1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 #include <trace/events/lock.h> 31 32 #ifndef CONFIG_PREEMPT_RT 33 #include "lock_events.h" 34 35 /* 36 * The least significant 2 bits of the owner value has the following 37 * meanings when set. 38 * - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint) 39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 40 * 41 * When the rwsem is reader-owned and a spinning writer has timed out, 42 * the nonspinnable bit will be set to disable optimistic spinning. 43 44 * When a writer acquires a rwsem, it puts its task_struct pointer 45 * into the owner field. It is cleared after an unlock. 46 * 47 * When a reader acquires a rwsem, it will also puts its task_struct 48 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 49 * On unlock, the owner field will largely be left untouched. So 50 * for a free or reader-owned rwsem, the owner value may contain 51 * information about the last reader that acquires the rwsem. 52 * 53 * That information may be helpful in debugging cases where the system 54 * seems to hang on a reader owned rwsem especially if only one reader 55 * is involved. Ideally we would like to track all the readers that own 56 * a rwsem, but the overhead is simply too big. 57 * 58 * A fast path reader optimistic lock stealing is supported when the rwsem 59 * is previously owned by a writer and the following conditions are met: 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers -- set, clear 110 * 2) rwsem_try_write_lock() for writers -- set, clear 111 * 3) rwsem_del_waiter() -- clear 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 * 137 * Both rwsem_{set,clear}_owner() functions should be in the same 138 * preempt disable section as the atomic op that changes sem->count. 139 */ 140 static inline void rwsem_set_owner(struct rw_semaphore *sem) 141 { 142 lockdep_assert_preemption_disabled(); 143 atomic_long_set(&sem->owner, (long)current); 144 } 145 146 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 147 { 148 lockdep_assert_preemption_disabled(); 149 atomic_long_set(&sem->owner, 0); 150 } 151 152 /* 153 * Test the flags in the owner field. 154 */ 155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 156 { 157 return atomic_long_read(&sem->owner) & flags; 158 } 159 160 /* 161 * The task_struct pointer of the last owning reader will be left in 162 * the owner field. 163 * 164 * Note that the owner value just indicates the task has owned the rwsem 165 * previously, it may not be the real owner or one of the real owners 166 * anymore when that field is examined, so take it with a grain of salt. 167 * 168 * The reader non-spinnable bit is preserved. 169 */ 170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 171 struct task_struct *owner) 172 { 173 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 174 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 175 176 atomic_long_set(&sem->owner, val); 177 } 178 179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 180 { 181 __rwsem_set_reader_owned(sem, current); 182 } 183 184 #ifdef CONFIG_DEBUG_RWSEMS 185 /* 186 * Return just the real task structure pointer of the owner 187 */ 188 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 189 { 190 return (struct task_struct *) 191 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 192 } 193 194 /* 195 * Return true if the rwsem is owned by a reader. 196 */ 197 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 198 { 199 /* 200 * Check the count to see if it is write-locked. 201 */ 202 long count = atomic_long_read(&sem->count); 203 204 if (count & RWSEM_WRITER_MASK) 205 return false; 206 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 207 } 208 209 /* 210 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 211 * is a task pointer in owner of a reader-owned rwsem, it will be the 212 * real owner or one of the real owners. The only exception is when the 213 * unlock is done by up_read_non_owner(). 214 */ 215 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 216 { 217 unsigned long val = atomic_long_read(&sem->owner); 218 219 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 220 if (atomic_long_try_cmpxchg(&sem->owner, &val, 221 val & RWSEM_OWNER_FLAGS_MASK)) 222 return; 223 } 224 } 225 #else 226 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 227 { 228 } 229 #endif 230 231 /* 232 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 233 * remains set. Otherwise, the operation will be aborted. 234 */ 235 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 236 { 237 unsigned long owner = atomic_long_read(&sem->owner); 238 239 do { 240 if (!(owner & RWSEM_READER_OWNED)) 241 break; 242 if (owner & RWSEM_NONSPINNABLE) 243 break; 244 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 245 owner | RWSEM_NONSPINNABLE)); 246 } 247 248 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 249 { 250 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 251 252 if (WARN_ON_ONCE(*cntp < 0)) 253 rwsem_set_nonspinnable(sem); 254 255 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 256 rwsem_set_reader_owned(sem); 257 return true; 258 } 259 260 return false; 261 } 262 263 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 264 { 265 long tmp = RWSEM_UNLOCKED_VALUE; 266 267 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 268 rwsem_set_owner(sem); 269 return true; 270 } 271 272 return false; 273 } 274 275 /* 276 * Return the real task structure pointer of the owner and the embedded 277 * flags in the owner. pflags must be non-NULL. 278 */ 279 static inline struct task_struct * 280 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 281 { 282 unsigned long owner = atomic_long_read(&sem->owner); 283 284 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 285 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 286 } 287 288 /* 289 * Guide to the rw_semaphore's count field. 290 * 291 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 292 * by a writer. 293 * 294 * The lock is owned by readers when 295 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 296 * (2) some of the reader bits are set in count, and 297 * (3) the owner field has RWSEM_READ_OWNED bit set. 298 * 299 * Having some reader bits set is not enough to guarantee a readers owned 300 * lock as the readers may be in the process of backing out from the count 301 * and a writer has just released the lock. So another writer may steal 302 * the lock immediately after that. 303 */ 304 305 /* 306 * Initialize an rwsem: 307 */ 308 void __init_rwsem(struct rw_semaphore *sem, const char *name, 309 struct lock_class_key *key) 310 { 311 #ifdef CONFIG_DEBUG_LOCK_ALLOC 312 /* 313 * Make sure we are not reinitializing a held semaphore: 314 */ 315 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 316 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 317 #endif 318 #ifdef CONFIG_DEBUG_RWSEMS 319 sem->magic = sem; 320 #endif 321 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 322 raw_spin_lock_init(&sem->wait_lock); 323 INIT_LIST_HEAD(&sem->wait_list); 324 atomic_long_set(&sem->owner, 0L); 325 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 326 osq_lock_init(&sem->osq); 327 #endif 328 } 329 EXPORT_SYMBOL(__init_rwsem); 330 331 enum rwsem_waiter_type { 332 RWSEM_WAITING_FOR_WRITE, 333 RWSEM_WAITING_FOR_READ 334 }; 335 336 struct rwsem_waiter { 337 struct list_head list; 338 struct task_struct *task; 339 enum rwsem_waiter_type type; 340 unsigned long timeout; 341 bool handoff_set; 342 }; 343 #define rwsem_first_waiter(sem) \ 344 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 345 346 enum rwsem_wake_type { 347 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 348 RWSEM_WAKE_READERS, /* Wake readers only */ 349 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 350 }; 351 352 /* 353 * The typical HZ value is either 250 or 1000. So set the minimum waiting 354 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 355 * queue before initiating the handoff protocol. 356 */ 357 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 358 359 /* 360 * Magic number to batch-wakeup waiting readers, even when writers are 361 * also present in the queue. This both limits the amount of work the 362 * waking thread must do and also prevents any potential counter overflow, 363 * however unlikely. 364 */ 365 #define MAX_READERS_WAKEUP 0x100 366 367 static inline void 368 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 369 { 370 lockdep_assert_held(&sem->wait_lock); 371 list_add_tail(&waiter->list, &sem->wait_list); 372 /* caller will set RWSEM_FLAG_WAITERS */ 373 } 374 375 /* 376 * Remove a waiter from the wait_list and clear flags. 377 * 378 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 379 * this function. Modify with care. 380 * 381 * Return: true if wait_list isn't empty and false otherwise 382 */ 383 static inline bool 384 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 385 { 386 lockdep_assert_held(&sem->wait_lock); 387 list_del(&waiter->list); 388 if (likely(!list_empty(&sem->wait_list))) 389 return true; 390 391 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 392 return false; 393 } 394 395 /* 396 * handle the lock release when processes blocked on it that can now run 397 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 398 * have been set. 399 * - there must be someone on the queue 400 * - the wait_lock must be held by the caller 401 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 402 * to actually wakeup the blocked task(s) and drop the reference count, 403 * preferably when the wait_lock is released 404 * - woken process blocks are discarded from the list after having task zeroed 405 * - writers are only marked woken if downgrading is false 406 * 407 * Implies rwsem_del_waiter() for all woken readers. 408 */ 409 static void rwsem_mark_wake(struct rw_semaphore *sem, 410 enum rwsem_wake_type wake_type, 411 struct wake_q_head *wake_q) 412 { 413 struct rwsem_waiter *waiter, *tmp; 414 long oldcount, woken = 0, adjustment = 0; 415 struct list_head wlist; 416 417 lockdep_assert_held(&sem->wait_lock); 418 419 /* 420 * Take a peek at the queue head waiter such that we can determine 421 * the wakeup(s) to perform. 422 */ 423 waiter = rwsem_first_waiter(sem); 424 425 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 426 if (wake_type == RWSEM_WAKE_ANY) { 427 /* 428 * Mark writer at the front of the queue for wakeup. 429 * Until the task is actually later awoken later by 430 * the caller, other writers are able to steal it. 431 * Readers, on the other hand, will block as they 432 * will notice the queued writer. 433 */ 434 wake_q_add(wake_q, waiter->task); 435 lockevent_inc(rwsem_wake_writer); 436 } 437 438 return; 439 } 440 441 /* 442 * No reader wakeup if there are too many of them already. 443 */ 444 if (unlikely(atomic_long_read(&sem->count) < 0)) 445 return; 446 447 /* 448 * Writers might steal the lock before we grant it to the next reader. 449 * We prefer to do the first reader grant before counting readers 450 * so we can bail out early if a writer stole the lock. 451 */ 452 if (wake_type != RWSEM_WAKE_READ_OWNED) { 453 struct task_struct *owner; 454 455 adjustment = RWSEM_READER_BIAS; 456 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 457 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 458 /* 459 * When we've been waiting "too" long (for writers 460 * to give up the lock), request a HANDOFF to 461 * force the issue. 462 */ 463 if (time_after(jiffies, waiter->timeout)) { 464 if (!(oldcount & RWSEM_FLAG_HANDOFF)) { 465 adjustment -= RWSEM_FLAG_HANDOFF; 466 lockevent_inc(rwsem_rlock_handoff); 467 } 468 waiter->handoff_set = true; 469 } 470 471 atomic_long_add(-adjustment, &sem->count); 472 return; 473 } 474 /* 475 * Set it to reader-owned to give spinners an early 476 * indication that readers now have the lock. 477 * The reader nonspinnable bit seen at slowpath entry of 478 * the reader is copied over. 479 */ 480 owner = waiter->task; 481 __rwsem_set_reader_owned(sem, owner); 482 } 483 484 /* 485 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 486 * queue. We know that the woken will be at least 1 as we accounted 487 * for above. Note we increment the 'active part' of the count by the 488 * number of readers before waking any processes up. 489 * 490 * This is an adaptation of the phase-fair R/W locks where at the 491 * reader phase (first waiter is a reader), all readers are eligible 492 * to acquire the lock at the same time irrespective of their order 493 * in the queue. The writers acquire the lock according to their 494 * order in the queue. 495 * 496 * We have to do wakeup in 2 passes to prevent the possibility that 497 * the reader count may be decremented before it is incremented. It 498 * is because the to-be-woken waiter may not have slept yet. So it 499 * may see waiter->task got cleared, finish its critical section and 500 * do an unlock before the reader count increment. 501 * 502 * 1) Collect the read-waiters in a separate list, count them and 503 * fully increment the reader count in rwsem. 504 * 2) For each waiters in the new list, clear waiter->task and 505 * put them into wake_q to be woken up later. 506 */ 507 INIT_LIST_HEAD(&wlist); 508 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 509 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 510 continue; 511 512 woken++; 513 list_move_tail(&waiter->list, &wlist); 514 515 /* 516 * Limit # of readers that can be woken up per wakeup call. 517 */ 518 if (unlikely(woken >= MAX_READERS_WAKEUP)) 519 break; 520 } 521 522 adjustment = woken * RWSEM_READER_BIAS - adjustment; 523 lockevent_cond_inc(rwsem_wake_reader, woken); 524 525 oldcount = atomic_long_read(&sem->count); 526 if (list_empty(&sem->wait_list)) { 527 /* 528 * Combined with list_move_tail() above, this implies 529 * rwsem_del_waiter(). 530 */ 531 adjustment -= RWSEM_FLAG_WAITERS; 532 if (oldcount & RWSEM_FLAG_HANDOFF) 533 adjustment -= RWSEM_FLAG_HANDOFF; 534 } else if (woken) { 535 /* 536 * When we've woken a reader, we no longer need to force 537 * writers to give up the lock and we can clear HANDOFF. 538 */ 539 if (oldcount & RWSEM_FLAG_HANDOFF) 540 adjustment -= RWSEM_FLAG_HANDOFF; 541 } 542 543 if (adjustment) 544 atomic_long_add(adjustment, &sem->count); 545 546 /* 2nd pass */ 547 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 548 struct task_struct *tsk; 549 550 tsk = waiter->task; 551 get_task_struct(tsk); 552 553 /* 554 * Ensure calling get_task_struct() before setting the reader 555 * waiter to nil such that rwsem_down_read_slowpath() cannot 556 * race with do_exit() by always holding a reference count 557 * to the task to wakeup. 558 */ 559 smp_store_release(&waiter->task, NULL); 560 /* 561 * Ensure issuing the wakeup (either by us or someone else) 562 * after setting the reader waiter to nil. 563 */ 564 wake_q_add_safe(wake_q, tsk); 565 } 566 } 567 568 /* 569 * Remove a waiter and try to wake up other waiters in the wait queue 570 * This function is called from the out_nolock path of both the reader and 571 * writer slowpaths with wait_lock held. It releases the wait_lock and 572 * optionally wake up waiters before it returns. 573 */ 574 static inline void 575 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter, 576 struct wake_q_head *wake_q) 577 __releases(&sem->wait_lock) 578 { 579 bool first = rwsem_first_waiter(sem) == waiter; 580 581 wake_q_init(wake_q); 582 583 /* 584 * If the wait_list isn't empty and the waiter to be deleted is 585 * the first waiter, we wake up the remaining waiters as they may 586 * be eligible to acquire or spin on the lock. 587 */ 588 if (rwsem_del_waiter(sem, waiter) && first) 589 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q); 590 raw_spin_unlock_irq(&sem->wait_lock); 591 if (!wake_q_empty(wake_q)) 592 wake_up_q(wake_q); 593 } 594 595 /* 596 * This function must be called with the sem->wait_lock held to prevent 597 * race conditions between checking the rwsem wait list and setting the 598 * sem->count accordingly. 599 * 600 * Implies rwsem_del_waiter() on success. 601 */ 602 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 603 struct rwsem_waiter *waiter) 604 { 605 struct rwsem_waiter *first = rwsem_first_waiter(sem); 606 long count, new; 607 608 lockdep_assert_held(&sem->wait_lock); 609 610 count = atomic_long_read(&sem->count); 611 do { 612 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 613 614 if (has_handoff) { 615 /* 616 * Honor handoff bit and yield only when the first 617 * waiter is the one that set it. Otherwisee, we 618 * still try to acquire the rwsem. 619 */ 620 if (first->handoff_set && (waiter != first)) 621 return false; 622 } 623 624 new = count; 625 626 if (count & RWSEM_LOCK_MASK) { 627 /* 628 * A waiter (first or not) can set the handoff bit 629 * if it is an RT task or wait in the wait queue 630 * for too long. 631 */ 632 if (has_handoff || (!rt_or_dl_task(waiter->task) && 633 !time_after(jiffies, waiter->timeout))) 634 return false; 635 636 new |= RWSEM_FLAG_HANDOFF; 637 } else { 638 new |= RWSEM_WRITER_LOCKED; 639 new &= ~RWSEM_FLAG_HANDOFF; 640 641 if (list_is_singular(&sem->wait_list)) 642 new &= ~RWSEM_FLAG_WAITERS; 643 } 644 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 645 646 /* 647 * We have either acquired the lock with handoff bit cleared or set 648 * the handoff bit. Only the first waiter can have its handoff_set 649 * set here to enable optimistic spinning in slowpath loop. 650 */ 651 if (new & RWSEM_FLAG_HANDOFF) { 652 first->handoff_set = true; 653 lockevent_inc(rwsem_wlock_handoff); 654 return false; 655 } 656 657 /* 658 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 659 * success. 660 */ 661 list_del(&waiter->list); 662 rwsem_set_owner(sem); 663 return true; 664 } 665 666 /* 667 * The rwsem_spin_on_owner() function returns the following 4 values 668 * depending on the lock owner state. 669 * OWNER_NULL : owner is currently NULL 670 * OWNER_WRITER: when owner changes and is a writer 671 * OWNER_READER: when owner changes and the new owner may be a reader. 672 * OWNER_NONSPINNABLE: 673 * when optimistic spinning has to stop because either the 674 * owner stops running, is unknown, or its timeslice has 675 * been used up. 676 */ 677 enum owner_state { 678 OWNER_NULL = 1 << 0, 679 OWNER_WRITER = 1 << 1, 680 OWNER_READER = 1 << 2, 681 OWNER_NONSPINNABLE = 1 << 3, 682 }; 683 684 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 685 /* 686 * Try to acquire write lock before the writer has been put on wait queue. 687 */ 688 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 689 { 690 long count = atomic_long_read(&sem->count); 691 692 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 693 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 694 count | RWSEM_WRITER_LOCKED)) { 695 rwsem_set_owner(sem); 696 lockevent_inc(rwsem_opt_lock); 697 return true; 698 } 699 } 700 return false; 701 } 702 703 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 704 { 705 struct task_struct *owner; 706 unsigned long flags; 707 bool ret = true; 708 709 if (need_resched()) { 710 lockevent_inc(rwsem_opt_fail); 711 return false; 712 } 713 714 /* 715 * Disable preemption is equal to the RCU read-side crital section, 716 * thus the task_strcut structure won't go away. 717 */ 718 owner = rwsem_owner_flags(sem, &flags); 719 /* 720 * Don't check the read-owner as the entry may be stale. 721 */ 722 if ((flags & RWSEM_NONSPINNABLE) || 723 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 724 ret = false; 725 726 lockevent_cond_inc(rwsem_opt_fail, !ret); 727 return ret; 728 } 729 730 static inline enum owner_state 731 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 732 { 733 if (flags & RWSEM_NONSPINNABLE) 734 return OWNER_NONSPINNABLE; 735 736 if (flags & RWSEM_READER_OWNED) 737 return OWNER_READER; 738 739 return owner ? OWNER_WRITER : OWNER_NULL; 740 } 741 742 static noinline enum owner_state 743 rwsem_spin_on_owner(struct rw_semaphore *sem) 744 { 745 struct task_struct *new, *owner; 746 unsigned long flags, new_flags; 747 enum owner_state state; 748 749 lockdep_assert_preemption_disabled(); 750 751 owner = rwsem_owner_flags(sem, &flags); 752 state = rwsem_owner_state(owner, flags); 753 if (state != OWNER_WRITER) 754 return state; 755 756 for (;;) { 757 /* 758 * When a waiting writer set the handoff flag, it may spin 759 * on the owner as well. Once that writer acquires the lock, 760 * we can spin on it. So we don't need to quit even when the 761 * handoff bit is set. 762 */ 763 new = rwsem_owner_flags(sem, &new_flags); 764 if ((new != owner) || (new_flags != flags)) { 765 state = rwsem_owner_state(new, new_flags); 766 break; 767 } 768 769 /* 770 * Ensure we emit the owner->on_cpu, dereference _after_ 771 * checking sem->owner still matches owner, if that fails, 772 * owner might point to free()d memory, if it still matches, 773 * our spinning context already disabled preemption which is 774 * equal to RCU read-side crital section ensures the memory 775 * stays valid. 776 */ 777 barrier(); 778 779 if (need_resched() || !owner_on_cpu(owner)) { 780 state = OWNER_NONSPINNABLE; 781 break; 782 } 783 784 cpu_relax(); 785 } 786 787 return state; 788 } 789 790 /* 791 * Calculate reader-owned rwsem spinning threshold for writer 792 * 793 * The more readers own the rwsem, the longer it will take for them to 794 * wind down and free the rwsem. So the empirical formula used to 795 * determine the actual spinning time limit here is: 796 * 797 * Spinning threshold = (10 + nr_readers/2)us 798 * 799 * The limit is capped to a maximum of 25us (30 readers). This is just 800 * a heuristic and is subjected to change in the future. 801 */ 802 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 803 { 804 long count = atomic_long_read(&sem->count); 805 int readers = count >> RWSEM_READER_SHIFT; 806 u64 delta; 807 808 if (readers > 30) 809 readers = 30; 810 delta = (20 + readers) * NSEC_PER_USEC / 2; 811 812 return sched_clock() + delta; 813 } 814 815 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 816 { 817 bool taken = false; 818 int prev_owner_state = OWNER_NULL; 819 int loop = 0; 820 u64 rspin_threshold = 0; 821 822 /* sem->wait_lock should not be held when doing optimistic spinning */ 823 if (!osq_lock(&sem->osq)) 824 goto done; 825 826 /* 827 * Optimistically spin on the owner field and attempt to acquire the 828 * lock whenever the owner changes. Spinning will be stopped when: 829 * 1) the owning writer isn't running; or 830 * 2) readers own the lock and spinning time has exceeded limit. 831 */ 832 for (;;) { 833 enum owner_state owner_state; 834 835 owner_state = rwsem_spin_on_owner(sem); 836 if (owner_state == OWNER_NONSPINNABLE) 837 break; 838 839 /* 840 * Try to acquire the lock 841 */ 842 taken = rwsem_try_write_lock_unqueued(sem); 843 844 if (taken) 845 break; 846 847 /* 848 * Time-based reader-owned rwsem optimistic spinning 849 */ 850 if (owner_state == OWNER_READER) { 851 /* 852 * Re-initialize rspin_threshold every time when 853 * the owner state changes from non-reader to reader. 854 * This allows a writer to steal the lock in between 855 * 2 reader phases and have the threshold reset at 856 * the beginning of the 2nd reader phase. 857 */ 858 if (prev_owner_state != OWNER_READER) { 859 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 860 break; 861 rspin_threshold = rwsem_rspin_threshold(sem); 862 loop = 0; 863 } 864 865 /* 866 * Check time threshold once every 16 iterations to 867 * avoid calling sched_clock() too frequently so 868 * as to reduce the average latency between the times 869 * when the lock becomes free and when the spinner 870 * is ready to do a trylock. 871 */ 872 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 873 rwsem_set_nonspinnable(sem); 874 lockevent_inc(rwsem_opt_nospin); 875 break; 876 } 877 } 878 879 /* 880 * An RT task cannot do optimistic spinning if it cannot 881 * be sure the lock holder is running or live-lock may 882 * happen if the current task and the lock holder happen 883 * to run in the same CPU. However, aborting optimistic 884 * spinning while a NULL owner is detected may miss some 885 * opportunity where spinning can continue without causing 886 * problem. 887 * 888 * There are 2 possible cases where an RT task may be able 889 * to continue spinning. 890 * 891 * 1) The lock owner is in the process of releasing the 892 * lock, sem->owner is cleared but the lock has not 893 * been released yet. 894 * 2) The lock was free and owner cleared, but another 895 * task just comes in and acquire the lock before 896 * we try to get it. The new owner may be a spinnable 897 * writer. 898 * 899 * To take advantage of two scenarios listed above, the RT 900 * task is made to retry one more time to see if it can 901 * acquire the lock or continue spinning on the new owning 902 * writer. Of course, if the time lag is long enough or the 903 * new owner is not a writer or spinnable, the RT task will 904 * quit spinning. 905 * 906 * If the owner is a writer, the need_resched() check is 907 * done inside rwsem_spin_on_owner(). If the owner is not 908 * a writer, need_resched() check needs to be done here. 909 */ 910 if (owner_state != OWNER_WRITER) { 911 if (need_resched()) 912 break; 913 if (rt_or_dl_task(current) && 914 (prev_owner_state != OWNER_WRITER)) 915 break; 916 } 917 prev_owner_state = owner_state; 918 919 /* 920 * The cpu_relax() call is a compiler barrier which forces 921 * everything in this loop to be re-loaded. We don't need 922 * memory barriers as we'll eventually observe the right 923 * values at the cost of a few extra spins. 924 */ 925 cpu_relax(); 926 } 927 osq_unlock(&sem->osq); 928 done: 929 lockevent_cond_inc(rwsem_opt_fail, !taken); 930 return taken; 931 } 932 933 /* 934 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 935 * only be called when the reader count reaches 0. 936 */ 937 static inline void clear_nonspinnable(struct rw_semaphore *sem) 938 { 939 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))) 940 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 941 } 942 943 #else 944 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 945 { 946 return false; 947 } 948 949 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 950 { 951 return false; 952 } 953 954 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 955 956 static inline enum owner_state 957 rwsem_spin_on_owner(struct rw_semaphore *sem) 958 { 959 return OWNER_NONSPINNABLE; 960 } 961 #endif 962 963 /* 964 * Prepare to wake up waiter(s) in the wait queue by putting them into the 965 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely 966 * reader-owned, wake up read lock waiters in queue front or wake up any 967 * front waiter otherwise. 968 969 * This is being called from both reader and writer slow paths. 970 */ 971 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count, 972 struct wake_q_head *wake_q) 973 { 974 enum rwsem_wake_type wake_type; 975 976 if (count & RWSEM_WRITER_MASK) 977 return; 978 979 if (count & RWSEM_READER_MASK) { 980 wake_type = RWSEM_WAKE_READERS; 981 } else { 982 wake_type = RWSEM_WAKE_ANY; 983 clear_nonspinnable(sem); 984 } 985 rwsem_mark_wake(sem, wake_type, wake_q); 986 } 987 988 /* 989 * Wait for the read lock to be granted 990 */ 991 static struct rw_semaphore __sched * 992 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 993 { 994 long adjustment = -RWSEM_READER_BIAS; 995 long rcnt = (count >> RWSEM_READER_SHIFT); 996 struct rwsem_waiter waiter; 997 DEFINE_WAKE_Q(wake_q); 998 999 /* 1000 * To prevent a constant stream of readers from starving a sleeping 1001 * writer, don't attempt optimistic lock stealing if the lock is 1002 * very likely owned by readers. 1003 */ 1004 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 1005 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 1006 goto queue; 1007 1008 /* 1009 * Reader optimistic lock stealing. 1010 */ 1011 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 1012 rwsem_set_reader_owned(sem); 1013 lockevent_inc(rwsem_rlock_steal); 1014 1015 /* 1016 * Wake up other readers in the wait queue if it is 1017 * the first reader. 1018 */ 1019 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 1020 raw_spin_lock_irq(&sem->wait_lock); 1021 if (!list_empty(&sem->wait_list)) 1022 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1023 &wake_q); 1024 raw_spin_unlock_irq(&sem->wait_lock); 1025 wake_up_q(&wake_q); 1026 } 1027 return sem; 1028 } 1029 1030 queue: 1031 waiter.task = current; 1032 waiter.type = RWSEM_WAITING_FOR_READ; 1033 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1034 waiter.handoff_set = false; 1035 1036 raw_spin_lock_irq(&sem->wait_lock); 1037 if (list_empty(&sem->wait_list)) { 1038 /* 1039 * In case the wait queue is empty and the lock isn't owned 1040 * by a writer, this reader can exit the slowpath and return 1041 * immediately as its RWSEM_READER_BIAS has already been set 1042 * in the count. 1043 */ 1044 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { 1045 /* Provide lock ACQUIRE */ 1046 smp_acquire__after_ctrl_dep(); 1047 raw_spin_unlock_irq(&sem->wait_lock); 1048 rwsem_set_reader_owned(sem); 1049 lockevent_inc(rwsem_rlock_fast); 1050 return sem; 1051 } 1052 adjustment += RWSEM_FLAG_WAITERS; 1053 } 1054 rwsem_add_waiter(sem, &waiter); 1055 1056 /* we're now waiting on the lock, but no longer actively locking */ 1057 count = atomic_long_add_return(adjustment, &sem->count); 1058 1059 rwsem_cond_wake_waiter(sem, count, &wake_q); 1060 raw_spin_unlock_irq(&sem->wait_lock); 1061 1062 if (!wake_q_empty(&wake_q)) 1063 wake_up_q(&wake_q); 1064 1065 trace_contention_begin(sem, LCB_F_READ); 1066 1067 /* wait to be given the lock */ 1068 for (;;) { 1069 set_current_state(state); 1070 if (!smp_load_acquire(&waiter.task)) { 1071 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1072 break; 1073 } 1074 if (signal_pending_state(state, current)) { 1075 raw_spin_lock_irq(&sem->wait_lock); 1076 if (waiter.task) 1077 goto out_nolock; 1078 raw_spin_unlock_irq(&sem->wait_lock); 1079 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1080 break; 1081 } 1082 schedule_preempt_disabled(); 1083 lockevent_inc(rwsem_sleep_reader); 1084 } 1085 1086 __set_current_state(TASK_RUNNING); 1087 lockevent_inc(rwsem_rlock); 1088 trace_contention_end(sem, 0); 1089 return sem; 1090 1091 out_nolock: 1092 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1093 __set_current_state(TASK_RUNNING); 1094 lockevent_inc(rwsem_rlock_fail); 1095 trace_contention_end(sem, -EINTR); 1096 return ERR_PTR(-EINTR); 1097 } 1098 1099 /* 1100 * Wait until we successfully acquire the write lock 1101 */ 1102 static struct rw_semaphore __sched * 1103 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1104 { 1105 struct rwsem_waiter waiter; 1106 DEFINE_WAKE_Q(wake_q); 1107 1108 /* do optimistic spinning and steal lock if possible */ 1109 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1110 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1111 return sem; 1112 } 1113 1114 /* 1115 * Optimistic spinning failed, proceed to the slowpath 1116 * and block until we can acquire the sem. 1117 */ 1118 waiter.task = current; 1119 waiter.type = RWSEM_WAITING_FOR_WRITE; 1120 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1121 waiter.handoff_set = false; 1122 1123 raw_spin_lock_irq(&sem->wait_lock); 1124 rwsem_add_waiter(sem, &waiter); 1125 1126 /* we're now waiting on the lock */ 1127 if (rwsem_first_waiter(sem) != &waiter) { 1128 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count), 1129 &wake_q); 1130 if (!wake_q_empty(&wake_q)) { 1131 /* 1132 * We want to minimize wait_lock hold time especially 1133 * when a large number of readers are to be woken up. 1134 */ 1135 raw_spin_unlock_irq(&sem->wait_lock); 1136 wake_up_q(&wake_q); 1137 raw_spin_lock_irq(&sem->wait_lock); 1138 } 1139 } else { 1140 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1141 } 1142 1143 /* wait until we successfully acquire the lock */ 1144 set_current_state(state); 1145 trace_contention_begin(sem, LCB_F_WRITE); 1146 1147 for (;;) { 1148 if (rwsem_try_write_lock(sem, &waiter)) { 1149 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1150 break; 1151 } 1152 1153 raw_spin_unlock_irq(&sem->wait_lock); 1154 1155 if (signal_pending_state(state, current)) 1156 goto out_nolock; 1157 1158 /* 1159 * After setting the handoff bit and failing to acquire 1160 * the lock, attempt to spin on owner to accelerate lock 1161 * transfer. If the previous owner is a on-cpu writer and it 1162 * has just released the lock, OWNER_NULL will be returned. 1163 * In this case, we attempt to acquire the lock again 1164 * without sleeping. 1165 */ 1166 if (waiter.handoff_set) { 1167 enum owner_state owner_state; 1168 1169 owner_state = rwsem_spin_on_owner(sem); 1170 if (owner_state == OWNER_NULL) 1171 goto trylock_again; 1172 } 1173 1174 schedule_preempt_disabled(); 1175 lockevent_inc(rwsem_sleep_writer); 1176 set_current_state(state); 1177 trylock_again: 1178 raw_spin_lock_irq(&sem->wait_lock); 1179 } 1180 __set_current_state(TASK_RUNNING); 1181 raw_spin_unlock_irq(&sem->wait_lock); 1182 lockevent_inc(rwsem_wlock); 1183 trace_contention_end(sem, 0); 1184 return sem; 1185 1186 out_nolock: 1187 __set_current_state(TASK_RUNNING); 1188 raw_spin_lock_irq(&sem->wait_lock); 1189 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1190 lockevent_inc(rwsem_wlock_fail); 1191 trace_contention_end(sem, -EINTR); 1192 return ERR_PTR(-EINTR); 1193 } 1194 1195 /* 1196 * handle waking up a waiter on the semaphore 1197 * - up_read/up_write has decremented the active part of count if we come here 1198 */ 1199 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1200 { 1201 unsigned long flags; 1202 DEFINE_WAKE_Q(wake_q); 1203 1204 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1205 1206 if (!list_empty(&sem->wait_list)) 1207 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1208 1209 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1210 wake_up_q(&wake_q); 1211 1212 return sem; 1213 } 1214 1215 /* 1216 * downgrade a write lock into a read lock 1217 * - caller incremented waiting part of count and discovered it still negative 1218 * - just wake up any readers at the front of the queue 1219 */ 1220 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1221 { 1222 unsigned long flags; 1223 DEFINE_WAKE_Q(wake_q); 1224 1225 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1226 1227 if (!list_empty(&sem->wait_list)) 1228 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1229 1230 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1231 wake_up_q(&wake_q); 1232 1233 return sem; 1234 } 1235 1236 /* 1237 * lock for reading 1238 */ 1239 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state) 1240 { 1241 int ret = 0; 1242 long count; 1243 1244 preempt_disable(); 1245 if (!rwsem_read_trylock(sem, &count)) { 1246 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) { 1247 ret = -EINTR; 1248 goto out; 1249 } 1250 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1251 } 1252 out: 1253 preempt_enable(); 1254 return ret; 1255 } 1256 1257 static __always_inline void __down_read(struct rw_semaphore *sem) 1258 { 1259 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1260 } 1261 1262 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem) 1263 { 1264 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1265 } 1266 1267 static __always_inline int __down_read_killable(struct rw_semaphore *sem) 1268 { 1269 return __down_read_common(sem, TASK_KILLABLE); 1270 } 1271 1272 static inline int __down_read_trylock(struct rw_semaphore *sem) 1273 { 1274 int ret = 0; 1275 long tmp; 1276 1277 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1278 1279 preempt_disable(); 1280 tmp = atomic_long_read(&sem->count); 1281 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1282 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1283 tmp + RWSEM_READER_BIAS)) { 1284 rwsem_set_reader_owned(sem); 1285 ret = 1; 1286 break; 1287 } 1288 } 1289 preempt_enable(); 1290 return ret; 1291 } 1292 1293 /* 1294 * lock for writing 1295 */ 1296 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state) 1297 { 1298 int ret = 0; 1299 1300 preempt_disable(); 1301 if (unlikely(!rwsem_write_trylock(sem))) { 1302 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1303 ret = -EINTR; 1304 } 1305 preempt_enable(); 1306 return ret; 1307 } 1308 1309 static __always_inline void __down_write(struct rw_semaphore *sem) 1310 { 1311 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1312 } 1313 1314 static __always_inline int __down_write_killable(struct rw_semaphore *sem) 1315 { 1316 return __down_write_common(sem, TASK_KILLABLE); 1317 } 1318 1319 static inline int __down_write_trylock(struct rw_semaphore *sem) 1320 { 1321 int ret; 1322 1323 preempt_disable(); 1324 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1325 ret = rwsem_write_trylock(sem); 1326 preempt_enable(); 1327 1328 return ret; 1329 } 1330 1331 /* 1332 * unlock after reading 1333 */ 1334 static inline void __up_read(struct rw_semaphore *sem) 1335 { 1336 long tmp; 1337 1338 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1339 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1340 1341 preempt_disable(); 1342 rwsem_clear_reader_owned(sem); 1343 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1344 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1345 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1346 RWSEM_FLAG_WAITERS)) { 1347 clear_nonspinnable(sem); 1348 rwsem_wake(sem); 1349 } 1350 preempt_enable(); 1351 } 1352 1353 /* 1354 * unlock after writing 1355 */ 1356 static inline void __up_write(struct rw_semaphore *sem) 1357 { 1358 long tmp; 1359 1360 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1361 /* 1362 * sem->owner may differ from current if the ownership is transferred 1363 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1364 */ 1365 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1366 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1367 1368 preempt_disable(); 1369 rwsem_clear_owner(sem); 1370 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1371 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1372 rwsem_wake(sem); 1373 preempt_enable(); 1374 } 1375 1376 /* 1377 * downgrade write lock to read lock 1378 */ 1379 static inline void __downgrade_write(struct rw_semaphore *sem) 1380 { 1381 long tmp; 1382 1383 /* 1384 * When downgrading from exclusive to shared ownership, 1385 * anything inside the write-locked region cannot leak 1386 * into the read side. In contrast, anything in the 1387 * read-locked region is ok to be re-ordered into the 1388 * write side. As such, rely on RELEASE semantics. 1389 */ 1390 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1391 preempt_disable(); 1392 tmp = atomic_long_fetch_add_release( 1393 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1394 rwsem_set_reader_owned(sem); 1395 if (tmp & RWSEM_FLAG_WAITERS) 1396 rwsem_downgrade_wake(sem); 1397 preempt_enable(); 1398 } 1399 1400 #else /* !CONFIG_PREEMPT_RT */ 1401 1402 #define RT_MUTEX_BUILD_MUTEX 1403 #include "rtmutex.c" 1404 1405 #define rwbase_set_and_save_current_state(state) \ 1406 set_current_state(state) 1407 1408 #define rwbase_restore_current_state() \ 1409 __set_current_state(TASK_RUNNING) 1410 1411 #define rwbase_rtmutex_lock_state(rtm, state) \ 1412 __rt_mutex_lock(rtm, state) 1413 1414 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq) \ 1415 __rt_mutex_slowlock_locked(rtm, NULL, state, wq) 1416 1417 #define rwbase_rtmutex_unlock(rtm) \ 1418 __rt_mutex_unlock(rtm) 1419 1420 #define rwbase_rtmutex_trylock(rtm) \ 1421 __rt_mutex_trylock(rtm) 1422 1423 #define rwbase_signal_pending_state(state, current) \ 1424 signal_pending_state(state, current) 1425 1426 #define rwbase_pre_schedule() \ 1427 rt_mutex_pre_schedule() 1428 1429 #define rwbase_schedule() \ 1430 rt_mutex_schedule() 1431 1432 #define rwbase_post_schedule() \ 1433 rt_mutex_post_schedule() 1434 1435 #include "rwbase_rt.c" 1436 1437 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1438 struct lock_class_key *key) 1439 { 1440 init_rwbase_rt(&(sem)->rwbase); 1441 1442 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1443 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1444 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1445 #endif 1446 } 1447 EXPORT_SYMBOL(__init_rwsem); 1448 1449 static inline void __down_read(struct rw_semaphore *sem) 1450 { 1451 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1452 } 1453 1454 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1455 { 1456 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1457 } 1458 1459 static inline int __down_read_killable(struct rw_semaphore *sem) 1460 { 1461 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1462 } 1463 1464 static inline int __down_read_trylock(struct rw_semaphore *sem) 1465 { 1466 return rwbase_read_trylock(&sem->rwbase); 1467 } 1468 1469 static inline void __up_read(struct rw_semaphore *sem) 1470 { 1471 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1472 } 1473 1474 static inline void __sched __down_write(struct rw_semaphore *sem) 1475 { 1476 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1477 } 1478 1479 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1480 { 1481 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1482 } 1483 1484 static inline int __down_write_trylock(struct rw_semaphore *sem) 1485 { 1486 return rwbase_write_trylock(&sem->rwbase); 1487 } 1488 1489 static inline void __up_write(struct rw_semaphore *sem) 1490 { 1491 rwbase_write_unlock(&sem->rwbase); 1492 } 1493 1494 static inline void __downgrade_write(struct rw_semaphore *sem) 1495 { 1496 rwbase_write_downgrade(&sem->rwbase); 1497 } 1498 1499 /* Debug stubs for the common API */ 1500 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1501 1502 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1503 struct task_struct *owner) 1504 { 1505 } 1506 1507 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1508 { 1509 int count = atomic_read(&sem->rwbase.readers); 1510 1511 return count < 0 && count != READER_BIAS; 1512 } 1513 1514 #endif /* CONFIG_PREEMPT_RT */ 1515 1516 /* 1517 * lock for reading 1518 */ 1519 void __sched down_read(struct rw_semaphore *sem) 1520 { 1521 might_sleep(); 1522 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1523 1524 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1525 } 1526 EXPORT_SYMBOL(down_read); 1527 1528 int __sched down_read_interruptible(struct rw_semaphore *sem) 1529 { 1530 might_sleep(); 1531 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1532 1533 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1534 rwsem_release(&sem->dep_map, _RET_IP_); 1535 return -EINTR; 1536 } 1537 1538 return 0; 1539 } 1540 EXPORT_SYMBOL(down_read_interruptible); 1541 1542 int __sched down_read_killable(struct rw_semaphore *sem) 1543 { 1544 might_sleep(); 1545 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1546 1547 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1548 rwsem_release(&sem->dep_map, _RET_IP_); 1549 return -EINTR; 1550 } 1551 1552 return 0; 1553 } 1554 EXPORT_SYMBOL(down_read_killable); 1555 1556 /* 1557 * trylock for reading -- returns 1 if successful, 0 if contention 1558 */ 1559 int down_read_trylock(struct rw_semaphore *sem) 1560 { 1561 int ret = __down_read_trylock(sem); 1562 1563 if (ret == 1) 1564 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1565 return ret; 1566 } 1567 EXPORT_SYMBOL(down_read_trylock); 1568 1569 /* 1570 * lock for writing 1571 */ 1572 void __sched down_write(struct rw_semaphore *sem) 1573 { 1574 might_sleep(); 1575 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1576 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1577 } 1578 EXPORT_SYMBOL(down_write); 1579 1580 /* 1581 * lock for writing 1582 */ 1583 int __sched down_write_killable(struct rw_semaphore *sem) 1584 { 1585 might_sleep(); 1586 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1587 1588 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1589 __down_write_killable)) { 1590 rwsem_release(&sem->dep_map, _RET_IP_); 1591 return -EINTR; 1592 } 1593 1594 return 0; 1595 } 1596 EXPORT_SYMBOL(down_write_killable); 1597 1598 /* 1599 * trylock for writing -- returns 1 if successful, 0 if contention 1600 */ 1601 int down_write_trylock(struct rw_semaphore *sem) 1602 { 1603 int ret = __down_write_trylock(sem); 1604 1605 if (ret == 1) 1606 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1607 1608 return ret; 1609 } 1610 EXPORT_SYMBOL(down_write_trylock); 1611 1612 /* 1613 * release a read lock 1614 */ 1615 void up_read(struct rw_semaphore *sem) 1616 { 1617 rwsem_release(&sem->dep_map, _RET_IP_); 1618 __up_read(sem); 1619 } 1620 EXPORT_SYMBOL(up_read); 1621 1622 /* 1623 * release a write lock 1624 */ 1625 void up_write(struct rw_semaphore *sem) 1626 { 1627 rwsem_release(&sem->dep_map, _RET_IP_); 1628 __up_write(sem); 1629 } 1630 EXPORT_SYMBOL(up_write); 1631 1632 /* 1633 * downgrade write lock to read lock 1634 */ 1635 void downgrade_write(struct rw_semaphore *sem) 1636 { 1637 lock_downgrade(&sem->dep_map, _RET_IP_); 1638 __downgrade_write(sem); 1639 } 1640 EXPORT_SYMBOL(downgrade_write); 1641 1642 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1643 1644 void down_read_nested(struct rw_semaphore *sem, int subclass) 1645 { 1646 might_sleep(); 1647 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1648 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1649 } 1650 EXPORT_SYMBOL(down_read_nested); 1651 1652 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1653 { 1654 might_sleep(); 1655 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1656 1657 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1658 rwsem_release(&sem->dep_map, _RET_IP_); 1659 return -EINTR; 1660 } 1661 1662 return 0; 1663 } 1664 EXPORT_SYMBOL(down_read_killable_nested); 1665 1666 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1667 { 1668 might_sleep(); 1669 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1670 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1671 } 1672 EXPORT_SYMBOL(_down_write_nest_lock); 1673 1674 void down_read_non_owner(struct rw_semaphore *sem) 1675 { 1676 might_sleep(); 1677 __down_read(sem); 1678 /* 1679 * The owner value for a reader-owned lock is mostly for debugging 1680 * purpose only and is not critical to the correct functioning of 1681 * rwsem. So it is perfectly fine to set it in a preempt-enabled 1682 * context here. 1683 */ 1684 __rwsem_set_reader_owned(sem, NULL); 1685 } 1686 EXPORT_SYMBOL(down_read_non_owner); 1687 1688 void down_write_nested(struct rw_semaphore *sem, int subclass) 1689 { 1690 might_sleep(); 1691 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1692 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1693 } 1694 EXPORT_SYMBOL(down_write_nested); 1695 1696 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1697 { 1698 might_sleep(); 1699 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1700 1701 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1702 __down_write_killable)) { 1703 rwsem_release(&sem->dep_map, _RET_IP_); 1704 return -EINTR; 1705 } 1706 1707 return 0; 1708 } 1709 EXPORT_SYMBOL(down_write_killable_nested); 1710 1711 void up_read_non_owner(struct rw_semaphore *sem) 1712 { 1713 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1714 __up_read(sem); 1715 } 1716 EXPORT_SYMBOL(up_read_non_owner); 1717 1718 #endif 1719