1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Module kallsyms support 4 * 5 * Copyright (C) 2010 Rusty Russell 6 */ 7 8 #include <linux/module.h> 9 #include <linux/module_symbol.h> 10 #include <linux/kallsyms.h> 11 #include <linux/buildid.h> 12 #include <linux/bsearch.h> 13 #include "internal.h" 14 15 /* Lookup exported symbol in given range of kernel_symbols */ 16 static const struct kernel_symbol *lookup_exported_symbol(const char *name, 17 const struct kernel_symbol *start, 18 const struct kernel_symbol *stop) 19 { 20 return bsearch(name, start, stop - start, 21 sizeof(struct kernel_symbol), cmp_name); 22 } 23 24 static int is_exported(const char *name, unsigned long value, 25 const struct module *mod) 26 { 27 const struct kernel_symbol *ks; 28 29 if (!mod) 30 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab); 31 else 32 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms); 33 34 return ks && kernel_symbol_value(ks) == value; 35 } 36 37 /* As per nm */ 38 static char elf_type(const Elf_Sym *sym, const struct load_info *info) 39 { 40 const Elf_Shdr *sechdrs = info->sechdrs; 41 42 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) { 43 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT) 44 return 'v'; 45 else 46 return 'w'; 47 } 48 if (sym->st_shndx == SHN_UNDEF) 49 return 'U'; 50 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu) 51 return 'a'; 52 if (sym->st_shndx >= SHN_LORESERVE) 53 return '?'; 54 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR) 55 return 't'; 56 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC && 57 sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) { 58 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE)) 59 return 'r'; 60 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL) 61 return 'g'; 62 else 63 return 'd'; 64 } 65 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { 66 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL) 67 return 's'; 68 else 69 return 'b'; 70 } 71 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name, 72 ".debug")) { 73 return 'n'; 74 } 75 return '?'; 76 } 77 78 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs, 79 unsigned int shnum, unsigned int pcpundx) 80 { 81 const Elf_Shdr *sec; 82 enum mod_mem_type type; 83 84 if (src->st_shndx == SHN_UNDEF || 85 src->st_shndx >= shnum || 86 !src->st_name) 87 return false; 88 89 #ifdef CONFIG_KALLSYMS_ALL 90 if (src->st_shndx == pcpundx) 91 return true; 92 #endif 93 94 sec = sechdrs + src->st_shndx; 95 type = sec->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 96 if (!(sec->sh_flags & SHF_ALLOC) 97 #ifndef CONFIG_KALLSYMS_ALL 98 || !(sec->sh_flags & SHF_EXECINSTR) 99 #endif 100 || mod_mem_type_is_init(type)) 101 return false; 102 103 return true; 104 } 105 106 /* 107 * We only allocate and copy the strings needed by the parts of symtab 108 * we keep. This is simple, but has the effect of making multiple 109 * copies of duplicates. We could be more sophisticated, see 110 * linux-kernel thread starting with 111 * <73defb5e4bca04a6431392cc341112b1@localhost>. 112 */ 113 void layout_symtab(struct module *mod, struct load_info *info) 114 { 115 Elf_Shdr *symsect = info->sechdrs + info->index.sym; 116 Elf_Shdr *strsect = info->sechdrs + info->index.str; 117 const Elf_Sym *src; 118 unsigned int i, nsrc, ndst, strtab_size = 0; 119 struct module_memory *mod_mem_data = &mod->mem[MOD_DATA]; 120 struct module_memory *mod_mem_init_data = &mod->mem[MOD_INIT_DATA]; 121 122 /* Put symbol section at end of init part of module. */ 123 symsect->sh_flags |= SHF_ALLOC; 124 symsect->sh_entsize = module_get_offset_and_type(mod, MOD_INIT_DATA, 125 symsect, info->index.sym); 126 pr_debug("\t%s\n", info->secstrings + symsect->sh_name); 127 128 src = (void *)info->hdr + symsect->sh_offset; 129 nsrc = symsect->sh_size / sizeof(*src); 130 131 /* Compute total space required for the core symbols' strtab. */ 132 for (ndst = i = 0; i < nsrc; i++) { 133 if (i == 0 || is_livepatch_module(mod) || 134 is_core_symbol(src + i, info->sechdrs, info->hdr->e_shnum, 135 info->index.pcpu)) { 136 strtab_size += strlen(&info->strtab[src[i].st_name]) + 1; 137 ndst++; 138 } 139 } 140 141 /* Append room for core symbols at end of core part. */ 142 info->symoffs = ALIGN(mod_mem_data->size, symsect->sh_addralign ?: 1); 143 info->stroffs = mod_mem_data->size = info->symoffs + ndst * sizeof(Elf_Sym); 144 mod_mem_data->size += strtab_size; 145 /* Note add_kallsyms() computes strtab_size as core_typeoffs - stroffs */ 146 info->core_typeoffs = mod_mem_data->size; 147 mod_mem_data->size += ndst * sizeof(char); 148 149 /* Put string table section at end of init part of module. */ 150 strsect->sh_flags |= SHF_ALLOC; 151 strsect->sh_entsize = module_get_offset_and_type(mod, MOD_INIT_DATA, 152 strsect, info->index.str); 153 pr_debug("\t%s\n", info->secstrings + strsect->sh_name); 154 155 /* We'll tack temporary mod_kallsyms on the end. */ 156 mod_mem_init_data->size = ALIGN(mod_mem_init_data->size, 157 __alignof__(struct mod_kallsyms)); 158 info->mod_kallsyms_init_off = mod_mem_init_data->size; 159 160 mod_mem_init_data->size += sizeof(struct mod_kallsyms); 161 info->init_typeoffs = mod_mem_init_data->size; 162 mod_mem_init_data->size += nsrc * sizeof(char); 163 } 164 165 /* 166 * We use the full symtab and strtab which layout_symtab arranged to 167 * be appended to the init section. Later we switch to the cut-down 168 * core-only ones. 169 */ 170 void add_kallsyms(struct module *mod, const struct load_info *info) 171 { 172 unsigned int i, ndst; 173 const Elf_Sym *src; 174 Elf_Sym *dst; 175 char *s; 176 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 177 unsigned long strtab_size; 178 void *data_base = mod->mem[MOD_DATA].base; 179 void *init_data_base = mod->mem[MOD_INIT_DATA].base; 180 181 /* Set up to point into init section. */ 182 mod->kallsyms = (void __rcu *)init_data_base + 183 info->mod_kallsyms_init_off; 184 185 rcu_read_lock(); 186 /* The following is safe since this pointer cannot change */ 187 rcu_dereference(mod->kallsyms)->symtab = (void *)symsec->sh_addr; 188 rcu_dereference(mod->kallsyms)->num_symtab = symsec->sh_size / sizeof(Elf_Sym); 189 /* Make sure we get permanent strtab: don't use info->strtab. */ 190 rcu_dereference(mod->kallsyms)->strtab = 191 (void *)info->sechdrs[info->index.str].sh_addr; 192 rcu_dereference(mod->kallsyms)->typetab = init_data_base + info->init_typeoffs; 193 194 /* 195 * Now populate the cut down core kallsyms for after init 196 * and set types up while we still have access to sections. 197 */ 198 mod->core_kallsyms.symtab = dst = data_base + info->symoffs; 199 mod->core_kallsyms.strtab = s = data_base + info->stroffs; 200 mod->core_kallsyms.typetab = data_base + info->core_typeoffs; 201 strtab_size = info->core_typeoffs - info->stroffs; 202 src = rcu_dereference(mod->kallsyms)->symtab; 203 for (ndst = i = 0; i < rcu_dereference(mod->kallsyms)->num_symtab; i++) { 204 rcu_dereference(mod->kallsyms)->typetab[i] = elf_type(src + i, info); 205 if (i == 0 || is_livepatch_module(mod) || 206 is_core_symbol(src + i, info->sechdrs, info->hdr->e_shnum, 207 info->index.pcpu)) { 208 ssize_t ret; 209 210 mod->core_kallsyms.typetab[ndst] = 211 rcu_dereference(mod->kallsyms)->typetab[i]; 212 dst[ndst] = src[i]; 213 dst[ndst++].st_name = s - mod->core_kallsyms.strtab; 214 ret = strscpy(s, 215 &rcu_dereference(mod->kallsyms)->strtab[src[i].st_name], 216 strtab_size); 217 if (ret < 0) 218 break; 219 s += ret + 1; 220 strtab_size -= ret + 1; 221 } 222 } 223 rcu_read_unlock(); 224 mod->core_kallsyms.num_symtab = ndst; 225 } 226 227 #if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID) 228 void init_build_id(struct module *mod, const struct load_info *info) 229 { 230 const Elf_Shdr *sechdr; 231 unsigned int i; 232 233 for (i = 0; i < info->hdr->e_shnum; i++) { 234 sechdr = &info->sechdrs[i]; 235 if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE && 236 !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id, 237 sechdr->sh_size)) 238 break; 239 } 240 } 241 #else 242 void init_build_id(struct module *mod, const struct load_info *info) 243 { 244 } 245 #endif 246 247 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum) 248 { 249 return kallsyms->strtab + kallsyms->symtab[symnum].st_name; 250 } 251 252 /* 253 * Given a module and address, find the corresponding symbol and return its name 254 * while providing its size and offset if needed. 255 */ 256 static const char *find_kallsyms_symbol(struct module *mod, 257 unsigned long addr, 258 unsigned long *size, 259 unsigned long *offset) 260 { 261 unsigned int i, best = 0; 262 unsigned long nextval, bestval; 263 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms); 264 struct module_memory *mod_mem; 265 266 /* At worse, next value is at end of module */ 267 if (within_module_init(addr, mod)) 268 mod_mem = &mod->mem[MOD_INIT_TEXT]; 269 else 270 mod_mem = &mod->mem[MOD_TEXT]; 271 272 nextval = (unsigned long)mod_mem->base + mod_mem->size; 273 274 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]); 275 276 /* 277 * Scan for closest preceding symbol, and next symbol. (ELF 278 * starts real symbols at 1). 279 */ 280 for (i = 1; i < kallsyms->num_symtab; i++) { 281 const Elf_Sym *sym = &kallsyms->symtab[i]; 282 unsigned long thisval = kallsyms_symbol_value(sym); 283 284 if (sym->st_shndx == SHN_UNDEF) 285 continue; 286 287 /* 288 * We ignore unnamed symbols: they're uninformative 289 * and inserted at a whim. 290 */ 291 if (*kallsyms_symbol_name(kallsyms, i) == '\0' || 292 is_mapping_symbol(kallsyms_symbol_name(kallsyms, i))) 293 continue; 294 295 if (thisval <= addr && thisval > bestval) { 296 best = i; 297 bestval = thisval; 298 } 299 if (thisval > addr && thisval < nextval) 300 nextval = thisval; 301 } 302 303 if (!best) 304 return NULL; 305 306 if (size) 307 *size = nextval - bestval; 308 if (offset) 309 *offset = addr - bestval; 310 311 return kallsyms_symbol_name(kallsyms, best); 312 } 313 314 void * __weak dereference_module_function_descriptor(struct module *mod, 315 void *ptr) 316 { 317 return ptr; 318 } 319 320 /* 321 * For kallsyms to ask for address resolution. NULL means not found. Careful 322 * not to lock to avoid deadlock on oopses, simply disable preemption. 323 */ 324 const char *module_address_lookup(unsigned long addr, 325 unsigned long *size, 326 unsigned long *offset, 327 char **modname, 328 const unsigned char **modbuildid, 329 char *namebuf) 330 { 331 const char *ret = NULL; 332 struct module *mod; 333 334 preempt_disable(); 335 mod = __module_address(addr); 336 if (mod) { 337 if (modname) 338 *modname = mod->name; 339 if (modbuildid) { 340 #if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID) 341 *modbuildid = mod->build_id; 342 #else 343 *modbuildid = NULL; 344 #endif 345 } 346 347 ret = find_kallsyms_symbol(mod, addr, size, offset); 348 } 349 /* Make a copy in here where it's safe */ 350 if (ret) { 351 strncpy(namebuf, ret, KSYM_NAME_LEN - 1); 352 ret = namebuf; 353 } 354 preempt_enable(); 355 356 return ret; 357 } 358 359 int lookup_module_symbol_name(unsigned long addr, char *symname) 360 { 361 struct module *mod; 362 363 preempt_disable(); 364 list_for_each_entry_rcu(mod, &modules, list) { 365 if (mod->state == MODULE_STATE_UNFORMED) 366 continue; 367 if (within_module(addr, mod)) { 368 const char *sym; 369 370 sym = find_kallsyms_symbol(mod, addr, NULL, NULL); 371 if (!sym) 372 goto out; 373 374 strscpy(symname, sym, KSYM_NAME_LEN); 375 preempt_enable(); 376 return 0; 377 } 378 } 379 out: 380 preempt_enable(); 381 return -ERANGE; 382 } 383 384 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size, 385 unsigned long *offset, char *modname, char *name) 386 { 387 struct module *mod; 388 389 preempt_disable(); 390 list_for_each_entry_rcu(mod, &modules, list) { 391 if (mod->state == MODULE_STATE_UNFORMED) 392 continue; 393 if (within_module(addr, mod)) { 394 const char *sym; 395 396 sym = find_kallsyms_symbol(mod, addr, size, offset); 397 if (!sym) 398 goto out; 399 if (modname) 400 strscpy(modname, mod->name, MODULE_NAME_LEN); 401 if (name) 402 strscpy(name, sym, KSYM_NAME_LEN); 403 preempt_enable(); 404 return 0; 405 } 406 } 407 out: 408 preempt_enable(); 409 return -ERANGE; 410 } 411 412 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type, 413 char *name, char *module_name, int *exported) 414 { 415 struct module *mod; 416 417 preempt_disable(); 418 list_for_each_entry_rcu(mod, &modules, list) { 419 struct mod_kallsyms *kallsyms; 420 421 if (mod->state == MODULE_STATE_UNFORMED) 422 continue; 423 kallsyms = rcu_dereference_sched(mod->kallsyms); 424 if (symnum < kallsyms->num_symtab) { 425 const Elf_Sym *sym = &kallsyms->symtab[symnum]; 426 427 *value = kallsyms_symbol_value(sym); 428 *type = kallsyms->typetab[symnum]; 429 strscpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN); 430 strscpy(module_name, mod->name, MODULE_NAME_LEN); 431 *exported = is_exported(name, *value, mod); 432 preempt_enable(); 433 return 0; 434 } 435 symnum -= kallsyms->num_symtab; 436 } 437 preempt_enable(); 438 return -ERANGE; 439 } 440 441 /* Given a module and name of symbol, find and return the symbol's value */ 442 static unsigned long __find_kallsyms_symbol_value(struct module *mod, const char *name) 443 { 444 unsigned int i; 445 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms); 446 447 for (i = 0; i < kallsyms->num_symtab; i++) { 448 const Elf_Sym *sym = &kallsyms->symtab[i]; 449 450 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 && 451 sym->st_shndx != SHN_UNDEF) 452 return kallsyms_symbol_value(sym); 453 } 454 return 0; 455 } 456 457 static unsigned long __module_kallsyms_lookup_name(const char *name) 458 { 459 struct module *mod; 460 char *colon; 461 462 colon = strnchr(name, MODULE_NAME_LEN, ':'); 463 if (colon) { 464 mod = find_module_all(name, colon - name, false); 465 if (mod) 466 return __find_kallsyms_symbol_value(mod, colon + 1); 467 return 0; 468 } 469 470 list_for_each_entry_rcu(mod, &modules, list) { 471 unsigned long ret; 472 473 if (mod->state == MODULE_STATE_UNFORMED) 474 continue; 475 ret = __find_kallsyms_symbol_value(mod, name); 476 if (ret) 477 return ret; 478 } 479 return 0; 480 } 481 482 /* Look for this name: can be of form module:name. */ 483 unsigned long module_kallsyms_lookup_name(const char *name) 484 { 485 unsigned long ret; 486 487 /* Don't lock: we're in enough trouble already. */ 488 preempt_disable(); 489 ret = __module_kallsyms_lookup_name(name); 490 preempt_enable(); 491 return ret; 492 } 493 494 unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name) 495 { 496 unsigned long ret; 497 498 preempt_disable(); 499 ret = __find_kallsyms_symbol_value(mod, name); 500 preempt_enable(); 501 return ret; 502 } 503 504 int module_kallsyms_on_each_symbol(const char *modname, 505 int (*fn)(void *, const char *, unsigned long), 506 void *data) 507 { 508 struct module *mod; 509 unsigned int i; 510 int ret = 0; 511 512 mutex_lock(&module_mutex); 513 list_for_each_entry(mod, &modules, list) { 514 struct mod_kallsyms *kallsyms; 515 516 if (mod->state == MODULE_STATE_UNFORMED) 517 continue; 518 519 if (modname && strcmp(modname, mod->name)) 520 continue; 521 522 /* Use rcu_dereference_sched() to remain compliant with the sparse tool */ 523 preempt_disable(); 524 kallsyms = rcu_dereference_sched(mod->kallsyms); 525 preempt_enable(); 526 527 for (i = 0; i < kallsyms->num_symtab; i++) { 528 const Elf_Sym *sym = &kallsyms->symtab[i]; 529 530 if (sym->st_shndx == SHN_UNDEF) 531 continue; 532 533 ret = fn(data, kallsyms_symbol_name(kallsyms, i), 534 kallsyms_symbol_value(sym)); 535 if (ret != 0) 536 goto out; 537 } 538 539 /* 540 * The given module is found, the subsequent modules do not 541 * need to be compared. 542 */ 543 if (modname) 544 break; 545 } 546 out: 547 mutex_unlock(&module_mutex); 548 return ret; 549 } 550