 }
1626
free_modinfo(struct module * mod)1627 static void free_modinfo(struct module *mod)
1628 {
1629 struct module_attribute *attr;
1630 int i;
1631
1632 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1633 if (attr->free)
1634 attr->free(mod);
1635 }
1636 }
1637
module_init_section(const char * name)1638 bool __weak module_init_section(const char *name)
1639 {
1640 return strstarts(name, ".init");
1641 }
1642
module_exit_section(const char * name)1643 bool __weak module_exit_section(const char *name)
1644 {
1645 return strstarts(name, ".exit");
1646 }
1647
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)1648 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1649 {
1650 #if defined(CONFIG_64BIT)
1651 unsigned long long secend;
1652 #else
1653 unsigned long secend;
1654 #endif
1655
1656 /*
1657 * Check for both overflow and offset/size being
1658 * too large.
1659 */
1660 secend = shdr->sh_offset + shdr->sh_size;
1661 if (secend < shdr->sh_offset || secend > info->len)
1662 return -ENOEXEC;
1663
1664 return 0;
1665 }
1666
1667 /*
1668 * Check userspace passed ELF module against our expectations, and cache
1669 * useful variables for further processing as we go.
1670 *
1671 * This does basic validity checks against section offsets and sizes, the
1672 * section name string table, and the indices used for it (sh_name).
1673 *
1674 * As a last step, since we're already checking the ELF sections we cache
1675 * useful variables which will be used later for our convenience:
1676 *
1677 * o pointers to section headers
1678 * o cache the modinfo symbol section
1679 * o cache the string symbol section
1680 * o cache the module section
1681 *
1682 * As a last step we set info->mod to the temporary copy of the module in
1683 * info->hdr. The final one will be allocated in move_module(). Any
1684 * modifications we make to our copy of the module will be carried over
1685 * to the final minted module.
1686 */
elf_validity_cache_copy(struct load_info * info,int flags)1687 static int elf_validity_cache_copy(struct load_info *info, int flags)
1688 {
1689 unsigned int i;
1690 Elf_Shdr *shdr, *strhdr;
1691 int err;
1692 unsigned int num_mod_secs = 0, mod_idx;
1693 unsigned int num_info_secs = 0, info_idx;
1694 unsigned int num_sym_secs = 0, sym_idx;
1695
1696 if (info->len < sizeof(*(info->hdr))) {
1697 pr_err("Invalid ELF header len %lu\n", info->len);
1698 goto no_exec;
1699 }
1700
1701 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1702 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1703 goto no_exec;
1704 }
1705 if (info->hdr->e_type != ET_REL) {
1706 pr_err("Invalid ELF header type: %u != %u\n",
1707 info->hdr->e_type, ET_REL);
1708 goto no_exec;
1709 }
1710 if (!elf_check_arch(info->hdr)) {
1711 pr_err("Invalid architecture in ELF header: %u\n",
1712 info->hdr->e_machine);
1713 goto no_exec;
1714 }
1715 if (!module_elf_check_arch(info->hdr)) {
1716 pr_err("Invalid module architecture in ELF header: %u\n",
1717 info->hdr->e_machine);
1718 goto no_exec;
1719 }
1720 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1721 pr_err("Invalid ELF section header size\n");
1722 goto no_exec;
1723 }
1724
1725 /*
1726 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1727 * known and small. So e_shnum * sizeof(Elf_Shdr)
1728 * will not overflow unsigned long on any platform.
1729 */
1730 if (info->hdr->e_shoff >= info->len
1731 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1732 info->len - info->hdr->e_shoff)) {
1733 pr_err("Invalid ELF section header overflow\n");
1734 goto no_exec;
1735 }
1736
1737 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1738
1739 /*
1740 * Verify if the section name table index is valid.
1741 */
1742 if (info->hdr->e_shstrndx == SHN_UNDEF
1743 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1744 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1745 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1746 info->hdr->e_shnum);
1747 goto no_exec;
1748 }
1749
1750 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1751 err = validate_section_offset(info, strhdr);
1752 if (err < 0) {
1753 pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1754 return err;
1755 }
1756
1757 /*
1758 * The section name table must be NUL-terminated, as required
1759 * by the spec. This makes strcmp and pr_* calls that access
1760 * strings in the section safe.
1761 */
1762 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1763 if (strhdr->sh_size == 0) {
1764 pr_err("empty section name table\n");
1765 goto no_exec;
1766 }
1767 if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1768 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1769 goto no_exec;
1770 }
1771
1772 /*
1773 * The code assumes that section 0 has a length of zero and
1774 * an addr of zero, so check for it.
1775 */
1776 if (info->sechdrs[0].sh_type != SHT_NULL
1777 || info->sechdrs[0].sh_size != 0
1778 || info->sechdrs[0].sh_addr != 0) {
1779 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1780 info->sechdrs[0].sh_type);
1781 goto no_exec;
1782 }
1783
1784 for (i = 1; i < info->hdr->e_shnum; i++) {
1785 shdr = &info->sechdrs[i];
1786 switch (shdr->sh_type) {
1787 case SHT_NULL:
1788 case SHT_NOBITS:
1789 continue;
1790 case SHT_SYMTAB:
1791 if (shdr->sh_link == SHN_UNDEF
1792 || shdr->sh_link >= info->hdr->e_shnum) {
1793 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1794 shdr->sh_link, shdr->sh_link,
1795 info->hdr->e_shnum);
1796 goto no_exec;
1797 }
1798 num_sym_secs++;
1799 sym_idx = i;
1800 fallthrough;
1801 default:
1802 err = validate_section_offset(info, shdr);
1803 if (err < 0) {
1804 pr_err("Invalid ELF section in module (section %u type %u)\n",
1805 i, shdr->sh_type);
1806 return err;
1807 }
1808 if (strcmp(info->secstrings + shdr->sh_name,
1809 ".gnu.linkonce.this_module") == 0) {
1810 num_mod_secs++;
1811 mod_idx = i;
1812 } else if (strcmp(info->secstrings + shdr->sh_name,
1813 ".modinfo") == 0) {
1814 num_info_secs++;
1815 info_idx = i;
1816 }
1817
1818 if (shdr->sh_flags & SHF_ALLOC) {
1819 if (shdr->sh_name >= strhdr->sh_size) {
1820 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1821 i, shdr->sh_type);
1822 return -ENOEXEC;
1823 }
1824 }
1825 break;
1826 }
1827 }
1828
1829 if (num_info_secs > 1) {
1830 pr_err("Only one .modinfo section must exist.\n");
1831 goto no_exec;
1832 } else if (num_info_secs == 1) {
1833 /* Try to find a name early so we can log errors with a module name */
1834 info->index.info = info_idx;
1835 info->name = get_modinfo(info, "name");
1836 }
1837
1838 if (num_sym_secs != 1) {
1839 pr_warn("%s: module has no symbols (stripped?)\n",
1840 info->name ?: "(missing .modinfo section or name field)");
1841 goto no_exec;
1842 }
1843
1844 /* Sets internal symbols and strings. */
1845 info->index.sym = sym_idx;
1846 shdr = &info->sechdrs[sym_idx];
1847 info->index.str = shdr->sh_link;
1848 info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset;
1849
1850 /*
1851 * The ".gnu.linkonce.this_module" ELF section is special. It is
1852 * what modpost uses to refer to __this_module and let's use rely
1853 * on THIS_MODULE to point to &__this_module properly. The kernel's
1854 * modpost declares it on each modules's *.mod.c file. If the struct
1855 * module of the kernel changes a full kernel rebuild is required.
1856 *
1857 * We have a few expectaions for this special section, the following
1858 * code validates all this for us:
1859 *
1860 * o Only one section must exist
1861 * o We expect the kernel to always have to allocate it: SHF_ALLOC
1862 * o The section size must match the kernel's run time's struct module
1863 * size
1864 */
1865 if (num_mod_secs != 1) {
1866 pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n",
1867 info->name ?: "(missing .modinfo section or name field)");
1868 goto no_exec;
1869 }
1870
1871 shdr = &info->sechdrs[mod_idx];
1872
1873 /*
1874 * This is already implied on the switch above, however let's be
1875 * pedantic about it.
1876 */
1877 if (shdr->sh_type == SHT_NOBITS) {
1878 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1879 info->name ?: "(missing .modinfo section or name field)");
1880 goto no_exec;
1881 }
1882
1883 if (!(shdr->sh_flags & SHF_ALLOC)) {
1884 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1885 info->name ?: "(missing .modinfo section or name field)");
1886 goto no_exec;
1887 }
1888
1889 if (shdr->sh_size != sizeof(struct module)) {
1890 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1891 info->name ?: "(missing .modinfo section or name field)");
1892 goto no_exec;
1893 }
1894
1895 info->index.mod = mod_idx;
1896
1897 /* This is temporary: point mod into copy of data. */
1898 info->mod = (void *)info->hdr + shdr->sh_offset;
1899
1900 /*
1901 * If we didn't load the .modinfo 'name' field earlier, fall back to
1902 * on-disk struct mod 'name' field.
1903 */
1904 if (!info->name)
1905 info->name = info->mod->name;
1906
1907 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1908 info->index.vers = 0; /* Pretend no __versions section! */
1909 else
1910 info->index.vers = find_sec(info, "__versions");
1911
1912 info->index.pcpu = find_pcpusec(info);
1913
1914 return 0;
1915
1916 no_exec:
1917 return -ENOEXEC;
1918 }
1919
1920 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1921
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)1922 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1923 {
1924 do {
1925 unsigned long n = min(len, COPY_CHUNK_SIZE);
1926
1927 if (copy_from_user(dst, usrc, n) != 0)
1928 return -EFAULT;
1929 cond_resched();
1930 dst += n;
1931 usrc += n;
1932 len -= n;
1933 } while (len);
1934 return 0;
1935 }
1936
check_modinfo_livepatch(struct module * mod,struct load_info * info)1937 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1938 {
1939 if (!get_modinfo(info, "livepatch"))
1940 /* Nothing more to do */
1941 return 0;
1942
1943 if (set_livepatch_module(mod))
1944 return 0;
1945
1946 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1947 mod->name);
1948 return -ENOEXEC;
1949 }
1950
check_modinfo_retpoline(struct module * mod,struct load_info * info)1951 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1952 {
1953 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1954 return;
1955
1956 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1957 mod->name);
1958 }
1959
1960 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)1961 static int copy_module_from_user(const void __user *umod, unsigned long len,
1962 struct load_info *info)
1963 {
1964 int err;
1965
1966 info->len = len;
1967 if (info->len < sizeof(*(info->hdr)))
1968 return -ENOEXEC;
1969
1970 err = security_kernel_load_data(LOADING_MODULE, true);
1971 if (err)
1972 return err;
1973
1974 /* Suck in entire file: we'll want most of it. */
1975 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
1976 if (!info->hdr)
1977 return -ENOMEM;
1978
1979 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
1980 err = -EFAULT;
1981 goto out;
1982 }
1983
1984 err = security_kernel_post_load_data((char *)info->hdr, info->len,
1985 LOADING_MODULE, "init_module");
1986 out:
1987 if (err)
1988 vfree(info->hdr);
1989
1990 return err;
1991 }
1992
free_copy(struct load_info * info,int flags)1993 static void free_copy(struct load_info *info, int flags)
1994 {
1995 if (flags & MODULE_INIT_COMPRESSED_FILE)
1996 module_decompress_cleanup(info);
1997 else
1998 vfree(info->hdr);
1999 }
2000
rewrite_section_headers(struct load_info * info,int flags)2001 static int rewrite_section_headers(struct load_info *info, int flags)
2002 {
2003 unsigned int i;
2004
2005 /* This should always be true, but let's be sure. */
2006 info->sechdrs[0].sh_addr = 0;
2007
2008 for (i = 1; i < info->hdr->e_shnum; i++) {
2009 Elf_Shdr *shdr = &info->sechdrs[i];
2010
2011 /*
2012 * Mark all sections sh_addr with their address in the
2013 * temporary image.
2014 */
2015 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2016
2017 }
2018
2019 /* Track but don't keep modinfo and version sections. */
2020 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2021 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2022
2023 return 0;
2024 }
2025
2026 /*
2027 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2028 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2029 {
2030 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2031
2032 if (!get_modinfo(info, "intree")) {
2033 if (!test_taint(TAINT_OOT_MODULE))
2034 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2035 mod->name);
2036 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2037 }
2038
2039 check_modinfo_retpoline(mod, info);
2040
2041 if (get_modinfo(info, "staging")) {
2042 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2043 pr_warn("%s: module is from the staging directory, the quality "
2044 "is unknown, you have been warned.\n", mod->name);
2045 }
2046
2047 if (is_livepatch_module(mod)) {
2048 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2049 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2050 mod->name);
2051 }
2052
2053 module_license_taint_check(mod, get_modinfo(info, "license"));
2054
2055 if (get_modinfo(info, "test")) {
2056 if (!test_taint(TAINT_TEST))
2057 pr_warn("%s: loading test module taints kernel.\n",
2058 mod->name);
2059 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2060 }
2061 #ifdef CONFIG_MODULE_SIG
2062 mod->sig_ok = info->sig_ok;
2063 if (!mod->sig_ok) {
2064 pr_notice_once("%s: module verification failed: signature "
2065 "and/or required key missing - tainting "
2066 "kernel\n", mod->name);
2067 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2068 }
2069 #endif
2070
2071 /*
2072 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2073 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2074 * using GPL-only symbols it needs.
2075 */
2076 if (strcmp(mod->name, "ndiswrapper") == 0)
2077 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2078
2079 /* driverloader was caught wrongly pretending to be under GPL */
2080 if (strcmp(mod->name, "driverloader") == 0)
2081 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2082 LOCKDEP_NOW_UNRELIABLE);
2083
2084 /* lve claims to be GPL but upstream won't provide source */
2085 if (strcmp(mod->name, "lve") == 0)
2086 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2087 LOCKDEP_NOW_UNRELIABLE);
2088
2089 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2090 pr_warn("%s: module license taints kernel.\n", mod->name);
2091
2092 }
2093
check_modinfo(struct module * mod,struct load_info * info,int flags)2094 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2095 {
2096 const char *modmagic = get_modinfo(info, "vermagic");
2097 int err;
2098
2099 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2100 modmagic = NULL;
2101
2102 /* This is allowed: modprobe --force will invalidate it. */
2103 if (!modmagic) {
2104 err = try_to_force_load(mod, "bad vermagic");
2105 if (err)
2106 return err;
2107 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2108 pr_err("%s: version magic '%s' should be '%s'\n",
2109 info->name, modmagic, vermagic);
2110 return -ENOEXEC;
2111 }
2112
2113 err = check_modinfo_livepatch(mod, info);
2114 if (err)
2115 return err;
2116
2117 return 0;
2118 }
2119
find_module_sections(struct module * mod,struct load_info * info)2120 static int find_module_sections(struct module *mod, struct load_info *info)
2121 {
2122 mod->kp = section_objs(info, "__param",
2123 sizeof(*mod->kp), &mod->num_kp);
2124 mod->syms = section_objs(info, "__ksymtab",
2125 sizeof(*mod->syms), &mod->num_syms);
2126 mod->crcs = section_addr(info, "__kcrctab");
2127 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2128 sizeof(*mod->gpl_syms),
2129 &mod->num_gpl_syms);
2130 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2131
2132 #ifdef CONFIG_CONSTRUCTORS
2133 mod->ctors = section_objs(info, ".ctors",
2134 sizeof(*mod->ctors), &mod->num_ctors);
2135 if (!mod->ctors)
2136 mod->ctors = section_objs(info, ".init_array",
2137 sizeof(*mod->ctors), &mod->num_ctors);
2138 else if (find_sec(info, ".init_array")) {
2139 /*
2140 * This shouldn't happen with same compiler and binutils
2141 * building all parts of the module.
2142 */
2143 pr_warn("%s: has both .ctors and .init_array.\n",
2144 mod->name);
2145 return -EINVAL;
2146 }
2147 #endif
2148
2149 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2150 &mod->noinstr_text_size);
2151
2152 #ifdef CONFIG_TRACEPOINTS
2153 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2154 sizeof(*mod->tracepoints_ptrs),
2155 &mod->num_tracepoints);
2156 #endif
2157 #ifdef CONFIG_TREE_SRCU
2158 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2159 sizeof(*mod->srcu_struct_ptrs),
2160 &mod->num_srcu_structs);
2161 #endif
2162 #ifdef CONFIG_BPF_EVENTS
2163 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2164 sizeof(*mod->bpf_raw_events),
2165 &mod->num_bpf_raw_events);
2166 #endif
2167 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2168 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2169 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2170 &mod->btf_base_data_size);
2171 #endif
2172 #ifdef CONFIG_JUMP_LABEL
2173 mod->jump_entries = section_objs(info, "__jump_table",
2174 sizeof(*mod->jump_entries),
2175 &mod->num_jump_entries);
2176 #endif
2177 #ifdef CONFIG_EVENT_TRACING
2178 mod->trace_events = section_objs(info, "_ftrace_events",
2179 sizeof(*mod->trace_events),
2180 &mod->num_trace_events);
2181 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2182 sizeof(*mod->trace_evals),
2183 &mod->num_trace_evals);
2184 #endif
2185 #ifdef CONFIG_TRACING
2186 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2187 sizeof(*mod->trace_bprintk_fmt_start),
2188 &mod->num_trace_bprintk_fmt);
2189 #endif
2190 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2191 /* sechdrs[0].sh_size is always zero */
2192 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2193 sizeof(*mod->ftrace_callsites),
2194 &mod->num_ftrace_callsites);
2195 #endif
2196 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2197 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2198 sizeof(*mod->ei_funcs),
2199 &mod->num_ei_funcs);
2200 #endif
2201 #ifdef CONFIG_KPROBES
2202 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2203 &mod->kprobes_text_size);
2204 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2205 sizeof(unsigned long),
2206 &mod->num_kprobe_blacklist);
2207 #endif
2208 #ifdef CONFIG_PRINTK_INDEX
2209 mod->printk_index_start = section_objs(info, ".printk_index",
2210 sizeof(*mod->printk_index_start),
2211 &mod->printk_index_size);
2212 #endif
2213 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2214 mod->static_call_sites = section_objs(info, ".static_call_sites",
2215 sizeof(*mod->static_call_sites),
2216 &mod->num_static_call_sites);
2217 #endif
2218 #if IS_ENABLED(CONFIG_KUNIT)
2219 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2220 sizeof(*mod->kunit_suites),
2221 &mod->num_kunit_suites);
2222 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2223 sizeof(*mod->kunit_init_suites),
2224 &mod->num_kunit_init_suites);
2225 #endif
2226
2227 mod->extable = section_objs(info, "__ex_table",
2228 sizeof(*mod->extable), &mod->num_exentries);
2229
2230 if (section_addr(info, "__obsparm"))
2231 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2232
2233 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2234 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2235 sizeof(*mod->dyndbg_info.descs),
2236 &mod->dyndbg_info.num_descs);
2237 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2238 sizeof(*mod->dyndbg_info.classes),
2239 &mod->dyndbg_info.num_classes);
2240 #endif
2241
2242 return 0;
2243 }
2244
move_module(struct module * mod,struct load_info * info)2245 static int move_module(struct module *mod, struct load_info *info)
2246 {
2247 int i;
2248 enum mod_mem_type t = 0;
2249 int ret = -ENOMEM;
2250
2251 for_each_mod_mem_type(type) {
2252 if (!mod->mem[type].size) {
2253 mod->mem[type].base = NULL;
2254 continue;
2255 }
2256
2257 ret = module_memory_alloc(mod, type);
2258 if (ret) {
2259 t = type;
2260 goto out_enomem;
2261 }
2262 }
2263
2264 /* Transfer each section which specifies SHF_ALLOC */
2265 pr_debug("Final section addresses for %s:\n", mod->name);
2266 for (i = 0; i < info->hdr->e_shnum; i++) {
2267 void *dest;
2268 Elf_Shdr *shdr = &info->sechdrs[i];
2269 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2270
2271 if (!(shdr->sh_flags & SHF_ALLOC))
2272 continue;
2273
2274 dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK);
2275
2276 if (shdr->sh_type != SHT_NOBITS) {
2277 /*
2278 * Our ELF checker already validated this, but let's
2279 * be pedantic and make the goal clearer. We actually
2280 * end up copying over all modifications made to the
2281 * userspace copy of the entire struct module.
2282 */
2283 if (i == info->index.mod &&
2284 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2285 ret = -ENOEXEC;
2286 goto out_enomem;
2287 }
2288 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2289 }
2290 /*
2291 * Update the userspace copy's ELF section address to point to
2292 * our newly allocated memory as a pure convenience so that
2293 * users of info can keep taking advantage and using the newly
2294 * minted official memory area.
2295 */
2296 shdr->sh_addr = (unsigned long)dest;
2297 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2298 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2299 }
2300
2301 return 0;
2302 out_enomem:
2303 for (t--; t >= 0; t--)
2304 module_memory_free(mod, t, true);
2305 return ret;
2306 }
2307
check_export_symbol_versions(struct module * mod)2308 static int check_export_symbol_versions(struct module *mod)
2309 {
2310 #ifdef CONFIG_MODVERSIONS
2311 if ((mod->num_syms && !mod->crcs) ||
2312 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2313 return try_to_force_load(mod,
2314 "no versions for exported symbols");
2315 }
2316 #endif
2317 return 0;
2318 }
2319
flush_module_icache(const struct module * mod)2320 static void flush_module_icache(const struct module *mod)
2321 {
2322 /*
2323 * Flush the instruction cache, since we've played with text.
2324 * Do it before processing of module parameters, so the module
2325 * can provide parameter accessor functions of its own.
2326 */
2327 for_each_mod_mem_type(type) {
2328 const struct module_memory *mod_mem = &mod->mem[type];
2329
2330 if (mod_mem->size) {
2331 flush_icache_range((unsigned long)mod_mem->base,
2332 (unsigned long)mod_mem->base + mod_mem->size);
2333 }
2334 }
2335 }
2336
module_elf_check_arch(Elf_Ehdr * hdr)2337 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2338 {
2339 return true;
2340 }
2341
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2342 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2343 Elf_Shdr *sechdrs,
2344 char *secstrings,
2345 struct module *mod)
2346 {
2347 return 0;
2348 }
2349
2350 /* module_blacklist is a comma-separated list of module names */
2351 static char *module_blacklist;
blacklisted(const char * module_name)2352 static bool blacklisted(const char *module_name)
2353 {
2354 const char *p;
2355 size_t len;
2356
2357 if (!module_blacklist)
2358 return false;
2359
2360 for (p = module_blacklist; *p; p += len) {
2361 len = strcspn(p, ",");
2362 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2363 return true;
2364 if (p[len] == ',')
2365 len++;
2366 }
2367 return false;
2368 }
2369 core_param(module_blacklist, module_blacklist, charp, 0400);
2370
layout_and_allocate(struct load_info * info,int flags)2371 static struct module *layout_and_allocate(struct load_info *info, int flags)
2372 {
2373 struct module *mod;
2374 unsigned int ndx;
2375 int err;
2376
2377 /* Allow arches to frob section contents and sizes. */
2378 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2379 info->secstrings, info->mod);
2380 if (err < 0)
2381 return ERR_PTR(err);
2382
2383 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2384 info->secstrings, info->mod);
2385 if (err < 0)
2386 return ERR_PTR(err);
2387
2388 /* We will do a special allocation for per-cpu sections later. */
2389 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2390
2391 /*
2392 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2393 * layout_sections() can put it in the right place.
2394 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2395 */
2396 ndx = find_sec(info, ".data..ro_after_init");
2397 if (ndx)
2398 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2399 /*
2400 * Mark the __jump_table section as ro_after_init as well: these data
2401 * structures are never modified, with the exception of entries that
2402 * refer to code in the __init section, which are annotated as such
2403 * at module load time.
2404 */
2405 ndx = find_sec(info, "__jump_table");
2406 if (ndx)
2407 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2408
2409 /*
2410 * Determine total sizes, and put offsets in sh_entsize. For now
2411 * this is done generically; there doesn't appear to be any
2412 * special cases for the architectures.
2413 */
2414 layout_sections(info->mod, info);
2415 layout_symtab(info->mod, info);
2416
2417 /* Allocate and move to the final place */
2418 err = move_module(info->mod, info);
2419 if (err)
2420 return ERR_PTR(err);
2421
2422 /* Module has been copied to its final place now: return it. */
2423 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2424 kmemleak_load_module(mod, info);
2425 return mod;
2426 }
2427
2428 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2429 static void module_deallocate(struct module *mod, struct load_info *info)
2430 {
2431 percpu_modfree(mod);
2432 module_arch_freeing_init(mod);
2433
2434 free_mod_mem(mod, true);
2435 }
2436
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2437 int __weak module_finalize(const Elf_Ehdr *hdr,
2438 const Elf_Shdr *sechdrs,
2439 struct module *me)
2440 {
2441 return 0;
2442 }
2443
post_relocation(struct module * mod,const struct load_info * info)2444 static int post_relocation(struct module *mod, const struct load_info *info)
2445 {
2446 /* Sort exception table now relocations are done. */
2447 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2448
2449 /* Copy relocated percpu area over. */
2450 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2451 info->sechdrs[info->index.pcpu].sh_size);
2452
2453 /* Setup kallsyms-specific fields. */
2454 add_kallsyms(mod, info);
2455
2456 /* Arch-specific module finalizing. */
2457 return module_finalize(info->hdr, info->sechdrs, mod);
2458 }
2459
2460 /* Call module constructors. */
do_mod_ctors(struct module * mod)2461 static void do_mod_ctors(struct module *mod)
2462 {
2463 #ifdef CONFIG_CONSTRUCTORS
2464 unsigned long i;
2465
2466 for (i = 0; i < mod->num_ctors; i++)
2467 mod->ctors[i]();
2468 #endif
2469 }
2470
2471 /* For freeing module_init on success, in case kallsyms traversing */
2472 struct mod_initfree {
2473 struct llist_node node;
2474 void *init_text;
2475 void *init_data;
2476 void *init_rodata;
2477 };
2478
do_free_init(struct work_struct * w)2479 static void do_free_init(struct work_struct *w)
2480 {
2481 struct llist_node *pos, *n, *list;
2482 struct mod_initfree *initfree;
2483
2484 list = llist_del_all(&init_free_list);
2485
2486 synchronize_rcu();
2487
2488 llist_for_each_safe(pos, n, list) {
2489 initfree = container_of(pos, struct mod_initfree, node);
2490 execmem_free(initfree->init_text);
2491 execmem_free(initfree->init_data);
2492 execmem_free(initfree->init_rodata);
2493 kfree(initfree);
2494 }
2495 }
2496
flush_module_init_free_work(void)2497 void flush_module_init_free_work(void)
2498 {
2499 flush_work(&init_free_wq);
2500 }
2501
2502 #undef MODULE_PARAM_PREFIX
2503 #define MODULE_PARAM_PREFIX "module."
2504 /* Default value for module->async_probe_requested */
2505 static bool async_probe;
2506 module_param(async_probe, bool, 0644);
2507
2508 /*
2509 * This is where the real work happens.
2510 *
2511 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2512 * helper command 'lx-symbols'.
2513 */
do_init_module(struct module * mod)2514 static noinline int do_init_module(struct module *mod)
2515 {
2516 int ret = 0;
2517 struct mod_initfree *freeinit;
2518 #if defined(CONFIG_MODULE_STATS)
2519 unsigned int text_size = 0, total_size = 0;
2520
2521 for_each_mod_mem_type(type) {
2522 const struct module_memory *mod_mem = &mod->mem[type];
2523 if (mod_mem->size) {
2524 total_size += mod_mem->size;
2525 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2526 text_size += mod_mem->size;
2527 }
2528 }
2529 #endif
2530
2531 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2532 if (!freeinit) {
2533 ret = -ENOMEM;
2534 goto fail;
2535 }
2536 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2537 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2538 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2539
2540 do_mod_ctors(mod);
2541 /* Start the module */
2542 if (mod->init != NULL)
2543 ret = do_one_initcall(mod->init);
2544 if (ret < 0) {
2545 goto fail_free_freeinit;
2546 }
2547 if (ret > 0) {
2548 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2549 "follow 0/-E convention\n"
2550 "%s: loading module anyway...\n",
2551 __func__, mod->name, ret, __func__);
2552 dump_stack();
2553 }
2554
2555 /* Now it's a first class citizen! */
2556 mod->state = MODULE_STATE_LIVE;
2557 blocking_notifier_call_chain(&module_notify_list,
2558 MODULE_STATE_LIVE, mod);
2559
2560 /* Delay uevent until module has finished its init routine */
2561 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2562
2563 /*
2564 * We need to finish all async code before the module init sequence
2565 * is done. This has potential to deadlock if synchronous module
2566 * loading is requested from async (which is not allowed!).
2567 *
2568 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2569 * request_module() from async workers") for more details.
2570 */
2571 if (!mod->async_probe_requested)
2572 async_synchronize_full();
2573
2574 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2575 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2576 mutex_lock(&module_mutex);
2577 /* Drop initial reference. */
2578 module_put(mod);
2579 trim_init_extable(mod);
2580 #ifdef CONFIG_KALLSYMS
2581 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2582 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2583 #endif
2584 ret = module_enable_rodata_ro(mod, true);
2585 if (ret)
2586 goto fail_mutex_unlock;
2587 mod_tree_remove_init(mod);
2588 module_arch_freeing_init(mod);
2589 for_class_mod_mem_type(type, init) {
2590 mod->mem[type].base = NULL;
2591 mod->mem[type].size = 0;
2592 }
2593
2594 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2595 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
2596 mod->btf_data = NULL;
2597 mod->btf_base_data = NULL;
2598 #endif
2599 /*
2600 * We want to free module_init, but be aware that kallsyms may be
2601 * walking this with preempt disabled. In all the failure paths, we
2602 * call synchronize_rcu(), but we don't want to slow down the success
2603 * path. execmem_free() cannot be called in an interrupt, so do the
2604 * work and call synchronize_rcu() in a work queue.
2605 *
2606 * Note that execmem_alloc() on most architectures creates W+X page
2607 * mappings which won't be cleaned up until do_free_init() runs. Any
2608 * code such as mark_rodata_ro() which depends on those mappings to
2609 * be cleaned up needs to sync with the queued work by invoking
2610 * flush_module_init_free_work().
2611 */
2612 if (llist_add(&freeinit->node, &init_free_list))
2613 schedule_work(&init_free_wq);
2614
2615 mutex_unlock(&module_mutex);
2616 wake_up_all(&module_wq);
2617
2618 mod_stat_add_long(text_size, &total_text_size);
2619 mod_stat_add_long(total_size, &total_mod_size);
2620
2621 mod_stat_inc(&modcount);
2622
2623 return 0;
2624
2625 fail_mutex_unlock:
2626 mutex_unlock(&module_mutex);
2627 fail_free_freeinit:
2628 kfree(freeinit);
2629 fail:
2630 /* Try to protect us from buggy refcounters. */
2631 mod->state = MODULE_STATE_GOING;
2632 synchronize_rcu();
2633 module_put(mod);
2634 blocking_notifier_call_chain(&module_notify_list,
2635 MODULE_STATE_GOING, mod);
2636 klp_module_going(mod);
2637 ftrace_release_mod(mod);
2638 free_module(mod);
2639 wake_up_all(&module_wq);
2640
2641 return ret;
2642 }
2643
may_init_module(void)2644 static int may_init_module(void)
2645 {
2646 if (!capable(CAP_SYS_MODULE) || modules_disabled)
2647 return -EPERM;
2648
2649 return 0;
2650 }
2651
2652 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)2653 static bool finished_loading(const char *name)
2654 {
2655 struct module *mod;
2656 bool ret;
2657
2658 /*
2659 * The module_mutex should not be a heavily contended lock;
2660 * if we get the occasional sleep here, we'll go an extra iteration
2661 * in the wait_event_interruptible(), which is harmless.
2662 */
2663 sched_annotate_sleep();
2664 mutex_lock(&module_mutex);
2665 mod = find_module_all(name, strlen(name), true);
2666 ret = !mod || mod->state == MODULE_STATE_LIVE
2667 || mod->state == MODULE_STATE_GOING;
2668 mutex_unlock(&module_mutex);
2669
2670 return ret;
2671 }
2672
2673 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)2674 static int module_patient_check_exists(const char *name,
2675 enum fail_dup_mod_reason reason)
2676 {
2677 struct module *old;
2678 int err = 0;
2679
2680 old = find_module_all(name, strlen(name), true);
2681 if (old == NULL)
2682 return 0;
2683
2684 if (old->state == MODULE_STATE_COMING ||
2685 old->state == MODULE_STATE_UNFORMED) {
2686 /* Wait in case it fails to load. */
2687 mutex_unlock(&module_mutex);
2688 err = wait_event_interruptible(module_wq,
2689 finished_loading(name));
2690 mutex_lock(&module_mutex);
2691 if (err)
2692 return err;
2693
2694 /* The module might have gone in the meantime. */
2695 old = find_module_all(name, strlen(name), true);
2696 }
2697
2698 if (try_add_failed_module(name, reason))
2699 pr_warn("Could not add fail-tracking for module: %s\n", name);
2700
2701 /*
2702 * We are here only when the same module was being loaded. Do
2703 * not try to load it again right now. It prevents long delays
2704 * caused by serialized module load failures. It might happen
2705 * when more devices of the same type trigger load of
2706 * a particular module.
2707 */
2708 if (old && old->state == MODULE_STATE_LIVE)
2709 return -EEXIST;
2710 return -EBUSY;
2711 }
2712
2713 /*
2714 * We try to place it in the list now to make sure it's unique before
2715 * we dedicate too many resources. In particular, temporary percpu
2716 * memory exhaustion.
2717 */
add_unformed_module(struct module * mod)2718 static int add_unformed_module(struct module *mod)
2719 {
2720 int err;
2721
2722 mod->state = MODULE_STATE_UNFORMED;
2723
2724 mutex_lock(&module_mutex);
2725 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
2726 if (err)
2727 goto out;
2728
2729 mod_update_bounds(mod);
2730 list_add_rcu(&mod->list, &modules);
2731 mod_tree_insert(mod);
2732 err = 0;
2733
2734 out:
2735 mutex_unlock(&module_mutex);
2736 return err;
2737 }
2738
complete_formation(struct module * mod,struct load_info * info)2739 static int complete_formation(struct module *mod, struct load_info *info)
2740 {
2741 int err;
2742
2743 mutex_lock(&module_mutex);
2744
2745 /* Find duplicate symbols (must be called under lock). */
2746 err = verify_exported_symbols(mod);
2747 if (err < 0)
2748 goto out;
2749
2750 /* These rely on module_mutex for list integrity. */
2751 module_bug_finalize(info->hdr, info->sechdrs, mod);
2752 module_cfi_finalize(info->hdr, info->sechdrs, mod);
2753
2754 err = module_enable_rodata_ro(mod, false);
2755 if (err)
2756 goto out_strict_rwx;
2757 err = module_enable_data_nx(mod);
2758 if (err)
2759 goto out_strict_rwx;
2760 err = module_enable_text_rox(mod);
2761 if (err)
2762 goto out_strict_rwx;
2763
2764 /*
2765 * Mark state as coming so strong_try_module_get() ignores us,
2766 * but kallsyms etc. can see us.
2767 */
2768 mod->state = MODULE_STATE_COMING;
2769 mutex_unlock(&module_mutex);
2770
2771 return 0;
2772
2773 out_strict_rwx:
2774 module_bug_cleanup(mod);
2775 out:
2776 mutex_unlock(&module_mutex);
2777 return err;
2778 }
2779
prepare_coming_module(struct module * mod)2780 static int prepare_coming_module(struct module *mod)
2781 {
2782 int err;
2783
2784 ftrace_module_enable(mod);
2785 err = klp_module_coming(mod);
2786 if (err)
2787 return err;
2788
2789 err = blocking_notifier_call_chain_robust(&module_notify_list,
2790 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2791 err = notifier_to_errno(err);
2792 if (err)
2793 klp_module_going(mod);
2794
2795 return err;
2796 }
2797
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)2798 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2799 void *arg)
2800 {
2801 struct module *mod = arg;
2802 int ret;
2803
2804 if (strcmp(param, "async_probe") == 0) {
2805 if (kstrtobool(val, &mod->async_probe_requested))
2806 mod->async_probe_requested = true;
2807 return 0;
2808 }
2809
2810 /* Check for magic 'dyndbg' arg */
2811 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2812 if (ret != 0)
2813 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2814 return 0;
2815 }
2816
2817 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)2818 static int early_mod_check(struct load_info *info, int flags)
2819 {
2820 int err;
2821
2822 /*
2823 * Now that we know we have the correct module name, check
2824 * if it's blacklisted.
2825 */
2826 if (blacklisted(info->name)) {
2827 pr_err("Module %s is blacklisted\n", info->name);
2828 return -EPERM;
2829 }
2830
2831 err = rewrite_section_headers(info, flags);
2832 if (err)
2833 return err;
2834
2835 /* Check module struct version now, before we try to use module. */
2836 if (!check_modstruct_version(info, info->mod))
2837 return -ENOEXEC;
2838
2839 err = check_modinfo(info->mod, info, flags);
2840 if (err)
2841 return err;
2842
2843 mutex_lock(&module_mutex);
2844 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
2845 mutex_unlock(&module_mutex);
2846
2847 return err;
2848 }
2849
2850 /*
2851 * Allocate and load the module: note that size of section 0 is always
2852 * zero, and we rely on this for optional sections.
2853 */
load_module(struct load_info * info,const char __user * uargs,int flags)2854 static int load_module(struct load_info *info, const char __user *uargs,
2855 int flags)
2856 {
2857 struct module *mod;
2858 bool module_allocated = false;
2859 long err = 0;
2860 char *after_dashes;
2861
2862 /*
2863 * Do the signature check (if any) first. All that
2864 * the signature check needs is info->len, it does
2865 * not need any of the section info. That can be
2866 * set up later. This will minimize the chances
2867 * of a corrupt module causing problems before
2868 * we even get to the signature check.
2869 *
2870 * The check will also adjust info->len by stripping
2871 * off the sig length at the end of the module, making
2872 * checks against info->len more correct.
2873 */
2874 err = module_sig_check(info, flags);
2875 if (err)
2876 goto free_copy;
2877
2878 /*
2879 * Do basic sanity checks against the ELF header and
2880 * sections. Cache useful sections and set the
2881 * info->mod to the userspace passed struct module.
2882 */
2883 err = elf_validity_cache_copy(info, flags);
2884 if (err)
2885 goto free_copy;
2886
2887 err = early_mod_check(info, flags);
2888 if (err)
2889 goto free_copy;
2890
2891 /* Figure out module layout, and allocate all the memory. */
2892 mod = layout_and_allocate(info, flags);
2893 if (IS_ERR(mod)) {
2894 err = PTR_ERR(mod);
2895 goto free_copy;
2896 }
2897
2898 module_allocated = true;
2899
2900 audit_log_kern_module(mod->name);
2901
2902 /* Reserve our place in the list. */
2903 err = add_unformed_module(mod);
2904 if (err)
2905 goto free_module;
2906
2907 /*
2908 * We are tainting your kernel if your module gets into
2909 * the modules linked list somehow.
2910 */
2911 module_augment_kernel_taints(mod, info);
2912
2913 /* To avoid stressing percpu allocator, do this once we're unique. */
2914 err = percpu_modalloc(mod, info);
2915 if (err)
2916 goto unlink_mod;
2917
2918 /* Now module is in final location, initialize linked lists, etc. */
2919 err = module_unload_init(mod);
2920 if (err)
2921 goto unlink_mod;
2922
2923 init_param_lock(mod);
2924
2925 /*
2926 * Now we've got everything in the final locations, we can
2927 * find optional sections.
2928 */
2929 err = find_module_sections(mod, info);
2930 if (err)
2931 goto free_unload;
2932
2933 err = check_export_symbol_versions(mod);
2934 if (err)
2935 goto free_unload;
2936
2937 /* Set up MODINFO_ATTR fields */
2938 setup_modinfo(mod, info);
2939
2940 /* Fix up syms, so that st_value is a pointer to location. */
2941 err = simplify_symbols(mod, info);
2942 if (err < 0)
2943 goto free_modinfo;
2944
2945 err = apply_relocations(mod, info);
2946 if (err < 0)
2947 goto free_modinfo;
2948
2949 err = post_relocation(mod, info);
2950 if (err < 0)
2951 goto free_modinfo;
2952
2953 flush_module_icache(mod);
2954
2955 /* Now copy in args */
2956 mod->args = strndup_user(uargs, ~0UL >> 1);
2957 if (IS_ERR(mod->args)) {
2958 err = PTR_ERR(mod->args);
2959 goto free_arch_cleanup;
2960 }
2961
2962 init_build_id(mod, info);
2963
2964 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
2965 ftrace_module_init(mod);
2966
2967 /* Finally it's fully formed, ready to start executing. */
2968 err = complete_formation(mod, info);
2969 if (err)
2970 goto ddebug_cleanup;
2971
2972 err = prepare_coming_module(mod);
2973 if (err)
2974 goto bug_cleanup;
2975
2976 mod->async_probe_requested = async_probe;
2977
2978 /* Module is ready to execute: parsing args may do that. */
2979 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2980 -32768, 32767, mod,
2981 unknown_module_param_cb);
2982 if (IS_ERR(after_dashes)) {
2983 err = PTR_ERR(after_dashes);
2984 goto coming_cleanup;
2985 } else if (after_dashes) {
2986 pr_warn("%s: parameters '%s' after `--' ignored\n",
2987 mod->name, after_dashes);
2988 }
2989
2990 /* Link in to sysfs. */
2991 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
2992 if (err < 0)
2993 goto coming_cleanup;
2994
2995 if (is_livepatch_module(mod)) {
2996 err = copy_module_elf(mod, info);
2997 if (err < 0)
2998 goto sysfs_cleanup;
2999 }
3000
3001 /* Get rid of temporary copy. */
3002 free_copy(info, flags);
3003
3004 codetag_load_module(mod);
3005
3006 /* Done! */
3007 trace_module_load(mod);
3008
3009 return do_init_module(mod);
3010
3011 sysfs_cleanup:
3012 mod_sysfs_teardown(mod);
3013 coming_cleanup:
3014 mod->state = MODULE_STATE_GOING;
3015 destroy_params(mod->kp, mod->num_kp);
3016 blocking_notifier_call_chain(&module_notify_list,
3017 MODULE_STATE_GOING, mod);
3018 klp_module_going(mod);
3019 bug_cleanup:
3020 mod->state = MODULE_STATE_GOING;
3021 /* module_bug_cleanup needs module_mutex protection */
3022 mutex_lock(&module_mutex);
3023 module_bug_cleanup(mod);
3024 mutex_unlock(&module_mutex);
3025
3026 ddebug_cleanup:
3027 ftrace_release_mod(mod);
3028 synchronize_rcu();
3029 kfree(mod->args);
3030 free_arch_cleanup:
3031 module_arch_cleanup(mod);
3032 free_modinfo:
3033 free_modinfo(mod);
3034 free_unload:
3035 module_unload_free(mod);
3036 unlink_mod:
3037 mutex_lock(&module_mutex);
3038 /* Unlink carefully: kallsyms could be walking list. */
3039 list_del_rcu(&mod->list);
3040 mod_tree_remove(mod);
3041 wake_up_all(&module_wq);
3042 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3043 synchronize_rcu();
3044 mutex_unlock(&module_mutex);
3045 free_module:
3046 mod_stat_bump_invalid(info, flags);
3047 /* Free lock-classes; relies on the preceding sync_rcu() */
3048 for_class_mod_mem_type(type, core_data) {
3049 lockdep_free_key_range(mod->mem[type].base,
3050 mod->mem[type].size);
3051 }
3052
3053 module_deallocate(mod, info);
3054 free_copy:
3055 /*
3056 * The info->len is always set. We distinguish between
3057 * failures once the proper module was allocated and
3058 * before that.
3059 */
3060 if (!module_allocated)
3061 mod_stat_bump_becoming(info, flags);
3062 free_copy(info, flags);
3063 return err;
3064 }
3065
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3066 SYSCALL_DEFINE3(init_module, void __user *, umod,
3067 unsigned long, len, const char __user *, uargs)
3068 {
3069 int err;
3070 struct load_info info = { };
3071
3072 err = may_init_module();
3073 if (err)
3074 return err;
3075
3076 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3077 umod, len, uargs);
3078
3079 err = copy_module_from_user(umod, len, &info);
3080 if (err) {
3081 mod_stat_inc(&failed_kreads);
3082 mod_stat_add_long(len, &invalid_kread_bytes);
3083 return err;
3084 }
3085
3086 return load_module(&info, uargs, 0);
3087 }
3088
3089 struct idempotent {
3090 const void *cookie;
3091 struct hlist_node entry;
3092 struct completion complete;
3093 int ret;
3094 };
3095
3096 #define IDEM_HASH_BITS 8
3097 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3098 static DEFINE_SPINLOCK(idem_lock);
3099
idempotent(struct idempotent * u,const void * cookie)3100 static bool idempotent(struct idempotent *u, const void *cookie)
3101 {
3102 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3103 struct hlist_head *head = idem_hash + hash;
3104 struct idempotent *existing;
3105 bool first;
3106
3107 u->ret = -EINTR;
3108 u->cookie = cookie;
3109 init_completion(&u->complete);
3110
3111 spin_lock(&idem_lock);
3112 first = true;
3113 hlist_for_each_entry(existing, head, entry) {
3114 if (existing->cookie != cookie)
3115 continue;
3116 first = false;
3117 break;
3118 }
3119 hlist_add_head(&u->entry, idem_hash + hash);
3120 spin_unlock(&idem_lock);
3121
3122 return !first;
3123 }
3124
3125 /*
3126 * We were the first one with 'cookie' on the list, and we ended
3127 * up completing the operation. We now need to walk the list,
3128 * remove everybody - which includes ourselves - fill in the return
3129 * value, and then complete the operation.
3130 */
idempotent_complete(struct idempotent * u,int ret)3131 static int idempotent_complete(struct idempotent *u, int ret)
3132 {
3133 const void *cookie = u->cookie;
3134 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3135 struct hlist_head *head = idem_hash + hash;
3136 struct hlist_node *next;
3137 struct idempotent *pos;
3138
3139 spin_lock(&idem_lock);
3140 hlist_for_each_entry_safe(pos, next, head, entry) {
3141 if (pos->cookie != cookie)
3142 continue;
3143 hlist_del_init(&pos->entry);
3144 pos->ret = ret;
3145 complete(&pos->complete);
3146 }
3147 spin_unlock(&idem_lock);
3148 return ret;
3149 }
3150
3151 /*
3152 * Wait for the idempotent worker.
3153 *
3154 * If we get interrupted, we need to remove ourselves from the
3155 * the idempotent list, and the completion may still come in.
3156 *
3157 * The 'idem_lock' protects against the race, and 'idem.ret' was
3158 * initialized to -EINTR and is thus always the right return
3159 * value even if the idempotent work then completes between
3160 * the wait_for_completion and the cleanup.
3161 */
idempotent_wait_for_completion(struct idempotent * u)3162 static int idempotent_wait_for_completion(struct idempotent *u)
3163 {
3164 if (wait_for_completion_interruptible(&u->complete)) {
3165 spin_lock(&idem_lock);
3166 if (!hlist_unhashed(&u->entry))
3167 hlist_del(&u->entry);
3168 spin_unlock(&idem_lock);
3169 }
3170 return u->ret;
3171 }
3172
init_module_from_file(struct file * f,const char __user * uargs,int flags)3173 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3174 {
3175 struct load_info info = { };
3176 void *buf = NULL;
3177 int len;
3178
3179 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3180 if (len < 0) {
3181 mod_stat_inc(&failed_kreads);
3182 return len;
3183 }
3184
3185 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3186 int err = module_decompress(&info, buf, len);
3187 vfree(buf); /* compressed data is no longer needed */
3188 if (err) {
3189 mod_stat_inc(&failed_decompress);
3190 mod_stat_add_long(len, &invalid_decompress_bytes);
3191 return err;
3192 }
3193 } else {
3194 info.hdr = buf;
3195 info.len = len;
3196 }
3197
3198 return load_module(&info, uargs, flags);
3199 }
3200
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3201 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3202 {
3203 struct idempotent idem;
3204
3205 if (!f || !(f->f_mode & FMODE_READ))
3206 return -EBADF;
3207
3208 /* Are we the winners of the race and get to do this? */
3209 if (!idempotent(&idem, file_inode(f))) {
3210 int ret = init_module_from_file(f, uargs, flags);
3211 return idempotent_complete(&idem, ret);
3212 }
3213
3214 /*
3215 * Somebody else won the race and is loading the module.
3216 */
3217 return idempotent_wait_for_completion(&idem);
3218 }
3219
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3220 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3221 {
3222 int err;
3223 struct fd f;
3224
3225 err = may_init_module();
3226 if (err)
3227 return err;
3228
3229 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3230
3231 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3232 |MODULE_INIT_IGNORE_VERMAGIC
3233 |MODULE_INIT_COMPRESSED_FILE))
3234 return -EINVAL;
3235
3236 f = fdget(fd);
3237 err = idempotent_init_module(fd_file(f), uargs, flags);
3238 fdput(f);
3239 return err;
3240 }
3241
3242 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3243 char *module_flags(struct module *mod, char *buf, bool show_state)
3244 {
3245 int bx = 0;
3246
3247 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3248 if (!mod->taints && !show_state)
3249 goto out;
3250 if (mod->taints ||
3251 mod->state == MODULE_STATE_GOING ||
3252 mod->state == MODULE_STATE_COMING) {
3253 buf[bx++] = '(';
3254 bx += module_flags_taint(mod->taints, buf + bx);
3255 /* Show a - for module-is-being-unloaded */
3256 if (mod->state == MODULE_STATE_GOING && show_state)
3257 buf[bx++] = '-';
3258 /* Show a + for module-is-being-loaded */
3259 if (mod->state == MODULE_STATE_COMING && show_state)
3260 buf[bx++] = '+';
3261 buf[bx++] = ')';
3262 }
3263 out:
3264 buf[bx] = '\0';
3265
3266 return buf;
3267 }
3268
3269 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3270 const struct exception_table_entry *search_module_extables(unsigned long addr)
3271 {
3272 const struct exception_table_entry *e = NULL;
3273 struct module *mod;
3274
3275 preempt_disable();
3276 mod = __module_address(addr);
3277 if (!mod)
3278 goto out;
3279
3280 if (!mod->num_exentries)
3281 goto out;
3282
3283 e = search_extable(mod->extable,
3284 mod->num_exentries,
3285 addr);
3286 out:
3287 preempt_enable();
3288
3289 /*
3290 * Now, if we found one, we are running inside it now, hence
3291 * we cannot unload the module, hence no refcnt needed.
3292 */
3293 return e;
3294 }
3295
3296 /**
3297 * is_module_address() - is this address inside a module?
3298 * @addr: the address to check.
3299 *
3300 * See is_module_text_address() if you simply want to see if the address
3301 * is code (not data).
3302 */
is_module_address(unsigned long addr)3303 bool is_module_address(unsigned long addr)
3304 {
3305 bool ret;
3306
3307 preempt_disable();
3308 ret = __module_address(addr) != NULL;
3309 preempt_enable();
3310
3311 return ret;
3312 }
3313
3314 /**
3315 * __module_address() - get the module which contains an address.
3316 * @addr: the address.
3317 *
3318 * Must be called with preempt disabled or module mutex held so that
3319 * module doesn't get freed during this.
3320 */
__module_address(unsigned long addr)3321 struct module *__module_address(unsigned long addr)
3322 {
3323 struct module *mod;
3324
3325 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3326 goto lookup;
3327
3328 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3329 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3330 goto lookup;
3331 #endif
3332
3333 return NULL;
3334
3335 lookup:
3336 module_assert_mutex_or_preempt();
3337
3338 mod = mod_find(addr, &mod_tree);
3339 if (mod) {
3340 BUG_ON(!within_module(addr, mod));
3341 if (mod->state == MODULE_STATE_UNFORMED)
3342 mod = NULL;
3343 }
3344 return mod;
3345 }
3346
3347 /**
3348 * is_module_text_address() - is this address inside module code?
3349 * @addr: the address to check.
3350 *
3351 * See is_module_address() if you simply want to see if the address is
3352 * anywhere in a module. See kernel_text_address() for testing if an
3353 * address corresponds to kernel or module code.
3354 */
is_module_text_address(unsigned long addr)3355 bool is_module_text_address(unsigned long addr)
3356 {
3357 bool ret;
3358
3359 preempt_disable();
3360 ret = __module_text_address(addr) != NULL;
3361 preempt_enable();
3362
3363 return ret;
3364 }
3365
3366 /**
3367 * __module_text_address() - get the module whose code contains an address.
3368 * @addr: the address.
3369 *
3370 * Must be called with preempt disabled or module mutex held so that
3371 * module doesn't get freed during this.
3372 */
__module_text_address(unsigned long addr)3373 struct module *__module_text_address(unsigned long addr)
3374 {
3375 struct module *mod = __module_address(addr);
3376 if (mod) {
3377 /* Make sure it's within the text section. */
3378 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3379 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3380 mod = NULL;
3381 }
3382 return mod;
3383 }
3384
3385 /* Don't grab lock, we're oopsing. */
print_modules(void)3386 void print_modules(void)
3387 {
3388 struct module *mod;
3389 char buf[MODULE_FLAGS_BUF_SIZE];
3390
3391 printk(KERN_DEFAULT "Modules linked in:");
3392 /* Most callers should already have preempt disabled, but make sure */
3393 preempt_disable();
3394 list_for_each_entry_rcu(mod, &modules, list) {
3395 if (mod->state == MODULE_STATE_UNFORMED)
3396 continue;
3397 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3398 }
3399
3400 print_unloaded_tainted_modules();
3401 preempt_enable();
3402 if (last_unloaded_module.name[0])
3403 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3404 last_unloaded_module.taints);
3405 pr_cont("\n");
3406 }
3407
3408 #ifdef CONFIG_MODULE_DEBUGFS
3409 struct dentry *mod_debugfs_root;
3410
module_debugfs_init(void)3411 static int module_debugfs_init(void)
3412 {
3413 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3414 return 0;
3415 }
3416 module_init(module_debugfs_init);
3417 #endif
3418