1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 #include <trace/events/lock.h> 31 32 #ifndef CONFIG_PREEMPT_RT 33 #include "lock_events.h" 34 35 /* 36 * The least significant 2 bits of the owner value has the following 37 * meanings when set. 38 * - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint) 39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 40 * 41 * When the rwsem is reader-owned and a spinning writer has timed out, 42 * the nonspinnable bit will be set to disable optimistic spinning. 43 44 * When a writer acquires a rwsem, it puts its task_struct pointer 45 * into the owner field. It is cleared after an unlock. 46 * 47 * When a reader acquires a rwsem, it will also puts its task_struct 48 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 49 * On unlock, the owner field will largely be left untouched. So 50 * for a free or reader-owned rwsem, the owner value may contain 51 * information about the last reader that acquires the rwsem. 52 * 53 * That information may be helpful in debugging cases where the system 54 * seems to hang on a reader owned rwsem especially if only one reader 55 * is involved. Ideally we would like to track all the readers that own 56 * a rwsem, but the overhead is simply too big. 57 * 58 * A fast path reader optimistic lock stealing is supported when the rwsem 59 * is previously owned by a writer and the following conditions are met: 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers -- set, clear 110 * 2) rwsem_try_write_lock() for writers -- set, clear 111 * 3) rwsem_del_waiter() -- clear 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 * 137 * Both rwsem_{set,clear}_owner() functions should be in the same 138 * preempt disable section as the atomic op that changes sem->count. 139 */ 140 static inline void rwsem_set_owner(struct rw_semaphore *sem) 141 { 142 lockdep_assert_preemption_disabled(); 143 atomic_long_set(&sem->owner, (long)current); 144 } 145 146 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 147 { 148 lockdep_assert_preemption_disabled(); 149 atomic_long_set(&sem->owner, 0); 150 } 151 152 /* 153 * Test the flags in the owner field. 154 */ 155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 156 { 157 return atomic_long_read(&sem->owner) & flags; 158 } 159 160 /* 161 * The task_struct pointer of the last owning reader will be left in 162 * the owner field. 163 * 164 * Note that the owner value just indicates the task has owned the rwsem 165 * previously, it may not be the real owner or one of the real owners 166 * anymore when that field is examined, so take it with a grain of salt. 167 * 168 * The reader non-spinnable bit is preserved. 169 */ 170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 171 struct task_struct *owner) 172 { 173 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 174 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 175 176 atomic_long_set(&sem->owner, val); 177 } 178 179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 180 { 181 __rwsem_set_reader_owned(sem, current); 182 } 183 184 #ifdef CONFIG_DEBUG_RWSEMS 185 /* 186 * Return just the real task structure pointer of the owner 187 */ 188 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 189 { 190 return (struct task_struct *) 191 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 192 } 193 194 /* 195 * Return true if the rwsem is owned by a reader. 196 */ 197 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 198 { 199 /* 200 * Check the count to see if it is write-locked. 201 */ 202 long count = atomic_long_read(&sem->count); 203 204 if (count & RWSEM_WRITER_MASK) 205 return false; 206 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 207 } 208 209 /* 210 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 211 * is a task pointer in owner of a reader-owned rwsem, it will be the 212 * real owner or one of the real owners. The only exception is when the 213 * unlock is done by up_read_non_owner(). 214 */ 215 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 216 { 217 unsigned long val = atomic_long_read(&sem->owner); 218 219 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 220 if (atomic_long_try_cmpxchg(&sem->owner, &val, 221 val & RWSEM_OWNER_FLAGS_MASK)) 222 return; 223 } 224 } 225 #else 226 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 227 { 228 } 229 #endif 230 231 /* 232 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 233 * remains set. Otherwise, the operation will be aborted. 234 */ 235 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 236 { 237 unsigned long owner = atomic_long_read(&sem->owner); 238 239 do { 240 if (!(owner & RWSEM_READER_OWNED)) 241 break; 242 if (owner & RWSEM_NONSPINNABLE) 243 break; 244 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 245 owner | RWSEM_NONSPINNABLE)); 246 } 247 248 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 249 { 250 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 251 252 if (WARN_ON_ONCE(*cntp < 0)) 253 rwsem_set_nonspinnable(sem); 254 255 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 256 rwsem_set_reader_owned(sem); 257 return true; 258 } 259 260 return false; 261 } 262 263 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 264 { 265 long tmp = RWSEM_UNLOCKED_VALUE; 266 267 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 268 rwsem_set_owner(sem); 269 return true; 270 } 271 272 return false; 273 } 274 275 /* 276 * Return the real task structure pointer of the owner and the embedded 277 * flags in the owner. pflags must be non-NULL. 278 */ 279 static inline struct task_struct * 280 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 281 { 282 unsigned long owner = atomic_long_read(&sem->owner); 283 284 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 285 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 286 } 287 288 /* 289 * Guide to the rw_semaphore's count field. 290 * 291 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 292 * by a writer. 293 * 294 * The lock is owned by readers when 295 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 296 * (2) some of the reader bits are set in count, and 297 * (3) the owner field has RWSEM_READ_OWNED bit set. 298 * 299 * Having some reader bits set is not enough to guarantee a readers owned 300 * lock as the readers may be in the process of backing out from the count 301 * and a writer has just released the lock. So another writer may steal 302 * the lock immediately after that. 303 */ 304 305 /* 306 * Initialize an rwsem: 307 */ 308 void __init_rwsem(struct rw_semaphore *sem, const char *name, 309 struct lock_class_key *key) 310 { 311 #ifdef CONFIG_DEBUG_LOCK_ALLOC 312 /* 313 * Make sure we are not reinitializing a held semaphore: 314 */ 315 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 316 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 317 #endif 318 #ifdef CONFIG_DEBUG_RWSEMS 319 sem->magic = sem; 320 #endif 321 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 322 raw_spin_lock_init(&sem->wait_lock); 323 INIT_LIST_HEAD(&sem->wait_list); 324 atomic_long_set(&sem->owner, 0L); 325 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 326 osq_lock_init(&sem->osq); 327 #endif 328 } 329 EXPORT_SYMBOL(__init_rwsem); 330 331 enum rwsem_waiter_type { 332 RWSEM_WAITING_FOR_WRITE, 333 RWSEM_WAITING_FOR_READ 334 }; 335 336 struct rwsem_waiter { 337 struct list_head list; 338 struct task_struct *task; 339 enum rwsem_waiter_type type; 340 unsigned long timeout; 341 bool handoff_set; 342 }; 343 #define rwsem_first_waiter(sem) \ 344 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 345 346 enum rwsem_wake_type { 347 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 348 RWSEM_WAKE_READERS, /* Wake readers only */ 349 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 350 }; 351 352 /* 353 * The typical HZ value is either 250 or 1000. So set the minimum waiting 354 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 355 * queue before initiating the handoff protocol. 356 */ 357 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 358 359 /* 360 * Magic number to batch-wakeup waiting readers, even when writers are 361 * also present in the queue. This both limits the amount of work the 362 * waking thread must do and also prevents any potential counter overflow, 363 * however unlikely. 364 */ 365 #define MAX_READERS_WAKEUP 0x100 366 367 static inline void 368 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 369 { 370 lockdep_assert_held(&sem->wait_lock); 371 list_add_tail(&waiter->list, &sem->wait_list); 372 /* caller will set RWSEM_FLAG_WAITERS */ 373 } 374 375 /* 376 * Remove a waiter from the wait_list and clear flags. 377 * 378 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 379 * this function. Modify with care. 380 * 381 * Return: true if wait_list isn't empty and false otherwise 382 */ 383 static inline bool 384 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 385 { 386 lockdep_assert_held(&sem->wait_lock); 387 list_del(&waiter->list); 388 if (likely(!list_empty(&sem->wait_list))) 389 return true; 390 391 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 392 return false; 393 } 394 395 /* 396 * handle the lock release when processes blocked on it that can now run 397 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 398 * have been set. 399 * - there must be someone on the queue 400 * - the wait_lock must be held by the caller 401 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 402 * to actually wakeup the blocked task(s) and drop the reference count, 403 * preferably when the wait_lock is released 404 * - woken process blocks are discarded from the list after having task zeroed 405 * - writers are only marked woken if downgrading is false 406 * 407 * Implies rwsem_del_waiter() for all woken readers. 408 */ 409 static void rwsem_mark_wake(struct rw_semaphore *sem, 410 enum rwsem_wake_type wake_type, 411 struct wake_q_head *wake_q) 412 { 413 struct rwsem_waiter *waiter, *tmp; 414 long oldcount, woken = 0, adjustment = 0; 415 struct list_head wlist; 416 417 lockdep_assert_held(&sem->wait_lock); 418 419 /* 420 * Take a peek at the queue head waiter such that we can determine 421 * the wakeup(s) to perform. 422 */ 423 waiter = rwsem_first_waiter(sem); 424 425 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 426 if (wake_type == RWSEM_WAKE_ANY) { 427 /* 428 * Mark writer at the front of the queue for wakeup. 429 * Until the task is actually later awoken later by 430 * the caller, other writers are able to steal it. 431 * Readers, on the other hand, will block as they 432 * will notice the queued writer. 433 */ 434 wake_q_add(wake_q, waiter->task); 435 lockevent_inc(rwsem_wake_writer); 436 } 437 438 return; 439 } 440 441 /* 442 * No reader wakeup if there are too many of them already. 443 */ 444 if (unlikely(atomic_long_read(&sem->count) < 0)) 445 return; 446 447 /* 448 * Writers might steal the lock before we grant it to the next reader. 449 * We prefer to do the first reader grant before counting readers 450 * so we can bail out early if a writer stole the lock. 451 */ 452 if (wake_type != RWSEM_WAKE_READ_OWNED) { 453 struct task_struct *owner; 454 455 adjustment = RWSEM_READER_BIAS; 456 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 457 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 458 /* 459 * When we've been waiting "too" long (for writers 460 * to give up the lock), request a HANDOFF to 461 * force the issue. 462 */ 463 if (time_after(jiffies, waiter->timeout)) { 464 if (!(oldcount & RWSEM_FLAG_HANDOFF)) { 465 adjustment -= RWSEM_FLAG_HANDOFF; 466 lockevent_inc(rwsem_rlock_handoff); 467 } 468 waiter->handoff_set = true; 469 } 470 471 atomic_long_add(-adjustment, &sem->count); 472 return; 473 } 474 /* 475 * Set it to reader-owned to give spinners an early 476 * indication that readers now have the lock. 477 * The reader nonspinnable bit seen at slowpath entry of 478 * the reader is copied over. 479 */ 480 owner = waiter->task; 481 __rwsem_set_reader_owned(sem, owner); 482 } 483 484 /* 485 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 486 * queue. We know that the woken will be at least 1 as we accounted 487 * for above. Note we increment the 'active part' of the count by the 488 * number of readers before waking any processes up. 489 * 490 * This is an adaptation of the phase-fair R/W locks where at the 491 * reader phase (first waiter is a reader), all readers are eligible 492 * to acquire the lock at the same time irrespective of their order 493 * in the queue. The writers acquire the lock according to their 494 * order in the queue. 495 * 496 * We have to do wakeup in 2 passes to prevent the possibility that 497 * the reader count may be decremented before it is incremented. It 498 * is because the to-be-woken waiter may not have slept yet. So it 499 * may see waiter->task got cleared, finish its critical section and 500 * do an unlock before the reader count increment. 501 * 502 * 1) Collect the read-waiters in a separate list, count them and 503 * fully increment the reader count in rwsem. 504 * 2) For each waiters in the new list, clear waiter->task and 505 * put them into wake_q to be woken up later. 506 */ 507 INIT_LIST_HEAD(&wlist); 508 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 509 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 510 continue; 511 512 woken++; 513 list_move_tail(&waiter->list, &wlist); 514 515 /* 516 * Limit # of readers that can be woken up per wakeup call. 517 */ 518 if (unlikely(woken >= MAX_READERS_WAKEUP)) 519 break; 520 } 521 522 adjustment = woken * RWSEM_READER_BIAS - adjustment; 523 lockevent_cond_inc(rwsem_wake_reader, woken); 524 525 oldcount = atomic_long_read(&sem->count); 526 if (list_empty(&sem->wait_list)) { 527 /* 528 * Combined with list_move_tail() above, this implies 529 * rwsem_del_waiter(). 530 */ 531 adjustment -= RWSEM_FLAG_WAITERS; 532 if (oldcount & RWSEM_FLAG_HANDOFF) 533 adjustment -= RWSEM_FLAG_HANDOFF; 534 } else if (woken) { 535 /* 536 * When we've woken a reader, we no longer need to force 537 * writers to give up the lock and we can clear HANDOFF. 538 */ 539 if (oldcount & RWSEM_FLAG_HANDOFF) 540 adjustment -= RWSEM_FLAG_HANDOFF; 541 } 542 543 if (adjustment) 544 atomic_long_add(adjustment, &sem->count); 545 546 /* 2nd pass */ 547 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 548 struct task_struct *tsk; 549 550 tsk = waiter->task; 551 get_task_struct(tsk); 552 553 /* 554 * Ensure calling get_task_struct() before setting the reader 555 * waiter to nil such that rwsem_down_read_slowpath() cannot 556 * race with do_exit() by always holding a reference count 557 * to the task to wakeup. 558 */ 559 smp_store_release(&waiter->task, NULL); 560 /* 561 * Ensure issuing the wakeup (either by us or someone else) 562 * after setting the reader waiter to nil. 563 */ 564 wake_q_add_safe(wake_q, tsk); 565 } 566 } 567 568 /* 569 * Remove a waiter and try to wake up other waiters in the wait queue 570 * This function is called from the out_nolock path of both the reader and 571 * writer slowpaths with wait_lock held. It releases the wait_lock and 572 * optionally wake up waiters before it returns. 573 */ 574 static inline void 575 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter, 576 struct wake_q_head *wake_q) 577 __releases(&sem->wait_lock) 578 { 579 bool first = rwsem_first_waiter(sem) == waiter; 580 581 wake_q_init(wake_q); 582 583 /* 584 * If the wait_list isn't empty and the waiter to be deleted is 585 * the first waiter, we wake up the remaining waiters as they may 586 * be eligible to acquire or spin on the lock. 587 */ 588 if (rwsem_del_waiter(sem, waiter) && first) 589 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q); 590 raw_spin_unlock_irq(&sem->wait_lock); 591 if (!wake_q_empty(wake_q)) 592 wake_up_q(wake_q); 593 } 594 595 /* 596 * This function must be called with the sem->wait_lock held to prevent 597 * race conditions between checking the rwsem wait list and setting the 598 * sem->count accordingly. 599 * 600 * Implies rwsem_del_waiter() on success. 601 */ 602 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 603 struct rwsem_waiter *waiter) 604 { 605 struct rwsem_waiter *first = rwsem_first_waiter(sem); 606 long count, new; 607 608 lockdep_assert_held(&sem->wait_lock); 609 610 count = atomic_long_read(&sem->count); 611 do { 612 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 613 614 if (has_handoff) { 615 /* 616 * Honor handoff bit and yield only when the first 617 * waiter is the one that set it. Otherwisee, we 618 * still try to acquire the rwsem. 619 */ 620 if (first->handoff_set && (waiter != first)) 621 return false; 622 } 623 624 new = count; 625 626 if (count & RWSEM_LOCK_MASK) { 627 /* 628 * A waiter (first or not) can set the handoff bit 629 * if it is an RT task or wait in the wait queue 630 * for too long. 631 */ 632 if (has_handoff || (!rt_or_dl_task(waiter->task) && 633 !time_after(jiffies, waiter->timeout))) 634 return false; 635 636 new |= RWSEM_FLAG_HANDOFF; 637 } else { 638 new |= RWSEM_WRITER_LOCKED; 639 new &= ~RWSEM_FLAG_HANDOFF; 640 641 if (list_is_singular(&sem->wait_list)) 642 new &= ~RWSEM_FLAG_WAITERS; 643 } 644 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 645 646 /* 647 * We have either acquired the lock with handoff bit cleared or set 648 * the handoff bit. Only the first waiter can have its handoff_set 649 * set here to enable optimistic spinning in slowpath loop. 650 */ 651 if (new & RWSEM_FLAG_HANDOFF) { 652 first->handoff_set = true; 653 lockevent_inc(rwsem_wlock_handoff); 654 return false; 655 } 656 657 /* 658 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 659 * success. 660 */ 661 list_del(&waiter->list); 662 rwsem_set_owner(sem); 663 return true; 664 } 665 666 /* 667 * The rwsem_spin_on_owner() function returns the following 4 values 668 * depending on the lock owner state. 669 * OWNER_NULL : owner is currently NULL 670 * OWNER_WRITER: when owner changes and is a writer 671 * OWNER_READER: when owner changes and the new owner may be a reader. 672 * OWNER_NONSPINNABLE: 673 * when optimistic spinning has to stop because either the 674 * owner stops running, is unknown, or its timeslice has 675 * been used up. 676 */ 677 enum owner_state { 678 OWNER_NULL = 1 << 0, 679 OWNER_WRITER = 1 << 1, 680 OWNER_READER = 1 << 2, 681 OWNER_NONSPINNABLE = 1 << 3, 682 }; 683 684 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 685 /* 686 * Try to acquire write lock before the writer has been put on wait queue. 687 */ 688 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 689 { 690 long count = atomic_long_read(&sem->count); 691 692 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 693 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 694 count | RWSEM_WRITER_LOCKED)) { 695 rwsem_set_owner(sem); 696 lockevent_inc(rwsem_opt_lock); 697 return true; 698 } 699 } 700 return false; 701 } 702 703 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 704 { 705 struct task_struct *owner; 706 unsigned long flags; 707 bool ret = true; 708 709 if (need_resched()) { 710 lockevent_inc(rwsem_opt_fail); 711 return false; 712 } 713 714 /* 715 * Disable preemption is equal to the RCU read-side crital section, 716 * thus the task_strcut structure won't go away. 717 */ 718 owner = rwsem_owner_flags(sem, &flags); 719 /* 720 * Don't check the read-owner as the entry may be stale. 721 */ 722 if ((flags & RWSEM_NONSPINNABLE) || 723 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 724 ret = false; 725 726 lockevent_cond_inc(rwsem_opt_fail, !ret); 727 return ret; 728 } 729 730 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 731 732 static inline enum owner_state 733 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 734 { 735 if (flags & RWSEM_NONSPINNABLE) 736 return OWNER_NONSPINNABLE; 737 738 if (flags & RWSEM_READER_OWNED) 739 return OWNER_READER; 740 741 return owner ? OWNER_WRITER : OWNER_NULL; 742 } 743 744 static noinline enum owner_state 745 rwsem_spin_on_owner(struct rw_semaphore *sem) 746 { 747 struct task_struct *new, *owner; 748 unsigned long flags, new_flags; 749 enum owner_state state; 750 751 lockdep_assert_preemption_disabled(); 752 753 owner = rwsem_owner_flags(sem, &flags); 754 state = rwsem_owner_state(owner, flags); 755 if (state != OWNER_WRITER) 756 return state; 757 758 for (;;) { 759 /* 760 * When a waiting writer set the handoff flag, it may spin 761 * on the owner as well. Once that writer acquires the lock, 762 * we can spin on it. So we don't need to quit even when the 763 * handoff bit is set. 764 */ 765 new = rwsem_owner_flags(sem, &new_flags); 766 if ((new != owner) || (new_flags != flags)) { 767 state = rwsem_owner_state(new, new_flags); 768 break; 769 } 770 771 /* 772 * Ensure we emit the owner->on_cpu, dereference _after_ 773 * checking sem->owner still matches owner, if that fails, 774 * owner might point to free()d memory, if it still matches, 775 * our spinning context already disabled preemption which is 776 * equal to RCU read-side crital section ensures the memory 777 * stays valid. 778 */ 779 barrier(); 780 781 if (need_resched() || !owner_on_cpu(owner)) { 782 state = OWNER_NONSPINNABLE; 783 break; 784 } 785 786 cpu_relax(); 787 } 788 789 return state; 790 } 791 792 /* 793 * Calculate reader-owned rwsem spinning threshold for writer 794 * 795 * The more readers own the rwsem, the longer it will take for them to 796 * wind down and free the rwsem. So the empirical formula used to 797 * determine the actual spinning time limit here is: 798 * 799 * Spinning threshold = (10 + nr_readers/2)us 800 * 801 * The limit is capped to a maximum of 25us (30 readers). This is just 802 * a heuristic and is subjected to change in the future. 803 */ 804 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 805 { 806 long count = atomic_long_read(&sem->count); 807 int readers = count >> RWSEM_READER_SHIFT; 808 u64 delta; 809 810 if (readers > 30) 811 readers = 30; 812 delta = (20 + readers) * NSEC_PER_USEC / 2; 813 814 return sched_clock() + delta; 815 } 816 817 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 818 { 819 bool taken = false; 820 int prev_owner_state = OWNER_NULL; 821 int loop = 0; 822 u64 rspin_threshold = 0; 823 824 /* sem->wait_lock should not be held when doing optimistic spinning */ 825 if (!osq_lock(&sem->osq)) 826 goto done; 827 828 /* 829 * Optimistically spin on the owner field and attempt to acquire the 830 * lock whenever the owner changes. Spinning will be stopped when: 831 * 1) the owning writer isn't running; or 832 * 2) readers own the lock and spinning time has exceeded limit. 833 */ 834 for (;;) { 835 enum owner_state owner_state; 836 837 owner_state = rwsem_spin_on_owner(sem); 838 if (!(owner_state & OWNER_SPINNABLE)) 839 break; 840 841 /* 842 * Try to acquire the lock 843 */ 844 taken = rwsem_try_write_lock_unqueued(sem); 845 846 if (taken) 847 break; 848 849 /* 850 * Time-based reader-owned rwsem optimistic spinning 851 */ 852 if (owner_state == OWNER_READER) { 853 /* 854 * Re-initialize rspin_threshold every time when 855 * the owner state changes from non-reader to reader. 856 * This allows a writer to steal the lock in between 857 * 2 reader phases and have the threshold reset at 858 * the beginning of the 2nd reader phase. 859 */ 860 if (prev_owner_state != OWNER_READER) { 861 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 862 break; 863 rspin_threshold = rwsem_rspin_threshold(sem); 864 loop = 0; 865 } 866 867 /* 868 * Check time threshold once every 16 iterations to 869 * avoid calling sched_clock() too frequently so 870 * as to reduce the average latency between the times 871 * when the lock becomes free and when the spinner 872 * is ready to do a trylock. 873 */ 874 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 875 rwsem_set_nonspinnable(sem); 876 lockevent_inc(rwsem_opt_nospin); 877 break; 878 } 879 } 880 881 /* 882 * An RT task cannot do optimistic spinning if it cannot 883 * be sure the lock holder is running or live-lock may 884 * happen if the current task and the lock holder happen 885 * to run in the same CPU. However, aborting optimistic 886 * spinning while a NULL owner is detected may miss some 887 * opportunity where spinning can continue without causing 888 * problem. 889 * 890 * There are 2 possible cases where an RT task may be able 891 * to continue spinning. 892 * 893 * 1) The lock owner is in the process of releasing the 894 * lock, sem->owner is cleared but the lock has not 895 * been released yet. 896 * 2) The lock was free and owner cleared, but another 897 * task just comes in and acquire the lock before 898 * we try to get it. The new owner may be a spinnable 899 * writer. 900 * 901 * To take advantage of two scenarios listed above, the RT 902 * task is made to retry one more time to see if it can 903 * acquire the lock or continue spinning on the new owning 904 * writer. Of course, if the time lag is long enough or the 905 * new owner is not a writer or spinnable, the RT task will 906 * quit spinning. 907 * 908 * If the owner is a writer, the need_resched() check is 909 * done inside rwsem_spin_on_owner(). If the owner is not 910 * a writer, need_resched() check needs to be done here. 911 */ 912 if (owner_state != OWNER_WRITER) { 913 if (need_resched()) 914 break; 915 if (rt_or_dl_task(current) && 916 (prev_owner_state != OWNER_WRITER)) 917 break; 918 } 919 prev_owner_state = owner_state; 920 921 /* 922 * The cpu_relax() call is a compiler barrier which forces 923 * everything in this loop to be re-loaded. We don't need 924 * memory barriers as we'll eventually observe the right 925 * values at the cost of a few extra spins. 926 */ 927 cpu_relax(); 928 } 929 osq_unlock(&sem->osq); 930 done: 931 lockevent_cond_inc(rwsem_opt_fail, !taken); 932 return taken; 933 } 934 935 /* 936 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 937 * only be called when the reader count reaches 0. 938 */ 939 static inline void clear_nonspinnable(struct rw_semaphore *sem) 940 { 941 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))) 942 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 943 } 944 945 #else 946 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 947 { 948 return false; 949 } 950 951 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 952 { 953 return false; 954 } 955 956 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 957 958 static inline enum owner_state 959 rwsem_spin_on_owner(struct rw_semaphore *sem) 960 { 961 return OWNER_NONSPINNABLE; 962 } 963 #endif 964 965 /* 966 * Prepare to wake up waiter(s) in the wait queue by putting them into the 967 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely 968 * reader-owned, wake up read lock waiters in queue front or wake up any 969 * front waiter otherwise. 970 971 * This is being called from both reader and writer slow paths. 972 */ 973 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count, 974 struct wake_q_head *wake_q) 975 { 976 enum rwsem_wake_type wake_type; 977 978 if (count & RWSEM_WRITER_MASK) 979 return; 980 981 if (count & RWSEM_READER_MASK) { 982 wake_type = RWSEM_WAKE_READERS; 983 } else { 984 wake_type = RWSEM_WAKE_ANY; 985 clear_nonspinnable(sem); 986 } 987 rwsem_mark_wake(sem, wake_type, wake_q); 988 } 989 990 /* 991 * Wait for the read lock to be granted 992 */ 993 static struct rw_semaphore __sched * 994 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 995 { 996 long adjustment = -RWSEM_READER_BIAS; 997 long rcnt = (count >> RWSEM_READER_SHIFT); 998 struct rwsem_waiter waiter; 999 DEFINE_WAKE_Q(wake_q); 1000 1001 /* 1002 * To prevent a constant stream of readers from starving a sleeping 1003 * writer, don't attempt optimistic lock stealing if the lock is 1004 * very likely owned by readers. 1005 */ 1006 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 1007 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 1008 goto queue; 1009 1010 /* 1011 * Reader optimistic lock stealing. 1012 */ 1013 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 1014 rwsem_set_reader_owned(sem); 1015 lockevent_inc(rwsem_rlock_steal); 1016 1017 /* 1018 * Wake up other readers in the wait queue if it is 1019 * the first reader. 1020 */ 1021 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 1022 raw_spin_lock_irq(&sem->wait_lock); 1023 if (!list_empty(&sem->wait_list)) 1024 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1025 &wake_q); 1026 raw_spin_unlock_irq(&sem->wait_lock); 1027 wake_up_q(&wake_q); 1028 } 1029 return sem; 1030 } 1031 1032 queue: 1033 waiter.task = current; 1034 waiter.type = RWSEM_WAITING_FOR_READ; 1035 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1036 waiter.handoff_set = false; 1037 1038 raw_spin_lock_irq(&sem->wait_lock); 1039 if (list_empty(&sem->wait_list)) { 1040 /* 1041 * In case the wait queue is empty and the lock isn't owned 1042 * by a writer, this reader can exit the slowpath and return 1043 * immediately as its RWSEM_READER_BIAS has already been set 1044 * in the count. 1045 */ 1046 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { 1047 /* Provide lock ACQUIRE */ 1048 smp_acquire__after_ctrl_dep(); 1049 raw_spin_unlock_irq(&sem->wait_lock); 1050 rwsem_set_reader_owned(sem); 1051 lockevent_inc(rwsem_rlock_fast); 1052 return sem; 1053 } 1054 adjustment += RWSEM_FLAG_WAITERS; 1055 } 1056 rwsem_add_waiter(sem, &waiter); 1057 1058 /* we're now waiting on the lock, but no longer actively locking */ 1059 count = atomic_long_add_return(adjustment, &sem->count); 1060 1061 rwsem_cond_wake_waiter(sem, count, &wake_q); 1062 raw_spin_unlock_irq(&sem->wait_lock); 1063 1064 if (!wake_q_empty(&wake_q)) 1065 wake_up_q(&wake_q); 1066 1067 trace_contention_begin(sem, LCB_F_READ); 1068 1069 /* wait to be given the lock */ 1070 for (;;) { 1071 set_current_state(state); 1072 if (!smp_load_acquire(&waiter.task)) { 1073 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1074 break; 1075 } 1076 if (signal_pending_state(state, current)) { 1077 raw_spin_lock_irq(&sem->wait_lock); 1078 if (waiter.task) 1079 goto out_nolock; 1080 raw_spin_unlock_irq(&sem->wait_lock); 1081 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1082 break; 1083 } 1084 schedule_preempt_disabled(); 1085 lockevent_inc(rwsem_sleep_reader); 1086 } 1087 1088 __set_current_state(TASK_RUNNING); 1089 lockevent_inc(rwsem_rlock); 1090 trace_contention_end(sem, 0); 1091 return sem; 1092 1093 out_nolock: 1094 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1095 __set_current_state(TASK_RUNNING); 1096 lockevent_inc(rwsem_rlock_fail); 1097 trace_contention_end(sem, -EINTR); 1098 return ERR_PTR(-EINTR); 1099 } 1100 1101 /* 1102 * Wait until we successfully acquire the write lock 1103 */ 1104 static struct rw_semaphore __sched * 1105 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1106 { 1107 struct rwsem_waiter waiter; 1108 DEFINE_WAKE_Q(wake_q); 1109 1110 /* do optimistic spinning and steal lock if possible */ 1111 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1112 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1113 return sem; 1114 } 1115 1116 /* 1117 * Optimistic spinning failed, proceed to the slowpath 1118 * and block until we can acquire the sem. 1119 */ 1120 waiter.task = current; 1121 waiter.type = RWSEM_WAITING_FOR_WRITE; 1122 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1123 waiter.handoff_set = false; 1124 1125 raw_spin_lock_irq(&sem->wait_lock); 1126 rwsem_add_waiter(sem, &waiter); 1127 1128 /* we're now waiting on the lock */ 1129 if (rwsem_first_waiter(sem) != &waiter) { 1130 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count), 1131 &wake_q); 1132 if (!wake_q_empty(&wake_q)) { 1133 /* 1134 * We want to minimize wait_lock hold time especially 1135 * when a large number of readers are to be woken up. 1136 */ 1137 raw_spin_unlock_irq(&sem->wait_lock); 1138 wake_up_q(&wake_q); 1139 raw_spin_lock_irq(&sem->wait_lock); 1140 } 1141 } else { 1142 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1143 } 1144 1145 /* wait until we successfully acquire the lock */ 1146 set_current_state(state); 1147 trace_contention_begin(sem, LCB_F_WRITE); 1148 1149 for (;;) { 1150 if (rwsem_try_write_lock(sem, &waiter)) { 1151 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1152 break; 1153 } 1154 1155 raw_spin_unlock_irq(&sem->wait_lock); 1156 1157 if (signal_pending_state(state, current)) 1158 goto out_nolock; 1159 1160 /* 1161 * After setting the handoff bit and failing to acquire 1162 * the lock, attempt to spin on owner to accelerate lock 1163 * transfer. If the previous owner is a on-cpu writer and it 1164 * has just released the lock, OWNER_NULL will be returned. 1165 * In this case, we attempt to acquire the lock again 1166 * without sleeping. 1167 */ 1168 if (waiter.handoff_set) { 1169 enum owner_state owner_state; 1170 1171 owner_state = rwsem_spin_on_owner(sem); 1172 if (owner_state == OWNER_NULL) 1173 goto trylock_again; 1174 } 1175 1176 schedule_preempt_disabled(); 1177 lockevent_inc(rwsem_sleep_writer); 1178 set_current_state(state); 1179 trylock_again: 1180 raw_spin_lock_irq(&sem->wait_lock); 1181 } 1182 __set_current_state(TASK_RUNNING); 1183 raw_spin_unlock_irq(&sem->wait_lock); 1184 lockevent_inc(rwsem_wlock); 1185 trace_contention_end(sem, 0); 1186 return sem; 1187 1188 out_nolock: 1189 __set_current_state(TASK_RUNNING); 1190 raw_spin_lock_irq(&sem->wait_lock); 1191 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1192 lockevent_inc(rwsem_wlock_fail); 1193 trace_contention_end(sem, -EINTR); 1194 return ERR_PTR(-EINTR); 1195 } 1196 1197 /* 1198 * handle waking up a waiter on the semaphore 1199 * - up_read/up_write has decremented the active part of count if we come here 1200 */ 1201 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1202 { 1203 unsigned long flags; 1204 DEFINE_WAKE_Q(wake_q); 1205 1206 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1207 1208 if (!list_empty(&sem->wait_list)) 1209 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1210 1211 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1212 wake_up_q(&wake_q); 1213 1214 return sem; 1215 } 1216 1217 /* 1218 * downgrade a write lock into a read lock 1219 * - caller incremented waiting part of count and discovered it still negative 1220 * - just wake up any readers at the front of the queue 1221 */ 1222 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1223 { 1224 unsigned long flags; 1225 DEFINE_WAKE_Q(wake_q); 1226 1227 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1228 1229 if (!list_empty(&sem->wait_list)) 1230 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1231 1232 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1233 wake_up_q(&wake_q); 1234 1235 return sem; 1236 } 1237 1238 /* 1239 * lock for reading 1240 */ 1241 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state) 1242 { 1243 int ret = 0; 1244 long count; 1245 1246 preempt_disable(); 1247 if (!rwsem_read_trylock(sem, &count)) { 1248 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) { 1249 ret = -EINTR; 1250 goto out; 1251 } 1252 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1253 } 1254 out: 1255 preempt_enable(); 1256 return ret; 1257 } 1258 1259 static __always_inline void __down_read(struct rw_semaphore *sem) 1260 { 1261 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1262 } 1263 1264 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem) 1265 { 1266 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1267 } 1268 1269 static __always_inline int __down_read_killable(struct rw_semaphore *sem) 1270 { 1271 return __down_read_common(sem, TASK_KILLABLE); 1272 } 1273 1274 static inline int __down_read_trylock(struct rw_semaphore *sem) 1275 { 1276 int ret = 0; 1277 long tmp; 1278 1279 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1280 1281 preempt_disable(); 1282 tmp = atomic_long_read(&sem->count); 1283 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1284 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1285 tmp + RWSEM_READER_BIAS)) { 1286 rwsem_set_reader_owned(sem); 1287 ret = 1; 1288 break; 1289 } 1290 } 1291 preempt_enable(); 1292 return ret; 1293 } 1294 1295 /* 1296 * lock for writing 1297 */ 1298 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state) 1299 { 1300 int ret = 0; 1301 1302 preempt_disable(); 1303 if (unlikely(!rwsem_write_trylock(sem))) { 1304 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1305 ret = -EINTR; 1306 } 1307 preempt_enable(); 1308 return ret; 1309 } 1310 1311 static __always_inline void __down_write(struct rw_semaphore *sem) 1312 { 1313 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1314 } 1315 1316 static __always_inline int __down_write_killable(struct rw_semaphore *sem) 1317 { 1318 return __down_write_common(sem, TASK_KILLABLE); 1319 } 1320 1321 static inline int __down_write_trylock(struct rw_semaphore *sem) 1322 { 1323 int ret; 1324 1325 preempt_disable(); 1326 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1327 ret = rwsem_write_trylock(sem); 1328 preempt_enable(); 1329 1330 return ret; 1331 } 1332 1333 /* 1334 * unlock after reading 1335 */ 1336 static inline void __up_read(struct rw_semaphore *sem) 1337 { 1338 long tmp; 1339 1340 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1341 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1342 1343 preempt_disable(); 1344 rwsem_clear_reader_owned(sem); 1345 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1346 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1347 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1348 RWSEM_FLAG_WAITERS)) { 1349 clear_nonspinnable(sem); 1350 rwsem_wake(sem); 1351 } 1352 preempt_enable(); 1353 } 1354 1355 /* 1356 * unlock after writing 1357 */ 1358 static inline void __up_write(struct rw_semaphore *sem) 1359 { 1360 long tmp; 1361 1362 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1363 /* 1364 * sem->owner may differ from current if the ownership is transferred 1365 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1366 */ 1367 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1368 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1369 1370 preempt_disable(); 1371 rwsem_clear_owner(sem); 1372 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1373 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1374 rwsem_wake(sem); 1375 preempt_enable(); 1376 } 1377 1378 /* 1379 * downgrade write lock to read lock 1380 */ 1381 static inline void __downgrade_write(struct rw_semaphore *sem) 1382 { 1383 long tmp; 1384 1385 /* 1386 * When downgrading from exclusive to shared ownership, 1387 * anything inside the write-locked region cannot leak 1388 * into the read side. In contrast, anything in the 1389 * read-locked region is ok to be re-ordered into the 1390 * write side. As such, rely on RELEASE semantics. 1391 */ 1392 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1393 preempt_disable(); 1394 tmp = atomic_long_fetch_add_release( 1395 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1396 rwsem_set_reader_owned(sem); 1397 if (tmp & RWSEM_FLAG_WAITERS) 1398 rwsem_downgrade_wake(sem); 1399 preempt_enable(); 1400 } 1401 1402 #else /* !CONFIG_PREEMPT_RT */ 1403 1404 #define RT_MUTEX_BUILD_MUTEX 1405 #include "rtmutex.c" 1406 1407 #define rwbase_set_and_save_current_state(state) \ 1408 set_current_state(state) 1409 1410 #define rwbase_restore_current_state() \ 1411 __set_current_state(TASK_RUNNING) 1412 1413 #define rwbase_rtmutex_lock_state(rtm, state) \ 1414 __rt_mutex_lock(rtm, state) 1415 1416 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq) \ 1417 __rt_mutex_slowlock_locked(rtm, NULL, state, wq) 1418 1419 #define rwbase_rtmutex_unlock(rtm) \ 1420 __rt_mutex_unlock(rtm) 1421 1422 #define rwbase_rtmutex_trylock(rtm) \ 1423 __rt_mutex_trylock(rtm) 1424 1425 #define rwbase_signal_pending_state(state, current) \ 1426 signal_pending_state(state, current) 1427 1428 #define rwbase_pre_schedule() \ 1429 rt_mutex_pre_schedule() 1430 1431 #define rwbase_schedule() \ 1432 rt_mutex_schedule() 1433 1434 #define rwbase_post_schedule() \ 1435 rt_mutex_post_schedule() 1436 1437 #include "rwbase_rt.c" 1438 1439 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1440 struct lock_class_key *key) 1441 { 1442 init_rwbase_rt(&(sem)->rwbase); 1443 1444 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1445 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1446 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1447 #endif 1448 } 1449 EXPORT_SYMBOL(__init_rwsem); 1450 1451 static inline void __down_read(struct rw_semaphore *sem) 1452 { 1453 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1454 } 1455 1456 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1457 { 1458 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1459 } 1460 1461 static inline int __down_read_killable(struct rw_semaphore *sem) 1462 { 1463 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1464 } 1465 1466 static inline int __down_read_trylock(struct rw_semaphore *sem) 1467 { 1468 return rwbase_read_trylock(&sem->rwbase); 1469 } 1470 1471 static inline void __up_read(struct rw_semaphore *sem) 1472 { 1473 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1474 } 1475 1476 static inline void __sched __down_write(struct rw_semaphore *sem) 1477 { 1478 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1479 } 1480 1481 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1482 { 1483 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1484 } 1485 1486 static inline int __down_write_trylock(struct rw_semaphore *sem) 1487 { 1488 return rwbase_write_trylock(&sem->rwbase); 1489 } 1490 1491 static inline void __up_write(struct rw_semaphore *sem) 1492 { 1493 rwbase_write_unlock(&sem->rwbase); 1494 } 1495 1496 static inline void __downgrade_write(struct rw_semaphore *sem) 1497 { 1498 rwbase_write_downgrade(&sem->rwbase); 1499 } 1500 1501 /* Debug stubs for the common API */ 1502 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1503 1504 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1505 struct task_struct *owner) 1506 { 1507 } 1508 1509 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1510 { 1511 int count = atomic_read(&sem->rwbase.readers); 1512 1513 return count < 0 && count != READER_BIAS; 1514 } 1515 1516 #endif /* CONFIG_PREEMPT_RT */ 1517 1518 /* 1519 * lock for reading 1520 */ 1521 void __sched down_read(struct rw_semaphore *sem) 1522 { 1523 might_sleep(); 1524 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1525 1526 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1527 } 1528 EXPORT_SYMBOL(down_read); 1529 1530 int __sched down_read_interruptible(struct rw_semaphore *sem) 1531 { 1532 might_sleep(); 1533 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1534 1535 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1536 rwsem_release(&sem->dep_map, _RET_IP_); 1537 return -EINTR; 1538 } 1539 1540 return 0; 1541 } 1542 EXPORT_SYMBOL(down_read_interruptible); 1543 1544 int __sched down_read_killable(struct rw_semaphore *sem) 1545 { 1546 might_sleep(); 1547 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1548 1549 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1550 rwsem_release(&sem->dep_map, _RET_IP_); 1551 return -EINTR; 1552 } 1553 1554 return 0; 1555 } 1556 EXPORT_SYMBOL(down_read_killable); 1557 1558 /* 1559 * trylock for reading -- returns 1 if successful, 0 if contention 1560 */ 1561 int down_read_trylock(struct rw_semaphore *sem) 1562 { 1563 int ret = __down_read_trylock(sem); 1564 1565 if (ret == 1) 1566 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1567 return ret; 1568 } 1569 EXPORT_SYMBOL(down_read_trylock); 1570 1571 /* 1572 * lock for writing 1573 */ 1574 void __sched down_write(struct rw_semaphore *sem) 1575 { 1576 might_sleep(); 1577 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1578 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1579 } 1580 EXPORT_SYMBOL(down_write); 1581 1582 /* 1583 * lock for writing 1584 */ 1585 int __sched down_write_killable(struct rw_semaphore *sem) 1586 { 1587 might_sleep(); 1588 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1589 1590 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1591 __down_write_killable)) { 1592 rwsem_release(&sem->dep_map, _RET_IP_); 1593 return -EINTR; 1594 } 1595 1596 return 0; 1597 } 1598 EXPORT_SYMBOL(down_write_killable); 1599 1600 /* 1601 * trylock for writing -- returns 1 if successful, 0 if contention 1602 */ 1603 int down_write_trylock(struct rw_semaphore *sem) 1604 { 1605 int ret = __down_write_trylock(sem); 1606 1607 if (ret == 1) 1608 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1609 1610 return ret; 1611 } 1612 EXPORT_SYMBOL(down_write_trylock); 1613 1614 /* 1615 * release a read lock 1616 */ 1617 void up_read(struct rw_semaphore *sem) 1618 { 1619 rwsem_release(&sem->dep_map, _RET_IP_); 1620 __up_read(sem); 1621 } 1622 EXPORT_SYMBOL(up_read); 1623 1624 /* 1625 * release a write lock 1626 */ 1627 void up_write(struct rw_semaphore *sem) 1628 { 1629 rwsem_release(&sem->dep_map, _RET_IP_); 1630 __up_write(sem); 1631 } 1632 EXPORT_SYMBOL(up_write); 1633 1634 /* 1635 * downgrade write lock to read lock 1636 */ 1637 void downgrade_write(struct rw_semaphore *sem) 1638 { 1639 lock_downgrade(&sem->dep_map, _RET_IP_); 1640 __downgrade_write(sem); 1641 } 1642 EXPORT_SYMBOL(downgrade_write); 1643 1644 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1645 1646 void down_read_nested(struct rw_semaphore *sem, int subclass) 1647 { 1648 might_sleep(); 1649 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1650 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1651 } 1652 EXPORT_SYMBOL(down_read_nested); 1653 1654 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1655 { 1656 might_sleep(); 1657 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1658 1659 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1660 rwsem_release(&sem->dep_map, _RET_IP_); 1661 return -EINTR; 1662 } 1663 1664 return 0; 1665 } 1666 EXPORT_SYMBOL(down_read_killable_nested); 1667 1668 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1669 { 1670 might_sleep(); 1671 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1672 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1673 } 1674 EXPORT_SYMBOL(_down_write_nest_lock); 1675 1676 void down_read_non_owner(struct rw_semaphore *sem) 1677 { 1678 might_sleep(); 1679 __down_read(sem); 1680 /* 1681 * The owner value for a reader-owned lock is mostly for debugging 1682 * purpose only and is not critical to the correct functioning of 1683 * rwsem. So it is perfectly fine to set it in a preempt-enabled 1684 * context here. 1685 */ 1686 __rwsem_set_reader_owned(sem, NULL); 1687 } 1688 EXPORT_SYMBOL(down_read_non_owner); 1689 1690 void down_write_nested(struct rw_semaphore *sem, int subclass) 1691 { 1692 might_sleep(); 1693 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1694 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1695 } 1696 EXPORT_SYMBOL(down_write_nested); 1697 1698 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1699 { 1700 might_sleep(); 1701 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1702 1703 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1704 __down_write_killable)) { 1705 rwsem_release(&sem->dep_map, _RET_IP_); 1706 return -EINTR; 1707 } 1708 1709 return 0; 1710 } 1711 EXPORT_SYMBOL(down_write_killable_nested); 1712 1713 void up_read_non_owner(struct rw_semaphore *sem) 1714 { 1715 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1716 __up_read(sem); 1717 } 1718 EXPORT_SYMBOL(up_read_non_owner); 1719 1720 #endif 1721