xref: /linux/kernel/locking/rwsem.c (revision 2dbc0838bcf24ca59cabc3130cf3b1d6809cdcd4)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 
31 #include "rwsem.h"
32 #include "lock_events.h"
33 
34 /*
35  * The least significant 3 bits of the owner value has the following
36  * meanings when set.
37  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
38  *  - Bit 1: RWSEM_RD_NONSPINNABLE - Readers cannot spin on this lock.
39  *  - Bit 2: RWSEM_WR_NONSPINNABLE - Writers cannot spin on this lock.
40  *
41  * When the rwsem is either owned by an anonymous writer, or it is
42  * reader-owned, but a spinning writer has timed out, both nonspinnable
43  * bits will be set to disable optimistic spinning by readers and writers.
44  * In the later case, the last unlocking reader should then check the
45  * writer nonspinnable bit and clear it only to give writers preference
46  * to acquire the lock via optimistic spinning, but not readers. Similar
47  * action is also done in the reader slowpath.
48 
49  * When a writer acquires a rwsem, it puts its task_struct pointer
50  * into the owner field. It is cleared after an unlock.
51  *
52  * When a reader acquires a rwsem, it will also puts its task_struct
53  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
54  * On unlock, the owner field will largely be left untouched. So
55  * for a free or reader-owned rwsem, the owner value may contain
56  * information about the last reader that acquires the rwsem.
57  *
58  * That information may be helpful in debugging cases where the system
59  * seems to hang on a reader owned rwsem especially if only one reader
60  * is involved. Ideally we would like to track all the readers that own
61  * a rwsem, but the overhead is simply too big.
62  *
63  * Reader optimistic spinning is helpful when the reader critical section
64  * is short and there aren't that many readers around. It makes readers
65  * relatively more preferred than writers. When a writer times out spinning
66  * on a reader-owned lock and set the nospinnable bits, there are two main
67  * reasons for that.
68  *
69  *  1) The reader critical section is long, perhaps the task sleeps after
70  *     acquiring the read lock.
71  *  2) There are just too many readers contending the lock causing it to
72  *     take a while to service all of them.
73  *
74  * In the former case, long reader critical section will impede the progress
75  * of writers which is usually more important for system performance. In
76  * the later case, reader optimistic spinning tends to make the reader
77  * groups that contain readers that acquire the lock together smaller
78  * leading to more of them. That may hurt performance in some cases. In
79  * other words, the setting of nonspinnable bits indicates that reader
80  * optimistic spinning may not be helpful for those workloads that cause
81  * it.
82  *
83  * Therefore, any writers that had observed the setting of the writer
84  * nonspinnable bit for a given rwsem after they fail to acquire the lock
85  * via optimistic spinning will set the reader nonspinnable bit once they
86  * acquire the write lock. Similarly, readers that observe the setting
87  * of reader nonspinnable bit at slowpath entry will set the reader
88  * nonspinnable bits when they acquire the read lock via the wakeup path.
89  *
90  * Once the reader nonspinnable bit is on, it will only be reset when
91  * a writer is able to acquire the rwsem in the fast path or somehow a
92  * reader or writer in the slowpath doesn't observe the nonspinable bit.
93  *
94  * This is to discourage reader optmistic spinning on that particular
95  * rwsem and make writers more preferred. This adaptive disabling of reader
96  * optimistic spinning will alleviate the negative side effect of this
97  * feature.
98  */
99 #define RWSEM_READER_OWNED	(1UL << 0)
100 #define RWSEM_RD_NONSPINNABLE	(1UL << 1)
101 #define RWSEM_WR_NONSPINNABLE	(1UL << 2)
102 #define RWSEM_NONSPINNABLE	(RWSEM_RD_NONSPINNABLE | RWSEM_WR_NONSPINNABLE)
103 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
104 
105 #ifdef CONFIG_DEBUG_RWSEMS
106 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
107 	if (!debug_locks_silent &&				\
108 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
109 		#c, atomic_long_read(&(sem)->count),		\
110 		atomic_long_read(&(sem)->owner), (long)current,	\
111 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
112 			debug_locks_off();			\
113 	} while (0)
114 #else
115 # define DEBUG_RWSEMS_WARN_ON(c, sem)
116 #endif
117 
118 /*
119  * On 64-bit architectures, the bit definitions of the count are:
120  *
121  * Bit  0    - writer locked bit
122  * Bit  1    - waiters present bit
123  * Bit  2    - lock handoff bit
124  * Bits 3-7  - reserved
125  * Bits 8-62 - 55-bit reader count
126  * Bit  63   - read fail bit
127  *
128  * On 32-bit architectures, the bit definitions of the count are:
129  *
130  * Bit  0    - writer locked bit
131  * Bit  1    - waiters present bit
132  * Bit  2    - lock handoff bit
133  * Bits 3-7  - reserved
134  * Bits 8-30 - 23-bit reader count
135  * Bit  31   - read fail bit
136  *
137  * It is not likely that the most significant bit (read fail bit) will ever
138  * be set. This guard bit is still checked anyway in the down_read() fastpath
139  * just in case we need to use up more of the reader bits for other purpose
140  * in the future.
141  *
142  * atomic_long_fetch_add() is used to obtain reader lock, whereas
143  * atomic_long_cmpxchg() will be used to obtain writer lock.
144  *
145  * There are three places where the lock handoff bit may be set or cleared.
146  * 1) rwsem_mark_wake() for readers.
147  * 2) rwsem_try_write_lock() for writers.
148  * 3) Error path of rwsem_down_write_slowpath().
149  *
150  * For all the above cases, wait_lock will be held. A writer must also
151  * be the first one in the wait_list to be eligible for setting the handoff
152  * bit. So concurrent setting/clearing of handoff bit is not possible.
153  */
154 #define RWSEM_WRITER_LOCKED	(1UL << 0)
155 #define RWSEM_FLAG_WAITERS	(1UL << 1)
156 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
157 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
158 
159 #define RWSEM_READER_SHIFT	8
160 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
161 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
162 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
163 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
164 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
165 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
166 
167 /*
168  * All writes to owner are protected by WRITE_ONCE() to make sure that
169  * store tearing can't happen as optimistic spinners may read and use
170  * the owner value concurrently without lock. Read from owner, however,
171  * may not need READ_ONCE() as long as the pointer value is only used
172  * for comparison and isn't being dereferenced.
173  */
174 static inline void rwsem_set_owner(struct rw_semaphore *sem)
175 {
176 	atomic_long_set(&sem->owner, (long)current);
177 }
178 
179 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
180 {
181 	atomic_long_set(&sem->owner, 0);
182 }
183 
184 /*
185  * Test the flags in the owner field.
186  */
187 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
188 {
189 	return atomic_long_read(&sem->owner) & flags;
190 }
191 
192 /*
193  * The task_struct pointer of the last owning reader will be left in
194  * the owner field.
195  *
196  * Note that the owner value just indicates the task has owned the rwsem
197  * previously, it may not be the real owner or one of the real owners
198  * anymore when that field is examined, so take it with a grain of salt.
199  *
200  * The reader non-spinnable bit is preserved.
201  */
202 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
203 					    struct task_struct *owner)
204 {
205 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
206 		(atomic_long_read(&sem->owner) & RWSEM_RD_NONSPINNABLE);
207 
208 	atomic_long_set(&sem->owner, val);
209 }
210 
211 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
212 {
213 	__rwsem_set_reader_owned(sem, current);
214 }
215 
216 /*
217  * Return true if the rwsem is owned by a reader.
218  */
219 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
220 {
221 #ifdef CONFIG_DEBUG_RWSEMS
222 	/*
223 	 * Check the count to see if it is write-locked.
224 	 */
225 	long count = atomic_long_read(&sem->count);
226 
227 	if (count & RWSEM_WRITER_MASK)
228 		return false;
229 #endif
230 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
231 }
232 
233 #ifdef CONFIG_DEBUG_RWSEMS
234 /*
235  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
236  * is a task pointer in owner of a reader-owned rwsem, it will be the
237  * real owner or one of the real owners. The only exception is when the
238  * unlock is done by up_read_non_owner().
239  */
240 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
241 {
242 	unsigned long val = atomic_long_read(&sem->owner);
243 
244 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
245 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
246 					    val & RWSEM_OWNER_FLAGS_MASK))
247 			return;
248 	}
249 }
250 #else
251 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
252 {
253 }
254 #endif
255 
256 /*
257  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
258  * remains set. Otherwise, the operation will be aborted.
259  */
260 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
261 {
262 	unsigned long owner = atomic_long_read(&sem->owner);
263 
264 	do {
265 		if (!(owner & RWSEM_READER_OWNED))
266 			break;
267 		if (owner & RWSEM_NONSPINNABLE)
268 			break;
269 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
270 					  owner | RWSEM_NONSPINNABLE));
271 }
272 
273 static inline bool rwsem_read_trylock(struct rw_semaphore *sem)
274 {
275 	long cnt = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
276 	if (WARN_ON_ONCE(cnt < 0))
277 		rwsem_set_nonspinnable(sem);
278 	return !(cnt & RWSEM_READ_FAILED_MASK);
279 }
280 
281 /*
282  * Return just the real task structure pointer of the owner
283  */
284 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
285 {
286 	return (struct task_struct *)
287 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
288 }
289 
290 /*
291  * Return the real task structure pointer of the owner and the embedded
292  * flags in the owner. pflags must be non-NULL.
293  */
294 static inline struct task_struct *
295 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
296 {
297 	unsigned long owner = atomic_long_read(&sem->owner);
298 
299 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
300 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
301 }
302 
303 /*
304  * Guide to the rw_semaphore's count field.
305  *
306  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
307  * by a writer.
308  *
309  * The lock is owned by readers when
310  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
311  * (2) some of the reader bits are set in count, and
312  * (3) the owner field has RWSEM_READ_OWNED bit set.
313  *
314  * Having some reader bits set is not enough to guarantee a readers owned
315  * lock as the readers may be in the process of backing out from the count
316  * and a writer has just released the lock. So another writer may steal
317  * the lock immediately after that.
318  */
319 
320 /*
321  * Initialize an rwsem:
322  */
323 void __init_rwsem(struct rw_semaphore *sem, const char *name,
324 		  struct lock_class_key *key)
325 {
326 #ifdef CONFIG_DEBUG_LOCK_ALLOC
327 	/*
328 	 * Make sure we are not reinitializing a held semaphore:
329 	 */
330 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
331 	lockdep_init_map(&sem->dep_map, name, key, 0);
332 #endif
333 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
334 	raw_spin_lock_init(&sem->wait_lock);
335 	INIT_LIST_HEAD(&sem->wait_list);
336 	atomic_long_set(&sem->owner, 0L);
337 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
338 	osq_lock_init(&sem->osq);
339 #endif
340 }
341 EXPORT_SYMBOL(__init_rwsem);
342 
343 enum rwsem_waiter_type {
344 	RWSEM_WAITING_FOR_WRITE,
345 	RWSEM_WAITING_FOR_READ
346 };
347 
348 struct rwsem_waiter {
349 	struct list_head list;
350 	struct task_struct *task;
351 	enum rwsem_waiter_type type;
352 	unsigned long timeout;
353 	unsigned long last_rowner;
354 };
355 #define rwsem_first_waiter(sem) \
356 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
357 
358 enum rwsem_wake_type {
359 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
360 	RWSEM_WAKE_READERS,	/* Wake readers only */
361 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
362 };
363 
364 enum writer_wait_state {
365 	WRITER_NOT_FIRST,	/* Writer is not first in wait list */
366 	WRITER_FIRST,		/* Writer is first in wait list     */
367 	WRITER_HANDOFF		/* Writer is first & handoff needed */
368 };
369 
370 /*
371  * The typical HZ value is either 250 or 1000. So set the minimum waiting
372  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
373  * queue before initiating the handoff protocol.
374  */
375 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
376 
377 /*
378  * Magic number to batch-wakeup waiting readers, even when writers are
379  * also present in the queue. This both limits the amount of work the
380  * waking thread must do and also prevents any potential counter overflow,
381  * however unlikely.
382  */
383 #define MAX_READERS_WAKEUP	0x100
384 
385 /*
386  * handle the lock release when processes blocked on it that can now run
387  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
388  *   have been set.
389  * - there must be someone on the queue
390  * - the wait_lock must be held by the caller
391  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
392  *   to actually wakeup the blocked task(s) and drop the reference count,
393  *   preferably when the wait_lock is released
394  * - woken process blocks are discarded from the list after having task zeroed
395  * - writers are only marked woken if downgrading is false
396  */
397 static void rwsem_mark_wake(struct rw_semaphore *sem,
398 			    enum rwsem_wake_type wake_type,
399 			    struct wake_q_head *wake_q)
400 {
401 	struct rwsem_waiter *waiter, *tmp;
402 	long oldcount, woken = 0, adjustment = 0;
403 	struct list_head wlist;
404 
405 	lockdep_assert_held(&sem->wait_lock);
406 
407 	/*
408 	 * Take a peek at the queue head waiter such that we can determine
409 	 * the wakeup(s) to perform.
410 	 */
411 	waiter = rwsem_first_waiter(sem);
412 
413 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
414 		if (wake_type == RWSEM_WAKE_ANY) {
415 			/*
416 			 * Mark writer at the front of the queue for wakeup.
417 			 * Until the task is actually later awoken later by
418 			 * the caller, other writers are able to steal it.
419 			 * Readers, on the other hand, will block as they
420 			 * will notice the queued writer.
421 			 */
422 			wake_q_add(wake_q, waiter->task);
423 			lockevent_inc(rwsem_wake_writer);
424 		}
425 
426 		return;
427 	}
428 
429 	/*
430 	 * No reader wakeup if there are too many of them already.
431 	 */
432 	if (unlikely(atomic_long_read(&sem->count) < 0))
433 		return;
434 
435 	/*
436 	 * Writers might steal the lock before we grant it to the next reader.
437 	 * We prefer to do the first reader grant before counting readers
438 	 * so we can bail out early if a writer stole the lock.
439 	 */
440 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
441 		struct task_struct *owner;
442 
443 		adjustment = RWSEM_READER_BIAS;
444 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
445 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
446 			/*
447 			 * When we've been waiting "too" long (for writers
448 			 * to give up the lock), request a HANDOFF to
449 			 * force the issue.
450 			 */
451 			if (!(oldcount & RWSEM_FLAG_HANDOFF) &&
452 			    time_after(jiffies, waiter->timeout)) {
453 				adjustment -= RWSEM_FLAG_HANDOFF;
454 				lockevent_inc(rwsem_rlock_handoff);
455 			}
456 
457 			atomic_long_add(-adjustment, &sem->count);
458 			return;
459 		}
460 		/*
461 		 * Set it to reader-owned to give spinners an early
462 		 * indication that readers now have the lock.
463 		 * The reader nonspinnable bit seen at slowpath entry of
464 		 * the reader is copied over.
465 		 */
466 		owner = waiter->task;
467 		if (waiter->last_rowner & RWSEM_RD_NONSPINNABLE) {
468 			owner = (void *)((unsigned long)owner | RWSEM_RD_NONSPINNABLE);
469 			lockevent_inc(rwsem_opt_norspin);
470 		}
471 		__rwsem_set_reader_owned(sem, owner);
472 	}
473 
474 	/*
475 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
476 	 * queue. We know that the woken will be at least 1 as we accounted
477 	 * for above. Note we increment the 'active part' of the count by the
478 	 * number of readers before waking any processes up.
479 	 *
480 	 * This is an adaptation of the phase-fair R/W locks where at the
481 	 * reader phase (first waiter is a reader), all readers are eligible
482 	 * to acquire the lock at the same time irrespective of their order
483 	 * in the queue. The writers acquire the lock according to their
484 	 * order in the queue.
485 	 *
486 	 * We have to do wakeup in 2 passes to prevent the possibility that
487 	 * the reader count may be decremented before it is incremented. It
488 	 * is because the to-be-woken waiter may not have slept yet. So it
489 	 * may see waiter->task got cleared, finish its critical section and
490 	 * do an unlock before the reader count increment.
491 	 *
492 	 * 1) Collect the read-waiters in a separate list, count them and
493 	 *    fully increment the reader count in rwsem.
494 	 * 2) For each waiters in the new list, clear waiter->task and
495 	 *    put them into wake_q to be woken up later.
496 	 */
497 	INIT_LIST_HEAD(&wlist);
498 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
499 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
500 			continue;
501 
502 		woken++;
503 		list_move_tail(&waiter->list, &wlist);
504 
505 		/*
506 		 * Limit # of readers that can be woken up per wakeup call.
507 		 */
508 		if (woken >= MAX_READERS_WAKEUP)
509 			break;
510 	}
511 
512 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
513 	lockevent_cond_inc(rwsem_wake_reader, woken);
514 	if (list_empty(&sem->wait_list)) {
515 		/* hit end of list above */
516 		adjustment -= RWSEM_FLAG_WAITERS;
517 	}
518 
519 	/*
520 	 * When we've woken a reader, we no longer need to force writers
521 	 * to give up the lock and we can clear HANDOFF.
522 	 */
523 	if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF))
524 		adjustment -= RWSEM_FLAG_HANDOFF;
525 
526 	if (adjustment)
527 		atomic_long_add(adjustment, &sem->count);
528 
529 	/* 2nd pass */
530 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
531 		struct task_struct *tsk;
532 
533 		tsk = waiter->task;
534 		get_task_struct(tsk);
535 
536 		/*
537 		 * Ensure calling get_task_struct() before setting the reader
538 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
539 		 * race with do_exit() by always holding a reference count
540 		 * to the task to wakeup.
541 		 */
542 		smp_store_release(&waiter->task, NULL);
543 		/*
544 		 * Ensure issuing the wakeup (either by us or someone else)
545 		 * after setting the reader waiter to nil.
546 		 */
547 		wake_q_add_safe(wake_q, tsk);
548 	}
549 }
550 
551 /*
552  * This function must be called with the sem->wait_lock held to prevent
553  * race conditions between checking the rwsem wait list and setting the
554  * sem->count accordingly.
555  *
556  * If wstate is WRITER_HANDOFF, it will make sure that either the handoff
557  * bit is set or the lock is acquired with handoff bit cleared.
558  */
559 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
560 					enum writer_wait_state wstate)
561 {
562 	long count, new;
563 
564 	lockdep_assert_held(&sem->wait_lock);
565 
566 	count = atomic_long_read(&sem->count);
567 	do {
568 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
569 
570 		if (has_handoff && wstate == WRITER_NOT_FIRST)
571 			return false;
572 
573 		new = count;
574 
575 		if (count & RWSEM_LOCK_MASK) {
576 			if (has_handoff || (wstate != WRITER_HANDOFF))
577 				return false;
578 
579 			new |= RWSEM_FLAG_HANDOFF;
580 		} else {
581 			new |= RWSEM_WRITER_LOCKED;
582 			new &= ~RWSEM_FLAG_HANDOFF;
583 
584 			if (list_is_singular(&sem->wait_list))
585 				new &= ~RWSEM_FLAG_WAITERS;
586 		}
587 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
588 
589 	/*
590 	 * We have either acquired the lock with handoff bit cleared or
591 	 * set the handoff bit.
592 	 */
593 	if (new & RWSEM_FLAG_HANDOFF)
594 		return false;
595 
596 	rwsem_set_owner(sem);
597 	return true;
598 }
599 
600 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
601 /*
602  * Try to acquire read lock before the reader is put on wait queue.
603  * Lock acquisition isn't allowed if the rwsem is locked or a writer handoff
604  * is ongoing.
605  */
606 static inline bool rwsem_try_read_lock_unqueued(struct rw_semaphore *sem)
607 {
608 	long count = atomic_long_read(&sem->count);
609 
610 	if (count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))
611 		return false;
612 
613 	count = atomic_long_fetch_add_acquire(RWSEM_READER_BIAS, &sem->count);
614 	if (!(count & (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
615 		rwsem_set_reader_owned(sem);
616 		lockevent_inc(rwsem_opt_rlock);
617 		return true;
618 	}
619 
620 	/* Back out the change */
621 	atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
622 	return false;
623 }
624 
625 /*
626  * Try to acquire write lock before the writer has been put on wait queue.
627  */
628 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
629 {
630 	long count = atomic_long_read(&sem->count);
631 
632 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
633 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
634 					count | RWSEM_WRITER_LOCKED)) {
635 			rwsem_set_owner(sem);
636 			lockevent_inc(rwsem_opt_wlock);
637 			return true;
638 		}
639 	}
640 	return false;
641 }
642 
643 static inline bool owner_on_cpu(struct task_struct *owner)
644 {
645 	/*
646 	 * As lock holder preemption issue, we both skip spinning if
647 	 * task is not on cpu or its cpu is preempted
648 	 */
649 	return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
650 }
651 
652 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
653 					   unsigned long nonspinnable)
654 {
655 	struct task_struct *owner;
656 	unsigned long flags;
657 	bool ret = true;
658 
659 	BUILD_BUG_ON(!(RWSEM_OWNER_UNKNOWN & RWSEM_NONSPINNABLE));
660 
661 	if (need_resched()) {
662 		lockevent_inc(rwsem_opt_fail);
663 		return false;
664 	}
665 
666 	preempt_disable();
667 	rcu_read_lock();
668 	owner = rwsem_owner_flags(sem, &flags);
669 	if ((flags & nonspinnable) || (owner && !owner_on_cpu(owner)))
670 		ret = false;
671 	rcu_read_unlock();
672 	preempt_enable();
673 
674 	lockevent_cond_inc(rwsem_opt_fail, !ret);
675 	return ret;
676 }
677 
678 /*
679  * The rwsem_spin_on_owner() function returns the folowing 4 values
680  * depending on the lock owner state.
681  *   OWNER_NULL  : owner is currently NULL
682  *   OWNER_WRITER: when owner changes and is a writer
683  *   OWNER_READER: when owner changes and the new owner may be a reader.
684  *   OWNER_NONSPINNABLE:
685  *		   when optimistic spinning has to stop because either the
686  *		   owner stops running, is unknown, or its timeslice has
687  *		   been used up.
688  */
689 enum owner_state {
690 	OWNER_NULL		= 1 << 0,
691 	OWNER_WRITER		= 1 << 1,
692 	OWNER_READER		= 1 << 2,
693 	OWNER_NONSPINNABLE	= 1 << 3,
694 };
695 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
696 
697 static inline enum owner_state
698 rwsem_owner_state(struct task_struct *owner, unsigned long flags, unsigned long nonspinnable)
699 {
700 	if (flags & nonspinnable)
701 		return OWNER_NONSPINNABLE;
702 
703 	if (flags & RWSEM_READER_OWNED)
704 		return OWNER_READER;
705 
706 	return owner ? OWNER_WRITER : OWNER_NULL;
707 }
708 
709 static noinline enum owner_state
710 rwsem_spin_on_owner(struct rw_semaphore *sem, unsigned long nonspinnable)
711 {
712 	struct task_struct *new, *owner;
713 	unsigned long flags, new_flags;
714 	enum owner_state state;
715 
716 	owner = rwsem_owner_flags(sem, &flags);
717 	state = rwsem_owner_state(owner, flags, nonspinnable);
718 	if (state != OWNER_WRITER)
719 		return state;
720 
721 	rcu_read_lock();
722 	for (;;) {
723 		if (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF) {
724 			state = OWNER_NONSPINNABLE;
725 			break;
726 		}
727 
728 		new = rwsem_owner_flags(sem, &new_flags);
729 		if ((new != owner) || (new_flags != flags)) {
730 			state = rwsem_owner_state(new, new_flags, nonspinnable);
731 			break;
732 		}
733 
734 		/*
735 		 * Ensure we emit the owner->on_cpu, dereference _after_
736 		 * checking sem->owner still matches owner, if that fails,
737 		 * owner might point to free()d memory, if it still matches,
738 		 * the rcu_read_lock() ensures the memory stays valid.
739 		 */
740 		barrier();
741 
742 		if (need_resched() || !owner_on_cpu(owner)) {
743 			state = OWNER_NONSPINNABLE;
744 			break;
745 		}
746 
747 		cpu_relax();
748 	}
749 	rcu_read_unlock();
750 
751 	return state;
752 }
753 
754 /*
755  * Calculate reader-owned rwsem spinning threshold for writer
756  *
757  * The more readers own the rwsem, the longer it will take for them to
758  * wind down and free the rwsem. So the empirical formula used to
759  * determine the actual spinning time limit here is:
760  *
761  *   Spinning threshold = (10 + nr_readers/2)us
762  *
763  * The limit is capped to a maximum of 25us (30 readers). This is just
764  * a heuristic and is subjected to change in the future.
765  */
766 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
767 {
768 	long count = atomic_long_read(&sem->count);
769 	int readers = count >> RWSEM_READER_SHIFT;
770 	u64 delta;
771 
772 	if (readers > 30)
773 		readers = 30;
774 	delta = (20 + readers) * NSEC_PER_USEC / 2;
775 
776 	return sched_clock() + delta;
777 }
778 
779 static bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
780 {
781 	bool taken = false;
782 	int prev_owner_state = OWNER_NULL;
783 	int loop = 0;
784 	u64 rspin_threshold = 0;
785 	unsigned long nonspinnable = wlock ? RWSEM_WR_NONSPINNABLE
786 					   : RWSEM_RD_NONSPINNABLE;
787 
788 	preempt_disable();
789 
790 	/* sem->wait_lock should not be held when doing optimistic spinning */
791 	if (!osq_lock(&sem->osq))
792 		goto done;
793 
794 	/*
795 	 * Optimistically spin on the owner field and attempt to acquire the
796 	 * lock whenever the owner changes. Spinning will be stopped when:
797 	 *  1) the owning writer isn't running; or
798 	 *  2) readers own the lock and spinning time has exceeded limit.
799 	 */
800 	for (;;) {
801 		enum owner_state owner_state;
802 
803 		owner_state = rwsem_spin_on_owner(sem, nonspinnable);
804 		if (!(owner_state & OWNER_SPINNABLE))
805 			break;
806 
807 		/*
808 		 * Try to acquire the lock
809 		 */
810 		taken = wlock ? rwsem_try_write_lock_unqueued(sem)
811 			      : rwsem_try_read_lock_unqueued(sem);
812 
813 		if (taken)
814 			break;
815 
816 		/*
817 		 * Time-based reader-owned rwsem optimistic spinning
818 		 */
819 		if (wlock && (owner_state == OWNER_READER)) {
820 			/*
821 			 * Re-initialize rspin_threshold every time when
822 			 * the owner state changes from non-reader to reader.
823 			 * This allows a writer to steal the lock in between
824 			 * 2 reader phases and have the threshold reset at
825 			 * the beginning of the 2nd reader phase.
826 			 */
827 			if (prev_owner_state != OWNER_READER) {
828 				if (rwsem_test_oflags(sem, nonspinnable))
829 					break;
830 				rspin_threshold = rwsem_rspin_threshold(sem);
831 				loop = 0;
832 			}
833 
834 			/*
835 			 * Check time threshold once every 16 iterations to
836 			 * avoid calling sched_clock() too frequently so
837 			 * as to reduce the average latency between the times
838 			 * when the lock becomes free and when the spinner
839 			 * is ready to do a trylock.
840 			 */
841 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
842 				rwsem_set_nonspinnable(sem);
843 				lockevent_inc(rwsem_opt_nospin);
844 				break;
845 			}
846 		}
847 
848 		/*
849 		 * An RT task cannot do optimistic spinning if it cannot
850 		 * be sure the lock holder is running or live-lock may
851 		 * happen if the current task and the lock holder happen
852 		 * to run in the same CPU. However, aborting optimistic
853 		 * spinning while a NULL owner is detected may miss some
854 		 * opportunity where spinning can continue without causing
855 		 * problem.
856 		 *
857 		 * There are 2 possible cases where an RT task may be able
858 		 * to continue spinning.
859 		 *
860 		 * 1) The lock owner is in the process of releasing the
861 		 *    lock, sem->owner is cleared but the lock has not
862 		 *    been released yet.
863 		 * 2) The lock was free and owner cleared, but another
864 		 *    task just comes in and acquire the lock before
865 		 *    we try to get it. The new owner may be a spinnable
866 		 *    writer.
867 		 *
868 		 * To take advantage of two scenarios listed agove, the RT
869 		 * task is made to retry one more time to see if it can
870 		 * acquire the lock or continue spinning on the new owning
871 		 * writer. Of course, if the time lag is long enough or the
872 		 * new owner is not a writer or spinnable, the RT task will
873 		 * quit spinning.
874 		 *
875 		 * If the owner is a writer, the need_resched() check is
876 		 * done inside rwsem_spin_on_owner(). If the owner is not
877 		 * a writer, need_resched() check needs to be done here.
878 		 */
879 		if (owner_state != OWNER_WRITER) {
880 			if (need_resched())
881 				break;
882 			if (rt_task(current) &&
883 			   (prev_owner_state != OWNER_WRITER))
884 				break;
885 		}
886 		prev_owner_state = owner_state;
887 
888 		/*
889 		 * The cpu_relax() call is a compiler barrier which forces
890 		 * everything in this loop to be re-loaded. We don't need
891 		 * memory barriers as we'll eventually observe the right
892 		 * values at the cost of a few extra spins.
893 		 */
894 		cpu_relax();
895 	}
896 	osq_unlock(&sem->osq);
897 done:
898 	preempt_enable();
899 	lockevent_cond_inc(rwsem_opt_fail, !taken);
900 	return taken;
901 }
902 
903 /*
904  * Clear the owner's RWSEM_WR_NONSPINNABLE bit if it is set. This should
905  * only be called when the reader count reaches 0.
906  *
907  * This give writers better chance to acquire the rwsem first before
908  * readers when the rwsem was being held by readers for a relatively long
909  * period of time. Race can happen that an optimistic spinner may have
910  * just stolen the rwsem and set the owner, but just clearing the
911  * RWSEM_WR_NONSPINNABLE bit will do no harm anyway.
912  */
913 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem)
914 {
915 	if (rwsem_test_oflags(sem, RWSEM_WR_NONSPINNABLE))
916 		atomic_long_andnot(RWSEM_WR_NONSPINNABLE, &sem->owner);
917 }
918 
919 /*
920  * This function is called when the reader fails to acquire the lock via
921  * optimistic spinning. In this case we will still attempt to do a trylock
922  * when comparing the rwsem state right now with the state when entering
923  * the slowpath indicates that the reader is still in a valid reader phase.
924  * This happens when the following conditions are true:
925  *
926  * 1) The lock is currently reader owned, and
927  * 2) The lock is previously not reader-owned or the last read owner changes.
928  *
929  * In the former case, we have transitioned from a writer phase to a
930  * reader-phase while spinning. In the latter case, it means the reader
931  * phase hasn't ended when we entered the optimistic spinning loop. In
932  * both cases, the reader is eligible to acquire the lock. This is the
933  * secondary path where a read lock is acquired optimistically.
934  *
935  * The reader non-spinnable bit wasn't set at time of entry or it will
936  * not be here at all.
937  */
938 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
939 					      unsigned long last_rowner)
940 {
941 	unsigned long owner = atomic_long_read(&sem->owner);
942 
943 	if (!(owner & RWSEM_READER_OWNED))
944 		return false;
945 
946 	if (((owner ^ last_rowner) & ~RWSEM_OWNER_FLAGS_MASK) &&
947 	    rwsem_try_read_lock_unqueued(sem)) {
948 		lockevent_inc(rwsem_opt_rlock2);
949 		lockevent_add(rwsem_opt_fail, -1);
950 		return true;
951 	}
952 	return false;
953 }
954 #else
955 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem,
956 					   unsigned long nonspinnable)
957 {
958 	return false;
959 }
960 
961 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem, bool wlock)
962 {
963 	return false;
964 }
965 
966 static inline void clear_wr_nonspinnable(struct rw_semaphore *sem) { }
967 
968 static inline bool rwsem_reader_phase_trylock(struct rw_semaphore *sem,
969 					      unsigned long last_rowner)
970 {
971 	return false;
972 }
973 #endif
974 
975 /*
976  * Wait for the read lock to be granted
977  */
978 static struct rw_semaphore __sched *
979 rwsem_down_read_slowpath(struct rw_semaphore *sem, int state)
980 {
981 	long count, adjustment = -RWSEM_READER_BIAS;
982 	struct rwsem_waiter waiter;
983 	DEFINE_WAKE_Q(wake_q);
984 	bool wake = false;
985 
986 	/*
987 	 * Save the current read-owner of rwsem, if available, and the
988 	 * reader nonspinnable bit.
989 	 */
990 	waiter.last_rowner = atomic_long_read(&sem->owner);
991 	if (!(waiter.last_rowner & RWSEM_READER_OWNED))
992 		waiter.last_rowner &= RWSEM_RD_NONSPINNABLE;
993 
994 	if (!rwsem_can_spin_on_owner(sem, RWSEM_RD_NONSPINNABLE))
995 		goto queue;
996 
997 	/*
998 	 * Undo read bias from down_read() and do optimistic spinning.
999 	 */
1000 	atomic_long_add(-RWSEM_READER_BIAS, &sem->count);
1001 	adjustment = 0;
1002 	if (rwsem_optimistic_spin(sem, false)) {
1003 		/*
1004 		 * Wake up other readers in the wait list if the front
1005 		 * waiter is a reader.
1006 		 */
1007 		if ((atomic_long_read(&sem->count) & RWSEM_FLAG_WAITERS)) {
1008 			raw_spin_lock_irq(&sem->wait_lock);
1009 			if (!list_empty(&sem->wait_list))
1010 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1011 						&wake_q);
1012 			raw_spin_unlock_irq(&sem->wait_lock);
1013 			wake_up_q(&wake_q);
1014 		}
1015 		return sem;
1016 	} else if (rwsem_reader_phase_trylock(sem, waiter.last_rowner)) {
1017 		return sem;
1018 	}
1019 
1020 queue:
1021 	waiter.task = current;
1022 	waiter.type = RWSEM_WAITING_FOR_READ;
1023 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1024 
1025 	raw_spin_lock_irq(&sem->wait_lock);
1026 	if (list_empty(&sem->wait_list)) {
1027 		/*
1028 		 * In case the wait queue is empty and the lock isn't owned
1029 		 * by a writer or has the handoff bit set, this reader can
1030 		 * exit the slowpath and return immediately as its
1031 		 * RWSEM_READER_BIAS has already been set in the count.
1032 		 */
1033 		if (adjustment && !(atomic_long_read(&sem->count) &
1034 		     (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) {
1035 			raw_spin_unlock_irq(&sem->wait_lock);
1036 			rwsem_set_reader_owned(sem);
1037 			lockevent_inc(rwsem_rlock_fast);
1038 			return sem;
1039 		}
1040 		adjustment += RWSEM_FLAG_WAITERS;
1041 	}
1042 	list_add_tail(&waiter.list, &sem->wait_list);
1043 
1044 	/* we're now waiting on the lock, but no longer actively locking */
1045 	if (adjustment)
1046 		count = atomic_long_add_return(adjustment, &sem->count);
1047 	else
1048 		count = atomic_long_read(&sem->count);
1049 
1050 	/*
1051 	 * If there are no active locks, wake the front queued process(es).
1052 	 *
1053 	 * If there are no writers and we are first in the queue,
1054 	 * wake our own waiter to join the existing active readers !
1055 	 */
1056 	if (!(count & RWSEM_LOCK_MASK)) {
1057 		clear_wr_nonspinnable(sem);
1058 		wake = true;
1059 	}
1060 	if (wake || (!(count & RWSEM_WRITER_MASK) &&
1061 		    (adjustment & RWSEM_FLAG_WAITERS)))
1062 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1063 
1064 	raw_spin_unlock_irq(&sem->wait_lock);
1065 	wake_up_q(&wake_q);
1066 
1067 	/* wait to be given the lock */
1068 	while (true) {
1069 		set_current_state(state);
1070 		if (!waiter.task)
1071 			break;
1072 		if (signal_pending_state(state, current)) {
1073 			raw_spin_lock_irq(&sem->wait_lock);
1074 			if (waiter.task)
1075 				goto out_nolock;
1076 			raw_spin_unlock_irq(&sem->wait_lock);
1077 			break;
1078 		}
1079 		schedule();
1080 		lockevent_inc(rwsem_sleep_reader);
1081 	}
1082 
1083 	__set_current_state(TASK_RUNNING);
1084 	lockevent_inc(rwsem_rlock);
1085 	return sem;
1086 out_nolock:
1087 	list_del(&waiter.list);
1088 	if (list_empty(&sem->wait_list)) {
1089 		atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF,
1090 				   &sem->count);
1091 	}
1092 	raw_spin_unlock_irq(&sem->wait_lock);
1093 	__set_current_state(TASK_RUNNING);
1094 	lockevent_inc(rwsem_rlock_fail);
1095 	return ERR_PTR(-EINTR);
1096 }
1097 
1098 /*
1099  * This function is called by the a write lock owner. So the owner value
1100  * won't get changed by others.
1101  */
1102 static inline void rwsem_disable_reader_optspin(struct rw_semaphore *sem,
1103 						bool disable)
1104 {
1105 	if (unlikely(disable)) {
1106 		atomic_long_or(RWSEM_RD_NONSPINNABLE, &sem->owner);
1107 		lockevent_inc(rwsem_opt_norspin);
1108 	}
1109 }
1110 
1111 /*
1112  * Wait until we successfully acquire the write lock
1113  */
1114 static struct rw_semaphore *
1115 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1116 {
1117 	long count;
1118 	bool disable_rspin;
1119 	enum writer_wait_state wstate;
1120 	struct rwsem_waiter waiter;
1121 	struct rw_semaphore *ret = sem;
1122 	DEFINE_WAKE_Q(wake_q);
1123 
1124 	/* do optimistic spinning and steal lock if possible */
1125 	if (rwsem_can_spin_on_owner(sem, RWSEM_WR_NONSPINNABLE) &&
1126 	    rwsem_optimistic_spin(sem, true))
1127 		return sem;
1128 
1129 	/*
1130 	 * Disable reader optimistic spinning for this rwsem after
1131 	 * acquiring the write lock when the setting of the nonspinnable
1132 	 * bits are observed.
1133 	 */
1134 	disable_rspin = atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE;
1135 
1136 	/*
1137 	 * Optimistic spinning failed, proceed to the slowpath
1138 	 * and block until we can acquire the sem.
1139 	 */
1140 	waiter.task = current;
1141 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1142 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1143 
1144 	raw_spin_lock_irq(&sem->wait_lock);
1145 
1146 	/* account for this before adding a new element to the list */
1147 	wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST;
1148 
1149 	list_add_tail(&waiter.list, &sem->wait_list);
1150 
1151 	/* we're now waiting on the lock */
1152 	if (wstate == WRITER_NOT_FIRST) {
1153 		count = atomic_long_read(&sem->count);
1154 
1155 		/*
1156 		 * If there were already threads queued before us and:
1157 		 *  1) there are no no active locks, wake the front
1158 		 *     queued process(es) as the handoff bit might be set.
1159 		 *  2) there are no active writers and some readers, the lock
1160 		 *     must be read owned; so we try to wake any read lock
1161 		 *     waiters that were queued ahead of us.
1162 		 */
1163 		if (count & RWSEM_WRITER_MASK)
1164 			goto wait;
1165 
1166 		rwsem_mark_wake(sem, (count & RWSEM_READER_MASK)
1167 					? RWSEM_WAKE_READERS
1168 					: RWSEM_WAKE_ANY, &wake_q);
1169 
1170 		if (!wake_q_empty(&wake_q)) {
1171 			/*
1172 			 * We want to minimize wait_lock hold time especially
1173 			 * when a large number of readers are to be woken up.
1174 			 */
1175 			raw_spin_unlock_irq(&sem->wait_lock);
1176 			wake_up_q(&wake_q);
1177 			wake_q_init(&wake_q);	/* Used again, reinit */
1178 			raw_spin_lock_irq(&sem->wait_lock);
1179 		}
1180 	} else {
1181 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1182 	}
1183 
1184 wait:
1185 	/* wait until we successfully acquire the lock */
1186 	set_current_state(state);
1187 	while (true) {
1188 		if (rwsem_try_write_lock(sem, wstate))
1189 			break;
1190 
1191 		raw_spin_unlock_irq(&sem->wait_lock);
1192 
1193 		/* Block until there are no active lockers. */
1194 		for (;;) {
1195 			if (signal_pending_state(state, current))
1196 				goto out_nolock;
1197 
1198 			schedule();
1199 			lockevent_inc(rwsem_sleep_writer);
1200 			set_current_state(state);
1201 			/*
1202 			 * If HANDOFF bit is set, unconditionally do
1203 			 * a trylock.
1204 			 */
1205 			if (wstate == WRITER_HANDOFF)
1206 				break;
1207 
1208 			if ((wstate == WRITER_NOT_FIRST) &&
1209 			    (rwsem_first_waiter(sem) == &waiter))
1210 				wstate = WRITER_FIRST;
1211 
1212 			count = atomic_long_read(&sem->count);
1213 			if (!(count & RWSEM_LOCK_MASK))
1214 				break;
1215 
1216 			/*
1217 			 * The setting of the handoff bit is deferred
1218 			 * until rwsem_try_write_lock() is called.
1219 			 */
1220 			if ((wstate == WRITER_FIRST) && (rt_task(current) ||
1221 			    time_after(jiffies, waiter.timeout))) {
1222 				wstate = WRITER_HANDOFF;
1223 				lockevent_inc(rwsem_wlock_handoff);
1224 				break;
1225 			}
1226 		}
1227 
1228 		raw_spin_lock_irq(&sem->wait_lock);
1229 	}
1230 	__set_current_state(TASK_RUNNING);
1231 	list_del(&waiter.list);
1232 	rwsem_disable_reader_optspin(sem, disable_rspin);
1233 	raw_spin_unlock_irq(&sem->wait_lock);
1234 	lockevent_inc(rwsem_wlock);
1235 
1236 	return ret;
1237 
1238 out_nolock:
1239 	__set_current_state(TASK_RUNNING);
1240 	raw_spin_lock_irq(&sem->wait_lock);
1241 	list_del(&waiter.list);
1242 
1243 	if (unlikely(wstate == WRITER_HANDOFF))
1244 		atomic_long_add(-RWSEM_FLAG_HANDOFF,  &sem->count);
1245 
1246 	if (list_empty(&sem->wait_list))
1247 		atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count);
1248 	else
1249 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1250 	raw_spin_unlock_irq(&sem->wait_lock);
1251 	wake_up_q(&wake_q);
1252 	lockevent_inc(rwsem_wlock_fail);
1253 
1254 	return ERR_PTR(-EINTR);
1255 }
1256 
1257 /*
1258  * handle waking up a waiter on the semaphore
1259  * - up_read/up_write has decremented the active part of count if we come here
1260  */
1261 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem, long count)
1262 {
1263 	unsigned long flags;
1264 	DEFINE_WAKE_Q(wake_q);
1265 
1266 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1267 
1268 	if (!list_empty(&sem->wait_list))
1269 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1270 
1271 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1272 	wake_up_q(&wake_q);
1273 
1274 	return sem;
1275 }
1276 
1277 /*
1278  * downgrade a write lock into a read lock
1279  * - caller incremented waiting part of count and discovered it still negative
1280  * - just wake up any readers at the front of the queue
1281  */
1282 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1283 {
1284 	unsigned long flags;
1285 	DEFINE_WAKE_Q(wake_q);
1286 
1287 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1288 
1289 	if (!list_empty(&sem->wait_list))
1290 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1291 
1292 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1293 	wake_up_q(&wake_q);
1294 
1295 	return sem;
1296 }
1297 
1298 /*
1299  * lock for reading
1300  */
1301 inline void __down_read(struct rw_semaphore *sem)
1302 {
1303 	if (!rwsem_read_trylock(sem)) {
1304 		rwsem_down_read_slowpath(sem, TASK_UNINTERRUPTIBLE);
1305 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1306 	} else {
1307 		rwsem_set_reader_owned(sem);
1308 	}
1309 }
1310 
1311 static inline int __down_read_killable(struct rw_semaphore *sem)
1312 {
1313 	if (!rwsem_read_trylock(sem)) {
1314 		if (IS_ERR(rwsem_down_read_slowpath(sem, TASK_KILLABLE)))
1315 			return -EINTR;
1316 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1317 	} else {
1318 		rwsem_set_reader_owned(sem);
1319 	}
1320 	return 0;
1321 }
1322 
1323 static inline int __down_read_trylock(struct rw_semaphore *sem)
1324 {
1325 	/*
1326 	 * Optimize for the case when the rwsem is not locked at all.
1327 	 */
1328 	long tmp = RWSEM_UNLOCKED_VALUE;
1329 
1330 	do {
1331 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1332 					tmp + RWSEM_READER_BIAS)) {
1333 			rwsem_set_reader_owned(sem);
1334 			return 1;
1335 		}
1336 	} while (!(tmp & RWSEM_READ_FAILED_MASK));
1337 	return 0;
1338 }
1339 
1340 /*
1341  * lock for writing
1342  */
1343 static inline void __down_write(struct rw_semaphore *sem)
1344 {
1345 	long tmp = RWSEM_UNLOCKED_VALUE;
1346 
1347 	if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1348 						      RWSEM_WRITER_LOCKED)))
1349 		rwsem_down_write_slowpath(sem, TASK_UNINTERRUPTIBLE);
1350 	else
1351 		rwsem_set_owner(sem);
1352 }
1353 
1354 static inline int __down_write_killable(struct rw_semaphore *sem)
1355 {
1356 	long tmp = RWSEM_UNLOCKED_VALUE;
1357 
1358 	if (unlikely(!atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1359 						      RWSEM_WRITER_LOCKED))) {
1360 		if (IS_ERR(rwsem_down_write_slowpath(sem, TASK_KILLABLE)))
1361 			return -EINTR;
1362 	} else {
1363 		rwsem_set_owner(sem);
1364 	}
1365 	return 0;
1366 }
1367 
1368 static inline int __down_write_trylock(struct rw_semaphore *sem)
1369 {
1370 	long tmp = RWSEM_UNLOCKED_VALUE;
1371 
1372 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1373 					    RWSEM_WRITER_LOCKED)) {
1374 		rwsem_set_owner(sem);
1375 		return true;
1376 	}
1377 	return false;
1378 }
1379 
1380 /*
1381  * unlock after reading
1382  */
1383 inline void __up_read(struct rw_semaphore *sem)
1384 {
1385 	long tmp;
1386 
1387 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1388 	rwsem_clear_reader_owned(sem);
1389 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1390 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1391 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1392 		      RWSEM_FLAG_WAITERS)) {
1393 		clear_wr_nonspinnable(sem);
1394 		rwsem_wake(sem, tmp);
1395 	}
1396 }
1397 
1398 /*
1399  * unlock after writing
1400  */
1401 static inline void __up_write(struct rw_semaphore *sem)
1402 {
1403 	long tmp;
1404 
1405 	/*
1406 	 * sem->owner may differ from current if the ownership is transferred
1407 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1408 	 */
1409 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1410 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1411 	rwsem_clear_owner(sem);
1412 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1413 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1414 		rwsem_wake(sem, tmp);
1415 }
1416 
1417 /*
1418  * downgrade write lock to read lock
1419  */
1420 static inline void __downgrade_write(struct rw_semaphore *sem)
1421 {
1422 	long tmp;
1423 
1424 	/*
1425 	 * When downgrading from exclusive to shared ownership,
1426 	 * anything inside the write-locked region cannot leak
1427 	 * into the read side. In contrast, anything in the
1428 	 * read-locked region is ok to be re-ordered into the
1429 	 * write side. As such, rely on RELEASE semantics.
1430 	 */
1431 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1432 	tmp = atomic_long_fetch_add_release(
1433 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1434 	rwsem_set_reader_owned(sem);
1435 	if (tmp & RWSEM_FLAG_WAITERS)
1436 		rwsem_downgrade_wake(sem);
1437 }
1438 
1439 /*
1440  * lock for reading
1441  */
1442 void __sched down_read(struct rw_semaphore *sem)
1443 {
1444 	might_sleep();
1445 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1446 
1447 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1448 }
1449 EXPORT_SYMBOL(down_read);
1450 
1451 int __sched down_read_killable(struct rw_semaphore *sem)
1452 {
1453 	might_sleep();
1454 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1455 
1456 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1457 		rwsem_release(&sem->dep_map, 1, _RET_IP_);
1458 		return -EINTR;
1459 	}
1460 
1461 	return 0;
1462 }
1463 EXPORT_SYMBOL(down_read_killable);
1464 
1465 /*
1466  * trylock for reading -- returns 1 if successful, 0 if contention
1467  */
1468 int down_read_trylock(struct rw_semaphore *sem)
1469 {
1470 	int ret = __down_read_trylock(sem);
1471 
1472 	if (ret == 1)
1473 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1474 	return ret;
1475 }
1476 EXPORT_SYMBOL(down_read_trylock);
1477 
1478 /*
1479  * lock for writing
1480  */
1481 void __sched down_write(struct rw_semaphore *sem)
1482 {
1483 	might_sleep();
1484 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1485 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1486 }
1487 EXPORT_SYMBOL(down_write);
1488 
1489 /*
1490  * lock for writing
1491  */
1492 int __sched down_write_killable(struct rw_semaphore *sem)
1493 {
1494 	might_sleep();
1495 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1496 
1497 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1498 				  __down_write_killable)) {
1499 		rwsem_release(&sem->dep_map, 1, _RET_IP_);
1500 		return -EINTR;
1501 	}
1502 
1503 	return 0;
1504 }
1505 EXPORT_SYMBOL(down_write_killable);
1506 
1507 /*
1508  * trylock for writing -- returns 1 if successful, 0 if contention
1509  */
1510 int down_write_trylock(struct rw_semaphore *sem)
1511 {
1512 	int ret = __down_write_trylock(sem);
1513 
1514 	if (ret == 1)
1515 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1516 
1517 	return ret;
1518 }
1519 EXPORT_SYMBOL(down_write_trylock);
1520 
1521 /*
1522  * release a read lock
1523  */
1524 void up_read(struct rw_semaphore *sem)
1525 {
1526 	rwsem_release(&sem->dep_map, 1, _RET_IP_);
1527 	__up_read(sem);
1528 }
1529 EXPORT_SYMBOL(up_read);
1530 
1531 /*
1532  * release a write lock
1533  */
1534 void up_write(struct rw_semaphore *sem)
1535 {
1536 	rwsem_release(&sem->dep_map, 1, _RET_IP_);
1537 	__up_write(sem);
1538 }
1539 EXPORT_SYMBOL(up_write);
1540 
1541 /*
1542  * downgrade write lock to read lock
1543  */
1544 void downgrade_write(struct rw_semaphore *sem)
1545 {
1546 	lock_downgrade(&sem->dep_map, _RET_IP_);
1547 	__downgrade_write(sem);
1548 }
1549 EXPORT_SYMBOL(downgrade_write);
1550 
1551 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1552 
1553 void down_read_nested(struct rw_semaphore *sem, int subclass)
1554 {
1555 	might_sleep();
1556 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1557 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1558 }
1559 EXPORT_SYMBOL(down_read_nested);
1560 
1561 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1562 {
1563 	might_sleep();
1564 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1565 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1566 }
1567 EXPORT_SYMBOL(_down_write_nest_lock);
1568 
1569 void down_read_non_owner(struct rw_semaphore *sem)
1570 {
1571 	might_sleep();
1572 	__down_read(sem);
1573 	__rwsem_set_reader_owned(sem, NULL);
1574 }
1575 EXPORT_SYMBOL(down_read_non_owner);
1576 
1577 void down_write_nested(struct rw_semaphore *sem, int subclass)
1578 {
1579 	might_sleep();
1580 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1581 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1582 }
1583 EXPORT_SYMBOL(down_write_nested);
1584 
1585 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1586 {
1587 	might_sleep();
1588 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1589 
1590 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1591 				  __down_write_killable)) {
1592 		rwsem_release(&sem->dep_map, 1, _RET_IP_);
1593 		return -EINTR;
1594 	}
1595 
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(down_write_killable_nested);
1599 
1600 void up_read_non_owner(struct rw_semaphore *sem)
1601 {
1602 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1603 	__up_read(sem);
1604 }
1605 EXPORT_SYMBOL(up_read_non_owner);
1606 
1607 #endif
1608