1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells (dhowells@redhat.com). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com> 8 * and Michel Lespinasse <walken@google.com> 9 * 10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com> 11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <longman@redhat.com> and 15 * Peter Zijlstra <peterz@infradead.org>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 #include <trace/events/lock.h> 31 32 #ifndef CONFIG_PREEMPT_RT 33 #include "lock_events.h" 34 35 /* 36 * The least significant 2 bits of the owner value has the following 37 * meanings when set. 38 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 40 * 41 * When the rwsem is reader-owned and a spinning writer has timed out, 42 * the nonspinnable bit will be set to disable optimistic spinning. 43 44 * When a writer acquires a rwsem, it puts its task_struct pointer 45 * into the owner field. It is cleared after an unlock. 46 * 47 * When a reader acquires a rwsem, it will also puts its task_struct 48 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 49 * On unlock, the owner field will largely be left untouched. So 50 * for a free or reader-owned rwsem, the owner value may contain 51 * information about the last reader that acquires the rwsem. 52 * 53 * That information may be helpful in debugging cases where the system 54 * seems to hang on a reader owned rwsem especially if only one reader 55 * is involved. Ideally we would like to track all the readers that own 56 * a rwsem, but the overhead is simply too big. 57 * 58 * A fast path reader optimistic lock stealing is supported when the rwsem 59 * is previously owned by a writer and the following conditions are met: 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers -- set, clear 110 * 2) rwsem_try_write_lock() for writers -- set, clear 111 * 3) rwsem_del_waiter() -- clear 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 */ 137 static inline void rwsem_set_owner(struct rw_semaphore *sem) 138 { 139 atomic_long_set(&sem->owner, (long)current); 140 } 141 142 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 143 { 144 atomic_long_set(&sem->owner, 0); 145 } 146 147 /* 148 * Test the flags in the owner field. 149 */ 150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 151 { 152 return atomic_long_read(&sem->owner) & flags; 153 } 154 155 /* 156 * The task_struct pointer of the last owning reader will be left in 157 * the owner field. 158 * 159 * Note that the owner value just indicates the task has owned the rwsem 160 * previously, it may not be the real owner or one of the real owners 161 * anymore when that field is examined, so take it with a grain of salt. 162 * 163 * The reader non-spinnable bit is preserved. 164 */ 165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 166 struct task_struct *owner) 167 { 168 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 169 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 170 171 atomic_long_set(&sem->owner, val); 172 } 173 174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 175 { 176 __rwsem_set_reader_owned(sem, current); 177 } 178 179 /* 180 * Return true if the rwsem is owned by a reader. 181 */ 182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 183 { 184 #ifdef CONFIG_DEBUG_RWSEMS 185 /* 186 * Check the count to see if it is write-locked. 187 */ 188 long count = atomic_long_read(&sem->count); 189 190 if (count & RWSEM_WRITER_MASK) 191 return false; 192 #endif 193 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 194 } 195 196 #ifdef CONFIG_DEBUG_RWSEMS 197 /* 198 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 199 * is a task pointer in owner of a reader-owned rwsem, it will be the 200 * real owner or one of the real owners. The only exception is when the 201 * unlock is done by up_read_non_owner(). 202 */ 203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 204 { 205 unsigned long val = atomic_long_read(&sem->owner); 206 207 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 208 if (atomic_long_try_cmpxchg(&sem->owner, &val, 209 val & RWSEM_OWNER_FLAGS_MASK)) 210 return; 211 } 212 } 213 #else 214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 215 { 216 } 217 #endif 218 219 /* 220 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 221 * remains set. Otherwise, the operation will be aborted. 222 */ 223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 224 { 225 unsigned long owner = atomic_long_read(&sem->owner); 226 227 do { 228 if (!(owner & RWSEM_READER_OWNED)) 229 break; 230 if (owner & RWSEM_NONSPINNABLE) 231 break; 232 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 233 owner | RWSEM_NONSPINNABLE)); 234 } 235 236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 237 { 238 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 239 240 if (WARN_ON_ONCE(*cntp < 0)) 241 rwsem_set_nonspinnable(sem); 242 243 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 244 rwsem_set_reader_owned(sem); 245 return true; 246 } 247 248 return false; 249 } 250 251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 252 { 253 long tmp = RWSEM_UNLOCKED_VALUE; 254 255 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 256 rwsem_set_owner(sem); 257 return true; 258 } 259 260 return false; 261 } 262 263 /* 264 * Return just the real task structure pointer of the owner 265 */ 266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 267 { 268 return (struct task_struct *) 269 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 270 } 271 272 /* 273 * Return the real task structure pointer of the owner and the embedded 274 * flags in the owner. pflags must be non-NULL. 275 */ 276 static inline struct task_struct * 277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 278 { 279 unsigned long owner = atomic_long_read(&sem->owner); 280 281 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 282 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 283 } 284 285 /* 286 * Guide to the rw_semaphore's count field. 287 * 288 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 289 * by a writer. 290 * 291 * The lock is owned by readers when 292 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 293 * (2) some of the reader bits are set in count, and 294 * (3) the owner field has RWSEM_READ_OWNED bit set. 295 * 296 * Having some reader bits set is not enough to guarantee a readers owned 297 * lock as the readers may be in the process of backing out from the count 298 * and a writer has just released the lock. So another writer may steal 299 * the lock immediately after that. 300 */ 301 302 /* 303 * Initialize an rwsem: 304 */ 305 void __init_rwsem(struct rw_semaphore *sem, const char *name, 306 struct lock_class_key *key) 307 { 308 #ifdef CONFIG_DEBUG_LOCK_ALLOC 309 /* 310 * Make sure we are not reinitializing a held semaphore: 311 */ 312 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 313 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 314 #endif 315 #ifdef CONFIG_DEBUG_RWSEMS 316 sem->magic = sem; 317 #endif 318 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 319 raw_spin_lock_init(&sem->wait_lock); 320 INIT_LIST_HEAD(&sem->wait_list); 321 atomic_long_set(&sem->owner, 0L); 322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 323 osq_lock_init(&sem->osq); 324 #endif 325 } 326 EXPORT_SYMBOL(__init_rwsem); 327 328 enum rwsem_waiter_type { 329 RWSEM_WAITING_FOR_WRITE, 330 RWSEM_WAITING_FOR_READ 331 }; 332 333 struct rwsem_waiter { 334 struct list_head list; 335 struct task_struct *task; 336 enum rwsem_waiter_type type; 337 unsigned long timeout; 338 bool handoff_set; 339 }; 340 #define rwsem_first_waiter(sem) \ 341 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 342 343 enum rwsem_wake_type { 344 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 345 RWSEM_WAKE_READERS, /* Wake readers only */ 346 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 347 }; 348 349 /* 350 * The typical HZ value is either 250 or 1000. So set the minimum waiting 351 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 352 * queue before initiating the handoff protocol. 353 */ 354 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 355 356 /* 357 * Magic number to batch-wakeup waiting readers, even when writers are 358 * also present in the queue. This both limits the amount of work the 359 * waking thread must do and also prevents any potential counter overflow, 360 * however unlikely. 361 */ 362 #define MAX_READERS_WAKEUP 0x100 363 364 static inline void 365 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 366 { 367 lockdep_assert_held(&sem->wait_lock); 368 list_add_tail(&waiter->list, &sem->wait_list); 369 /* caller will set RWSEM_FLAG_WAITERS */ 370 } 371 372 /* 373 * Remove a waiter from the wait_list and clear flags. 374 * 375 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 376 * this function. Modify with care. 377 * 378 * Return: true if wait_list isn't empty and false otherwise 379 */ 380 static inline bool 381 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 382 { 383 lockdep_assert_held(&sem->wait_lock); 384 list_del(&waiter->list); 385 if (likely(!list_empty(&sem->wait_list))) 386 return true; 387 388 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 389 return false; 390 } 391 392 /* 393 * handle the lock release when processes blocked on it that can now run 394 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 395 * have been set. 396 * - there must be someone on the queue 397 * - the wait_lock must be held by the caller 398 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 399 * to actually wakeup the blocked task(s) and drop the reference count, 400 * preferably when the wait_lock is released 401 * - woken process blocks are discarded from the list after having task zeroed 402 * - writers are only marked woken if downgrading is false 403 * 404 * Implies rwsem_del_waiter() for all woken readers. 405 */ 406 static void rwsem_mark_wake(struct rw_semaphore *sem, 407 enum rwsem_wake_type wake_type, 408 struct wake_q_head *wake_q) 409 { 410 struct rwsem_waiter *waiter, *tmp; 411 long oldcount, woken = 0, adjustment = 0; 412 struct list_head wlist; 413 414 lockdep_assert_held(&sem->wait_lock); 415 416 /* 417 * Take a peek at the queue head waiter such that we can determine 418 * the wakeup(s) to perform. 419 */ 420 waiter = rwsem_first_waiter(sem); 421 422 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 423 if (wake_type == RWSEM_WAKE_ANY) { 424 /* 425 * Mark writer at the front of the queue for wakeup. 426 * Until the task is actually later awoken later by 427 * the caller, other writers are able to steal it. 428 * Readers, on the other hand, will block as they 429 * will notice the queued writer. 430 */ 431 wake_q_add(wake_q, waiter->task); 432 lockevent_inc(rwsem_wake_writer); 433 } 434 435 return; 436 } 437 438 /* 439 * No reader wakeup if there are too many of them already. 440 */ 441 if (unlikely(atomic_long_read(&sem->count) < 0)) 442 return; 443 444 /* 445 * Writers might steal the lock before we grant it to the next reader. 446 * We prefer to do the first reader grant before counting readers 447 * so we can bail out early if a writer stole the lock. 448 */ 449 if (wake_type != RWSEM_WAKE_READ_OWNED) { 450 struct task_struct *owner; 451 452 adjustment = RWSEM_READER_BIAS; 453 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 454 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 455 /* 456 * When we've been waiting "too" long (for writers 457 * to give up the lock), request a HANDOFF to 458 * force the issue. 459 */ 460 if (time_after(jiffies, waiter->timeout)) { 461 if (!(oldcount & RWSEM_FLAG_HANDOFF)) { 462 adjustment -= RWSEM_FLAG_HANDOFF; 463 lockevent_inc(rwsem_rlock_handoff); 464 } 465 waiter->handoff_set = true; 466 } 467 468 atomic_long_add(-adjustment, &sem->count); 469 return; 470 } 471 /* 472 * Set it to reader-owned to give spinners an early 473 * indication that readers now have the lock. 474 * The reader nonspinnable bit seen at slowpath entry of 475 * the reader is copied over. 476 */ 477 owner = waiter->task; 478 __rwsem_set_reader_owned(sem, owner); 479 } 480 481 /* 482 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 483 * queue. We know that the woken will be at least 1 as we accounted 484 * for above. Note we increment the 'active part' of the count by the 485 * number of readers before waking any processes up. 486 * 487 * This is an adaptation of the phase-fair R/W locks where at the 488 * reader phase (first waiter is a reader), all readers are eligible 489 * to acquire the lock at the same time irrespective of their order 490 * in the queue. The writers acquire the lock according to their 491 * order in the queue. 492 * 493 * We have to do wakeup in 2 passes to prevent the possibility that 494 * the reader count may be decremented before it is incremented. It 495 * is because the to-be-woken waiter may not have slept yet. So it 496 * may see waiter->task got cleared, finish its critical section and 497 * do an unlock before the reader count increment. 498 * 499 * 1) Collect the read-waiters in a separate list, count them and 500 * fully increment the reader count in rwsem. 501 * 2) For each waiters in the new list, clear waiter->task and 502 * put them into wake_q to be woken up later. 503 */ 504 INIT_LIST_HEAD(&wlist); 505 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 506 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 507 continue; 508 509 woken++; 510 list_move_tail(&waiter->list, &wlist); 511 512 /* 513 * Limit # of readers that can be woken up per wakeup call. 514 */ 515 if (unlikely(woken >= MAX_READERS_WAKEUP)) 516 break; 517 } 518 519 adjustment = woken * RWSEM_READER_BIAS - adjustment; 520 lockevent_cond_inc(rwsem_wake_reader, woken); 521 522 oldcount = atomic_long_read(&sem->count); 523 if (list_empty(&sem->wait_list)) { 524 /* 525 * Combined with list_move_tail() above, this implies 526 * rwsem_del_waiter(). 527 */ 528 adjustment -= RWSEM_FLAG_WAITERS; 529 if (oldcount & RWSEM_FLAG_HANDOFF) 530 adjustment -= RWSEM_FLAG_HANDOFF; 531 } else if (woken) { 532 /* 533 * When we've woken a reader, we no longer need to force 534 * writers to give up the lock and we can clear HANDOFF. 535 */ 536 if (oldcount & RWSEM_FLAG_HANDOFF) 537 adjustment -= RWSEM_FLAG_HANDOFF; 538 } 539 540 if (adjustment) 541 atomic_long_add(adjustment, &sem->count); 542 543 /* 2nd pass */ 544 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 545 struct task_struct *tsk; 546 547 tsk = waiter->task; 548 get_task_struct(tsk); 549 550 /* 551 * Ensure calling get_task_struct() before setting the reader 552 * waiter to nil such that rwsem_down_read_slowpath() cannot 553 * race with do_exit() by always holding a reference count 554 * to the task to wakeup. 555 */ 556 smp_store_release(&waiter->task, NULL); 557 /* 558 * Ensure issuing the wakeup (either by us or someone else) 559 * after setting the reader waiter to nil. 560 */ 561 wake_q_add_safe(wake_q, tsk); 562 } 563 } 564 565 /* 566 * Remove a waiter and try to wake up other waiters in the wait queue 567 * This function is called from the out_nolock path of both the reader and 568 * writer slowpaths with wait_lock held. It releases the wait_lock and 569 * optionally wake up waiters before it returns. 570 */ 571 static inline void 572 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter, 573 struct wake_q_head *wake_q) 574 __releases(&sem->wait_lock) 575 { 576 bool first = rwsem_first_waiter(sem) == waiter; 577 578 wake_q_init(wake_q); 579 580 /* 581 * If the wait_list isn't empty and the waiter to be deleted is 582 * the first waiter, we wake up the remaining waiters as they may 583 * be eligible to acquire or spin on the lock. 584 */ 585 if (rwsem_del_waiter(sem, waiter) && first) 586 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q); 587 raw_spin_unlock_irq(&sem->wait_lock); 588 if (!wake_q_empty(wake_q)) 589 wake_up_q(wake_q); 590 } 591 592 /* 593 * This function must be called with the sem->wait_lock held to prevent 594 * race conditions between checking the rwsem wait list and setting the 595 * sem->count accordingly. 596 * 597 * Implies rwsem_del_waiter() on success. 598 */ 599 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 600 struct rwsem_waiter *waiter) 601 { 602 struct rwsem_waiter *first = rwsem_first_waiter(sem); 603 long count, new; 604 605 lockdep_assert_held(&sem->wait_lock); 606 607 count = atomic_long_read(&sem->count); 608 do { 609 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 610 611 if (has_handoff) { 612 /* 613 * Honor handoff bit and yield only when the first 614 * waiter is the one that set it. Otherwisee, we 615 * still try to acquire the rwsem. 616 */ 617 if (first->handoff_set && (waiter != first)) 618 return false; 619 620 /* 621 * First waiter can inherit a previously set handoff 622 * bit and spin on rwsem if lock acquisition fails. 623 */ 624 if (waiter == first) 625 waiter->handoff_set = true; 626 } 627 628 new = count; 629 630 if (count & RWSEM_LOCK_MASK) { 631 if (has_handoff || (!rt_task(waiter->task) && 632 !time_after(jiffies, waiter->timeout))) 633 return false; 634 635 new |= RWSEM_FLAG_HANDOFF; 636 } else { 637 new |= RWSEM_WRITER_LOCKED; 638 new &= ~RWSEM_FLAG_HANDOFF; 639 640 if (list_is_singular(&sem->wait_list)) 641 new &= ~RWSEM_FLAG_WAITERS; 642 } 643 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 644 645 /* 646 * We have either acquired the lock with handoff bit cleared or 647 * set the handoff bit. 648 */ 649 if (new & RWSEM_FLAG_HANDOFF) { 650 waiter->handoff_set = true; 651 lockevent_inc(rwsem_wlock_handoff); 652 return false; 653 } 654 655 /* 656 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 657 * success. 658 */ 659 list_del(&waiter->list); 660 rwsem_set_owner(sem); 661 return true; 662 } 663 664 /* 665 * The rwsem_spin_on_owner() function returns the following 4 values 666 * depending on the lock owner state. 667 * OWNER_NULL : owner is currently NULL 668 * OWNER_WRITER: when owner changes and is a writer 669 * OWNER_READER: when owner changes and the new owner may be a reader. 670 * OWNER_NONSPINNABLE: 671 * when optimistic spinning has to stop because either the 672 * owner stops running, is unknown, or its timeslice has 673 * been used up. 674 */ 675 enum owner_state { 676 OWNER_NULL = 1 << 0, 677 OWNER_WRITER = 1 << 1, 678 OWNER_READER = 1 << 2, 679 OWNER_NONSPINNABLE = 1 << 3, 680 }; 681 682 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 683 /* 684 * Try to acquire write lock before the writer has been put on wait queue. 685 */ 686 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 687 { 688 long count = atomic_long_read(&sem->count); 689 690 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 691 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 692 count | RWSEM_WRITER_LOCKED)) { 693 rwsem_set_owner(sem); 694 lockevent_inc(rwsem_opt_lock); 695 return true; 696 } 697 } 698 return false; 699 } 700 701 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 702 { 703 struct task_struct *owner; 704 unsigned long flags; 705 bool ret = true; 706 707 if (need_resched()) { 708 lockevent_inc(rwsem_opt_fail); 709 return false; 710 } 711 712 preempt_disable(); 713 /* 714 * Disable preemption is equal to the RCU read-side crital section, 715 * thus the task_strcut structure won't go away. 716 */ 717 owner = rwsem_owner_flags(sem, &flags); 718 /* 719 * Don't check the read-owner as the entry may be stale. 720 */ 721 if ((flags & RWSEM_NONSPINNABLE) || 722 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 723 ret = false; 724 preempt_enable(); 725 726 lockevent_cond_inc(rwsem_opt_fail, !ret); 727 return ret; 728 } 729 730 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 731 732 static inline enum owner_state 733 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 734 { 735 if (flags & RWSEM_NONSPINNABLE) 736 return OWNER_NONSPINNABLE; 737 738 if (flags & RWSEM_READER_OWNED) 739 return OWNER_READER; 740 741 return owner ? OWNER_WRITER : OWNER_NULL; 742 } 743 744 static noinline enum owner_state 745 rwsem_spin_on_owner(struct rw_semaphore *sem) 746 { 747 struct task_struct *new, *owner; 748 unsigned long flags, new_flags; 749 enum owner_state state; 750 751 lockdep_assert_preemption_disabled(); 752 753 owner = rwsem_owner_flags(sem, &flags); 754 state = rwsem_owner_state(owner, flags); 755 if (state != OWNER_WRITER) 756 return state; 757 758 for (;;) { 759 /* 760 * When a waiting writer set the handoff flag, it may spin 761 * on the owner as well. Once that writer acquires the lock, 762 * we can spin on it. So we don't need to quit even when the 763 * handoff bit is set. 764 */ 765 new = rwsem_owner_flags(sem, &new_flags); 766 if ((new != owner) || (new_flags != flags)) { 767 state = rwsem_owner_state(new, new_flags); 768 break; 769 } 770 771 /* 772 * Ensure we emit the owner->on_cpu, dereference _after_ 773 * checking sem->owner still matches owner, if that fails, 774 * owner might point to free()d memory, if it still matches, 775 * our spinning context already disabled preemption which is 776 * equal to RCU read-side crital section ensures the memory 777 * stays valid. 778 */ 779 barrier(); 780 781 if (need_resched() || !owner_on_cpu(owner)) { 782 state = OWNER_NONSPINNABLE; 783 break; 784 } 785 786 cpu_relax(); 787 } 788 789 return state; 790 } 791 792 /* 793 * Calculate reader-owned rwsem spinning threshold for writer 794 * 795 * The more readers own the rwsem, the longer it will take for them to 796 * wind down and free the rwsem. So the empirical formula used to 797 * determine the actual spinning time limit here is: 798 * 799 * Spinning threshold = (10 + nr_readers/2)us 800 * 801 * The limit is capped to a maximum of 25us (30 readers). This is just 802 * a heuristic and is subjected to change in the future. 803 */ 804 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 805 { 806 long count = atomic_long_read(&sem->count); 807 int readers = count >> RWSEM_READER_SHIFT; 808 u64 delta; 809 810 if (readers > 30) 811 readers = 30; 812 delta = (20 + readers) * NSEC_PER_USEC / 2; 813 814 return sched_clock() + delta; 815 } 816 817 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 818 { 819 bool taken = false; 820 int prev_owner_state = OWNER_NULL; 821 int loop = 0; 822 u64 rspin_threshold = 0; 823 824 preempt_disable(); 825 826 /* sem->wait_lock should not be held when doing optimistic spinning */ 827 if (!osq_lock(&sem->osq)) 828 goto done; 829 830 /* 831 * Optimistically spin on the owner field and attempt to acquire the 832 * lock whenever the owner changes. Spinning will be stopped when: 833 * 1) the owning writer isn't running; or 834 * 2) readers own the lock and spinning time has exceeded limit. 835 */ 836 for (;;) { 837 enum owner_state owner_state; 838 839 owner_state = rwsem_spin_on_owner(sem); 840 if (!(owner_state & OWNER_SPINNABLE)) 841 break; 842 843 /* 844 * Try to acquire the lock 845 */ 846 taken = rwsem_try_write_lock_unqueued(sem); 847 848 if (taken) 849 break; 850 851 /* 852 * Time-based reader-owned rwsem optimistic spinning 853 */ 854 if (owner_state == OWNER_READER) { 855 /* 856 * Re-initialize rspin_threshold every time when 857 * the owner state changes from non-reader to reader. 858 * This allows a writer to steal the lock in between 859 * 2 reader phases and have the threshold reset at 860 * the beginning of the 2nd reader phase. 861 */ 862 if (prev_owner_state != OWNER_READER) { 863 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 864 break; 865 rspin_threshold = rwsem_rspin_threshold(sem); 866 loop = 0; 867 } 868 869 /* 870 * Check time threshold once every 16 iterations to 871 * avoid calling sched_clock() too frequently so 872 * as to reduce the average latency between the times 873 * when the lock becomes free and when the spinner 874 * is ready to do a trylock. 875 */ 876 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 877 rwsem_set_nonspinnable(sem); 878 lockevent_inc(rwsem_opt_nospin); 879 break; 880 } 881 } 882 883 /* 884 * An RT task cannot do optimistic spinning if it cannot 885 * be sure the lock holder is running or live-lock may 886 * happen if the current task and the lock holder happen 887 * to run in the same CPU. However, aborting optimistic 888 * spinning while a NULL owner is detected may miss some 889 * opportunity where spinning can continue without causing 890 * problem. 891 * 892 * There are 2 possible cases where an RT task may be able 893 * to continue spinning. 894 * 895 * 1) The lock owner is in the process of releasing the 896 * lock, sem->owner is cleared but the lock has not 897 * been released yet. 898 * 2) The lock was free and owner cleared, but another 899 * task just comes in and acquire the lock before 900 * we try to get it. The new owner may be a spinnable 901 * writer. 902 * 903 * To take advantage of two scenarios listed above, the RT 904 * task is made to retry one more time to see if it can 905 * acquire the lock or continue spinning on the new owning 906 * writer. Of course, if the time lag is long enough or the 907 * new owner is not a writer or spinnable, the RT task will 908 * quit spinning. 909 * 910 * If the owner is a writer, the need_resched() check is 911 * done inside rwsem_spin_on_owner(). If the owner is not 912 * a writer, need_resched() check needs to be done here. 913 */ 914 if (owner_state != OWNER_WRITER) { 915 if (need_resched()) 916 break; 917 if (rt_task(current) && 918 (prev_owner_state != OWNER_WRITER)) 919 break; 920 } 921 prev_owner_state = owner_state; 922 923 /* 924 * The cpu_relax() call is a compiler barrier which forces 925 * everything in this loop to be re-loaded. We don't need 926 * memory barriers as we'll eventually observe the right 927 * values at the cost of a few extra spins. 928 */ 929 cpu_relax(); 930 } 931 osq_unlock(&sem->osq); 932 done: 933 preempt_enable(); 934 lockevent_cond_inc(rwsem_opt_fail, !taken); 935 return taken; 936 } 937 938 /* 939 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 940 * only be called when the reader count reaches 0. 941 */ 942 static inline void clear_nonspinnable(struct rw_semaphore *sem) 943 { 944 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))) 945 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 946 } 947 948 #else 949 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 950 { 951 return false; 952 } 953 954 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 955 { 956 return false; 957 } 958 959 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 960 961 static inline enum owner_state 962 rwsem_spin_on_owner(struct rw_semaphore *sem) 963 { 964 return OWNER_NONSPINNABLE; 965 } 966 #endif 967 968 /* 969 * Prepare to wake up waiter(s) in the wait queue by putting them into the 970 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely 971 * reader-owned, wake up read lock waiters in queue front or wake up any 972 * front waiter otherwise. 973 974 * This is being called from both reader and writer slow paths. 975 */ 976 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count, 977 struct wake_q_head *wake_q) 978 { 979 enum rwsem_wake_type wake_type; 980 981 if (count & RWSEM_WRITER_MASK) 982 return; 983 984 if (count & RWSEM_READER_MASK) { 985 wake_type = RWSEM_WAKE_READERS; 986 } else { 987 wake_type = RWSEM_WAKE_ANY; 988 clear_nonspinnable(sem); 989 } 990 rwsem_mark_wake(sem, wake_type, wake_q); 991 } 992 993 /* 994 * Wait for the read lock to be granted 995 */ 996 static struct rw_semaphore __sched * 997 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 998 { 999 long adjustment = -RWSEM_READER_BIAS; 1000 long rcnt = (count >> RWSEM_READER_SHIFT); 1001 struct rwsem_waiter waiter; 1002 DEFINE_WAKE_Q(wake_q); 1003 1004 /* 1005 * To prevent a constant stream of readers from starving a sleeping 1006 * waiter, don't attempt optimistic lock stealing if the lock is 1007 * currently owned by readers. 1008 */ 1009 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 1010 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 1011 goto queue; 1012 1013 /* 1014 * Reader optimistic lock stealing. 1015 */ 1016 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 1017 rwsem_set_reader_owned(sem); 1018 lockevent_inc(rwsem_rlock_steal); 1019 1020 /* 1021 * Wake up other readers in the wait queue if it is 1022 * the first reader. 1023 */ 1024 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 1025 raw_spin_lock_irq(&sem->wait_lock); 1026 if (!list_empty(&sem->wait_list)) 1027 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1028 &wake_q); 1029 raw_spin_unlock_irq(&sem->wait_lock); 1030 wake_up_q(&wake_q); 1031 } 1032 return sem; 1033 } 1034 1035 queue: 1036 waiter.task = current; 1037 waiter.type = RWSEM_WAITING_FOR_READ; 1038 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1039 waiter.handoff_set = false; 1040 1041 raw_spin_lock_irq(&sem->wait_lock); 1042 if (list_empty(&sem->wait_list)) { 1043 /* 1044 * In case the wait queue is empty and the lock isn't owned 1045 * by a writer, this reader can exit the slowpath and return 1046 * immediately as its RWSEM_READER_BIAS has already been set 1047 * in the count. 1048 */ 1049 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { 1050 /* Provide lock ACQUIRE */ 1051 smp_acquire__after_ctrl_dep(); 1052 raw_spin_unlock_irq(&sem->wait_lock); 1053 rwsem_set_reader_owned(sem); 1054 lockevent_inc(rwsem_rlock_fast); 1055 return sem; 1056 } 1057 adjustment += RWSEM_FLAG_WAITERS; 1058 } 1059 rwsem_add_waiter(sem, &waiter); 1060 1061 /* we're now waiting on the lock, but no longer actively locking */ 1062 count = atomic_long_add_return(adjustment, &sem->count); 1063 1064 rwsem_cond_wake_waiter(sem, count, &wake_q); 1065 raw_spin_unlock_irq(&sem->wait_lock); 1066 1067 if (!wake_q_empty(&wake_q)) 1068 wake_up_q(&wake_q); 1069 1070 trace_contention_begin(sem, LCB_F_READ); 1071 1072 /* wait to be given the lock */ 1073 for (;;) { 1074 set_current_state(state); 1075 if (!smp_load_acquire(&waiter.task)) { 1076 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1077 break; 1078 } 1079 if (signal_pending_state(state, current)) { 1080 raw_spin_lock_irq(&sem->wait_lock); 1081 if (waiter.task) 1082 goto out_nolock; 1083 raw_spin_unlock_irq(&sem->wait_lock); 1084 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1085 break; 1086 } 1087 schedule(); 1088 lockevent_inc(rwsem_sleep_reader); 1089 } 1090 1091 __set_current_state(TASK_RUNNING); 1092 lockevent_inc(rwsem_rlock); 1093 trace_contention_end(sem, 0); 1094 return sem; 1095 1096 out_nolock: 1097 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1098 __set_current_state(TASK_RUNNING); 1099 lockevent_inc(rwsem_rlock_fail); 1100 trace_contention_end(sem, -EINTR); 1101 return ERR_PTR(-EINTR); 1102 } 1103 1104 /* 1105 * Wait until we successfully acquire the write lock 1106 */ 1107 static struct rw_semaphore __sched * 1108 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1109 { 1110 struct rwsem_waiter waiter; 1111 DEFINE_WAKE_Q(wake_q); 1112 1113 /* do optimistic spinning and steal lock if possible */ 1114 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1115 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1116 return sem; 1117 } 1118 1119 /* 1120 * Optimistic spinning failed, proceed to the slowpath 1121 * and block until we can acquire the sem. 1122 */ 1123 waiter.task = current; 1124 waiter.type = RWSEM_WAITING_FOR_WRITE; 1125 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1126 waiter.handoff_set = false; 1127 1128 raw_spin_lock_irq(&sem->wait_lock); 1129 rwsem_add_waiter(sem, &waiter); 1130 1131 /* we're now waiting on the lock */ 1132 if (rwsem_first_waiter(sem) != &waiter) { 1133 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count), 1134 &wake_q); 1135 if (!wake_q_empty(&wake_q)) { 1136 /* 1137 * We want to minimize wait_lock hold time especially 1138 * when a large number of readers are to be woken up. 1139 */ 1140 raw_spin_unlock_irq(&sem->wait_lock); 1141 wake_up_q(&wake_q); 1142 raw_spin_lock_irq(&sem->wait_lock); 1143 } 1144 } else { 1145 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1146 } 1147 1148 /* wait until we successfully acquire the lock */ 1149 set_current_state(state); 1150 trace_contention_begin(sem, LCB_F_WRITE); 1151 1152 for (;;) { 1153 if (rwsem_try_write_lock(sem, &waiter)) { 1154 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1155 break; 1156 } 1157 1158 raw_spin_unlock_irq(&sem->wait_lock); 1159 1160 if (signal_pending_state(state, current)) 1161 goto out_nolock; 1162 1163 /* 1164 * After setting the handoff bit and failing to acquire 1165 * the lock, attempt to spin on owner to accelerate lock 1166 * transfer. If the previous owner is a on-cpu writer and it 1167 * has just released the lock, OWNER_NULL will be returned. 1168 * In this case, we attempt to acquire the lock again 1169 * without sleeping. 1170 */ 1171 if (waiter.handoff_set) { 1172 enum owner_state owner_state; 1173 1174 preempt_disable(); 1175 owner_state = rwsem_spin_on_owner(sem); 1176 preempt_enable(); 1177 1178 if (owner_state == OWNER_NULL) 1179 goto trylock_again; 1180 } 1181 1182 schedule(); 1183 lockevent_inc(rwsem_sleep_writer); 1184 set_current_state(state); 1185 trylock_again: 1186 raw_spin_lock_irq(&sem->wait_lock); 1187 } 1188 __set_current_state(TASK_RUNNING); 1189 raw_spin_unlock_irq(&sem->wait_lock); 1190 lockevent_inc(rwsem_wlock); 1191 trace_contention_end(sem, 0); 1192 return sem; 1193 1194 out_nolock: 1195 __set_current_state(TASK_RUNNING); 1196 raw_spin_lock_irq(&sem->wait_lock); 1197 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1198 lockevent_inc(rwsem_wlock_fail); 1199 trace_contention_end(sem, -EINTR); 1200 return ERR_PTR(-EINTR); 1201 } 1202 1203 /* 1204 * handle waking up a waiter on the semaphore 1205 * - up_read/up_write has decremented the active part of count if we come here 1206 */ 1207 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1208 { 1209 unsigned long flags; 1210 DEFINE_WAKE_Q(wake_q); 1211 1212 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1213 1214 if (!list_empty(&sem->wait_list)) 1215 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1216 1217 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1218 wake_up_q(&wake_q); 1219 1220 return sem; 1221 } 1222 1223 /* 1224 * downgrade a write lock into a read lock 1225 * - caller incremented waiting part of count and discovered it still negative 1226 * - just wake up any readers at the front of the queue 1227 */ 1228 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1229 { 1230 unsigned long flags; 1231 DEFINE_WAKE_Q(wake_q); 1232 1233 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1234 1235 if (!list_empty(&sem->wait_list)) 1236 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1237 1238 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1239 wake_up_q(&wake_q); 1240 1241 return sem; 1242 } 1243 1244 /* 1245 * lock for reading 1246 */ 1247 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1248 { 1249 long count; 1250 1251 if (!rwsem_read_trylock(sem, &count)) { 1252 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1253 return -EINTR; 1254 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1255 } 1256 return 0; 1257 } 1258 1259 static inline void __down_read(struct rw_semaphore *sem) 1260 { 1261 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1262 } 1263 1264 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1265 { 1266 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1267 } 1268 1269 static inline int __down_read_killable(struct rw_semaphore *sem) 1270 { 1271 return __down_read_common(sem, TASK_KILLABLE); 1272 } 1273 1274 static inline int __down_read_trylock(struct rw_semaphore *sem) 1275 { 1276 long tmp; 1277 1278 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1279 1280 tmp = atomic_long_read(&sem->count); 1281 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1282 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1283 tmp + RWSEM_READER_BIAS)) { 1284 rwsem_set_reader_owned(sem); 1285 return 1; 1286 } 1287 } 1288 return 0; 1289 } 1290 1291 /* 1292 * lock for writing 1293 */ 1294 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1295 { 1296 if (unlikely(!rwsem_write_trylock(sem))) { 1297 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1298 return -EINTR; 1299 } 1300 1301 return 0; 1302 } 1303 1304 static inline void __down_write(struct rw_semaphore *sem) 1305 { 1306 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1307 } 1308 1309 static inline int __down_write_killable(struct rw_semaphore *sem) 1310 { 1311 return __down_write_common(sem, TASK_KILLABLE); 1312 } 1313 1314 static inline int __down_write_trylock(struct rw_semaphore *sem) 1315 { 1316 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1317 return rwsem_write_trylock(sem); 1318 } 1319 1320 /* 1321 * unlock after reading 1322 */ 1323 static inline void __up_read(struct rw_semaphore *sem) 1324 { 1325 long tmp; 1326 1327 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1328 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1329 1330 rwsem_clear_reader_owned(sem); 1331 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1332 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1333 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1334 RWSEM_FLAG_WAITERS)) { 1335 clear_nonspinnable(sem); 1336 rwsem_wake(sem); 1337 } 1338 } 1339 1340 /* 1341 * unlock after writing 1342 */ 1343 static inline void __up_write(struct rw_semaphore *sem) 1344 { 1345 long tmp; 1346 1347 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1348 /* 1349 * sem->owner may differ from current if the ownership is transferred 1350 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1351 */ 1352 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1353 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1354 1355 rwsem_clear_owner(sem); 1356 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1357 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1358 rwsem_wake(sem); 1359 } 1360 1361 /* 1362 * downgrade write lock to read lock 1363 */ 1364 static inline void __downgrade_write(struct rw_semaphore *sem) 1365 { 1366 long tmp; 1367 1368 /* 1369 * When downgrading from exclusive to shared ownership, 1370 * anything inside the write-locked region cannot leak 1371 * into the read side. In contrast, anything in the 1372 * read-locked region is ok to be re-ordered into the 1373 * write side. As such, rely on RELEASE semantics. 1374 */ 1375 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1376 tmp = atomic_long_fetch_add_release( 1377 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1378 rwsem_set_reader_owned(sem); 1379 if (tmp & RWSEM_FLAG_WAITERS) 1380 rwsem_downgrade_wake(sem); 1381 } 1382 1383 #else /* !CONFIG_PREEMPT_RT */ 1384 1385 #define RT_MUTEX_BUILD_MUTEX 1386 #include "rtmutex.c" 1387 1388 #define rwbase_set_and_save_current_state(state) \ 1389 set_current_state(state) 1390 1391 #define rwbase_restore_current_state() \ 1392 __set_current_state(TASK_RUNNING) 1393 1394 #define rwbase_rtmutex_lock_state(rtm, state) \ 1395 __rt_mutex_lock(rtm, state) 1396 1397 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1398 __rt_mutex_slowlock_locked(rtm, NULL, state) 1399 1400 #define rwbase_rtmutex_unlock(rtm) \ 1401 __rt_mutex_unlock(rtm) 1402 1403 #define rwbase_rtmutex_trylock(rtm) \ 1404 __rt_mutex_trylock(rtm) 1405 1406 #define rwbase_signal_pending_state(state, current) \ 1407 signal_pending_state(state, current) 1408 1409 #define rwbase_schedule() \ 1410 schedule() 1411 1412 #include "rwbase_rt.c" 1413 1414 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1415 struct lock_class_key *key) 1416 { 1417 init_rwbase_rt(&(sem)->rwbase); 1418 1419 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1420 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1421 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1422 #endif 1423 } 1424 EXPORT_SYMBOL(__init_rwsem); 1425 1426 static inline void __down_read(struct rw_semaphore *sem) 1427 { 1428 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1429 } 1430 1431 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1432 { 1433 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1434 } 1435 1436 static inline int __down_read_killable(struct rw_semaphore *sem) 1437 { 1438 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1439 } 1440 1441 static inline int __down_read_trylock(struct rw_semaphore *sem) 1442 { 1443 return rwbase_read_trylock(&sem->rwbase); 1444 } 1445 1446 static inline void __up_read(struct rw_semaphore *sem) 1447 { 1448 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1449 } 1450 1451 static inline void __sched __down_write(struct rw_semaphore *sem) 1452 { 1453 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1454 } 1455 1456 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1457 { 1458 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1459 } 1460 1461 static inline int __down_write_trylock(struct rw_semaphore *sem) 1462 { 1463 return rwbase_write_trylock(&sem->rwbase); 1464 } 1465 1466 static inline void __up_write(struct rw_semaphore *sem) 1467 { 1468 rwbase_write_unlock(&sem->rwbase); 1469 } 1470 1471 static inline void __downgrade_write(struct rw_semaphore *sem) 1472 { 1473 rwbase_write_downgrade(&sem->rwbase); 1474 } 1475 1476 /* Debug stubs for the common API */ 1477 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1478 1479 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1480 struct task_struct *owner) 1481 { 1482 } 1483 1484 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1485 { 1486 int count = atomic_read(&sem->rwbase.readers); 1487 1488 return count < 0 && count != READER_BIAS; 1489 } 1490 1491 #endif /* CONFIG_PREEMPT_RT */ 1492 1493 /* 1494 * lock for reading 1495 */ 1496 void __sched down_read(struct rw_semaphore *sem) 1497 { 1498 might_sleep(); 1499 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1500 1501 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1502 } 1503 EXPORT_SYMBOL(down_read); 1504 1505 int __sched down_read_interruptible(struct rw_semaphore *sem) 1506 { 1507 might_sleep(); 1508 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1509 1510 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1511 rwsem_release(&sem->dep_map, _RET_IP_); 1512 return -EINTR; 1513 } 1514 1515 return 0; 1516 } 1517 EXPORT_SYMBOL(down_read_interruptible); 1518 1519 int __sched down_read_killable(struct rw_semaphore *sem) 1520 { 1521 might_sleep(); 1522 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1523 1524 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1525 rwsem_release(&sem->dep_map, _RET_IP_); 1526 return -EINTR; 1527 } 1528 1529 return 0; 1530 } 1531 EXPORT_SYMBOL(down_read_killable); 1532 1533 /* 1534 * trylock for reading -- returns 1 if successful, 0 if contention 1535 */ 1536 int down_read_trylock(struct rw_semaphore *sem) 1537 { 1538 int ret = __down_read_trylock(sem); 1539 1540 if (ret == 1) 1541 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1542 return ret; 1543 } 1544 EXPORT_SYMBOL(down_read_trylock); 1545 1546 /* 1547 * lock for writing 1548 */ 1549 void __sched down_write(struct rw_semaphore *sem) 1550 { 1551 might_sleep(); 1552 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1553 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1554 } 1555 EXPORT_SYMBOL(down_write); 1556 1557 /* 1558 * lock for writing 1559 */ 1560 int __sched down_write_killable(struct rw_semaphore *sem) 1561 { 1562 might_sleep(); 1563 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1564 1565 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1566 __down_write_killable)) { 1567 rwsem_release(&sem->dep_map, _RET_IP_); 1568 return -EINTR; 1569 } 1570 1571 return 0; 1572 } 1573 EXPORT_SYMBOL(down_write_killable); 1574 1575 /* 1576 * trylock for writing -- returns 1 if successful, 0 if contention 1577 */ 1578 int down_write_trylock(struct rw_semaphore *sem) 1579 { 1580 int ret = __down_write_trylock(sem); 1581 1582 if (ret == 1) 1583 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1584 1585 return ret; 1586 } 1587 EXPORT_SYMBOL(down_write_trylock); 1588 1589 /* 1590 * release a read lock 1591 */ 1592 void up_read(struct rw_semaphore *sem) 1593 { 1594 rwsem_release(&sem->dep_map, _RET_IP_); 1595 __up_read(sem); 1596 } 1597 EXPORT_SYMBOL(up_read); 1598 1599 /* 1600 * release a write lock 1601 */ 1602 void up_write(struct rw_semaphore *sem) 1603 { 1604 rwsem_release(&sem->dep_map, _RET_IP_); 1605 __up_write(sem); 1606 } 1607 EXPORT_SYMBOL(up_write); 1608 1609 /* 1610 * downgrade write lock to read lock 1611 */ 1612 void downgrade_write(struct rw_semaphore *sem) 1613 { 1614 lock_downgrade(&sem->dep_map, _RET_IP_); 1615 __downgrade_write(sem); 1616 } 1617 EXPORT_SYMBOL(downgrade_write); 1618 1619 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1620 1621 void down_read_nested(struct rw_semaphore *sem, int subclass) 1622 { 1623 might_sleep(); 1624 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1625 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1626 } 1627 EXPORT_SYMBOL(down_read_nested); 1628 1629 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1630 { 1631 might_sleep(); 1632 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1633 1634 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1635 rwsem_release(&sem->dep_map, _RET_IP_); 1636 return -EINTR; 1637 } 1638 1639 return 0; 1640 } 1641 EXPORT_SYMBOL(down_read_killable_nested); 1642 1643 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1644 { 1645 might_sleep(); 1646 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1647 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1648 } 1649 EXPORT_SYMBOL(_down_write_nest_lock); 1650 1651 void down_read_non_owner(struct rw_semaphore *sem) 1652 { 1653 might_sleep(); 1654 __down_read(sem); 1655 __rwsem_set_reader_owned(sem, NULL); 1656 } 1657 EXPORT_SYMBOL(down_read_non_owner); 1658 1659 void down_write_nested(struct rw_semaphore *sem, int subclass) 1660 { 1661 might_sleep(); 1662 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1663 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1664 } 1665 EXPORT_SYMBOL(down_write_nested); 1666 1667 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1668 { 1669 might_sleep(); 1670 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1671 1672 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1673 __down_write_killable)) { 1674 rwsem_release(&sem->dep_map, _RET_IP_); 1675 return -EINTR; 1676 } 1677 1678 return 0; 1679 } 1680 EXPORT_SYMBOL(down_write_killable_nested); 1681 1682 void up_read_non_owner(struct rw_semaphore *sem) 1683 { 1684 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1685 __up_read(sem); 1686 } 1687 EXPORT_SYMBOL(up_read_non_owner); 1688 1689 #endif 1690