1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 #include <linux/hung_task.h> 31 #include <trace/events/lock.h> 32 33 #ifndef CONFIG_PREEMPT_RT 34 #include "lock_events.h" 35 36 /* 37 * The least significant 2 bits of the owner value has the following 38 * meanings when set. 39 * - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint) 40 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 41 * 42 * When the rwsem is reader-owned and a spinning writer has timed out, 43 * the nonspinnable bit will be set to disable optimistic spinning. 44 45 * When a writer acquires a rwsem, it puts its task_struct pointer 46 * into the owner field. It is cleared after an unlock. 47 * 48 * When a reader acquires a rwsem, it will also puts its task_struct 49 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 50 * On unlock, the owner field will largely be left untouched. So 51 * for a free or reader-owned rwsem, the owner value may contain 52 * information about the last reader that acquires the rwsem. 53 * 54 * That information may be helpful in debugging cases where the system 55 * seems to hang on a reader owned rwsem especially if only one reader 56 * is involved. Ideally we would like to track all the readers that own 57 * a rwsem, but the overhead is simply too big. 58 * 59 * A fast path reader optimistic lock stealing is supported when the rwsem 60 * is previously owned by a writer and the following conditions are met: 61 * - rwsem is not currently writer owned 62 * - the handoff isn't set. 63 */ 64 #define RWSEM_READER_OWNED (1UL << 0) 65 #define RWSEM_NONSPINNABLE (1UL << 1) 66 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 67 68 #ifdef CONFIG_DEBUG_RWSEMS 69 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 70 if (!debug_locks_silent && \ 71 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 72 #c, atomic_long_read(&(sem)->count), \ 73 (unsigned long) sem->magic, \ 74 atomic_long_read(&(sem)->owner), (long)current, \ 75 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 76 debug_locks_off(); \ 77 } while (0) 78 #else 79 # define DEBUG_RWSEMS_WARN_ON(c, sem) 80 #endif 81 82 /* 83 * On 64-bit architectures, the bit definitions of the count are: 84 * 85 * Bit 0 - writer locked bit 86 * Bit 1 - waiters present bit 87 * Bit 2 - lock handoff bit 88 * Bits 3-7 - reserved 89 * Bits 8-62 - 55-bit reader count 90 * Bit 63 - read fail bit 91 * 92 * On 32-bit architectures, the bit definitions of the count are: 93 * 94 * Bit 0 - writer locked bit 95 * Bit 1 - waiters present bit 96 * Bit 2 - lock handoff bit 97 * Bits 3-7 - reserved 98 * Bits 8-30 - 23-bit reader count 99 * Bit 31 - read fail bit 100 * 101 * It is not likely that the most significant bit (read fail bit) will ever 102 * be set. This guard bit is still checked anyway in the down_read() fastpath 103 * just in case we need to use up more of the reader bits for other purpose 104 * in the future. 105 * 106 * atomic_long_fetch_add() is used to obtain reader lock, whereas 107 * atomic_long_cmpxchg() will be used to obtain writer lock. 108 * 109 * There are three places where the lock handoff bit may be set or cleared. 110 * 1) rwsem_mark_wake() for readers -- set, clear 111 * 2) rwsem_try_write_lock() for writers -- set, clear 112 * 3) rwsem_del_waiter() -- clear 113 * 114 * For all the above cases, wait_lock will be held. A writer must also 115 * be the first one in the wait_list to be eligible for setting the handoff 116 * bit. So concurrent setting/clearing of handoff bit is not possible. 117 */ 118 #define RWSEM_WRITER_LOCKED (1UL << 0) 119 #define RWSEM_FLAG_WAITERS (1UL << 1) 120 #define RWSEM_FLAG_HANDOFF (1UL << 2) 121 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 122 123 #define RWSEM_READER_SHIFT 8 124 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 125 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 126 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 127 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 128 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 129 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 130 131 /* 132 * All writes to owner are protected by WRITE_ONCE() to make sure that 133 * store tearing can't happen as optimistic spinners may read and use 134 * the owner value concurrently without lock. Read from owner, however, 135 * may not need READ_ONCE() as long as the pointer value is only used 136 * for comparison and isn't being dereferenced. 137 * 138 * Both rwsem_{set,clear}_owner() functions should be in the same 139 * preempt disable section as the atomic op that changes sem->count. 140 */ 141 static inline void rwsem_set_owner(struct rw_semaphore *sem) 142 { 143 lockdep_assert_preemption_disabled(); 144 atomic_long_set(&sem->owner, (long)current); 145 } 146 147 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 148 { 149 lockdep_assert_preemption_disabled(); 150 atomic_long_set(&sem->owner, 0); 151 } 152 153 /* 154 * Test the flags in the owner field. 155 */ 156 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 157 { 158 return atomic_long_read(&sem->owner) & flags; 159 } 160 161 /* 162 * The task_struct pointer of the last owning reader will be left in 163 * the owner field. 164 * 165 * Note that the owner value just indicates the task has owned the rwsem 166 * previously, it may not be the real owner or one of the real owners 167 * anymore when that field is examined, so take it with a grain of salt. 168 * 169 * The reader non-spinnable bit is preserved. 170 */ 171 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 172 struct task_struct *owner) 173 { 174 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 175 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 176 177 atomic_long_set(&sem->owner, val); 178 } 179 180 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 181 { 182 __rwsem_set_reader_owned(sem, current); 183 } 184 185 #if defined(CONFIG_DEBUG_RWSEMS) || defined(CONFIG_DETECT_HUNG_TASK_BLOCKER) 186 /* 187 * Return just the real task structure pointer of the owner 188 */ 189 struct task_struct *rwsem_owner(struct rw_semaphore *sem) 190 { 191 return (struct task_struct *) 192 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 193 } 194 195 /* 196 * Return true if the rwsem is owned by a reader. 197 */ 198 bool is_rwsem_reader_owned(struct rw_semaphore *sem) 199 { 200 /* 201 * Check the count to see if it is write-locked. 202 */ 203 long count = atomic_long_read(&sem->count); 204 205 if (count & RWSEM_WRITER_MASK) 206 return false; 207 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 208 } 209 210 /* 211 * With CONFIG_DEBUG_RWSEMS or CONFIG_DETECT_HUNG_TASK_BLOCKER configured, 212 * it will make sure that the owner field of a reader-owned rwsem either 213 * points to a real reader-owner(s) or gets cleared. The only exception is 214 * when the unlock is done by up_read_non_owner(). 215 */ 216 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 217 { 218 unsigned long val = atomic_long_read(&sem->owner); 219 220 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 221 if (atomic_long_try_cmpxchg(&sem->owner, &val, 222 val & RWSEM_OWNER_FLAGS_MASK)) 223 return; 224 } 225 } 226 #else 227 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 228 { 229 } 230 #endif 231 232 /* 233 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 234 * remains set. Otherwise, the operation will be aborted. 235 */ 236 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 237 { 238 unsigned long owner = atomic_long_read(&sem->owner); 239 240 do { 241 if (!(owner & RWSEM_READER_OWNED)) 242 break; 243 if (owner & RWSEM_NONSPINNABLE) 244 break; 245 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 246 owner | RWSEM_NONSPINNABLE)); 247 } 248 249 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 250 { 251 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 252 253 if (WARN_ON_ONCE(*cntp < 0)) 254 rwsem_set_nonspinnable(sem); 255 256 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 257 rwsem_set_reader_owned(sem); 258 return true; 259 } 260 261 return false; 262 } 263 264 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 265 { 266 long tmp = RWSEM_UNLOCKED_VALUE; 267 268 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 269 rwsem_set_owner(sem); 270 return true; 271 } 272 273 return false; 274 } 275 276 /* 277 * Return the real task structure pointer of the owner and the embedded 278 * flags in the owner. pflags must be non-NULL. 279 */ 280 static inline struct task_struct * 281 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 282 { 283 unsigned long owner = atomic_long_read(&sem->owner); 284 285 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 286 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 287 } 288 289 /* 290 * Guide to the rw_semaphore's count field. 291 * 292 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 293 * by a writer. 294 * 295 * The lock is owned by readers when 296 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 297 * (2) some of the reader bits are set in count, and 298 * (3) the owner field has RWSEM_READ_OWNED bit set. 299 * 300 * Having some reader bits set is not enough to guarantee a readers owned 301 * lock as the readers may be in the process of backing out from the count 302 * and a writer has just released the lock. So another writer may steal 303 * the lock immediately after that. 304 */ 305 306 /* 307 * Initialize an rwsem: 308 */ 309 void __init_rwsem(struct rw_semaphore *sem, const char *name, 310 struct lock_class_key *key) 311 { 312 #ifdef CONFIG_DEBUG_LOCK_ALLOC 313 /* 314 * Make sure we are not reinitializing a held semaphore: 315 */ 316 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 317 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 318 #endif 319 #ifdef CONFIG_DEBUG_RWSEMS 320 sem->magic = sem; 321 #endif 322 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 323 raw_spin_lock_init(&sem->wait_lock); 324 INIT_LIST_HEAD(&sem->wait_list); 325 atomic_long_set(&sem->owner, 0L); 326 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 327 osq_lock_init(&sem->osq); 328 #endif 329 } 330 EXPORT_SYMBOL(__init_rwsem); 331 332 enum rwsem_waiter_type { 333 RWSEM_WAITING_FOR_WRITE, 334 RWSEM_WAITING_FOR_READ 335 }; 336 337 struct rwsem_waiter { 338 struct list_head list; 339 struct task_struct *task; 340 enum rwsem_waiter_type type; 341 unsigned long timeout; 342 bool handoff_set; 343 }; 344 #define rwsem_first_waiter(sem) \ 345 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 346 347 enum rwsem_wake_type { 348 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 349 RWSEM_WAKE_READERS, /* Wake readers only */ 350 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 351 }; 352 353 /* 354 * The typical HZ value is either 250 or 1000. So set the minimum waiting 355 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 356 * queue before initiating the handoff protocol. 357 */ 358 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 359 360 /* 361 * Magic number to batch-wakeup waiting readers, even when writers are 362 * also present in the queue. This both limits the amount of work the 363 * waking thread must do and also prevents any potential counter overflow, 364 * however unlikely. 365 */ 366 #define MAX_READERS_WAKEUP 0x100 367 368 static inline void 369 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 370 { 371 lockdep_assert_held(&sem->wait_lock); 372 list_add_tail(&waiter->list, &sem->wait_list); 373 /* caller will set RWSEM_FLAG_WAITERS */ 374 } 375 376 /* 377 * Remove a waiter from the wait_list and clear flags. 378 * 379 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 380 * this function. Modify with care. 381 * 382 * Return: true if wait_list isn't empty and false otherwise 383 */ 384 static inline bool 385 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 386 { 387 lockdep_assert_held(&sem->wait_lock); 388 list_del(&waiter->list); 389 if (likely(!list_empty(&sem->wait_list))) 390 return true; 391 392 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 393 return false; 394 } 395 396 /* 397 * handle the lock release when processes blocked on it that can now run 398 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 399 * have been set. 400 * - there must be someone on the queue 401 * - the wait_lock must be held by the caller 402 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 403 * to actually wakeup the blocked task(s) and drop the reference count, 404 * preferably when the wait_lock is released 405 * - woken process blocks are discarded from the list after having task zeroed 406 * - writers are only marked woken if downgrading is false 407 * 408 * Implies rwsem_del_waiter() for all woken readers. 409 */ 410 static void rwsem_mark_wake(struct rw_semaphore *sem, 411 enum rwsem_wake_type wake_type, 412 struct wake_q_head *wake_q) 413 { 414 struct rwsem_waiter *waiter, *tmp; 415 long oldcount, woken = 0, adjustment = 0; 416 struct list_head wlist; 417 418 lockdep_assert_held(&sem->wait_lock); 419 420 /* 421 * Take a peek at the queue head waiter such that we can determine 422 * the wakeup(s) to perform. 423 */ 424 waiter = rwsem_first_waiter(sem); 425 426 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 427 if (wake_type == RWSEM_WAKE_ANY) { 428 /* 429 * Mark writer at the front of the queue for wakeup. 430 * Until the task is actually later awoken later by 431 * the caller, other writers are able to steal it. 432 * Readers, on the other hand, will block as they 433 * will notice the queued writer. 434 */ 435 wake_q_add(wake_q, waiter->task); 436 lockevent_inc(rwsem_wake_writer); 437 } 438 439 return; 440 } 441 442 /* 443 * No reader wakeup if there are too many of them already. 444 */ 445 if (unlikely(atomic_long_read(&sem->count) < 0)) 446 return; 447 448 /* 449 * Writers might steal the lock before we grant it to the next reader. 450 * We prefer to do the first reader grant before counting readers 451 * so we can bail out early if a writer stole the lock. 452 */ 453 if (wake_type != RWSEM_WAKE_READ_OWNED) { 454 struct task_struct *owner; 455 456 adjustment = RWSEM_READER_BIAS; 457 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 458 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 459 /* 460 * When we've been waiting "too" long (for writers 461 * to give up the lock), request a HANDOFF to 462 * force the issue. 463 */ 464 if (time_after(jiffies, waiter->timeout)) { 465 if (!(oldcount & RWSEM_FLAG_HANDOFF)) { 466 adjustment -= RWSEM_FLAG_HANDOFF; 467 lockevent_inc(rwsem_rlock_handoff); 468 } 469 waiter->handoff_set = true; 470 } 471 472 atomic_long_add(-adjustment, &sem->count); 473 return; 474 } 475 /* 476 * Set it to reader-owned to give spinners an early 477 * indication that readers now have the lock. 478 * The reader nonspinnable bit seen at slowpath entry of 479 * the reader is copied over. 480 */ 481 owner = waiter->task; 482 __rwsem_set_reader_owned(sem, owner); 483 } 484 485 /* 486 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 487 * queue. We know that the woken will be at least 1 as we accounted 488 * for above. Note we increment the 'active part' of the count by the 489 * number of readers before waking any processes up. 490 * 491 * This is an adaptation of the phase-fair R/W locks where at the 492 * reader phase (first waiter is a reader), all readers are eligible 493 * to acquire the lock at the same time irrespective of their order 494 * in the queue. The writers acquire the lock according to their 495 * order in the queue. 496 * 497 * We have to do wakeup in 2 passes to prevent the possibility that 498 * the reader count may be decremented before it is incremented. It 499 * is because the to-be-woken waiter may not have slept yet. So it 500 * may see waiter->task got cleared, finish its critical section and 501 * do an unlock before the reader count increment. 502 * 503 * 1) Collect the read-waiters in a separate list, count them and 504 * fully increment the reader count in rwsem. 505 * 2) For each waiters in the new list, clear waiter->task and 506 * put them into wake_q to be woken up later. 507 */ 508 INIT_LIST_HEAD(&wlist); 509 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 510 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 511 continue; 512 513 woken++; 514 list_move_tail(&waiter->list, &wlist); 515 516 /* 517 * Limit # of readers that can be woken up per wakeup call. 518 */ 519 if (unlikely(woken >= MAX_READERS_WAKEUP)) 520 break; 521 } 522 523 adjustment = woken * RWSEM_READER_BIAS - adjustment; 524 lockevent_cond_inc(rwsem_wake_reader, woken); 525 526 oldcount = atomic_long_read(&sem->count); 527 if (list_empty(&sem->wait_list)) { 528 /* 529 * Combined with list_move_tail() above, this implies 530 * rwsem_del_waiter(). 531 */ 532 adjustment -= RWSEM_FLAG_WAITERS; 533 if (oldcount & RWSEM_FLAG_HANDOFF) 534 adjustment -= RWSEM_FLAG_HANDOFF; 535 } else if (woken) { 536 /* 537 * When we've woken a reader, we no longer need to force 538 * writers to give up the lock and we can clear HANDOFF. 539 */ 540 if (oldcount & RWSEM_FLAG_HANDOFF) 541 adjustment -= RWSEM_FLAG_HANDOFF; 542 } 543 544 if (adjustment) 545 atomic_long_add(adjustment, &sem->count); 546 547 /* 2nd pass */ 548 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 549 struct task_struct *tsk; 550 551 tsk = waiter->task; 552 get_task_struct(tsk); 553 554 /* 555 * Ensure calling get_task_struct() before setting the reader 556 * waiter to nil such that rwsem_down_read_slowpath() cannot 557 * race with do_exit() by always holding a reference count 558 * to the task to wakeup. 559 */ 560 smp_store_release(&waiter->task, NULL); 561 /* 562 * Ensure issuing the wakeup (either by us or someone else) 563 * after setting the reader waiter to nil. 564 */ 565 wake_q_add_safe(wake_q, tsk); 566 } 567 } 568 569 /* 570 * Remove a waiter and try to wake up other waiters in the wait queue 571 * This function is called from the out_nolock path of both the reader and 572 * writer slowpaths with wait_lock held. It releases the wait_lock and 573 * optionally wake up waiters before it returns. 574 */ 575 static inline void 576 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter, 577 struct wake_q_head *wake_q) 578 __releases(&sem->wait_lock) 579 { 580 bool first = rwsem_first_waiter(sem) == waiter; 581 582 wake_q_init(wake_q); 583 584 /* 585 * If the wait_list isn't empty and the waiter to be deleted is 586 * the first waiter, we wake up the remaining waiters as they may 587 * be eligible to acquire or spin on the lock. 588 */ 589 if (rwsem_del_waiter(sem, waiter) && first) 590 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q); 591 raw_spin_unlock_irq(&sem->wait_lock); 592 if (!wake_q_empty(wake_q)) 593 wake_up_q(wake_q); 594 } 595 596 /* 597 * This function must be called with the sem->wait_lock held to prevent 598 * race conditions between checking the rwsem wait list and setting the 599 * sem->count accordingly. 600 * 601 * Implies rwsem_del_waiter() on success. 602 */ 603 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 604 struct rwsem_waiter *waiter) 605 { 606 struct rwsem_waiter *first = rwsem_first_waiter(sem); 607 long count, new; 608 609 lockdep_assert_held(&sem->wait_lock); 610 611 count = atomic_long_read(&sem->count); 612 do { 613 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 614 615 if (has_handoff) { 616 /* 617 * Honor handoff bit and yield only when the first 618 * waiter is the one that set it. Otherwisee, we 619 * still try to acquire the rwsem. 620 */ 621 if (first->handoff_set && (waiter != first)) 622 return false; 623 } 624 625 new = count; 626 627 if (count & RWSEM_LOCK_MASK) { 628 /* 629 * A waiter (first or not) can set the handoff bit 630 * if it is an RT task or wait in the wait queue 631 * for too long. 632 */ 633 if (has_handoff || (!rt_or_dl_task(waiter->task) && 634 !time_after(jiffies, waiter->timeout))) 635 return false; 636 637 new |= RWSEM_FLAG_HANDOFF; 638 } else { 639 new |= RWSEM_WRITER_LOCKED; 640 new &= ~RWSEM_FLAG_HANDOFF; 641 642 if (list_is_singular(&sem->wait_list)) 643 new &= ~RWSEM_FLAG_WAITERS; 644 } 645 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 646 647 /* 648 * We have either acquired the lock with handoff bit cleared or set 649 * the handoff bit. Only the first waiter can have its handoff_set 650 * set here to enable optimistic spinning in slowpath loop. 651 */ 652 if (new & RWSEM_FLAG_HANDOFF) { 653 first->handoff_set = true; 654 lockevent_inc(rwsem_wlock_handoff); 655 return false; 656 } 657 658 /* 659 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 660 * success. 661 */ 662 list_del(&waiter->list); 663 rwsem_set_owner(sem); 664 return true; 665 } 666 667 /* 668 * The rwsem_spin_on_owner() function returns the following 4 values 669 * depending on the lock owner state. 670 * OWNER_NULL : owner is currently NULL 671 * OWNER_WRITER: when owner changes and is a writer 672 * OWNER_READER: when owner changes and the new owner may be a reader. 673 * OWNER_NONSPINNABLE: 674 * when optimistic spinning has to stop because either the 675 * owner stops running, is unknown, or its timeslice has 676 * been used up. 677 */ 678 enum owner_state { 679 OWNER_NULL = 1 << 0, 680 OWNER_WRITER = 1 << 1, 681 OWNER_READER = 1 << 2, 682 OWNER_NONSPINNABLE = 1 << 3, 683 }; 684 685 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 686 /* 687 * Try to acquire write lock before the writer has been put on wait queue. 688 */ 689 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 690 { 691 long count = atomic_long_read(&sem->count); 692 693 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 694 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 695 count | RWSEM_WRITER_LOCKED)) { 696 rwsem_set_owner(sem); 697 lockevent_inc(rwsem_opt_lock); 698 return true; 699 } 700 } 701 return false; 702 } 703 704 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 705 { 706 struct task_struct *owner; 707 unsigned long flags; 708 bool ret = true; 709 710 if (need_resched()) { 711 lockevent_inc(rwsem_opt_fail); 712 return false; 713 } 714 715 /* 716 * Disable preemption is equal to the RCU read-side crital section, 717 * thus the task_strcut structure won't go away. 718 */ 719 owner = rwsem_owner_flags(sem, &flags); 720 /* 721 * Don't check the read-owner as the entry may be stale. 722 */ 723 if ((flags & RWSEM_NONSPINNABLE) || 724 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 725 ret = false; 726 727 lockevent_cond_inc(rwsem_opt_fail, !ret); 728 return ret; 729 } 730 731 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 732 733 static inline enum owner_state 734 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 735 { 736 if (flags & RWSEM_NONSPINNABLE) 737 return OWNER_NONSPINNABLE; 738 739 if (flags & RWSEM_READER_OWNED) 740 return OWNER_READER; 741 742 return owner ? OWNER_WRITER : OWNER_NULL; 743 } 744 745 static noinline enum owner_state 746 rwsem_spin_on_owner(struct rw_semaphore *sem) 747 { 748 struct task_struct *new, *owner; 749 unsigned long flags, new_flags; 750 enum owner_state state; 751 752 lockdep_assert_preemption_disabled(); 753 754 owner = rwsem_owner_flags(sem, &flags); 755 state = rwsem_owner_state(owner, flags); 756 if (state != OWNER_WRITER) 757 return state; 758 759 for (;;) { 760 /* 761 * When a waiting writer set the handoff flag, it may spin 762 * on the owner as well. Once that writer acquires the lock, 763 * we can spin on it. So we don't need to quit even when the 764 * handoff bit is set. 765 */ 766 new = rwsem_owner_flags(sem, &new_flags); 767 if ((new != owner) || (new_flags != flags)) { 768 state = rwsem_owner_state(new, new_flags); 769 break; 770 } 771 772 /* 773 * Ensure we emit the owner->on_cpu, dereference _after_ 774 * checking sem->owner still matches owner, if that fails, 775 * owner might point to free()d memory, if it still matches, 776 * our spinning context already disabled preemption which is 777 * equal to RCU read-side crital section ensures the memory 778 * stays valid. 779 */ 780 barrier(); 781 782 if (need_resched() || !owner_on_cpu(owner)) { 783 state = OWNER_NONSPINNABLE; 784 break; 785 } 786 787 cpu_relax(); 788 } 789 790 return state; 791 } 792 793 /* 794 * Calculate reader-owned rwsem spinning threshold for writer 795 * 796 * The more readers own the rwsem, the longer it will take for them to 797 * wind down and free the rwsem. So the empirical formula used to 798 * determine the actual spinning time limit here is: 799 * 800 * Spinning threshold = (10 + nr_readers/2)us 801 * 802 * The limit is capped to a maximum of 25us (30 readers). This is just 803 * a heuristic and is subjected to change in the future. 804 */ 805 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 806 { 807 long count = atomic_long_read(&sem->count); 808 int readers = count >> RWSEM_READER_SHIFT; 809 u64 delta; 810 811 if (readers > 30) 812 readers = 30; 813 delta = (20 + readers) * NSEC_PER_USEC / 2; 814 815 return sched_clock() + delta; 816 } 817 818 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 819 { 820 bool taken = false; 821 int prev_owner_state = OWNER_NULL; 822 int loop = 0; 823 u64 rspin_threshold = 0; 824 825 /* sem->wait_lock should not be held when doing optimistic spinning */ 826 if (!osq_lock(&sem->osq)) 827 goto done; 828 829 /* 830 * Optimistically spin on the owner field and attempt to acquire the 831 * lock whenever the owner changes. Spinning will be stopped when: 832 * 1) the owning writer isn't running; or 833 * 2) readers own the lock and spinning time has exceeded limit. 834 */ 835 for (;;) { 836 enum owner_state owner_state; 837 838 owner_state = rwsem_spin_on_owner(sem); 839 if (!(owner_state & OWNER_SPINNABLE)) 840 break; 841 842 /* 843 * Try to acquire the lock 844 */ 845 taken = rwsem_try_write_lock_unqueued(sem); 846 847 if (taken) 848 break; 849 850 /* 851 * Time-based reader-owned rwsem optimistic spinning 852 */ 853 if (owner_state == OWNER_READER) { 854 /* 855 * Re-initialize rspin_threshold every time when 856 * the owner state changes from non-reader to reader. 857 * This allows a writer to steal the lock in between 858 * 2 reader phases and have the threshold reset at 859 * the beginning of the 2nd reader phase. 860 */ 861 if (prev_owner_state != OWNER_READER) { 862 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 863 break; 864 rspin_threshold = rwsem_rspin_threshold(sem); 865 loop = 0; 866 } 867 868 /* 869 * Check time threshold once every 16 iterations to 870 * avoid calling sched_clock() too frequently so 871 * as to reduce the average latency between the times 872 * when the lock becomes free and when the spinner 873 * is ready to do a trylock. 874 */ 875 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 876 rwsem_set_nonspinnable(sem); 877 lockevent_inc(rwsem_opt_nospin); 878 break; 879 } 880 } 881 882 /* 883 * An RT task cannot do optimistic spinning if it cannot 884 * be sure the lock holder is running or live-lock may 885 * happen if the current task and the lock holder happen 886 * to run in the same CPU. However, aborting optimistic 887 * spinning while a NULL owner is detected may miss some 888 * opportunity where spinning can continue without causing 889 * problem. 890 * 891 * There are 2 possible cases where an RT task may be able 892 * to continue spinning. 893 * 894 * 1) The lock owner is in the process of releasing the 895 * lock, sem->owner is cleared but the lock has not 896 * been released yet. 897 * 2) The lock was free and owner cleared, but another 898 * task just comes in and acquire the lock before 899 * we try to get it. The new owner may be a spinnable 900 * writer. 901 * 902 * To take advantage of two scenarios listed above, the RT 903 * task is made to retry one more time to see if it can 904 * acquire the lock or continue spinning on the new owning 905 * writer. Of course, if the time lag is long enough or the 906 * new owner is not a writer or spinnable, the RT task will 907 * quit spinning. 908 * 909 * If the owner is a writer, the need_resched() check is 910 * done inside rwsem_spin_on_owner(). If the owner is not 911 * a writer, need_resched() check needs to be done here. 912 */ 913 if (owner_state != OWNER_WRITER) { 914 if (need_resched()) 915 break; 916 if (rt_or_dl_task(current) && 917 (prev_owner_state != OWNER_WRITER)) 918 break; 919 } 920 prev_owner_state = owner_state; 921 922 /* 923 * The cpu_relax() call is a compiler barrier which forces 924 * everything in this loop to be re-loaded. We don't need 925 * memory barriers as we'll eventually observe the right 926 * values at the cost of a few extra spins. 927 */ 928 cpu_relax(); 929 } 930 osq_unlock(&sem->osq); 931 done: 932 lockevent_cond_inc(rwsem_opt_fail, !taken); 933 return taken; 934 } 935 936 /* 937 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 938 * only be called when the reader count reaches 0. 939 */ 940 static inline void clear_nonspinnable(struct rw_semaphore *sem) 941 { 942 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))) 943 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 944 } 945 946 #else 947 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 948 { 949 return false; 950 } 951 952 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 953 { 954 return false; 955 } 956 957 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 958 959 static inline enum owner_state 960 rwsem_spin_on_owner(struct rw_semaphore *sem) 961 { 962 return OWNER_NONSPINNABLE; 963 } 964 #endif 965 966 /* 967 * Prepare to wake up waiter(s) in the wait queue by putting them into the 968 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely 969 * reader-owned, wake up read lock waiters in queue front or wake up any 970 * front waiter otherwise. 971 972 * This is being called from both reader and writer slow paths. 973 */ 974 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count, 975 struct wake_q_head *wake_q) 976 { 977 enum rwsem_wake_type wake_type; 978 979 if (count & RWSEM_WRITER_MASK) 980 return; 981 982 if (count & RWSEM_READER_MASK) { 983 wake_type = RWSEM_WAKE_READERS; 984 } else { 985 wake_type = RWSEM_WAKE_ANY; 986 clear_nonspinnable(sem); 987 } 988 rwsem_mark_wake(sem, wake_type, wake_q); 989 } 990 991 /* 992 * Wait for the read lock to be granted 993 */ 994 static struct rw_semaphore __sched * 995 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 996 { 997 long adjustment = -RWSEM_READER_BIAS; 998 long rcnt = (count >> RWSEM_READER_SHIFT); 999 struct rwsem_waiter waiter; 1000 DEFINE_WAKE_Q(wake_q); 1001 1002 /* 1003 * To prevent a constant stream of readers from starving a sleeping 1004 * writer, don't attempt optimistic lock stealing if the lock is 1005 * very likely owned by readers. 1006 */ 1007 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 1008 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 1009 goto queue; 1010 1011 /* 1012 * Reader optimistic lock stealing. 1013 */ 1014 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 1015 rwsem_set_reader_owned(sem); 1016 lockevent_inc(rwsem_rlock_steal); 1017 1018 /* 1019 * Wake up other readers in the wait queue if it is 1020 * the first reader. 1021 */ 1022 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 1023 raw_spin_lock_irq(&sem->wait_lock); 1024 if (!list_empty(&sem->wait_list)) 1025 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1026 &wake_q); 1027 raw_spin_unlock_irq(&sem->wait_lock); 1028 wake_up_q(&wake_q); 1029 } 1030 return sem; 1031 } 1032 1033 queue: 1034 waiter.task = current; 1035 waiter.type = RWSEM_WAITING_FOR_READ; 1036 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1037 waiter.handoff_set = false; 1038 1039 raw_spin_lock_irq(&sem->wait_lock); 1040 if (list_empty(&sem->wait_list)) { 1041 /* 1042 * In case the wait queue is empty and the lock isn't owned 1043 * by a writer, this reader can exit the slowpath and return 1044 * immediately as its RWSEM_READER_BIAS has already been set 1045 * in the count. 1046 */ 1047 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { 1048 /* Provide lock ACQUIRE */ 1049 smp_acquire__after_ctrl_dep(); 1050 raw_spin_unlock_irq(&sem->wait_lock); 1051 rwsem_set_reader_owned(sem); 1052 lockevent_inc(rwsem_rlock_fast); 1053 return sem; 1054 } 1055 adjustment += RWSEM_FLAG_WAITERS; 1056 } 1057 rwsem_add_waiter(sem, &waiter); 1058 1059 /* we're now waiting on the lock, but no longer actively locking */ 1060 count = atomic_long_add_return(adjustment, &sem->count); 1061 1062 rwsem_cond_wake_waiter(sem, count, &wake_q); 1063 raw_spin_unlock_irq(&sem->wait_lock); 1064 1065 if (!wake_q_empty(&wake_q)) 1066 wake_up_q(&wake_q); 1067 1068 trace_contention_begin(sem, LCB_F_READ); 1069 set_current_state(state); 1070 1071 if (state == TASK_UNINTERRUPTIBLE) 1072 hung_task_set_blocker(sem, BLOCKER_TYPE_RWSEM_READER); 1073 1074 /* wait to be given the lock */ 1075 for (;;) { 1076 if (!smp_load_acquire(&waiter.task)) { 1077 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1078 break; 1079 } 1080 if (signal_pending_state(state, current)) { 1081 raw_spin_lock_irq(&sem->wait_lock); 1082 if (waiter.task) 1083 goto out_nolock; 1084 raw_spin_unlock_irq(&sem->wait_lock); 1085 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1086 break; 1087 } 1088 schedule_preempt_disabled(); 1089 lockevent_inc(rwsem_sleep_reader); 1090 set_current_state(state); 1091 } 1092 1093 if (state == TASK_UNINTERRUPTIBLE) 1094 hung_task_clear_blocker(); 1095 1096 __set_current_state(TASK_RUNNING); 1097 lockevent_inc(rwsem_rlock); 1098 trace_contention_end(sem, 0); 1099 return sem; 1100 1101 out_nolock: 1102 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1103 __set_current_state(TASK_RUNNING); 1104 lockevent_inc(rwsem_rlock_fail); 1105 trace_contention_end(sem, -EINTR); 1106 return ERR_PTR(-EINTR); 1107 } 1108 1109 /* 1110 * Wait until we successfully acquire the write lock 1111 */ 1112 static struct rw_semaphore __sched * 1113 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1114 { 1115 struct rwsem_waiter waiter; 1116 DEFINE_WAKE_Q(wake_q); 1117 1118 /* do optimistic spinning and steal lock if possible */ 1119 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1120 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1121 return sem; 1122 } 1123 1124 /* 1125 * Optimistic spinning failed, proceed to the slowpath 1126 * and block until we can acquire the sem. 1127 */ 1128 waiter.task = current; 1129 waiter.type = RWSEM_WAITING_FOR_WRITE; 1130 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1131 waiter.handoff_set = false; 1132 1133 raw_spin_lock_irq(&sem->wait_lock); 1134 rwsem_add_waiter(sem, &waiter); 1135 1136 /* we're now waiting on the lock */ 1137 if (rwsem_first_waiter(sem) != &waiter) { 1138 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count), 1139 &wake_q); 1140 if (!wake_q_empty(&wake_q)) { 1141 /* 1142 * We want to minimize wait_lock hold time especially 1143 * when a large number of readers are to be woken up. 1144 */ 1145 raw_spin_unlock_irq(&sem->wait_lock); 1146 wake_up_q(&wake_q); 1147 raw_spin_lock_irq(&sem->wait_lock); 1148 } 1149 } else { 1150 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1151 } 1152 1153 /* wait until we successfully acquire the lock */ 1154 set_current_state(state); 1155 trace_contention_begin(sem, LCB_F_WRITE); 1156 1157 if (state == TASK_UNINTERRUPTIBLE) 1158 hung_task_set_blocker(sem, BLOCKER_TYPE_RWSEM_WRITER); 1159 1160 for (;;) { 1161 if (rwsem_try_write_lock(sem, &waiter)) { 1162 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1163 break; 1164 } 1165 1166 raw_spin_unlock_irq(&sem->wait_lock); 1167 1168 if (signal_pending_state(state, current)) 1169 goto out_nolock; 1170 1171 /* 1172 * After setting the handoff bit and failing to acquire 1173 * the lock, attempt to spin on owner to accelerate lock 1174 * transfer. If the previous owner is a on-cpu writer and it 1175 * has just released the lock, OWNER_NULL will be returned. 1176 * In this case, we attempt to acquire the lock again 1177 * without sleeping. 1178 */ 1179 if (waiter.handoff_set) { 1180 enum owner_state owner_state; 1181 1182 owner_state = rwsem_spin_on_owner(sem); 1183 if (owner_state == OWNER_NULL) 1184 goto trylock_again; 1185 } 1186 1187 schedule_preempt_disabled(); 1188 lockevent_inc(rwsem_sleep_writer); 1189 set_current_state(state); 1190 trylock_again: 1191 raw_spin_lock_irq(&sem->wait_lock); 1192 } 1193 1194 if (state == TASK_UNINTERRUPTIBLE) 1195 hung_task_clear_blocker(); 1196 1197 __set_current_state(TASK_RUNNING); 1198 raw_spin_unlock_irq(&sem->wait_lock); 1199 lockevent_inc(rwsem_wlock); 1200 trace_contention_end(sem, 0); 1201 return sem; 1202 1203 out_nolock: 1204 __set_current_state(TASK_RUNNING); 1205 raw_spin_lock_irq(&sem->wait_lock); 1206 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1207 lockevent_inc(rwsem_wlock_fail); 1208 trace_contention_end(sem, -EINTR); 1209 return ERR_PTR(-EINTR); 1210 } 1211 1212 /* 1213 * handle waking up a waiter on the semaphore 1214 * - up_read/up_write has decremented the active part of count if we come here 1215 */ 1216 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1217 { 1218 unsigned long flags; 1219 DEFINE_WAKE_Q(wake_q); 1220 1221 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1222 1223 if (!list_empty(&sem->wait_list)) 1224 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1225 1226 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1227 wake_up_q(&wake_q); 1228 1229 return sem; 1230 } 1231 1232 /* 1233 * downgrade a write lock into a read lock 1234 * - caller incremented waiting part of count and discovered it still negative 1235 * - just wake up any readers at the front of the queue 1236 */ 1237 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1238 { 1239 unsigned long flags; 1240 DEFINE_WAKE_Q(wake_q); 1241 1242 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1243 1244 if (!list_empty(&sem->wait_list)) 1245 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1246 1247 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1248 wake_up_q(&wake_q); 1249 1250 return sem; 1251 } 1252 1253 /* 1254 * lock for reading 1255 */ 1256 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state) 1257 { 1258 int ret = 0; 1259 long count; 1260 1261 preempt_disable(); 1262 if (!rwsem_read_trylock(sem, &count)) { 1263 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) { 1264 ret = -EINTR; 1265 goto out; 1266 } 1267 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1268 } 1269 out: 1270 preempt_enable(); 1271 return ret; 1272 } 1273 1274 static __always_inline void __down_read(struct rw_semaphore *sem) 1275 { 1276 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1277 } 1278 1279 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem) 1280 { 1281 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1282 } 1283 1284 static __always_inline int __down_read_killable(struct rw_semaphore *sem) 1285 { 1286 return __down_read_common(sem, TASK_KILLABLE); 1287 } 1288 1289 static inline int __down_read_trylock(struct rw_semaphore *sem) 1290 { 1291 int ret = 0; 1292 long tmp; 1293 1294 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1295 1296 preempt_disable(); 1297 tmp = atomic_long_read(&sem->count); 1298 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1299 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1300 tmp + RWSEM_READER_BIAS)) { 1301 rwsem_set_reader_owned(sem); 1302 ret = 1; 1303 break; 1304 } 1305 } 1306 preempt_enable(); 1307 return ret; 1308 } 1309 1310 /* 1311 * lock for writing 1312 */ 1313 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state) 1314 { 1315 int ret = 0; 1316 1317 preempt_disable(); 1318 if (unlikely(!rwsem_write_trylock(sem))) { 1319 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1320 ret = -EINTR; 1321 } 1322 preempt_enable(); 1323 return ret; 1324 } 1325 1326 static __always_inline void __down_write(struct rw_semaphore *sem) 1327 { 1328 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1329 } 1330 1331 static __always_inline int __down_write_killable(struct rw_semaphore *sem) 1332 { 1333 return __down_write_common(sem, TASK_KILLABLE); 1334 } 1335 1336 static inline int __down_write_trylock(struct rw_semaphore *sem) 1337 { 1338 int ret; 1339 1340 preempt_disable(); 1341 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1342 ret = rwsem_write_trylock(sem); 1343 preempt_enable(); 1344 1345 return ret; 1346 } 1347 1348 /* 1349 * unlock after reading 1350 */ 1351 static inline void __up_read(struct rw_semaphore *sem) 1352 { 1353 long tmp; 1354 1355 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1356 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1357 1358 preempt_disable(); 1359 rwsem_clear_reader_owned(sem); 1360 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1361 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1362 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1363 RWSEM_FLAG_WAITERS)) { 1364 clear_nonspinnable(sem); 1365 rwsem_wake(sem); 1366 } 1367 preempt_enable(); 1368 } 1369 1370 /* 1371 * unlock after writing 1372 */ 1373 static inline void __up_write(struct rw_semaphore *sem) 1374 { 1375 long tmp; 1376 1377 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1378 /* 1379 * sem->owner may differ from current if the ownership is transferred 1380 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1381 */ 1382 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1383 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1384 1385 preempt_disable(); 1386 rwsem_clear_owner(sem); 1387 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1388 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1389 rwsem_wake(sem); 1390 preempt_enable(); 1391 } 1392 1393 /* 1394 * downgrade write lock to read lock 1395 */ 1396 static inline void __downgrade_write(struct rw_semaphore *sem) 1397 { 1398 long tmp; 1399 1400 /* 1401 * When downgrading from exclusive to shared ownership, 1402 * anything inside the write-locked region cannot leak 1403 * into the read side. In contrast, anything in the 1404 * read-locked region is ok to be re-ordered into the 1405 * write side. As such, rely on RELEASE semantics. 1406 */ 1407 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1408 preempt_disable(); 1409 tmp = atomic_long_fetch_add_release( 1410 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1411 rwsem_set_reader_owned(sem); 1412 if (tmp & RWSEM_FLAG_WAITERS) 1413 rwsem_downgrade_wake(sem); 1414 preempt_enable(); 1415 } 1416 1417 #else /* !CONFIG_PREEMPT_RT */ 1418 1419 #define RT_MUTEX_BUILD_MUTEX 1420 #include "rtmutex.c" 1421 1422 #define rwbase_set_and_save_current_state(state) \ 1423 set_current_state(state) 1424 1425 #define rwbase_restore_current_state() \ 1426 __set_current_state(TASK_RUNNING) 1427 1428 #define rwbase_rtmutex_lock_state(rtm, state) \ 1429 __rt_mutex_lock(rtm, state) 1430 1431 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq) \ 1432 __rt_mutex_slowlock_locked(rtm, NULL, state, wq) 1433 1434 #define rwbase_rtmutex_unlock(rtm) \ 1435 __rt_mutex_unlock(rtm) 1436 1437 #define rwbase_rtmutex_trylock(rtm) \ 1438 __rt_mutex_trylock(rtm) 1439 1440 #define rwbase_signal_pending_state(state, current) \ 1441 signal_pending_state(state, current) 1442 1443 #define rwbase_pre_schedule() \ 1444 rt_mutex_pre_schedule() 1445 1446 #define rwbase_schedule() \ 1447 rt_mutex_schedule() 1448 1449 #define rwbase_post_schedule() \ 1450 rt_mutex_post_schedule() 1451 1452 #include "rwbase_rt.c" 1453 1454 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1455 struct lock_class_key *key) 1456 { 1457 init_rwbase_rt(&(sem)->rwbase); 1458 1459 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1460 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1461 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1462 #endif 1463 } 1464 EXPORT_SYMBOL(__init_rwsem); 1465 1466 static inline void __down_read(struct rw_semaphore *sem) 1467 { 1468 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1469 } 1470 1471 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1472 { 1473 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1474 } 1475 1476 static inline int __down_read_killable(struct rw_semaphore *sem) 1477 { 1478 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1479 } 1480 1481 static inline int __down_read_trylock(struct rw_semaphore *sem) 1482 { 1483 return rwbase_read_trylock(&sem->rwbase); 1484 } 1485 1486 static inline void __up_read(struct rw_semaphore *sem) 1487 { 1488 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1489 } 1490 1491 static inline void __sched __down_write(struct rw_semaphore *sem) 1492 { 1493 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1494 } 1495 1496 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1497 { 1498 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1499 } 1500 1501 static inline int __down_write_trylock(struct rw_semaphore *sem) 1502 { 1503 return rwbase_write_trylock(&sem->rwbase); 1504 } 1505 1506 static inline void __up_write(struct rw_semaphore *sem) 1507 { 1508 rwbase_write_unlock(&sem->rwbase); 1509 } 1510 1511 static inline void __downgrade_write(struct rw_semaphore *sem) 1512 { 1513 rwbase_write_downgrade(&sem->rwbase); 1514 } 1515 1516 /* Debug stubs for the common API */ 1517 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1518 1519 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1520 struct task_struct *owner) 1521 { 1522 } 1523 1524 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1525 { 1526 int count = atomic_read(&sem->rwbase.readers); 1527 1528 return count < 0 && count != READER_BIAS; 1529 } 1530 1531 #endif /* CONFIG_PREEMPT_RT */ 1532 1533 /* 1534 * lock for reading 1535 */ 1536 void __sched down_read(struct rw_semaphore *sem) 1537 { 1538 might_sleep(); 1539 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1540 1541 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1542 } 1543 EXPORT_SYMBOL(down_read); 1544 1545 int __sched down_read_interruptible(struct rw_semaphore *sem) 1546 { 1547 might_sleep(); 1548 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1549 1550 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1551 rwsem_release(&sem->dep_map, _RET_IP_); 1552 return -EINTR; 1553 } 1554 1555 return 0; 1556 } 1557 EXPORT_SYMBOL(down_read_interruptible); 1558 1559 int __sched down_read_killable(struct rw_semaphore *sem) 1560 { 1561 might_sleep(); 1562 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1563 1564 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1565 rwsem_release(&sem->dep_map, _RET_IP_); 1566 return -EINTR; 1567 } 1568 1569 return 0; 1570 } 1571 EXPORT_SYMBOL(down_read_killable); 1572 1573 /* 1574 * trylock for reading -- returns 1 if successful, 0 if contention 1575 */ 1576 int down_read_trylock(struct rw_semaphore *sem) 1577 { 1578 int ret = __down_read_trylock(sem); 1579 1580 if (ret == 1) 1581 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1582 return ret; 1583 } 1584 EXPORT_SYMBOL(down_read_trylock); 1585 1586 /* 1587 * lock for writing 1588 */ 1589 void __sched down_write(struct rw_semaphore *sem) 1590 { 1591 might_sleep(); 1592 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1593 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1594 } 1595 EXPORT_SYMBOL(down_write); 1596 1597 /* 1598 * lock for writing 1599 */ 1600 int __sched down_write_killable(struct rw_semaphore *sem) 1601 { 1602 might_sleep(); 1603 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1604 1605 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1606 __down_write_killable)) { 1607 rwsem_release(&sem->dep_map, _RET_IP_); 1608 return -EINTR; 1609 } 1610 1611 return 0; 1612 } 1613 EXPORT_SYMBOL(down_write_killable); 1614 1615 /* 1616 * trylock for writing -- returns 1 if successful, 0 if contention 1617 */ 1618 int down_write_trylock(struct rw_semaphore *sem) 1619 { 1620 int ret = __down_write_trylock(sem); 1621 1622 if (ret == 1) 1623 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1624 1625 return ret; 1626 } 1627 EXPORT_SYMBOL(down_write_trylock); 1628 1629 /* 1630 * release a read lock 1631 */ 1632 void up_read(struct rw_semaphore *sem) 1633 { 1634 rwsem_release(&sem->dep_map, _RET_IP_); 1635 __up_read(sem); 1636 } 1637 EXPORT_SYMBOL(up_read); 1638 1639 /* 1640 * release a write lock 1641 */ 1642 void up_write(struct rw_semaphore *sem) 1643 { 1644 rwsem_release(&sem->dep_map, _RET_IP_); 1645 __up_write(sem); 1646 } 1647 EXPORT_SYMBOL(up_write); 1648 1649 /* 1650 * downgrade write lock to read lock 1651 */ 1652 void downgrade_write(struct rw_semaphore *sem) 1653 { 1654 lock_downgrade(&sem->dep_map, _RET_IP_); 1655 __downgrade_write(sem); 1656 } 1657 EXPORT_SYMBOL(downgrade_write); 1658 1659 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1660 1661 void down_read_nested(struct rw_semaphore *sem, int subclass) 1662 { 1663 might_sleep(); 1664 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1665 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1666 } 1667 EXPORT_SYMBOL(down_read_nested); 1668 1669 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1670 { 1671 might_sleep(); 1672 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1673 1674 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1675 rwsem_release(&sem->dep_map, _RET_IP_); 1676 return -EINTR; 1677 } 1678 1679 return 0; 1680 } 1681 EXPORT_SYMBOL(down_read_killable_nested); 1682 1683 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1684 { 1685 might_sleep(); 1686 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1687 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1688 } 1689 EXPORT_SYMBOL(_down_write_nest_lock); 1690 1691 void down_read_non_owner(struct rw_semaphore *sem) 1692 { 1693 might_sleep(); 1694 __down_read(sem); 1695 /* 1696 * The owner value for a reader-owned lock is mostly for debugging 1697 * purpose only and is not critical to the correct functioning of 1698 * rwsem. So it is perfectly fine to set it in a preempt-enabled 1699 * context here. 1700 */ 1701 __rwsem_set_reader_owned(sem, NULL); 1702 } 1703 EXPORT_SYMBOL(down_read_non_owner); 1704 1705 void down_write_nested(struct rw_semaphore *sem, int subclass) 1706 { 1707 might_sleep(); 1708 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1709 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1710 } 1711 EXPORT_SYMBOL(down_write_nested); 1712 1713 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1714 { 1715 might_sleep(); 1716 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1717 1718 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1719 __down_write_killable)) { 1720 rwsem_release(&sem->dep_map, _RET_IP_); 1721 return -EINTR; 1722 } 1723 1724 return 0; 1725 } 1726 EXPORT_SYMBOL(down_write_killable_nested); 1727 1728 void up_read_non_owner(struct rw_semaphore *sem) 1729 { 1730 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1731 __up_read(sem); 1732 } 1733 EXPORT_SYMBOL(up_read_non_owner); 1734 1735 #endif 1736