xref: /linux/kernel/locking/rwsem.c (revision bd4af432cc71b5fbfe4833510359a6ad3ada250d)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 
31 #include "lock_events.h"
32 
33 /*
34  * The least significant 3 bits of the owner value has the following
35  * meanings when set.
36  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
37  *  - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
38  *  - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
39  *
40  * When the rwsem is either owned by an anonymous writer, or it is
41  * reader-owned, but a spinning writer has timed out, both nonspinnable
42  * bits will be set to disable optimistic spinning by readers and writers.
43  * In the later case, the last unlocking reader should then check the
44  * writer nonspinnable bit and clear it only to give writers preference
45  * to acquire the lock via optimistic spinning, but not readers. Similar
46  * action is also done in the reader slowpath.
47 
48  * When a writer acquires a rwsem, it puts its task_struct pointer
49  * into the owner field. It is cleared after an unlock.
50  *
51  * When a reader acquires a rwsem, it will also puts its task_struct
52  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
53  * On unlock, the owner field will largely be left untouched. So
54  * for a free or reader-owned rwsem, the owner value may contain
55  * information about the last reader that acquires the rwsem.
56  *
57  * That information may be helpful in debugging cases where the system
58  * seems to hang on a reader owned rwsem especially if only one reader
59  * is involved. Ideally we would like to track all the readers that own
60  * a rwsem, but the overhead is simply too big.
61  *
62  * Reader optimistic spinning is helpful when the reader critical section
63  * is short and there aren't that many readers around. It makes readers
64  * relatively more preferred than writers. When a writer times out spinning
65  * on a reader-owned lock and set the nospinnable bits, there are two main
66  * reasons for that.
67  *
68  *  1) The reader critical section is long, perhaps the task sleeps after
69  *     acquiring the read lock.
70  *  2) There are just too many readers contending the lock causing it to
71  *     take a while to service all of them.
72  *
73  * In the former case, long reader critical section will impede the progress
74  * of writers which is usually more important for system performance. In
75  * the later case, reader optimistic spinning tends to make the reader
76  * groups that contain readers that acquire the lock together smaller
77  * leading to more of them. That may hurt performance in some cases. In
78  * other words, the setting of nonspinnable bits indicates that reader
79  * optimistic spinning may not be helpful for those workloads that cause
80  * it.
81  *
82  * Therefore, any writers that had observed the setting of the writer
83  * nonspinnable bit for a given rwsem after they fail to acquire the lock
84  * via optimistic spinning will set the reader nonspinnable bit once they
85  * acquire the write lock. Similarly, readers that observe the setting
86  * of reader nonspinnable bit at slowpath entry will set the reader
87  * nonspinnable bits when they acquire the read lock via the wakeup path.
88  *
89  * Once the reader nonspinnable bit is on, it will only be reset when
90  * a writer is able to acquire the rwsem in the fast path or somehow a
91  * reader or writer in the slowpath doesn't observe the nonspinable bit.
92  *
93  * This is to discourage reader optmistic spinning on that particular
94  * rwsem and make writers more preferred. This adaptive disabling of reader
95  * optimistic spinning will alleviate the negative side effect of this
96  * feature.
97  */
98 #define RWSEM_READER_OWNED	(1UL << 0)
99 #define RWSEM_RD_NONSPINNABLE	(1UL << 1)
100 #define RWSEM_WR_NONSPINNABLE	(1UL << 2)
101 #define RWSEM_NONSPINNABLE	(RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
102 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
103 
104 #ifdef CONFIG_DEBUG_RWSEMS
105 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
106 	if (!debug_locks_silent &&				\
107 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
108 		#c, atomic_long_read(&(sem)->count),		\
109 		(unsigned long) sem->magic,			\
110 		atomic_long_read(&(sem)->owner), (long)current,	\
111 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
112 			debug_locks_off();			\
113 	} while (0)
114 #else
115 # define DEBUG_RWSEMS_WARN_ON(c, sem)
116 #endif
117 
118 /*
119  * On 64-bit architectures, the bit definitions of the count are:
120  *
121  * Bit  0    - writer locked bit
122  * Bit  1    - waiters present bit
123  * Bit  2    - lock handoff bit
124  * Bits 3-7  - reserved
125  * Bits 8-62 - 55-bit reader count
126  * Bit  63   - read fail bit
127  *
128  * On 32-bit architectures, the bit definitions of the count are:
129  *
130  * Bit  0    - writer locked bit
131  * Bit  1    - waiters present bit
132  * Bit  2    - lock handoff bit
133  * Bits 3-7  - reserved
134  * Bits 8-30 - 23-bit reader count
135  * Bit  31   - read fail bit
136  *
137  * It is not likely that the most significant bit (read fail bit) will ever
138  * be set. This guard bit is still checked anyway in the down_read() fastpath
139  * just in case we need to use up more of the reader bits for other purpose
140  * in the future.
141  *
142  * atomic_long_fetch_add() is used to obtain reader lock, whereas
143  * atomic_long_cmpxchg() will be used to obtain writer lock.
144  *
145  * There are three places where the lock handoff bit may be set or cleared.
146  * 1) rwsem_mark_wake() for readers.
147  * 2) rwsem_try_write_lock() for writers.
148  * 3) Error path of rwsem_down_write_slowpath().
149  *
150  * For all the above cases, wait_lock will be held. A writer must also
151  * be the first one in the wait_list to be eligible for setting the handoff
152  * bit. So concurrent setting/clearing of handoff bit is not possible.
153  */
154 #define RWSEM_WRITER_LOCKED	(1UL << 0)
155 #define RWSEM_FLAG_WAITERS	(1UL << 1)
156 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
157 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
158 
159 #define RWSEM_READER_SHIFT	8
160 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
161 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
162 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
163 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
164 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
165 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
166 
167 /*
168  * All writes to owner are protected by WRITE_ONCE() to make sure that
169  * store tearing can't happen as optimistic spinners may read and use
170  * the owner value concurrently without lock. Read from owner, however,
171  * may not need READ_ONCE() as long as the pointer value is only used
172  * for comparison and isn't being dereferenced.
173  */
174 static inline void rwsem_set_owner(struct rw_semaphore *sem)
175 {
176 	atomic_long_set(&sem->owner, (long)current);
177 }
178 
179 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
180 {
181 	atomic_long_set(&sem->owner, 0);
182 }
183 
184 /*
185  * Test the flags in the owner field.
186  */
187 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
188 {
189 	return atomic_long_read(&sem->owner) & flags;
190 }
191 
192 /*
193  * The task_struct pointer of the last owning reader will be left in
194  * the owner field.
195  *
196  * Note that the owner value just indicates the task has owned the rwsem
197  * previously, it may not be the real owner or one of the real owners
198  * anymore when that field is examined, so take it with a grain of salt.
199  *
200  * The reader non-spinnable bit is preserved.
201  */
202 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
203 					    struct task_struct *owner)
204 {
205 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
206 		(atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE);
207 
208 	atomic_long_set(&sem->owner, val);
209 }
210 
211 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
212 {
213 	__rwsem_set_reader_owned(sem, current);
214 }
215 
216 /*
217  * Return true if the rwsem is owned by a reader.
218  */
219 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
220 {
221 #ifdef CONFIG_DEBUG_RWSEMS
222 	/*
223 	 * Check the count to see if it is write-locked.
224 	 */
225 	long count = atomic_long_read(&sem->count);
226 
227 	if (count & RWSEM_WRITER_MASK)
228 		return false;
229 #endif
230 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
231 }
232 
233 #ifdef CONFIG_DEBUG_RWSEMS
234 /*
235  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
236  * is a task pointer in owner of a reader-owned rwsem, it will be the
237  * real owner or one of the real owners. The only exception is when the
238  * unlock is done by up_read_non_owner().
239  */
240 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
241 {
242 	unsigned long val = atomic_long_read(&sem->owner);
243 
244 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
245 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
246 					    val & RWSEM_OWNER_FLAGS_MASK))
247 			return;
248 	}
249 }
250 #else
251 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
252 {
253 }
254 #endif
255 
256 /*
257  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
258  * remains set. Otherwise, the operation will be aborted.
259  */
260 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
261 {
262 	unsigned long owner = atomic_long_read(&sem->owner);
263 
264 	do {
265 		if (!(owner & RWSEM_READER_OWNED))
266 			break;
267 		if (owner & RWSEM_NONSPINNABLE)
268 			break;
269 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
270 					  owner | RWSEM_NONSPINNABLE));
271 }
272 
273 static inline bool rwsem_read_trylock(struct rw_semaphore *sem)
274 {
275 	long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
276 	if (WARN_ON_ONCE(cnt < 0))
277 		rwsem_set_nonspinnable(sem);
278 	return !(cnt & RWSEM_READ_FAILED_MASK);
279 }
280 
281 /*
282  * Return just the real task structure pointer of the owner
283  */
284 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
285 {
286 	return (struct task_struct *)
287 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
288 }
289 
290 /*
291  * Return the real task structure pointer of the owner and the embedded
292  * flags in the owner. pflags must be non-NULL.
293  */
294 static inline struct task_struct *
295 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
296 {
297 	unsigned long owner = atomic_long_read(&sem->owner);
298 
299 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
300 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
301 }
302 
303 /*
304  * Guide to the rw_semaphore's count field.
305  *
306  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
307  * by a writer.
308  *
309  * The lock is owned by readers when
310  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
311  * (2) some of the reader bits are set in count, and
312  * (3) the owner field has RWSEM_READ_OWNED bit set.
313  *
314  * Having some reader bits set is not enough to guarantee a readers owned
315  * lock as the readers may be in the process of backing out from the count
316  * and a writer has just released the lock. So another writer may steal
317  * the lock immediately after that.
318  */
319 
320 /*
321  * Initialize an rwsem:
322  */
323 void __init_rwsem(struct rw_semaphore *sem, const char *name,
324 		  struct lock_class_key *key)
325 {
326 #ifdef CONFIG_DEBUG_LOCK_ALLOC
327 	/*
328 	 * Make sure we are not reinitializing a held semaphore:
329 	 */
330 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
331 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
332 #endif
333 #ifdef CONFIG_DEBUG_RWSEMS
334 	sem->magic = sem;
335 #endif
336 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
337 	raw_spin_lock_init(&sem->wait_lock);
338 	INIT_LIST_HEAD(&sem->wait_list);
339 	atomic_long_set(&sem->owner, 0L);
340 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
341 	osq_lock_init(&sem->osq);
342 #endif
343 }
344 EXPORT_SYMBOL(__init_rwsem);
345 
346 enum rwsem_waiter_type {
347 	RWSEM_WAITING_FOR_WRITE,
348 	RWSEM_WAITING_FOR_READ
349 };
350 
351 struct rwsem_waiter {
352 	struct list_head list;
353 	struct task_struct *task;
354 	enum rwsem_waiter_type type;
355 	unsigned long timeout;
356 	unsigned long last_rowner;
357 };
358 #define rwsem_first_waiter(sem) \
359 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
360 
361 enum rwsem_wake_type {
362 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
363 	RWSEM_WAKE_READERS,	/* Wake readers only */
364 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
365 };
366 
367 enum writer_wait_state {
368 	WRITER_NOT_FIRST,	/* Writer is not first in wait list */
369 	WRITER_FIRST,		/* Writer is first in wait list     */
370 	WRITER_HANDOFF		/* Writer is first & handoff needed */
371 };
372 
373 /*
374  * The typical HZ value is either 250 or 1000. So set the minimum waiting
375  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
376  * queue before initiating the handoff protocol.
377  */
378 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
379 
380 /*
381  * Magic number to batch-wakeup waiting readers, even when writers are
382  * also present in the queue. This both limits the amount of work the
383  * waking thread must do and also prevents any potential counter overflow,
384  * however unlikely.
385  */
386 #define MAX_READERS_WAKEUP	0x100
387 
388 /*
389  * handle the lock release when processes blocked on it that can now run
390  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
391  *   have been set.
392  * - there must be someone on the queue
393  * - the wait_lock must be held by the caller
394  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
395  *   to actually wakeup the blocked task(s) and drop the reference count,
396  *   preferably when the wait_lock is released
397  * - woken process blocks are discarded from the list after having task zeroed
398  * - writers are only marked woken if downgrading is false
399  */
400 static void rwsem_mark_wake(struct rw_semaphore *sem,
401 			    enum rwsem_wake_type wake_type,
402 			    struct wake_q_head *wake_q)
403 {
404 	struct rwsem_waiter *waiter, *tmp;
405 	long oldcount, woken = 0, adjustment = 0;
406 	struct list_head wlist;
407 
408 	lockdep_assert_held(&sem->wait_lock);
409 
410 	/*
411 	 * Take a peek at the queue head waiter such that we can determine
412 	 * the wakeup(s) to perform.
413 	 */
414 	waiter = rwsem_first_waiter(sem);
415 
416 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
417 		if (wake_type == RWSEM_WAKE_ANY) {
418 			/*
419 			 * Mark writer at the front of the queue for wakeup.
420 			 * Until the task is actually later awoken later by
421 			 * the caller, other writers are able to steal it.
422 			 * Readers, on the other hand, will block as they
423 			 * will notice the queued writer.
424 			 */
425 			wake_q_add(wake_q, waiter->task);
426 			lockevent_inc(rwsem_wake_writer);
427 		}
428 
429 		return;
430 	}
431 
432 	/*
433 	 * No reader wakeup if there are too many of them already.
434 	 */
435 	if (unlikely(atomic_long_read(&sem->count) < 0))
436 		return;
437 
438 	/*
439 	 * Writers might steal the lock before we grant it to the next reader.
440 	 * We prefer to do the first reader grant before counting readers
441 	 * so we can bail out early if a writer stole the lock.
442 	 */
443 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
444 		struct task_struct *owner;
445 
446 		adjustment = RWSEM_READER_BIAS;
447 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
448 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
449 			/*
450 			 * When we've been waiting "too" long (for writers
451 			 * to give up the lock), request a HANDOFF to
452 			 * force the issue.
453 			 */
454 			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
455 			    time_after(jiffies, waiter->timeout)) {
456 				adjustment -= RWSEM_FLAG_HANDOFF;
457 				lockevent_inc(rwsem_rlock_handoff);
458 			}
459 
460 			atomic_long_add(-adjustment, &sem->count);
461 			return;
462 		}
463 		/*
464 		 * Set it to reader-owned to give spinners an early
465 		 * indication that readers now have the lock.
466 		 * The reader nonspinnable bit seen at slowpath entry of
467 		 * the reader is copied over.
468 		 */
469 		owner = waiter->task;
470 		if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) {
471 			owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE);
472 			lockevent_inc(rwsem_opt_norspin);
473 		}
474 		__rwsem_set_reader_owned(sem, owner);
475 	}
476 
477 	/*
478 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
479 	 * queue. We know that the woken will be at least 1 as we accounted
480 	 * for above. Note we increment the 'active part' of the count by the
481 	 * number of readers before waking any processes up.
482 	 *
483 	 * This is an adaptation of the phase-fair R/W locks where at the
484 	 * reader phase (first waiter is a reader), all readers are eligible
485 	 * to acquire the lock at the same time irrespective of their order
486 	 * in the queue. The writers acquire the lock according to their
487 	 * order in the queue.
488 	 *
489 	 * We have to do wakeup in 2 passes to prevent the possibility that
490 	 * the reader count may be decremented before it is incremented. It
491 	 * is because the to-be-woken waiter may not have slept yet. So it
492 	 * may see waiter->task got cleared, finish its critical section and
493 	 * do an unlock before the reader count increment.
494 	 *
495 	 * 1) Collect the read-waiters in a separate list, count them and
496 	 *    fully increment the reader count in rwsem.
497 	 * 2) For each waiters in the new list, clear waiter->task and
498 	 *    put them into wake_q to be woken up later.
499 	 */
500 	INIT_LIST_HEAD(&wlist);
501 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
502 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
503 			continue;
504 
505 		woken++;
506 		list_move_tail(&waiter->list, &wlist);
507 
508 		/*
509 		 * Limit # of readers that can be woken up per wakeup call.
510 		 */
511 		if (woken >= MAX_READERS_WAKEUP)
512 			break;
513 	}
514 
515 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
516 	lockevent_cond_inc(rwsem_wake_reader, woken);
517 	if (list_empty(&sem->wait_list)) {
518 		/* hit end of list above */
519 		adjustment -= RWSEM_FLAG_WAITERS;
520 	}
521 
522 	/*
523 	 * When we've woken a reader, we no longer need to force writers
524 	 * to give up the lock and we can clear HANDOFF.
525 	 */
526 	if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
527 		adjustment -= RWSEM_FLAG_HANDOFF;
528 
529 	if (adjustment)
530 		atomic_long_add(adjustment, &sem->count);
531 
532 	/* 2nd pass */
533 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
534 		struct task_struct *tsk;
535 
536 		tsk = waiter->task;
537 		get_task_struct(tsk);
538 
539 		/*
540 		 * Ensure calling get_task_struct() before setting the reader
541 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
542 		 * race with do_exit() by always holding a reference count
543 		 * to the task to wakeup.
544 		 */
545 		smp_store_release(&waiter->task, NULL);
546 		/*
547 		 * Ensure issuing the wakeup (either by us or someone else)
548 		 * after setting the reader waiter to nil.
549 		 */
550 		wake_q_add_safe(wake_q, tsk);
551 	}
552 }
553 
554 /*
555  * This function must be called with the sem->wait_lock held to prevent
556  * race conditions between checking the rwsem wait list and setting the
557  * sem->count accordingly.
558  *
559  * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
560  * bit is set or the lock is acquired with handoff bit cleared.
561  */
562 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
563 					enum writer_wait_state wstate)
564 {
565 	long count, new;
566 
567 	lockdep_assert_held(&sem->wait_lock);
568 
569 	count = atomic_long_read(&sem->count);
570 	do {
571 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
572 
573 		if (has_handoff && wstate == WRITER_NOT_FIRST)
574 			return false;
575 
576 		new = count;
577 
578 		if (count & RWSEM_LOCK_MASK) {
579 			if (has_handoff || (wstate != WRITER_HANDOFF))
580 				return false;
581 
582 			new |= RWSEM_FLAG_HANDOFF;
583 		} else {
584 			new |= RWSEM_WRITER_LOCKED;
585 			new &= ~RWSEM_FLAG_HANDOFF;
586 
587 			if (list_is_singular(&sem->wait_list))
588 				new &= ~RWSEM_FLAG_WAITERS;
589 		}
590 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
591 
592 	/*
593 	 * We have either acquired the lock with handoff bit cleared or
594 	 * set the handoff bit.
595 	 */
596 	if (new & RWSEM_FLAG_HANDOFF)
597 		return false;
598 
599 	rwsem_set_owner(sem);
600 	return true;
601 }
602 
603 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
604 /*
605  * Try to acquire read lock before the reader is put on wait queue.
606  * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
607  * is ongoing.
608  */
609 static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem)
610 {
611 	long count = atomic_long_read(&sem->count);
612 
613 	if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))
614 		return false;
615 
616 	count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count);
617 	if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
618 		rwsem_set_reader_owned(sem);
619 		lockevent_inc(rwsem_opt_rlock);
620 		return true;
621 	}
622 
623 	/* Back out the change */
624 	atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
625 	return false;
626 }
627 
628 /*
629  * Try to acquire write lock before the writer has been put on wait queue.
630  */
631 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
632 {
633 	long count = atomic_long_read(&sem->count);
634 
635 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
636 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
637 					count | RWSEM_WRITER_LOCKED)) {
638 			rwsem_set_owner(sem);
639 			lockevent_inc(rwsem_opt_wlock);
640 			return true;
641 		}
642 	}
643 	return false;
644 }
645 
646 static inline bool owner_on_cpu(struct task_struct *owner)
647 {
648 	/*
649 	 * As lock holder preemption issue, we both skip spinning if
650 	 * task is not on cpu or its cpu is preempted
651 	 */
652 	return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
653 }
654 
655 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
656 					   unsigned long nonspinnable)
657 {
658 	struct task_struct *owner;
659 	unsigned long flags;
660 	bool ret = true;
661 
662 	if (need_resched()) {
663 		lockevent_inc(rwsem_opt_fail);
664 		return false;
665 	}
666 
667 	preempt_disable();
668 	rcu_read_lock();
669 	owner = rwsem_owner_flags(sem, &flags);
670 	/*
671 	 * Don't check the read-owner as the entry may be stale.
672 	 */
673 	if ((flags & nonspinnable) ||
674 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
675 		ret = false;
676 	rcu_read_unlock();
677 	preempt_enable();
678 
679 	lockevent_cond_inc(rwsem_opt_fail, !ret);
680 	return ret;
681 }
682 
683 /*
684  * The rwsem_spin_on_owner() function returns the folowing 4 values
685  * depending on the lock owner state.
686  *   OWNER_NULL  : owner is currently NULL
687  *   OWNER_WRITER: when owner changes and is a writer
688  *   OWNER_READER: when owner changes and the new owner may be a reader.
689  *   OWNER_NONSPINNABLE:
690  *		   when optimistic spinning has to stop because either the
691  *		   owner stops running, is unknown, or its timeslice has
692  *		   been used up.
693  */
694 enum owner_state {
695 	OWNER_NULL		= 1 << 0,
696 	OWNER_WRITER		= 1 << 1,
697 	OWNER_READER		= 1 << 2,
698 	OWNER_NONSPINNABLE	= 1 << 3,
699 };
700 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
701 
702 static inline enum owner_state
703 rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable)
704 {
705 	if (flags & nonspinnable)
706 		return OWNER_NONSPINNABLE;
707 
708 	if (flags & RWSEM_READER_OWNED)
709 		return OWNER_READER;
710 
711 	return owner ? OWNER_WRITER : OWNER_NULL;
712 }
713 
714 static noinline enum owner_state
715 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
716 {
717 	struct task_struct *new, *owner;
718 	unsigned long flags, new_flags;
719 	enum owner_state state;
720 
721 	owner = rwsem_owner_flags(sem, &flags);
722 	state = rwsem_owner_state(owner, flags, nonspinnable);
723 	if (state != OWNER_WRITER)
724 		return state;
725 
726 	rcu_read_lock();
727 	for (;;) {
728 		/*
729 		 * When a waiting writer set the handoff flag, it may spin
730 		 * on the owner as well. Once that writer acquires the lock,
731 		 * we can spin on it. So we don't need to quit even when the
732 		 * handoff bit is set.
733 		 */
734 		new = rwsem_owner_flags(sem, &new_flags);
735 		if ((new != owner) || (new_flags != flags)) {
736 			state = rwsem_owner_state(new, new_flags, nonspinnable);
737 			break;
738 		}
739 
740 		/*
741 		 * Ensure we emit the owner->on_cpu, dereference _after_
742 		 * checking sem->owner still matches owner, if that fails,
743 		 * owner might point to free()d memory, if it still matches,
744 		 * the rcu_read_lock() ensures the memory stays valid.
745 		 */
746 		barrier();
747 
748 		if (need_resched() || !owner_on_cpu(owner)) {
749 			state = OWNER_NONSPINNABLE;
750 			break;
751 		}
752 
753 		cpu_relax();
754 	}
755 	rcu_read_unlock();
756 
757 	return state;
758 }
759 
760 /*
761  * Calculate reader-owned rwsem spinning threshold for writer
762  *
763  * The more readers own the rwsem, the longer it will take for them to
764  * wind down and free the rwsem. So the empirical formula used to
765  * determine the actual spinning time limit here is:
766  *
767  *   Spinning threshold = (10 + nr_readers/2)us
768  *
769  * The limit is capped to a maximum of 25us (30 readers). This is just
770  * a heuristic and is subjected to change in the future.
771  */
772 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
773 {
774 	long count = atomic_long_read(&sem->count);
775 	int readers = count >> RWSEM_READER_SHIFT;
776 	u64 delta;
777 
778 	if (readers > 30)
779 		readers = 30;
780 	delta = (20 + readers) * NSEC_PER_USEC / 2;
781 
782 	return sched_clock() + delta;
783 }
784 
785 static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
786 {
787 	bool taken = false;
788 	int prev_owner_state = OWNER_NULL;
789 	int loop = 0;
790 	u64 rspin_threshold = 0;
791 	unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE
792 					   : RWSEM_RD_NONSPINNABLE;
793 
794 	preempt_disable();
795 
796 	/* sem->wait_lock should not be held when doing optimistic spinning */
797 	if (!osq_lock(&sem->osq))
798 		goto done;
799 
800 	/*
801 	 * Optimistically spin on the owner field and attempt to acquire the
802 	 * lock whenever the owner changes. Spinning will be stopped when:
803 	 *  1) the owning writer isn't running; or
804 	 *  2) readers own the lock and spinning time has exceeded limit.
805 	 */
806 	for (;;) {
807 		enum owner_state owner_state;
808 
809 		owner_state = rwsem_spin_on_owner(sem, nonspinnable);
810 		if (!(owner_state & OWNER_SPINNABLE))
811 			break;
812 
813 		/*
814 		 * Try to acquire the lock
815 		 */
816 		taken = wlock ? rwsem_try_write_lock_unqueued(sem)
817 			      : rwsem_try_read_lock_unqueued(sem);
818 
819 		if (taken)
820 			break;
821 
822 		/*
823 		 * Time-based reader-owned rwsem optimistic spinning
824 		 */
825 		if (wlock && (owner_state == OWNER_READER)) {
826 			/*
827 			 * Re-initialize rspin_threshold every time when
828 			 * the owner state changes from non-reader to reader.
829 			 * This allows a writer to steal the lock in between
830 			 * 2 reader phases and have the threshold reset at
831 			 * the beginning of the 2nd reader phase.
832 			 */
833 			if (prev_owner_state != OWNER_READER) {
834 				if (rwsem_test_oflags(sem, nonspinnable))
835 					break;
836 				rspin_threshold = rwsem_rspin_threshold(sem);
837 				loop = 0;
838 			}
839 
840 			/*
841 			 * Check time threshold once every 16 iterations to
842 			 * avoid calling sched_clock() too frequently so
843 			 * as to reduce the average latency between the times
844 			 * when the lock becomes free and when the spinner
845 			 * is ready to do a trylock.
846 			 */
847 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
848 				rwsem_set_nonspinnable(sem);
849 				lockevent_inc(rwsem_opt_nospin);
850 				break;
851 			}
852 		}
853 
854 		/*
855 		 * An RT task cannot do optimistic spinning if it cannot
856 		 * be sure the lock holder is running or live-lock may
857 		 * happen if the current task and the lock holder happen
858 		 * to run in the same CPU. However, aborting optimistic
859 		 * spinning while a NULL owner is detected may miss some
860 		 * opportunity where spinning can continue without causing
861 		 * problem.
862 		 *
863 		 * There are 2 possible cases where an RT task may be able
864 		 * to continue spinning.
865 		 *
866 		 * 1) The lock owner is in the process of releasing the
867 		 *    lock, sem->owner is cleared but the lock has not
868 		 *    been released yet.
869 		 * 2) The lock was free and owner cleared, but another
870 		 *    task just comes in and acquire the lock before
871 		 *    we try to get it. The new owner may be a spinnable
872 		 *    writer.
873 		 *
874 		 * To take advantage of two scenarios listed agove, the RT
875 		 * task is made to retry one more time to see if it can
876 		 * acquire the lock or continue spinning on the new owning
877 		 * writer. Of course, if the time lag is long enough or the
878 		 * new owner is not a writer or spinnable, the RT task will
879 		 * quit spinning.
880 		 *
881 		 * If the owner is a writer, the need_resched() check is
882 		 * done inside rwsem_spin_on_owner(). If the owner is not
883 		 * a writer, need_resched() check needs to be done here.
884 		 */
885 		if (owner_state != OWNER_WRITER) {
886 			if (need_resched())
887 				break;
888 			if (rt_task(current) &&
889 			   (prev_owner_state != OWNER_WRITER))
890 				break;
891 		}
892 		prev_owner_state = owner_state;
893 
894 		/*
895 		 * The cpu_relax() call is a compiler barrier which forces
896 		 * everything in this loop to be re-loaded. We don't need
897 		 * memory barriers as we'll eventually observe the right
898 		 * values at the cost of a few extra spins.
899 		 */
900 		cpu_relax();
901 	}
902 	osq_unlock(&sem->osq);
903 done:
904 	preempt_enable();
905 	lockevent_cond_inc(rwsem_opt_fail, !taken);
906 	return taken;
907 }
908 
909 /*
910  * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
911  * only be called when the reader count reaches 0.
912  *
913  * This give writers better chance to acquire the rwsem first before
914  * readers when the rwsem was being held by readers for a relatively long
915  * period of time. Race can happen that an optimistic spinner may have
916  * just stolen the rwsem and set the owner, but just clearing the
917  * RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
918  */
919 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem)
920 {
921 	if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE))
922 		atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner);
923 }
924 
925 /*
926  * This function is called when the reader fails to acquire the lock via
927  * optimistic spinning. In this case we will still attempt to do a trylock
928  * when comparing the rwsem state right now with the state when entering
929  * the slowpath indicates that the reader is still in a valid reader phase.
930  * This happens when the following conditions are true:
931  *
932  * 1) The lock is currently reader owned, and
933  * 2) The lock is previously not reader-owned or the last read owner changes.
934  *
935  * In the former case, we have transitioned from a writer phase to a
936  * reader-phase while spinning. In the latter case, it means the reader
937  * phase hasn't ended when we entered the optimistic spinning loop. In
938  * both cases, the reader is eligible to acquire the lock. This is the
939  * secondary path where a read lock is acquired optimistically.
940  *
941  * The reader non-spinnable bit wasn't set at time of entry or it will
942  * not be here at all.
943  */
944 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
945 					      unsigned long last_rowner)
946 {
947 	unsigned long owner = atomic_long_read(&sem->owner);
948 
949 	if (!(owner & RWSEM_READER_OWNED))
950 		return false;
951 
952 	if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) &&
953 	    rwsem_try_read_lock_unqueued(sem)) {
954 		lockevent_inc(rwsem_opt_rlock2);
955 		lockevent_add(rwsem_opt_fail, -1);
956 		return true;
957 	}
958 	return false;
959 }
960 #else
961 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
962 					   unsigned long nonspinnable)
963 {
964 	return false;
965 }
966 
967 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
968 {
969 	return false;
970 }
971 
972 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { }
973 
974 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
975 					      unsigned long last_rowner)
976 {
977 	return false;
978 }
979 
980 static inline int
981 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
982 {
983 	return 0;
984 }
985 #define OWNER_NULL	1
986 #endif
987 
988 /*
989  * Wait for the read lock to be granted
990  */
991 static struct rw_semaphore __sched *
992 rwsem_down_read_slowpath(struct rw_semaphore *sem, int state)
993 {
994 	long count, adjustment = -RWSEM_READER_BIAS;
995 	struct rwsem_waiter waiter;
996 	DEFINE_WAKE_Q(wake_q);
997 	bool wake = false;
998 
999 	/*
1000 	 * Save the current read-owner of rwsem, if available, and the
1001 	 * reader nonspinnable bit.
1002 	 */
1003 	waiter.last_rowner = atomic_long_read(&sem->owner);
1004 	if (!(waiter.last_rowner & RWSEM_READER_OWNED))
1005 		waiter.last_rowner &= RWSEM_RD_NONSPINNABLE;
1006 
1007 	if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE))
1008 		goto queue;
1009 
1010 	/*
1011 	 * Undo read bias from down_read() and do optimistic spinning.
1012 	 */
1013 	atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
1014 	adjustment = 0;
1015 	if (rwsem_optimistic_spin(sem, false)) {
1016 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1017 		/*
1018 		 * Wake up other readers in the wait list if the front
1019 		 * waiter is a reader.
1020 		 */
1021 		if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) {
1022 			raw_spin_lock_irq(&sem->wait_lock);
1023 			if (!list_empty(&sem->wait_list))
1024 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1025 						&wake_q);
1026 			raw_spin_unlock_irq(&sem->wait_lock);
1027 			wake_up_q(&wake_q);
1028 		}
1029 		return sem;
1030 	} else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) {
1031 		/* rwsem_reader_phase_trylock() implies ACQUIRE on success */
1032 		return sem;
1033 	}
1034 
1035 queue:
1036 	waiter.task = current;
1037 	waiter.type = RWSEM_WAITING_FOR_READ;
1038 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1039 
1040 	raw_spin_lock_irq(&sem->wait_lock);
1041 	if (list_empty(&sem->wait_list)) {
1042 		/*
1043 		 * In case the wait queue is empty and the lock isn't owned
1044 		 * by a writer or has the handoff bit set, this reader can
1045 		 * exit the slowpath and return immediately as its
1046 		 * RWSEM_READER_BIAS has already been set in the count.
1047 		 */
1048 		if (adjustment && !(atomic_long_read(&sem->count) &
1049 		     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
1050 			/* Provide lock ACQUIRE */
1051 			smp_acquire__after_ctrl_dep();
1052 			raw_spin_unlock_irq(&sem->wait_lock);
1053 			rwsem_set_reader_owned(sem);
1054 			lockevent_inc(rwsem_rlock_fast);
1055 			return sem;
1056 		}
1057 		adjustment += RWSEM_FLAG_WAITERS;
1058 	}
1059 	list_add_tail(&waiter.list, &sem->wait_list);
1060 
1061 	/* we're now waiting on the lock, but no longer actively locking */
1062 	if (adjustment)
1063 		count = atomic_long_add_return(adjustment, &sem->count);
1064 	else
1065 		count = atomic_long_read(&sem->count);
1066 
1067 	/*
1068 	 * If there are no active locks, wake the front queued process(es).
1069 	 *
1070 	 * If there are no writers and we are first in the queue,
1071 	 * wake our own waiter to join the existing active readers !
1072 	 */
1073 	if (!(count & RWSEM_LOCK_MASK)) {
1074 		clear_wr_nonspinnable(sem);
1075 		wake = true;
1076 	}
1077 	if (wake || (!(count & RWSEM_WRITER_MASK) &&
1078 		    (adjustment & RWSEM_FLAG_WAITERS)))
1079 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1080 
1081 	raw_spin_unlock_irq(&sem->wait_lock);
1082 	wake_up_q(&wake_q);
1083 
1084 	/* wait to be given the lock */
1085 	for (;;) {
1086 		set_current_state(state);
1087 		if (!smp_load_acquire(&waiter.task)) {
1088 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1089 			break;
1090 		}
1091 		if (signal_pending_state(state, current)) {
1092 			raw_spin_lock_irq(&sem->wait_lock);
1093 			if (waiter.task)
1094 				goto out_nolock;
1095 			raw_spin_unlock_irq(&sem->wait_lock);
1096 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1097 			break;
1098 		}
1099 		schedule();
1100 		lockevent_inc(rwsem_sleep_reader);
1101 	}
1102 
1103 	__set_current_state(TASK_RUNNING);
1104 	lockevent_inc(rwsem_rlock);
1105 	return sem;
1106 
1107 out_nolock:
1108 	list_del(&waiter.list);
1109 	if (list_empty(&sem->wait_list)) {
1110 		atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1111 				   &sem->count);
1112 	}
1113 	raw_spin_unlock_irq(&sem->wait_lock);
1114 	__set_current_state(TASK_RUNNING);
1115 	lockevent_inc(rwsem_rlock_fail);
1116 	return ERR_PTR(-EINTR);
1117 }
1118 
1119 /*
1120  * This function is called by the a write lock owner. So the owner value
1121  * won't get changed by others.
1122  */
1123 static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem,
1124 						bool disable)
1125 {
1126 	if (unlikely(disable)) {
1127 		atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner);
1128 		lockevent_inc(rwsem_opt_norspin);
1129 	}
1130 }
1131 
1132 /*
1133  * Wait until we successfully acquire the write lock
1134  */
1135 static struct rw_semaphore *
1136 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1137 {
1138 	long count;
1139 	bool disable_rspin;
1140 	enum writer_wait_state wstate;
1141 	struct rwsem_waiter waiter;
1142 	struct rw_semaphore *ret = sem;
1143 	DEFINE_WAKE_Q(wake_q);
1144 
1145 	/* do optimistic spinning and steal lock if possible */
1146 	if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) &&
1147 	    rwsem_optimistic_spin(sem, true)) {
1148 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1149 		return sem;
1150 	}
1151 
1152 	/*
1153 	 * Disable reader optimistic spinning for this rwsem after
1154 	 * acquiring the write lock when the setting of the nonspinnable
1155 	 * bits are observed.
1156 	 */
1157 	disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE;
1158 
1159 	/*
1160 	 * Optimistic spinning failed, proceed to the slowpath
1161 	 * and block until we can acquire the sem.
1162 	 */
1163 	waiter.task = current;
1164 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1165 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1166 
1167 	raw_spin_lock_irq(&sem->wait_lock);
1168 
1169 	/* account for this before adding a new element to the list */
1170 	wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1171 
1172 	list_add_tail(&waiter.list, &sem->wait_list);
1173 
1174 	/* we're now waiting on the lock */
1175 	if (wstate == WRITER_NOT_FIRST) {
1176 		count = atomic_long_read(&sem->count);
1177 
1178 		/*
1179 		 * If there were already threads queued before us and:
1180 		 *  1) there are no no active locks, wake the front
1181 		 *     queued process(es) as the handoff bit might be set.
1182 		 *  2) there are no active writers and some readers, the lock
1183 		 *     must be read owned; so we try to wake any read lock
1184 		 *     waiters that were queued ahead of us.
1185 		 */
1186 		if (count & RWSEM_WRITER_MASK)
1187 			goto wait;
1188 
1189 		rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1190 					? RWSEM_WAKE_READERS
1191 					: RWSEM_WAKE_ANY, &wake_q);
1192 
1193 		if (!wake_q_empty(&wake_q)) {
1194 			/*
1195 			 * We want to minimize wait_lock hold time especially
1196 			 * when a large number of readers are to be woken up.
1197 			 */
1198 			raw_spin_unlock_irq(&sem->wait_lock);
1199 			wake_up_q(&wake_q);
1200 			wake_q_init(&wake_q);	/* Used again, reinit */
1201 			raw_spin_lock_irq(&sem->wait_lock);
1202 		}
1203 	} else {
1204 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1205 	}
1206 
1207 wait:
1208 	/* wait until we successfully acquire the lock */
1209 	set_current_state(state);
1210 	for (;;) {
1211 		if (rwsem_try_write_lock(sem, wstate)) {
1212 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1213 			break;
1214 		}
1215 
1216 		raw_spin_unlock_irq(&sem->wait_lock);
1217 
1218 		/*
1219 		 * After setting the handoff bit and failing to acquire
1220 		 * the lock, attempt to spin on owner to accelerate lock
1221 		 * transfer. If the previous owner is a on-cpu writer and it
1222 		 * has just released the lock, OWNER_NULL will be returned.
1223 		 * In this case, we attempt to acquire the lock again
1224 		 * without sleeping.
1225 		 */
1226 		if (wstate == WRITER_HANDOFF &&
1227 		    rwsem_spin_on_owner(sem, RWSEM_NONSPINNABLE) == OWNER_NULL)
1228 			goto trylock_again;
1229 
1230 		/* Block until there are no active lockers. */
1231 		for (;;) {
1232 			if (signal_pending_state(state, current))
1233 				goto out_nolock;
1234 
1235 			schedule();
1236 			lockevent_inc(rwsem_sleep_writer);
1237 			set_current_state(state);
1238 			/*
1239 			 * If HANDOFF bit is set, unconditionally do
1240 			 * a trylock.
1241 			 */
1242 			if (wstate == WRITER_HANDOFF)
1243 				break;
1244 
1245 			if ((wstate == WRITER_NOT_FIRST) &&
1246 			    (rwsem_first_waiter(sem) == &waiter))
1247 				wstate = WRITER_FIRST;
1248 
1249 			count = atomic_long_read(&sem->count);
1250 			if (!(count & RWSEM_LOCK_MASK))
1251 				break;
1252 
1253 			/*
1254 			 * The setting of the handoff bit is deferred
1255 			 * until rwsem_try_write_lock() is called.
1256 			 */
1257 			if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1258 			    time_after(jiffies, waiter.timeout))) {
1259 				wstate = WRITER_HANDOFF;
1260 				lockevent_inc(rwsem_wlock_handoff);
1261 				break;
1262 			}
1263 		}
1264 trylock_again:
1265 		raw_spin_lock_irq(&sem->wait_lock);
1266 	}
1267 	__set_current_state(TASK_RUNNING);
1268 	list_del(&waiter.list);
1269 	rwsem_disable_reader_optspin(sem, disable_rspin);
1270 	raw_spin_unlock_irq(&sem->wait_lock);
1271 	lockevent_inc(rwsem_wlock);
1272 
1273 	return ret;
1274 
1275 out_nolock:
1276 	__set_current_state(TASK_RUNNING);
1277 	raw_spin_lock_irq(&sem->wait_lock);
1278 	list_del(&waiter.list);
1279 
1280 	if (unlikely(wstate == WRITER_HANDOFF))
1281 		atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1282 
1283 	if (list_empty(&sem->wait_list))
1284 		atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1285 	else
1286 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1287 	raw_spin_unlock_irq(&sem->wait_lock);
1288 	wake_up_q(&wake_q);
1289 	lockevent_inc(rwsem_wlock_fail);
1290 
1291 	return ERR_PTR(-EINTR);
1292 }
1293 
1294 /*
1295  * handle waking up a waiter on the semaphore
1296  * - up_read/up_write has decremented the active part of count if we come here
1297  */
1298 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1299 {
1300 	unsigned long flags;
1301 	DEFINE_WAKE_Q(wake_q);
1302 
1303 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1304 
1305 	if (!list_empty(&sem->wait_list))
1306 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1307 
1308 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1309 	wake_up_q(&wake_q);
1310 
1311 	return sem;
1312 }
1313 
1314 /*
1315  * downgrade a write lock into a read lock
1316  * - caller incremented waiting part of count and discovered it still negative
1317  * - just wake up any readers at the front of the queue
1318  */
1319 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1320 {
1321 	unsigned long flags;
1322 	DEFINE_WAKE_Q(wake_q);
1323 
1324 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1325 
1326 	if (!list_empty(&sem->wait_list))
1327 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1328 
1329 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1330 	wake_up_q(&wake_q);
1331 
1332 	return sem;
1333 }
1334 
1335 /*
1336  * lock for reading
1337  */
1338 static inline void __down_read(struct rw_semaphore *sem)
1339 {
1340 	if (!rwsem_read_trylock(sem)) {
1341 		rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE);
1342 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1343 	} else {
1344 		rwsem_set_reader_owned(sem);
1345 	}
1346 }
1347 
1348 static inline int __down_read_killable(struct rw_semaphore *sem)
1349 {
1350 	if (!rwsem_read_trylock(sem)) {
1351 		if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE)))
1352 			return -EINTR;
1353 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1354 	} else {
1355 		rwsem_set_reader_owned(sem);
1356 	}
1357 	return 0;
1358 }
1359 
1360 static inline int __down_read_trylock(struct rw_semaphore *sem)
1361 {
1362 	long tmp;
1363 
1364 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1365 
1366 	/*
1367 	 * Optimize for the case when the rwsem is not locked at all.
1368 	 */
1369 	tmp = RWSEM_UNLOCKED_VALUE;
1370 	do {
1371 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1372 					tmp + RWSEM_READER_BIAS)) {
1373 			rwsem_set_reader_owned(sem);
1374 			return 1;
1375 		}
1376 	} while (!(tmp & RWSEM_READ_FAILED_MASK));
1377 	return 0;
1378 }
1379 
1380 /*
1381  * lock for writing
1382  */
1383 static inline void __down_write(struct rw_semaphore *sem)
1384 {
1385 	long tmp = RWSEM_UNLOCKED_VALUE;
1386 
1387 	if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1388 						      RWSEM_WRITER_LOCKED)))
1389 		rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE);
1390 	else
1391 		rwsem_set_owner(sem);
1392 }
1393 
1394 static inline int __down_write_killable(struct rw_semaphore *sem)
1395 {
1396 	long tmp = RWSEM_UNLOCKED_VALUE;
1397 
1398 	if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1399 						      RWSEM_WRITER_LOCKED))) {
1400 		if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE)))
1401 			return -EINTR;
1402 	} else {
1403 		rwsem_set_owner(sem);
1404 	}
1405 	return 0;
1406 }
1407 
1408 static inline int __down_write_trylock(struct rw_semaphore *sem)
1409 {
1410 	long tmp;
1411 
1412 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1413 
1414 	tmp  = RWSEM_UNLOCKED_VALUE;
1415 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1416 					    RWSEM_WRITER_LOCKED)) {
1417 		rwsem_set_owner(sem);
1418 		return true;
1419 	}
1420 	return false;
1421 }
1422 
1423 /*
1424  * unlock after reading
1425  */
1426 static inline void __up_read(struct rw_semaphore *sem)
1427 {
1428 	long tmp;
1429 
1430 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1431 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1432 
1433 	rwsem_clear_reader_owned(sem);
1434 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1435 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1436 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1437 		      RWSEM_FLAG_WAITERS)) {
1438 		clear_wr_nonspinnable(sem);
1439 		rwsem_wake(sem, tmp);
1440 	}
1441 }
1442 
1443 /*
1444  * unlock after writing
1445  */
1446 static inline void __up_write(struct rw_semaphore *sem)
1447 {
1448 	long tmp;
1449 
1450 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1451 	/*
1452 	 * sem->owner may differ from current if the ownership is transferred
1453 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1454 	 */
1455 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1456 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1457 
1458 	rwsem_clear_owner(sem);
1459 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1460 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1461 		rwsem_wake(sem, tmp);
1462 }
1463 
1464 /*
1465  * downgrade write lock to read lock
1466  */
1467 static inline void __downgrade_write(struct rw_semaphore *sem)
1468 {
1469 	long tmp;
1470 
1471 	/*
1472 	 * When downgrading from exclusive to shared ownership,
1473 	 * anything inside the write-locked region cannot leak
1474 	 * into the read side. In contrast, anything in the
1475 	 * read-locked region is ok to be re-ordered into the
1476 	 * write side. As such, rely on RELEASE semantics.
1477 	 */
1478 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1479 	tmp = atomic_long_fetch_add_release(
1480 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1481 	rwsem_set_reader_owned(sem);
1482 	if (tmp & RWSEM_FLAG_WAITERS)
1483 		rwsem_downgrade_wake(sem);
1484 }
1485 
1486 /*
1487  * lock for reading
1488  */
1489 void __sched down_read(struct rw_semaphore *sem)
1490 {
1491 	might_sleep();
1492 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1493 
1494 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1495 }
1496 EXPORT_SYMBOL(down_read);
1497 
1498 int __sched down_read_killable(struct rw_semaphore *sem)
1499 {
1500 	might_sleep();
1501 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1502 
1503 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1504 		rwsem_release(&sem->dep_map, _RET_IP_);
1505 		return -EINTR;
1506 	}
1507 
1508 	return 0;
1509 }
1510 EXPORT_SYMBOL(down_read_killable);
1511 
1512 /*
1513  * trylock for reading -- returns 1 if successful, 0 if contention
1514  */
1515 int down_read_trylock(struct rw_semaphore *sem)
1516 {
1517 	int ret = __down_read_trylock(sem);
1518 
1519 	if (ret == 1)
1520 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1521 	return ret;
1522 }
1523 EXPORT_SYMBOL(down_read_trylock);
1524 
1525 /*
1526  * lock for writing
1527  */
1528 void __sched down_write(struct rw_semaphore *sem)
1529 {
1530 	might_sleep();
1531 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1532 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1533 }
1534 EXPORT_SYMBOL(down_write);
1535 
1536 /*
1537  * lock for writing
1538  */
1539 int __sched down_write_killable(struct rw_semaphore *sem)
1540 {
1541 	might_sleep();
1542 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1543 
1544 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1545 				  __down_write_killable)) {
1546 		rwsem_release(&sem->dep_map, _RET_IP_);
1547 		return -EINTR;
1548 	}
1549 
1550 	return 0;
1551 }
1552 EXPORT_SYMBOL(down_write_killable);
1553 
1554 /*
1555  * trylock for writing -- returns 1 if successful, 0 if contention
1556  */
1557 int down_write_trylock(struct rw_semaphore *sem)
1558 {
1559 	int ret = __down_write_trylock(sem);
1560 
1561 	if (ret == 1)
1562 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(down_write_trylock);
1567 
1568 /*
1569  * release a read lock
1570  */
1571 void up_read(struct rw_semaphore *sem)
1572 {
1573 	rwsem_release(&sem->dep_map, _RET_IP_);
1574 	__up_read(sem);
1575 }
1576 EXPORT_SYMBOL(up_read);
1577 
1578 /*
1579  * release a write lock
1580  */
1581 void up_write(struct rw_semaphore *sem)
1582 {
1583 	rwsem_release(&sem->dep_map, _RET_IP_);
1584 	__up_write(sem);
1585 }
1586 EXPORT_SYMBOL(up_write);
1587 
1588 /*
1589  * downgrade write lock to read lock
1590  */
1591 void downgrade_write(struct rw_semaphore *sem)
1592 {
1593 	lock_downgrade(&sem->dep_map, _RET_IP_);
1594 	__downgrade_write(sem);
1595 }
1596 EXPORT_SYMBOL(downgrade_write);
1597 
1598 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1599 
1600 void down_read_nested(struct rw_semaphore *sem, int subclass)
1601 {
1602 	might_sleep();
1603 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1604 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1605 }
1606 EXPORT_SYMBOL(down_read_nested);
1607 
1608 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1609 {
1610 	might_sleep();
1611 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1612 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1613 }
1614 EXPORT_SYMBOL(_down_write_nest_lock);
1615 
1616 void down_read_non_owner(struct rw_semaphore *sem)
1617 {
1618 	might_sleep();
1619 	__down_read(sem);
1620 	__rwsem_set_reader_owned(sem, NULL);
1621 }
1622 EXPORT_SYMBOL(down_read_non_owner);
1623 
1624 void down_write_nested(struct rw_semaphore *sem, int subclass)
1625 {
1626 	might_sleep();
1627 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1628 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1629 }
1630 EXPORT_SYMBOL(down_write_nested);
1631 
1632 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1633 {
1634 	might_sleep();
1635 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1636 
1637 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1638 				  __down_write_killable)) {
1639 		rwsem_release(&sem->dep_map, _RET_IP_);
1640 		return -EINTR;
1641 	}
1642 
1643 	return 0;
1644 }
1645 EXPORT_SYMBOL(down_write_killable_nested);
1646 
1647 void up_read_non_owner(struct rw_semaphore *sem)
1648 {
1649 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1650 	__up_read(sem);
1651 }
1652 EXPORT_SYMBOL(up_read_non_owner);
1653 
1654 #endif
1655