1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #include "lock_events.h" 32 33 /* 34 * The least significant 2 bits of the owner value has the following 35 * meanings when set. 36 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 37 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 38 * 39 * When the rwsem is reader-owned and a spinning writer has timed out, 40 * the nonspinnable bit will be set to disable optimistic spinning. 41 42 * When a writer acquires a rwsem, it puts its task_struct pointer 43 * into the owner field. It is cleared after an unlock. 44 * 45 * When a reader acquires a rwsem, it will also puts its task_struct 46 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 47 * On unlock, the owner field will largely be left untouched. So 48 * for a free or reader-owned rwsem, the owner value may contain 49 * information about the last reader that acquires the rwsem. 50 * 51 * That information may be helpful in debugging cases where the system 52 * seems to hang on a reader owned rwsem especially if only one reader 53 * is involved. Ideally we would like to track all the readers that own 54 * a rwsem, but the overhead is simply too big. 55 * 56 * A fast path reader optimistic lock stealing is supported when the rwsem 57 * is previously owned by a writer and the following conditions are met: 58 * - OSQ is empty 59 * - rwsem is not currently writer owned 60 * - the handoff isn't set. 61 */ 62 #define RWSEM_READER_OWNED (1UL << 0) 63 #define RWSEM_NONSPINNABLE (1UL << 1) 64 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 65 66 #ifdef CONFIG_DEBUG_RWSEMS 67 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 68 if (!debug_locks_silent && \ 69 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 70 #c, atomic_long_read(&(sem)->count), \ 71 (unsigned long) sem->magic, \ 72 atomic_long_read(&(sem)->owner), (long)current, \ 73 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 74 debug_locks_off(); \ 75 } while (0) 76 #else 77 # define DEBUG_RWSEMS_WARN_ON(c, sem) 78 #endif 79 80 /* 81 * On 64-bit architectures, the bit definitions of the count are: 82 * 83 * Bit 0 - writer locked bit 84 * Bit 1 - waiters present bit 85 * Bit 2 - lock handoff bit 86 * Bits 3-7 - reserved 87 * Bits 8-62 - 55-bit reader count 88 * Bit 63 - read fail bit 89 * 90 * On 32-bit architectures, the bit definitions of the count are: 91 * 92 * Bit 0 - writer locked bit 93 * Bit 1 - waiters present bit 94 * Bit 2 - lock handoff bit 95 * Bits 3-7 - reserved 96 * Bits 8-30 - 23-bit reader count 97 * Bit 31 - read fail bit 98 * 99 * It is not likely that the most significant bit (read fail bit) will ever 100 * be set. This guard bit is still checked anyway in the down_read() fastpath 101 * just in case we need to use up more of the reader bits for other purpose 102 * in the future. 103 * 104 * atomic_long_fetch_add() is used to obtain reader lock, whereas 105 * atomic_long_cmpxchg() will be used to obtain writer lock. 106 * 107 * There are three places where the lock handoff bit may be set or cleared. 108 * 1) rwsem_mark_wake() for readers. 109 * 2) rwsem_try_write_lock() for writers. 110 * 3) Error path of rwsem_down_write_slowpath(). 111 * 112 * For all the above cases, wait_lock will be held. A writer must also 113 * be the first one in the wait_list to be eligible for setting the handoff 114 * bit. So concurrent setting/clearing of handoff bit is not possible. 115 */ 116 #define RWSEM_WRITER_LOCKED (1UL << 0) 117 #define RWSEM_FLAG_WAITERS (1UL << 1) 118 #define RWSEM_FLAG_HANDOFF (1UL << 2) 119 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 120 121 #define RWSEM_READER_SHIFT 8 122 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 123 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 124 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 125 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 126 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 127 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 128 129 /* 130 * All writes to owner are protected by WRITE_ONCE() to make sure that 131 * store tearing can't happen as optimistic spinners may read and use 132 * the owner value concurrently without lock. Read from owner, however, 133 * may not need READ_ONCE() as long as the pointer value is only used 134 * for comparison and isn't being dereferenced. 135 */ 136 static inline void rwsem_set_owner(struct rw_semaphore *sem) 137 { 138 atomic_long_set(&sem->owner, (long)current); 139 } 140 141 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 142 { 143 atomic_long_set(&sem->owner, 0); 144 } 145 146 /* 147 * Test the flags in the owner field. 148 */ 149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 150 { 151 return atomic_long_read(&sem->owner) & flags; 152 } 153 154 /* 155 * The task_struct pointer of the last owning reader will be left in 156 * the owner field. 157 * 158 * Note that the owner value just indicates the task has owned the rwsem 159 * previously, it may not be the real owner or one of the real owners 160 * anymore when that field is examined, so take it with a grain of salt. 161 * 162 * The reader non-spinnable bit is preserved. 163 */ 164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 165 struct task_struct *owner) 166 { 167 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 168 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 169 170 atomic_long_set(&sem->owner, val); 171 } 172 173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 174 { 175 __rwsem_set_reader_owned(sem, current); 176 } 177 178 /* 179 * Return true if the rwsem is owned by a reader. 180 */ 181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 182 { 183 #ifdef CONFIG_DEBUG_RWSEMS 184 /* 185 * Check the count to see if it is write-locked. 186 */ 187 long count = atomic_long_read(&sem->count); 188 189 if (count & RWSEM_WRITER_MASK) 190 return false; 191 #endif 192 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 193 } 194 195 #ifdef CONFIG_DEBUG_RWSEMS 196 /* 197 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 198 * is a task pointer in owner of a reader-owned rwsem, it will be the 199 * real owner or one of the real owners. The only exception is when the 200 * unlock is done by up_read_non_owner(). 201 */ 202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 203 { 204 unsigned long val = atomic_long_read(&sem->owner); 205 206 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 207 if (atomic_long_try_cmpxchg(&sem->owner, &val, 208 val & RWSEM_OWNER_FLAGS_MASK)) 209 return; 210 } 211 } 212 #else 213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 214 { 215 } 216 #endif 217 218 /* 219 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 220 * remains set. Otherwise, the operation will be aborted. 221 */ 222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 223 { 224 unsigned long owner = atomic_long_read(&sem->owner); 225 226 do { 227 if (!(owner & RWSEM_READER_OWNED)) 228 break; 229 if (owner & RWSEM_NONSPINNABLE) 230 break; 231 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 232 owner | RWSEM_NONSPINNABLE)); 233 } 234 235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 236 { 237 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 238 239 if (WARN_ON_ONCE(*cntp < 0)) 240 rwsem_set_nonspinnable(sem); 241 242 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 243 rwsem_set_reader_owned(sem); 244 return true; 245 } 246 247 return false; 248 } 249 250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 251 { 252 long tmp = RWSEM_UNLOCKED_VALUE; 253 254 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 255 rwsem_set_owner(sem); 256 return true; 257 } 258 259 return false; 260 } 261 262 /* 263 * Return just the real task structure pointer of the owner 264 */ 265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 266 { 267 return (struct task_struct *) 268 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 269 } 270 271 /* 272 * Return the real task structure pointer of the owner and the embedded 273 * flags in the owner. pflags must be non-NULL. 274 */ 275 static inline struct task_struct * 276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 277 { 278 unsigned long owner = atomic_long_read(&sem->owner); 279 280 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 281 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 282 } 283 284 /* 285 * Guide to the rw_semaphore's count field. 286 * 287 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 288 * by a writer. 289 * 290 * The lock is owned by readers when 291 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 292 * (2) some of the reader bits are set in count, and 293 * (3) the owner field has RWSEM_READ_OWNED bit set. 294 * 295 * Having some reader bits set is not enough to guarantee a readers owned 296 * lock as the readers may be in the process of backing out from the count 297 * and a writer has just released the lock. So another writer may steal 298 * the lock immediately after that. 299 */ 300 301 /* 302 * Initialize an rwsem: 303 */ 304 void __init_rwsem(struct rw_semaphore *sem, const char *name, 305 struct lock_class_key *key) 306 { 307 #ifdef CONFIG_DEBUG_LOCK_ALLOC 308 /* 309 * Make sure we are not reinitializing a held semaphore: 310 */ 311 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 312 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 313 #endif 314 #ifdef CONFIG_DEBUG_RWSEMS 315 sem->magic = sem; 316 #endif 317 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 318 raw_spin_lock_init(&sem->wait_lock); 319 INIT_LIST_HEAD(&sem->wait_list); 320 atomic_long_set(&sem->owner, 0L); 321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 322 osq_lock_init(&sem->osq); 323 #endif 324 } 325 EXPORT_SYMBOL(__init_rwsem); 326 327 enum rwsem_waiter_type { 328 RWSEM_WAITING_FOR_WRITE, 329 RWSEM_WAITING_FOR_READ 330 }; 331 332 struct rwsem_waiter { 333 struct list_head list; 334 struct task_struct *task; 335 enum rwsem_waiter_type type; 336 unsigned long timeout; 337 }; 338 #define rwsem_first_waiter(sem) \ 339 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 340 341 enum rwsem_wake_type { 342 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 343 RWSEM_WAKE_READERS, /* Wake readers only */ 344 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 345 }; 346 347 enum writer_wait_state { 348 WRITER_NOT_FIRST, /* Writer is not first in wait list */ 349 WRITER_FIRST, /* Writer is first in wait list */ 350 WRITER_HANDOFF /* Writer is first & handoff needed */ 351 }; 352 353 /* 354 * The typical HZ value is either 250 or 1000. So set the minimum waiting 355 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 356 * queue before initiating the handoff protocol. 357 */ 358 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 359 360 /* 361 * Magic number to batch-wakeup waiting readers, even when writers are 362 * also present in the queue. This both limits the amount of work the 363 * waking thread must do and also prevents any potential counter overflow, 364 * however unlikely. 365 */ 366 #define MAX_READERS_WAKEUP 0x100 367 368 /* 369 * handle the lock release when processes blocked on it that can now run 370 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 371 * have been set. 372 * - there must be someone on the queue 373 * - the wait_lock must be held by the caller 374 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 375 * to actually wakeup the blocked task(s) and drop the reference count, 376 * preferably when the wait_lock is released 377 * - woken process blocks are discarded from the list after having task zeroed 378 * - writers are only marked woken if downgrading is false 379 */ 380 static void rwsem_mark_wake(struct rw_semaphore *sem, 381 enum rwsem_wake_type wake_type, 382 struct wake_q_head *wake_q) 383 { 384 struct rwsem_waiter *waiter, *tmp; 385 long oldcount, woken = 0, adjustment = 0; 386 struct list_head wlist; 387 388 lockdep_assert_held(&sem->wait_lock); 389 390 /* 391 * Take a peek at the queue head waiter such that we can determine 392 * the wakeup(s) to perform. 393 */ 394 waiter = rwsem_first_waiter(sem); 395 396 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 397 if (wake_type == RWSEM_WAKE_ANY) { 398 /* 399 * Mark writer at the front of the queue for wakeup. 400 * Until the task is actually later awoken later by 401 * the caller, other writers are able to steal it. 402 * Readers, on the other hand, will block as they 403 * will notice the queued writer. 404 */ 405 wake_q_add(wake_q, waiter->task); 406 lockevent_inc(rwsem_wake_writer); 407 } 408 409 return; 410 } 411 412 /* 413 * No reader wakeup if there are too many of them already. 414 */ 415 if (unlikely(atomic_long_read(&sem->count) < 0)) 416 return; 417 418 /* 419 * Writers might steal the lock before we grant it to the next reader. 420 * We prefer to do the first reader grant before counting readers 421 * so we can bail out early if a writer stole the lock. 422 */ 423 if (wake_type != RWSEM_WAKE_READ_OWNED) { 424 struct task_struct *owner; 425 426 adjustment = RWSEM_READER_BIAS; 427 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 428 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 429 /* 430 * When we've been waiting "too" long (for writers 431 * to give up the lock), request a HANDOFF to 432 * force the issue. 433 */ 434 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 435 time_after(jiffies, waiter->timeout)) { 436 adjustment -= RWSEM_FLAG_HANDOFF; 437 lockevent_inc(rwsem_rlock_handoff); 438 } 439 440 atomic_long_add(-adjustment, &sem->count); 441 return; 442 } 443 /* 444 * Set it to reader-owned to give spinners an early 445 * indication that readers now have the lock. 446 * The reader nonspinnable bit seen at slowpath entry of 447 * the reader is copied over. 448 */ 449 owner = waiter->task; 450 __rwsem_set_reader_owned(sem, owner); 451 } 452 453 /* 454 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 455 * queue. We know that the woken will be at least 1 as we accounted 456 * for above. Note we increment the 'active part' of the count by the 457 * number of readers before waking any processes up. 458 * 459 * This is an adaptation of the phase-fair R/W locks where at the 460 * reader phase (first waiter is a reader), all readers are eligible 461 * to acquire the lock at the same time irrespective of their order 462 * in the queue. The writers acquire the lock according to their 463 * order in the queue. 464 * 465 * We have to do wakeup in 2 passes to prevent the possibility that 466 * the reader count may be decremented before it is incremented. It 467 * is because the to-be-woken waiter may not have slept yet. So it 468 * may see waiter->task got cleared, finish its critical section and 469 * do an unlock before the reader count increment. 470 * 471 * 1) Collect the read-waiters in a separate list, count them and 472 * fully increment the reader count in rwsem. 473 * 2) For each waiters in the new list, clear waiter->task and 474 * put them into wake_q to be woken up later. 475 */ 476 INIT_LIST_HEAD(&wlist); 477 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 478 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 479 continue; 480 481 woken++; 482 list_move_tail(&waiter->list, &wlist); 483 484 /* 485 * Limit # of readers that can be woken up per wakeup call. 486 */ 487 if (woken >= MAX_READERS_WAKEUP) 488 break; 489 } 490 491 adjustment = woken * RWSEM_READER_BIAS - adjustment; 492 lockevent_cond_inc(rwsem_wake_reader, woken); 493 if (list_empty(&sem->wait_list)) { 494 /* hit end of list above */ 495 adjustment -= RWSEM_FLAG_WAITERS; 496 } 497 498 /* 499 * When we've woken a reader, we no longer need to force writers 500 * to give up the lock and we can clear HANDOFF. 501 */ 502 if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF)) 503 adjustment -= RWSEM_FLAG_HANDOFF; 504 505 if (adjustment) 506 atomic_long_add(adjustment, &sem->count); 507 508 /* 2nd pass */ 509 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 510 struct task_struct *tsk; 511 512 tsk = waiter->task; 513 get_task_struct(tsk); 514 515 /* 516 * Ensure calling get_task_struct() before setting the reader 517 * waiter to nil such that rwsem_down_read_slowpath() cannot 518 * race with do_exit() by always holding a reference count 519 * to the task to wakeup. 520 */ 521 smp_store_release(&waiter->task, NULL); 522 /* 523 * Ensure issuing the wakeup (either by us or someone else) 524 * after setting the reader waiter to nil. 525 */ 526 wake_q_add_safe(wake_q, tsk); 527 } 528 } 529 530 /* 531 * This function must be called with the sem->wait_lock held to prevent 532 * race conditions between checking the rwsem wait list and setting the 533 * sem->count accordingly. 534 * 535 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff 536 * bit is set or the lock is acquired with handoff bit cleared. 537 */ 538 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 539 enum writer_wait_state wstate) 540 { 541 long count, new; 542 543 lockdep_assert_held(&sem->wait_lock); 544 545 count = atomic_long_read(&sem->count); 546 do { 547 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 548 549 if (has_handoff && wstate == WRITER_NOT_FIRST) 550 return false; 551 552 new = count; 553 554 if (count & RWSEM_LOCK_MASK) { 555 if (has_handoff || (wstate != WRITER_HANDOFF)) 556 return false; 557 558 new |= RWSEM_FLAG_HANDOFF; 559 } else { 560 new |= RWSEM_WRITER_LOCKED; 561 new &= ~RWSEM_FLAG_HANDOFF; 562 563 if (list_is_singular(&sem->wait_list)) 564 new &= ~RWSEM_FLAG_WAITERS; 565 } 566 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 567 568 /* 569 * We have either acquired the lock with handoff bit cleared or 570 * set the handoff bit. 571 */ 572 if (new & RWSEM_FLAG_HANDOFF) 573 return false; 574 575 rwsem_set_owner(sem); 576 return true; 577 } 578 579 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 580 /* 581 * Try to acquire write lock before the writer has been put on wait queue. 582 */ 583 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 584 { 585 long count = atomic_long_read(&sem->count); 586 587 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 588 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 589 count | RWSEM_WRITER_LOCKED)) { 590 rwsem_set_owner(sem); 591 lockevent_inc(rwsem_opt_lock); 592 return true; 593 } 594 } 595 return false; 596 } 597 598 static inline bool owner_on_cpu(struct task_struct *owner) 599 { 600 /* 601 * As lock holder preemption issue, we both skip spinning if 602 * task is not on cpu or its cpu is preempted 603 */ 604 return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 605 } 606 607 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 608 { 609 struct task_struct *owner; 610 unsigned long flags; 611 bool ret = true; 612 613 if (need_resched()) { 614 lockevent_inc(rwsem_opt_fail); 615 return false; 616 } 617 618 preempt_disable(); 619 rcu_read_lock(); 620 owner = rwsem_owner_flags(sem, &flags); 621 /* 622 * Don't check the read-owner as the entry may be stale. 623 */ 624 if ((flags & RWSEM_NONSPINNABLE) || 625 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 626 ret = false; 627 rcu_read_unlock(); 628 preempt_enable(); 629 630 lockevent_cond_inc(rwsem_opt_fail, !ret); 631 return ret; 632 } 633 634 /* 635 * The rwsem_spin_on_owner() function returns the following 4 values 636 * depending on the lock owner state. 637 * OWNER_NULL : owner is currently NULL 638 * OWNER_WRITER: when owner changes and is a writer 639 * OWNER_READER: when owner changes and the new owner may be a reader. 640 * OWNER_NONSPINNABLE: 641 * when optimistic spinning has to stop because either the 642 * owner stops running, is unknown, or its timeslice has 643 * been used up. 644 */ 645 enum owner_state { 646 OWNER_NULL = 1 << 0, 647 OWNER_WRITER = 1 << 1, 648 OWNER_READER = 1 << 2, 649 OWNER_NONSPINNABLE = 1 << 3, 650 }; 651 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 652 653 static inline enum owner_state 654 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 655 { 656 if (flags & RWSEM_NONSPINNABLE) 657 return OWNER_NONSPINNABLE; 658 659 if (flags & RWSEM_READER_OWNED) 660 return OWNER_READER; 661 662 return owner ? OWNER_WRITER : OWNER_NULL; 663 } 664 665 static noinline enum owner_state 666 rwsem_spin_on_owner(struct rw_semaphore *sem) 667 { 668 struct task_struct *new, *owner; 669 unsigned long flags, new_flags; 670 enum owner_state state; 671 672 owner = rwsem_owner_flags(sem, &flags); 673 state = rwsem_owner_state(owner, flags); 674 if (state != OWNER_WRITER) 675 return state; 676 677 rcu_read_lock(); 678 for (;;) { 679 /* 680 * When a waiting writer set the handoff flag, it may spin 681 * on the owner as well. Once that writer acquires the lock, 682 * we can spin on it. So we don't need to quit even when the 683 * handoff bit is set. 684 */ 685 new = rwsem_owner_flags(sem, &new_flags); 686 if ((new != owner) || (new_flags != flags)) { 687 state = rwsem_owner_state(new, new_flags); 688 break; 689 } 690 691 /* 692 * Ensure we emit the owner->on_cpu, dereference _after_ 693 * checking sem->owner still matches owner, if that fails, 694 * owner might point to free()d memory, if it still matches, 695 * the rcu_read_lock() ensures the memory stays valid. 696 */ 697 barrier(); 698 699 if (need_resched() || !owner_on_cpu(owner)) { 700 state = OWNER_NONSPINNABLE; 701 break; 702 } 703 704 cpu_relax(); 705 } 706 rcu_read_unlock(); 707 708 return state; 709 } 710 711 /* 712 * Calculate reader-owned rwsem spinning threshold for writer 713 * 714 * The more readers own the rwsem, the longer it will take for them to 715 * wind down and free the rwsem. So the empirical formula used to 716 * determine the actual spinning time limit here is: 717 * 718 * Spinning threshold = (10 + nr_readers/2)us 719 * 720 * The limit is capped to a maximum of 25us (30 readers). This is just 721 * a heuristic and is subjected to change in the future. 722 */ 723 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 724 { 725 long count = atomic_long_read(&sem->count); 726 int readers = count >> RWSEM_READER_SHIFT; 727 u64 delta; 728 729 if (readers > 30) 730 readers = 30; 731 delta = (20 + readers) * NSEC_PER_USEC / 2; 732 733 return sched_clock() + delta; 734 } 735 736 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 737 { 738 bool taken = false; 739 int prev_owner_state = OWNER_NULL; 740 int loop = 0; 741 u64 rspin_threshold = 0; 742 743 preempt_disable(); 744 745 /* sem->wait_lock should not be held when doing optimistic spinning */ 746 if (!osq_lock(&sem->osq)) 747 goto done; 748 749 /* 750 * Optimistically spin on the owner field and attempt to acquire the 751 * lock whenever the owner changes. Spinning will be stopped when: 752 * 1) the owning writer isn't running; or 753 * 2) readers own the lock and spinning time has exceeded limit. 754 */ 755 for (;;) { 756 enum owner_state owner_state; 757 758 owner_state = rwsem_spin_on_owner(sem); 759 if (!(owner_state & OWNER_SPINNABLE)) 760 break; 761 762 /* 763 * Try to acquire the lock 764 */ 765 taken = rwsem_try_write_lock_unqueued(sem); 766 767 if (taken) 768 break; 769 770 /* 771 * Time-based reader-owned rwsem optimistic spinning 772 */ 773 if (owner_state == OWNER_READER) { 774 /* 775 * Re-initialize rspin_threshold every time when 776 * the owner state changes from non-reader to reader. 777 * This allows a writer to steal the lock in between 778 * 2 reader phases and have the threshold reset at 779 * the beginning of the 2nd reader phase. 780 */ 781 if (prev_owner_state != OWNER_READER) { 782 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 783 break; 784 rspin_threshold = rwsem_rspin_threshold(sem); 785 loop = 0; 786 } 787 788 /* 789 * Check time threshold once every 16 iterations to 790 * avoid calling sched_clock() too frequently so 791 * as to reduce the average latency between the times 792 * when the lock becomes free and when the spinner 793 * is ready to do a trylock. 794 */ 795 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 796 rwsem_set_nonspinnable(sem); 797 lockevent_inc(rwsem_opt_nospin); 798 break; 799 } 800 } 801 802 /* 803 * An RT task cannot do optimistic spinning if it cannot 804 * be sure the lock holder is running or live-lock may 805 * happen if the current task and the lock holder happen 806 * to run in the same CPU. However, aborting optimistic 807 * spinning while a NULL owner is detected may miss some 808 * opportunity where spinning can continue without causing 809 * problem. 810 * 811 * There are 2 possible cases where an RT task may be able 812 * to continue spinning. 813 * 814 * 1) The lock owner is in the process of releasing the 815 * lock, sem->owner is cleared but the lock has not 816 * been released yet. 817 * 2) The lock was free and owner cleared, but another 818 * task just comes in and acquire the lock before 819 * we try to get it. The new owner may be a spinnable 820 * writer. 821 * 822 * To take advantage of two scenarios listed above, the RT 823 * task is made to retry one more time to see if it can 824 * acquire the lock or continue spinning on the new owning 825 * writer. Of course, if the time lag is long enough or the 826 * new owner is not a writer or spinnable, the RT task will 827 * quit spinning. 828 * 829 * If the owner is a writer, the need_resched() check is 830 * done inside rwsem_spin_on_owner(). If the owner is not 831 * a writer, need_resched() check needs to be done here. 832 */ 833 if (owner_state != OWNER_WRITER) { 834 if (need_resched()) 835 break; 836 if (rt_task(current) && 837 (prev_owner_state != OWNER_WRITER)) 838 break; 839 } 840 prev_owner_state = owner_state; 841 842 /* 843 * The cpu_relax() call is a compiler barrier which forces 844 * everything in this loop to be re-loaded. We don't need 845 * memory barriers as we'll eventually observe the right 846 * values at the cost of a few extra spins. 847 */ 848 cpu_relax(); 849 } 850 osq_unlock(&sem->osq); 851 done: 852 preempt_enable(); 853 lockevent_cond_inc(rwsem_opt_fail, !taken); 854 return taken; 855 } 856 857 /* 858 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 859 * only be called when the reader count reaches 0. 860 */ 861 static inline void clear_nonspinnable(struct rw_semaphore *sem) 862 { 863 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 864 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 865 } 866 867 #else 868 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 869 { 870 return false; 871 } 872 873 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 874 { 875 return false; 876 } 877 878 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 879 880 static inline int 881 rwsem_spin_on_owner(struct rw_semaphore *sem) 882 { 883 return 0; 884 } 885 #define OWNER_NULL 1 886 #endif 887 888 /* 889 * Wait for the read lock to be granted 890 */ 891 static struct rw_semaphore __sched * 892 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 893 { 894 long adjustment = -RWSEM_READER_BIAS; 895 long rcnt = (count >> RWSEM_READER_SHIFT); 896 struct rwsem_waiter waiter; 897 DEFINE_WAKE_Q(wake_q); 898 bool wake = false; 899 900 /* 901 * To prevent a constant stream of readers from starving a sleeping 902 * waiter, don't attempt optimistic lock stealing if the lock is 903 * currently owned by readers. 904 */ 905 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 906 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 907 goto queue; 908 909 /* 910 * Reader optimistic lock stealing. 911 */ 912 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 913 rwsem_set_reader_owned(sem); 914 lockevent_inc(rwsem_rlock_steal); 915 916 /* 917 * Wake up other readers in the wait queue if it is 918 * the first reader. 919 */ 920 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 921 raw_spin_lock_irq(&sem->wait_lock); 922 if (!list_empty(&sem->wait_list)) 923 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 924 &wake_q); 925 raw_spin_unlock_irq(&sem->wait_lock); 926 wake_up_q(&wake_q); 927 } 928 return sem; 929 } 930 931 queue: 932 waiter.task = current; 933 waiter.type = RWSEM_WAITING_FOR_READ; 934 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 935 936 raw_spin_lock_irq(&sem->wait_lock); 937 if (list_empty(&sem->wait_list)) { 938 /* 939 * In case the wait queue is empty and the lock isn't owned 940 * by a writer or has the handoff bit set, this reader can 941 * exit the slowpath and return immediately as its 942 * RWSEM_READER_BIAS has already been set in the count. 943 */ 944 if (!(atomic_long_read(&sem->count) & 945 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 946 /* Provide lock ACQUIRE */ 947 smp_acquire__after_ctrl_dep(); 948 raw_spin_unlock_irq(&sem->wait_lock); 949 rwsem_set_reader_owned(sem); 950 lockevent_inc(rwsem_rlock_fast); 951 return sem; 952 } 953 adjustment += RWSEM_FLAG_WAITERS; 954 } 955 list_add_tail(&waiter.list, &sem->wait_list); 956 957 /* we're now waiting on the lock, but no longer actively locking */ 958 count = atomic_long_add_return(adjustment, &sem->count); 959 960 /* 961 * If there are no active locks, wake the front queued process(es). 962 * 963 * If there are no writers and we are first in the queue, 964 * wake our own waiter to join the existing active readers ! 965 */ 966 if (!(count & RWSEM_LOCK_MASK)) { 967 clear_nonspinnable(sem); 968 wake = true; 969 } 970 if (wake || (!(count & RWSEM_WRITER_MASK) && 971 (adjustment & RWSEM_FLAG_WAITERS))) 972 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 973 974 raw_spin_unlock_irq(&sem->wait_lock); 975 wake_up_q(&wake_q); 976 977 /* wait to be given the lock */ 978 for (;;) { 979 set_current_state(state); 980 if (!smp_load_acquire(&waiter.task)) { 981 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 982 break; 983 } 984 if (signal_pending_state(state, current)) { 985 raw_spin_lock_irq(&sem->wait_lock); 986 if (waiter.task) 987 goto out_nolock; 988 raw_spin_unlock_irq(&sem->wait_lock); 989 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 990 break; 991 } 992 schedule(); 993 lockevent_inc(rwsem_sleep_reader); 994 } 995 996 __set_current_state(TASK_RUNNING); 997 lockevent_inc(rwsem_rlock); 998 return sem; 999 1000 out_nolock: 1001 list_del(&waiter.list); 1002 if (list_empty(&sem->wait_list)) { 1003 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF, 1004 &sem->count); 1005 } 1006 raw_spin_unlock_irq(&sem->wait_lock); 1007 __set_current_state(TASK_RUNNING); 1008 lockevent_inc(rwsem_rlock_fail); 1009 return ERR_PTR(-EINTR); 1010 } 1011 1012 /* 1013 * Wait until we successfully acquire the write lock 1014 */ 1015 static struct rw_semaphore * 1016 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1017 { 1018 long count; 1019 enum writer_wait_state wstate; 1020 struct rwsem_waiter waiter; 1021 struct rw_semaphore *ret = sem; 1022 DEFINE_WAKE_Q(wake_q); 1023 1024 /* do optimistic spinning and steal lock if possible */ 1025 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1026 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1027 return sem; 1028 } 1029 1030 /* 1031 * Optimistic spinning failed, proceed to the slowpath 1032 * and block until we can acquire the sem. 1033 */ 1034 waiter.task = current; 1035 waiter.type = RWSEM_WAITING_FOR_WRITE; 1036 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1037 1038 raw_spin_lock_irq(&sem->wait_lock); 1039 1040 /* account for this before adding a new element to the list */ 1041 wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST; 1042 1043 list_add_tail(&waiter.list, &sem->wait_list); 1044 1045 /* we're now waiting on the lock */ 1046 if (wstate == WRITER_NOT_FIRST) { 1047 count = atomic_long_read(&sem->count); 1048 1049 /* 1050 * If there were already threads queued before us and: 1051 * 1) there are no active locks, wake the front 1052 * queued process(es) as the handoff bit might be set. 1053 * 2) there are no active writers and some readers, the lock 1054 * must be read owned; so we try to wake any read lock 1055 * waiters that were queued ahead of us. 1056 */ 1057 if (count & RWSEM_WRITER_MASK) 1058 goto wait; 1059 1060 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1061 ? RWSEM_WAKE_READERS 1062 : RWSEM_WAKE_ANY, &wake_q); 1063 1064 if (!wake_q_empty(&wake_q)) { 1065 /* 1066 * We want to minimize wait_lock hold time especially 1067 * when a large number of readers are to be woken up. 1068 */ 1069 raw_spin_unlock_irq(&sem->wait_lock); 1070 wake_up_q(&wake_q); 1071 wake_q_init(&wake_q); /* Used again, reinit */ 1072 raw_spin_lock_irq(&sem->wait_lock); 1073 } 1074 } else { 1075 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1076 } 1077 1078 wait: 1079 /* wait until we successfully acquire the lock */ 1080 set_current_state(state); 1081 for (;;) { 1082 if (rwsem_try_write_lock(sem, wstate)) { 1083 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1084 break; 1085 } 1086 1087 raw_spin_unlock_irq(&sem->wait_lock); 1088 1089 /* 1090 * After setting the handoff bit and failing to acquire 1091 * the lock, attempt to spin on owner to accelerate lock 1092 * transfer. If the previous owner is a on-cpu writer and it 1093 * has just released the lock, OWNER_NULL will be returned. 1094 * In this case, we attempt to acquire the lock again 1095 * without sleeping. 1096 */ 1097 if (wstate == WRITER_HANDOFF && 1098 rwsem_spin_on_owner(sem) == OWNER_NULL) 1099 goto trylock_again; 1100 1101 /* Block until there are no active lockers. */ 1102 for (;;) { 1103 if (signal_pending_state(state, current)) 1104 goto out_nolock; 1105 1106 schedule(); 1107 lockevent_inc(rwsem_sleep_writer); 1108 set_current_state(state); 1109 /* 1110 * If HANDOFF bit is set, unconditionally do 1111 * a trylock. 1112 */ 1113 if (wstate == WRITER_HANDOFF) 1114 break; 1115 1116 if ((wstate == WRITER_NOT_FIRST) && 1117 (rwsem_first_waiter(sem) == &waiter)) 1118 wstate = WRITER_FIRST; 1119 1120 count = atomic_long_read(&sem->count); 1121 if (!(count & RWSEM_LOCK_MASK)) 1122 break; 1123 1124 /* 1125 * The setting of the handoff bit is deferred 1126 * until rwsem_try_write_lock() is called. 1127 */ 1128 if ((wstate == WRITER_FIRST) && (rt_task(current) || 1129 time_after(jiffies, waiter.timeout))) { 1130 wstate = WRITER_HANDOFF; 1131 lockevent_inc(rwsem_wlock_handoff); 1132 break; 1133 } 1134 } 1135 trylock_again: 1136 raw_spin_lock_irq(&sem->wait_lock); 1137 } 1138 __set_current_state(TASK_RUNNING); 1139 list_del(&waiter.list); 1140 raw_spin_unlock_irq(&sem->wait_lock); 1141 lockevent_inc(rwsem_wlock); 1142 1143 return ret; 1144 1145 out_nolock: 1146 __set_current_state(TASK_RUNNING); 1147 raw_spin_lock_irq(&sem->wait_lock); 1148 list_del(&waiter.list); 1149 1150 if (unlikely(wstate == WRITER_HANDOFF)) 1151 atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count); 1152 1153 if (list_empty(&sem->wait_list)) 1154 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); 1155 else 1156 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1157 raw_spin_unlock_irq(&sem->wait_lock); 1158 wake_up_q(&wake_q); 1159 lockevent_inc(rwsem_wlock_fail); 1160 1161 return ERR_PTR(-EINTR); 1162 } 1163 1164 /* 1165 * handle waking up a waiter on the semaphore 1166 * - up_read/up_write has decremented the active part of count if we come here 1167 */ 1168 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count) 1169 { 1170 unsigned long flags; 1171 DEFINE_WAKE_Q(wake_q); 1172 1173 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1174 1175 if (!list_empty(&sem->wait_list)) 1176 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1177 1178 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1179 wake_up_q(&wake_q); 1180 1181 return sem; 1182 } 1183 1184 /* 1185 * downgrade a write lock into a read lock 1186 * - caller incremented waiting part of count and discovered it still negative 1187 * - just wake up any readers at the front of the queue 1188 */ 1189 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1190 { 1191 unsigned long flags; 1192 DEFINE_WAKE_Q(wake_q); 1193 1194 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1195 1196 if (!list_empty(&sem->wait_list)) 1197 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1198 1199 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1200 wake_up_q(&wake_q); 1201 1202 return sem; 1203 } 1204 1205 /* 1206 * lock for reading 1207 */ 1208 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1209 { 1210 long count; 1211 1212 if (!rwsem_read_trylock(sem, &count)) { 1213 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1214 return -EINTR; 1215 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1216 } 1217 return 0; 1218 } 1219 1220 static inline void __down_read(struct rw_semaphore *sem) 1221 { 1222 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1223 } 1224 1225 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1226 { 1227 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1228 } 1229 1230 static inline int __down_read_killable(struct rw_semaphore *sem) 1231 { 1232 return __down_read_common(sem, TASK_KILLABLE); 1233 } 1234 1235 static inline int __down_read_trylock(struct rw_semaphore *sem) 1236 { 1237 long tmp; 1238 1239 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1240 1241 /* 1242 * Optimize for the case when the rwsem is not locked at all. 1243 */ 1244 tmp = RWSEM_UNLOCKED_VALUE; 1245 do { 1246 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1247 tmp + RWSEM_READER_BIAS)) { 1248 rwsem_set_reader_owned(sem); 1249 return 1; 1250 } 1251 } while (!(tmp & RWSEM_READ_FAILED_MASK)); 1252 return 0; 1253 } 1254 1255 /* 1256 * lock for writing 1257 */ 1258 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1259 { 1260 if (unlikely(!rwsem_write_trylock(sem))) { 1261 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1262 return -EINTR; 1263 } 1264 1265 return 0; 1266 } 1267 1268 static inline void __down_write(struct rw_semaphore *sem) 1269 { 1270 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1271 } 1272 1273 static inline int __down_write_killable(struct rw_semaphore *sem) 1274 { 1275 return __down_write_common(sem, TASK_KILLABLE); 1276 } 1277 1278 static inline int __down_write_trylock(struct rw_semaphore *sem) 1279 { 1280 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1281 return rwsem_write_trylock(sem); 1282 } 1283 1284 /* 1285 * unlock after reading 1286 */ 1287 static inline void __up_read(struct rw_semaphore *sem) 1288 { 1289 long tmp; 1290 1291 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1292 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1293 1294 rwsem_clear_reader_owned(sem); 1295 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1296 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1297 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1298 RWSEM_FLAG_WAITERS)) { 1299 clear_nonspinnable(sem); 1300 rwsem_wake(sem, tmp); 1301 } 1302 } 1303 1304 /* 1305 * unlock after writing 1306 */ 1307 static inline void __up_write(struct rw_semaphore *sem) 1308 { 1309 long tmp; 1310 1311 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1312 /* 1313 * sem->owner may differ from current if the ownership is transferred 1314 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1315 */ 1316 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1317 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1318 1319 rwsem_clear_owner(sem); 1320 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1321 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1322 rwsem_wake(sem, tmp); 1323 } 1324 1325 /* 1326 * downgrade write lock to read lock 1327 */ 1328 static inline void __downgrade_write(struct rw_semaphore *sem) 1329 { 1330 long tmp; 1331 1332 /* 1333 * When downgrading from exclusive to shared ownership, 1334 * anything inside the write-locked region cannot leak 1335 * into the read side. In contrast, anything in the 1336 * read-locked region is ok to be re-ordered into the 1337 * write side. As such, rely on RELEASE semantics. 1338 */ 1339 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1340 tmp = atomic_long_fetch_add_release( 1341 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1342 rwsem_set_reader_owned(sem); 1343 if (tmp & RWSEM_FLAG_WAITERS) 1344 rwsem_downgrade_wake(sem); 1345 } 1346 1347 /* 1348 * lock for reading 1349 */ 1350 void __sched down_read(struct rw_semaphore *sem) 1351 { 1352 might_sleep(); 1353 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1354 1355 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1356 } 1357 EXPORT_SYMBOL(down_read); 1358 1359 int __sched down_read_interruptible(struct rw_semaphore *sem) 1360 { 1361 might_sleep(); 1362 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1363 1364 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1365 rwsem_release(&sem->dep_map, _RET_IP_); 1366 return -EINTR; 1367 } 1368 1369 return 0; 1370 } 1371 EXPORT_SYMBOL(down_read_interruptible); 1372 1373 int __sched down_read_killable(struct rw_semaphore *sem) 1374 { 1375 might_sleep(); 1376 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1377 1378 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1379 rwsem_release(&sem->dep_map, _RET_IP_); 1380 return -EINTR; 1381 } 1382 1383 return 0; 1384 } 1385 EXPORT_SYMBOL(down_read_killable); 1386 1387 /* 1388 * trylock for reading -- returns 1 if successful, 0 if contention 1389 */ 1390 int down_read_trylock(struct rw_semaphore *sem) 1391 { 1392 int ret = __down_read_trylock(sem); 1393 1394 if (ret == 1) 1395 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1396 return ret; 1397 } 1398 EXPORT_SYMBOL(down_read_trylock); 1399 1400 /* 1401 * lock for writing 1402 */ 1403 void __sched down_write(struct rw_semaphore *sem) 1404 { 1405 might_sleep(); 1406 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1407 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1408 } 1409 EXPORT_SYMBOL(down_write); 1410 1411 /* 1412 * lock for writing 1413 */ 1414 int __sched down_write_killable(struct rw_semaphore *sem) 1415 { 1416 might_sleep(); 1417 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1418 1419 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1420 __down_write_killable)) { 1421 rwsem_release(&sem->dep_map, _RET_IP_); 1422 return -EINTR; 1423 } 1424 1425 return 0; 1426 } 1427 EXPORT_SYMBOL(down_write_killable); 1428 1429 /* 1430 * trylock for writing -- returns 1 if successful, 0 if contention 1431 */ 1432 int down_write_trylock(struct rw_semaphore *sem) 1433 { 1434 int ret = __down_write_trylock(sem); 1435 1436 if (ret == 1) 1437 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1438 1439 return ret; 1440 } 1441 EXPORT_SYMBOL(down_write_trylock); 1442 1443 /* 1444 * release a read lock 1445 */ 1446 void up_read(struct rw_semaphore *sem) 1447 { 1448 rwsem_release(&sem->dep_map, _RET_IP_); 1449 __up_read(sem); 1450 } 1451 EXPORT_SYMBOL(up_read); 1452 1453 /* 1454 * release a write lock 1455 */ 1456 void up_write(struct rw_semaphore *sem) 1457 { 1458 rwsem_release(&sem->dep_map, _RET_IP_); 1459 __up_write(sem); 1460 } 1461 EXPORT_SYMBOL(up_write); 1462 1463 /* 1464 * downgrade write lock to read lock 1465 */ 1466 void downgrade_write(struct rw_semaphore *sem) 1467 { 1468 lock_downgrade(&sem->dep_map, _RET_IP_); 1469 __downgrade_write(sem); 1470 } 1471 EXPORT_SYMBOL(downgrade_write); 1472 1473 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1474 1475 void down_read_nested(struct rw_semaphore *sem, int subclass) 1476 { 1477 might_sleep(); 1478 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1479 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1480 } 1481 EXPORT_SYMBOL(down_read_nested); 1482 1483 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1484 { 1485 might_sleep(); 1486 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1487 1488 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1489 rwsem_release(&sem->dep_map, _RET_IP_); 1490 return -EINTR; 1491 } 1492 1493 return 0; 1494 } 1495 EXPORT_SYMBOL(down_read_killable_nested); 1496 1497 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1498 { 1499 might_sleep(); 1500 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1501 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1502 } 1503 EXPORT_SYMBOL(_down_write_nest_lock); 1504 1505 void down_read_non_owner(struct rw_semaphore *sem) 1506 { 1507 might_sleep(); 1508 __down_read(sem); 1509 __rwsem_set_reader_owned(sem, NULL); 1510 } 1511 EXPORT_SYMBOL(down_read_non_owner); 1512 1513 void down_write_nested(struct rw_semaphore *sem, int subclass) 1514 { 1515 might_sleep(); 1516 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1517 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1518 } 1519 EXPORT_SYMBOL(down_write_nested); 1520 1521 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1522 { 1523 might_sleep(); 1524 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1525 1526 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1527 __down_write_killable)) { 1528 rwsem_release(&sem->dep_map, _RET_IP_); 1529 return -EINTR; 1530 } 1531 1532 return 0; 1533 } 1534 EXPORT_SYMBOL(down_write_killable_nested); 1535 1536 void up_read_non_owner(struct rw_semaphore *sem) 1537 { 1538 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1539 __up_read(sem); 1540 } 1541 EXPORT_SYMBOL(up_read_non_owner); 1542 1543 #endif 1544