xref: /linux/kernel/locking/test-ww_mutex.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Module-based API test facility for ww_mutexes
4  */
5 
6 #include <linux/kernel.h>
7 
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/kthread.h>
11 #include <linux/module.h>
12 #include <linux/prandom.h>
13 #include <linux/slab.h>
14 #include <linux/ww_mutex.h>
15 
16 static DEFINE_WD_CLASS(ww_class);
17 struct workqueue_struct *wq;
18 
19 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
20 #define ww_acquire_init_noinject(a, b) do { \
21 		ww_acquire_init((a), (b)); \
22 		(a)->deadlock_inject_countdown = ~0U; \
23 	} while (0)
24 #else
25 #define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
26 #endif
27 
28 struct test_mutex {
29 	struct work_struct work;
30 	struct ww_mutex mutex;
31 	struct completion ready, go, done;
32 	unsigned int flags;
33 };
34 
35 #define TEST_MTX_SPIN BIT(0)
36 #define TEST_MTX_TRY BIT(1)
37 #define TEST_MTX_CTX BIT(2)
38 #define __TEST_MTX_LAST BIT(3)
39 
40 static void test_mutex_work(struct work_struct *work)
41 {
42 	struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
43 
44 	complete(&mtx->ready);
45 	wait_for_completion(&mtx->go);
46 
47 	if (mtx->flags & TEST_MTX_TRY) {
48 		while (!ww_mutex_trylock(&mtx->mutex, NULL))
49 			cond_resched();
50 	} else {
51 		ww_mutex_lock(&mtx->mutex, NULL);
52 	}
53 	complete(&mtx->done);
54 	ww_mutex_unlock(&mtx->mutex);
55 }
56 
57 static int __test_mutex(unsigned int flags)
58 {
59 #define TIMEOUT (HZ / 16)
60 	struct test_mutex mtx;
61 	struct ww_acquire_ctx ctx;
62 	int ret;
63 
64 	ww_mutex_init(&mtx.mutex, &ww_class);
65 	ww_acquire_init(&ctx, &ww_class);
66 
67 	INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
68 	init_completion(&mtx.ready);
69 	init_completion(&mtx.go);
70 	init_completion(&mtx.done);
71 	mtx.flags = flags;
72 
73 	schedule_work(&mtx.work);
74 
75 	wait_for_completion(&mtx.ready);
76 	ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
77 	complete(&mtx.go);
78 	if (flags & TEST_MTX_SPIN) {
79 		unsigned long timeout = jiffies + TIMEOUT;
80 
81 		ret = 0;
82 		do {
83 			if (completion_done(&mtx.done)) {
84 				ret = -EINVAL;
85 				break;
86 			}
87 			cond_resched();
88 		} while (time_before(jiffies, timeout));
89 	} else {
90 		ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
91 	}
92 	ww_mutex_unlock(&mtx.mutex);
93 	ww_acquire_fini(&ctx);
94 
95 	if (ret) {
96 		pr_err("%s(flags=%x): mutual exclusion failure\n",
97 		       __func__, flags);
98 		ret = -EINVAL;
99 	}
100 
101 	flush_work(&mtx.work);
102 	destroy_work_on_stack(&mtx.work);
103 	return ret;
104 #undef TIMEOUT
105 }
106 
107 static int test_mutex(void)
108 {
109 	int ret;
110 	int i;
111 
112 	for (i = 0; i < __TEST_MTX_LAST; i++) {
113 		ret = __test_mutex(i);
114 		if (ret)
115 			return ret;
116 	}
117 
118 	return 0;
119 }
120 
121 static int test_aa(bool trylock)
122 {
123 	struct ww_mutex mutex;
124 	struct ww_acquire_ctx ctx;
125 	int ret;
126 	const char *from = trylock ? "trylock" : "lock";
127 
128 	ww_mutex_init(&mutex, &ww_class);
129 	ww_acquire_init(&ctx, &ww_class);
130 
131 	if (!trylock) {
132 		ret = ww_mutex_lock(&mutex, &ctx);
133 		if (ret) {
134 			pr_err("%s: initial lock failed!\n", __func__);
135 			goto out;
136 		}
137 	} else {
138 		ret = !ww_mutex_trylock(&mutex, &ctx);
139 		if (ret) {
140 			pr_err("%s: initial trylock failed!\n", __func__);
141 			goto out;
142 		}
143 	}
144 
145 	if (ww_mutex_trylock(&mutex, NULL))  {
146 		pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
147 		ww_mutex_unlock(&mutex);
148 		ret = -EINVAL;
149 		goto out;
150 	}
151 
152 	if (ww_mutex_trylock(&mutex, &ctx))  {
153 		pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
154 		ww_mutex_unlock(&mutex);
155 		ret = -EINVAL;
156 		goto out;
157 	}
158 
159 	ret = ww_mutex_lock(&mutex, &ctx);
160 	if (ret != -EALREADY) {
161 		pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
162 		       __func__, ret, from);
163 		if (!ret)
164 			ww_mutex_unlock(&mutex);
165 		ret = -EINVAL;
166 		goto out;
167 	}
168 
169 	ww_mutex_unlock(&mutex);
170 	ret = 0;
171 out:
172 	ww_acquire_fini(&ctx);
173 	return ret;
174 }
175 
176 struct test_abba {
177 	struct work_struct work;
178 	struct ww_mutex a_mutex;
179 	struct ww_mutex b_mutex;
180 	struct completion a_ready;
181 	struct completion b_ready;
182 	bool resolve, trylock;
183 	int result;
184 };
185 
186 static void test_abba_work(struct work_struct *work)
187 {
188 	struct test_abba *abba = container_of(work, typeof(*abba), work);
189 	struct ww_acquire_ctx ctx;
190 	int err;
191 
192 	ww_acquire_init_noinject(&ctx, &ww_class);
193 	if (!abba->trylock)
194 		ww_mutex_lock(&abba->b_mutex, &ctx);
195 	else
196 		WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
197 
198 	WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
199 
200 	complete(&abba->b_ready);
201 	wait_for_completion(&abba->a_ready);
202 
203 	err = ww_mutex_lock(&abba->a_mutex, &ctx);
204 	if (abba->resolve && err == -EDEADLK) {
205 		ww_mutex_unlock(&abba->b_mutex);
206 		ww_mutex_lock_slow(&abba->a_mutex, &ctx);
207 		err = ww_mutex_lock(&abba->b_mutex, &ctx);
208 	}
209 
210 	if (!err)
211 		ww_mutex_unlock(&abba->a_mutex);
212 	ww_mutex_unlock(&abba->b_mutex);
213 	ww_acquire_fini(&ctx);
214 
215 	abba->result = err;
216 }
217 
218 static int test_abba(bool trylock, bool resolve)
219 {
220 	struct test_abba abba;
221 	struct ww_acquire_ctx ctx;
222 	int err, ret;
223 
224 	ww_mutex_init(&abba.a_mutex, &ww_class);
225 	ww_mutex_init(&abba.b_mutex, &ww_class);
226 	INIT_WORK_ONSTACK(&abba.work, test_abba_work);
227 	init_completion(&abba.a_ready);
228 	init_completion(&abba.b_ready);
229 	abba.trylock = trylock;
230 	abba.resolve = resolve;
231 
232 	schedule_work(&abba.work);
233 
234 	ww_acquire_init_noinject(&ctx, &ww_class);
235 	if (!trylock)
236 		ww_mutex_lock(&abba.a_mutex, &ctx);
237 	else
238 		WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
239 
240 	WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
241 
242 	complete(&abba.a_ready);
243 	wait_for_completion(&abba.b_ready);
244 
245 	err = ww_mutex_lock(&abba.b_mutex, &ctx);
246 	if (resolve && err == -EDEADLK) {
247 		ww_mutex_unlock(&abba.a_mutex);
248 		ww_mutex_lock_slow(&abba.b_mutex, &ctx);
249 		err = ww_mutex_lock(&abba.a_mutex, &ctx);
250 	}
251 
252 	if (!err)
253 		ww_mutex_unlock(&abba.b_mutex);
254 	ww_mutex_unlock(&abba.a_mutex);
255 	ww_acquire_fini(&ctx);
256 
257 	flush_work(&abba.work);
258 	destroy_work_on_stack(&abba.work);
259 
260 	ret = 0;
261 	if (resolve) {
262 		if (err || abba.result) {
263 			pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
264 			       __func__, err, abba.result);
265 			ret = -EINVAL;
266 		}
267 	} else {
268 		if (err != -EDEADLK && abba.result != -EDEADLK) {
269 			pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
270 			       __func__, err, abba.result);
271 			ret = -EINVAL;
272 		}
273 	}
274 	return ret;
275 }
276 
277 struct test_cycle {
278 	struct work_struct work;
279 	struct ww_mutex a_mutex;
280 	struct ww_mutex *b_mutex;
281 	struct completion *a_signal;
282 	struct completion b_signal;
283 	int result;
284 };
285 
286 static void test_cycle_work(struct work_struct *work)
287 {
288 	struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
289 	struct ww_acquire_ctx ctx;
290 	int err, erra = 0;
291 
292 	ww_acquire_init_noinject(&ctx, &ww_class);
293 	ww_mutex_lock(&cycle->a_mutex, &ctx);
294 
295 	complete(cycle->a_signal);
296 	wait_for_completion(&cycle->b_signal);
297 
298 	err = ww_mutex_lock(cycle->b_mutex, &ctx);
299 	if (err == -EDEADLK) {
300 		err = 0;
301 		ww_mutex_unlock(&cycle->a_mutex);
302 		ww_mutex_lock_slow(cycle->b_mutex, &ctx);
303 		erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
304 	}
305 
306 	if (!err)
307 		ww_mutex_unlock(cycle->b_mutex);
308 	if (!erra)
309 		ww_mutex_unlock(&cycle->a_mutex);
310 	ww_acquire_fini(&ctx);
311 
312 	cycle->result = err ?: erra;
313 }
314 
315 static int __test_cycle(unsigned int nthreads)
316 {
317 	struct test_cycle *cycles;
318 	unsigned int n, last = nthreads - 1;
319 	int ret;
320 
321 	cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
322 	if (!cycles)
323 		return -ENOMEM;
324 
325 	for (n = 0; n < nthreads; n++) {
326 		struct test_cycle *cycle = &cycles[n];
327 
328 		ww_mutex_init(&cycle->a_mutex, &ww_class);
329 		if (n == last)
330 			cycle->b_mutex = &cycles[0].a_mutex;
331 		else
332 			cycle->b_mutex = &cycles[n + 1].a_mutex;
333 
334 		if (n == 0)
335 			cycle->a_signal = &cycles[last].b_signal;
336 		else
337 			cycle->a_signal = &cycles[n - 1].b_signal;
338 		init_completion(&cycle->b_signal);
339 
340 		INIT_WORK(&cycle->work, test_cycle_work);
341 		cycle->result = 0;
342 	}
343 
344 	for (n = 0; n < nthreads; n++)
345 		queue_work(wq, &cycles[n].work);
346 
347 	flush_workqueue(wq);
348 
349 	ret = 0;
350 	for (n = 0; n < nthreads; n++) {
351 		struct test_cycle *cycle = &cycles[n];
352 
353 		if (!cycle->result)
354 			continue;
355 
356 		pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
357 		       n, nthreads, cycle->result);
358 		ret = -EINVAL;
359 		break;
360 	}
361 
362 	for (n = 0; n < nthreads; n++)
363 		ww_mutex_destroy(&cycles[n].a_mutex);
364 	kfree(cycles);
365 	return ret;
366 }
367 
368 static int test_cycle(unsigned int ncpus)
369 {
370 	unsigned int n;
371 	int ret;
372 
373 	for (n = 2; n <= ncpus + 1; n++) {
374 		ret = __test_cycle(n);
375 		if (ret)
376 			return ret;
377 	}
378 
379 	return 0;
380 }
381 
382 struct stress {
383 	struct work_struct work;
384 	struct ww_mutex *locks;
385 	unsigned long timeout;
386 	int nlocks;
387 };
388 
389 struct rnd_state rng;
390 DEFINE_SPINLOCK(rng_lock);
391 
392 static inline u32 prandom_u32_below(u32 ceil)
393 {
394 	u32 ret;
395 
396 	spin_lock(&rng_lock);
397 	ret = prandom_u32_state(&rng) % ceil;
398 	spin_unlock(&rng_lock);
399 	return ret;
400 }
401 
402 static int *get_random_order(int count)
403 {
404 	int *order;
405 	int n, r, tmp;
406 
407 	order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
408 	if (!order)
409 		return order;
410 
411 	for (n = 0; n < count; n++)
412 		order[n] = n;
413 
414 	for (n = count - 1; n > 1; n--) {
415 		r = prandom_u32_below(n + 1);
416 		if (r != n) {
417 			tmp = order[n];
418 			order[n] = order[r];
419 			order[r] = tmp;
420 		}
421 	}
422 
423 	return order;
424 }
425 
426 static void dummy_load(struct stress *stress)
427 {
428 	usleep_range(1000, 2000);
429 }
430 
431 static void stress_inorder_work(struct work_struct *work)
432 {
433 	struct stress *stress = container_of(work, typeof(*stress), work);
434 	const int nlocks = stress->nlocks;
435 	struct ww_mutex *locks = stress->locks;
436 	struct ww_acquire_ctx ctx;
437 	int *order;
438 
439 	order = get_random_order(nlocks);
440 	if (!order)
441 		return;
442 
443 	do {
444 		int contended = -1;
445 		int n, err;
446 
447 		ww_acquire_init(&ctx, &ww_class);
448 retry:
449 		err = 0;
450 		for (n = 0; n < nlocks; n++) {
451 			if (n == contended)
452 				continue;
453 
454 			err = ww_mutex_lock(&locks[order[n]], &ctx);
455 			if (err < 0)
456 				break;
457 		}
458 		if (!err)
459 			dummy_load(stress);
460 
461 		if (contended > n)
462 			ww_mutex_unlock(&locks[order[contended]]);
463 		contended = n;
464 		while (n--)
465 			ww_mutex_unlock(&locks[order[n]]);
466 
467 		if (err == -EDEADLK) {
468 			if (!time_after(jiffies, stress->timeout)) {
469 				ww_mutex_lock_slow(&locks[order[contended]], &ctx);
470 				goto retry;
471 			}
472 		}
473 
474 		ww_acquire_fini(&ctx);
475 		if (err) {
476 			pr_err_once("stress (%s) failed with %d\n",
477 				    __func__, err);
478 			break;
479 		}
480 	} while (!time_after(jiffies, stress->timeout));
481 
482 	kfree(order);
483 }
484 
485 struct reorder_lock {
486 	struct list_head link;
487 	struct ww_mutex *lock;
488 };
489 
490 static void stress_reorder_work(struct work_struct *work)
491 {
492 	struct stress *stress = container_of(work, typeof(*stress), work);
493 	LIST_HEAD(locks);
494 	struct ww_acquire_ctx ctx;
495 	struct reorder_lock *ll, *ln;
496 	int *order;
497 	int n, err;
498 
499 	order = get_random_order(stress->nlocks);
500 	if (!order)
501 		return;
502 
503 	for (n = 0; n < stress->nlocks; n++) {
504 		ll = kmalloc(sizeof(*ll), GFP_KERNEL);
505 		if (!ll)
506 			goto out;
507 
508 		ll->lock = &stress->locks[order[n]];
509 		list_add(&ll->link, &locks);
510 	}
511 	kfree(order);
512 	order = NULL;
513 
514 	do {
515 		ww_acquire_init(&ctx, &ww_class);
516 
517 		list_for_each_entry(ll, &locks, link) {
518 			err = ww_mutex_lock(ll->lock, &ctx);
519 			if (!err)
520 				continue;
521 
522 			ln = ll;
523 			list_for_each_entry_continue_reverse(ln, &locks, link)
524 				ww_mutex_unlock(ln->lock);
525 
526 			if (err != -EDEADLK) {
527 				pr_err_once("stress (%s) failed with %d\n",
528 					    __func__, err);
529 				break;
530 			}
531 
532 			ww_mutex_lock_slow(ll->lock, &ctx);
533 			list_move(&ll->link, &locks); /* restarts iteration */
534 		}
535 
536 		dummy_load(stress);
537 		list_for_each_entry(ll, &locks, link)
538 			ww_mutex_unlock(ll->lock);
539 
540 		ww_acquire_fini(&ctx);
541 	} while (!time_after(jiffies, stress->timeout));
542 
543 out:
544 	list_for_each_entry_safe(ll, ln, &locks, link)
545 		kfree(ll);
546 	kfree(order);
547 }
548 
549 static void stress_one_work(struct work_struct *work)
550 {
551 	struct stress *stress = container_of(work, typeof(*stress), work);
552 	const int nlocks = stress->nlocks;
553 	struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
554 	int err;
555 
556 	do {
557 		err = ww_mutex_lock(lock, NULL);
558 		if (!err) {
559 			dummy_load(stress);
560 			ww_mutex_unlock(lock);
561 		} else {
562 			pr_err_once("stress (%s) failed with %d\n",
563 				    __func__, err);
564 			break;
565 		}
566 	} while (!time_after(jiffies, stress->timeout));
567 }
568 
569 #define STRESS_INORDER BIT(0)
570 #define STRESS_REORDER BIT(1)
571 #define STRESS_ONE BIT(2)
572 #define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
573 
574 static int stress(int nlocks, int nthreads, unsigned int flags)
575 {
576 	struct ww_mutex *locks;
577 	struct stress *stress_array;
578 	int n, count;
579 
580 	locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
581 	if (!locks)
582 		return -ENOMEM;
583 
584 	stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
585 				     GFP_KERNEL);
586 	if (!stress_array) {
587 		kfree(locks);
588 		return -ENOMEM;
589 	}
590 
591 	for (n = 0; n < nlocks; n++)
592 		ww_mutex_init(&locks[n], &ww_class);
593 
594 	count = 0;
595 	for (n = 0; nthreads; n++) {
596 		struct stress *stress;
597 		void (*fn)(struct work_struct *work);
598 
599 		fn = NULL;
600 		switch (n & 3) {
601 		case 0:
602 			if (flags & STRESS_INORDER)
603 				fn = stress_inorder_work;
604 			break;
605 		case 1:
606 			if (flags & STRESS_REORDER)
607 				fn = stress_reorder_work;
608 			break;
609 		case 2:
610 			if (flags & STRESS_ONE)
611 				fn = stress_one_work;
612 			break;
613 		}
614 
615 		if (!fn)
616 			continue;
617 
618 		stress = &stress_array[count++];
619 
620 		INIT_WORK(&stress->work, fn);
621 		stress->locks = locks;
622 		stress->nlocks = nlocks;
623 		stress->timeout = jiffies + 2*HZ;
624 
625 		queue_work(wq, &stress->work);
626 		nthreads--;
627 	}
628 
629 	flush_workqueue(wq);
630 
631 	for (n = 0; n < nlocks; n++)
632 		ww_mutex_destroy(&locks[n]);
633 	kfree(stress_array);
634 	kfree(locks);
635 
636 	return 0;
637 }
638 
639 static int __init test_ww_mutex_init(void)
640 {
641 	int ncpus = num_online_cpus();
642 	int ret, i;
643 
644 	printk(KERN_INFO "Beginning ww mutex selftests\n");
645 
646 	prandom_seed_state(&rng, get_random_u64());
647 
648 	wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
649 	if (!wq)
650 		return -ENOMEM;
651 
652 	ret = test_mutex();
653 	if (ret)
654 		return ret;
655 
656 	ret = test_aa(false);
657 	if (ret)
658 		return ret;
659 
660 	ret = test_aa(true);
661 	if (ret)
662 		return ret;
663 
664 	for (i = 0; i < 4; i++) {
665 		ret = test_abba(i & 1, i & 2);
666 		if (ret)
667 			return ret;
668 	}
669 
670 	ret = test_cycle(ncpus);
671 	if (ret)
672 		return ret;
673 
674 	ret = stress(16, 2*ncpus, STRESS_INORDER);
675 	if (ret)
676 		return ret;
677 
678 	ret = stress(16, 2*ncpus, STRESS_REORDER);
679 	if (ret)
680 		return ret;
681 
682 	ret = stress(2047, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
683 	if (ret)
684 		return ret;
685 
686 	printk(KERN_INFO "All ww mutex selftests passed\n");
687 	return 0;
688 }
689 
690 static void __exit test_ww_mutex_exit(void)
691 {
692 	destroy_workqueue(wq);
693 }
694 
695 module_init(test_ww_mutex_init);
696 module_exit(test_ww_mutex_exit);
697 
698 MODULE_LICENSE("GPL");
699 MODULE_AUTHOR("Intel Corporation");
700