xref: /linux/kernel/locking/rwbase_rt.c (revision 79d2e1919a2728ef49d938eb20ebd5903c14dfb0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 /*
4  * RT-specific reader/writer semaphores and reader/writer locks
5  *
6  * down_write/write_lock()
7  *  1) Lock rtmutex
8  *  2) Remove the reader BIAS to force readers into the slow path
9  *  3) Wait until all readers have left the critical section
10  *  4) Mark it write locked
11  *
12  * up_write/write_unlock()
13  *  1) Remove the write locked marker
14  *  2) Set the reader BIAS, so readers can use the fast path again
15  *  3) Unlock rtmutex, to release blocked readers
16  *
17  * down_read/read_lock()
18  *  1) Try fast path acquisition (reader BIAS is set)
19  *  2) Take tmutex::wait_lock, which protects the writelocked flag
20  *  3) If !writelocked, acquire it for read
21  *  4) If writelocked, block on tmutex
22  *  5) unlock rtmutex, goto 1)
23  *
24  * up_read/read_unlock()
25  *  1) Try fast path release (reader count != 1)
26  *  2) Wake the writer waiting in down_write()/write_lock() #3
27  *
28  * down_read/read_lock()#3 has the consequence, that rw semaphores and rw
29  * locks on RT are not writer fair, but writers, which should be avoided in
30  * RT tasks (think mmap_sem), are subject to the rtmutex priority/DL
31  * inheritance mechanism.
32  *
33  * It's possible to make the rw primitives writer fair by keeping a list of
34  * active readers. A blocked writer would force all newly incoming readers
35  * to block on the rtmutex, but the rtmutex would have to be proxy locked
36  * for one reader after the other. We can't use multi-reader inheritance
37  * because there is no way to support that with SCHED_DEADLINE.
38  * Implementing the one by one reader boosting/handover mechanism is a
39  * major surgery for a very dubious value.
40  *
41  * The risk of writer starvation is there, but the pathological use cases
42  * which trigger it are not necessarily the typical RT workloads.
43  *
44  * Fast-path orderings:
45  * The lock/unlock of readers can run in fast paths: lock and unlock are only
46  * atomic ops, and there is no inner lock to provide ACQUIRE and RELEASE
47  * semantics of rwbase_rt. Atomic ops should thus provide _acquire()
48  * and _release() (or stronger).
49  *
50  * Common code shared between RT rw_semaphore and rwlock
51  */
52 
53 static __always_inline int rwbase_read_trylock(struct rwbase_rt *rwb)
54 {
55 	int r;
56 
57 	/*
58 	 * Increment reader count, if sem->readers < 0, i.e. READER_BIAS is
59 	 * set.
60 	 */
61 	for (r = atomic_read(&rwb->readers); r < 0;) {
62 		if (likely(atomic_try_cmpxchg_acquire(&rwb->readers, &r, r + 1)))
63 			return 1;
64 	}
65 	return 0;
66 }
67 
68 static int __sched __rwbase_read_lock(struct rwbase_rt *rwb,
69 				      unsigned int state)
70 {
71 	struct rt_mutex_base *rtm = &rwb->rtmutex;
72 	DEFINE_WAKE_Q(wake_q);
73 	int ret;
74 
75 	rwbase_pre_schedule();
76 	raw_spin_lock_irq(&rtm->wait_lock);
77 
78 	/*
79 	 * Call into the slow lock path with the rtmutex->wait_lock
80 	 * held, so this can't result in the following race:
81 	 *
82 	 * Reader1		Reader2		Writer
83 	 *			down_read()
84 	 *					down_write()
85 	 *					rtmutex_lock(m)
86 	 *					wait()
87 	 * down_read()
88 	 * unlock(m->wait_lock)
89 	 *			up_read()
90 	 *			wake(Writer)
91 	 *					lock(m->wait_lock)
92 	 *					sem->writelocked=true
93 	 *					unlock(m->wait_lock)
94 	 *
95 	 *					up_write()
96 	 *					sem->writelocked=false
97 	 *					rtmutex_unlock(m)
98 	 *			down_read()
99 	 *					down_write()
100 	 *					rtmutex_lock(m)
101 	 *					wait()
102 	 * rtmutex_lock(m)
103 	 *
104 	 * That would put Reader1 behind the writer waiting on
105 	 * Reader2 to call up_read(), which might be unbound.
106 	 */
107 
108 	trace_contention_begin(rwb, LCB_F_RT | LCB_F_READ);
109 
110 	/*
111 	 * For rwlocks this returns 0 unconditionally, so the below
112 	 * !ret conditionals are optimized out.
113 	 */
114 	ret = rwbase_rtmutex_slowlock_locked(rtm, state, &wake_q);
115 
116 	/*
117 	 * On success the rtmutex is held, so there can't be a writer
118 	 * active. Increment the reader count and immediately drop the
119 	 * rtmutex again.
120 	 *
121 	 * rtmutex->wait_lock has to be unlocked in any case of course.
122 	 */
123 	if (!ret)
124 		atomic_inc(&rwb->readers);
125 
126 	preempt_disable();
127 	raw_spin_unlock_irq(&rtm->wait_lock);
128 	wake_up_q(&wake_q);
129 	preempt_enable();
130 
131 	if (!ret)
132 		rwbase_rtmutex_unlock(rtm);
133 
134 	trace_contention_end(rwb, ret);
135 	rwbase_post_schedule();
136 	return ret;
137 }
138 
139 static __always_inline int rwbase_read_lock(struct rwbase_rt *rwb,
140 					    unsigned int state)
141 {
142 	lockdep_assert(!current->pi_blocked_on);
143 
144 	if (rwbase_read_trylock(rwb))
145 		return 0;
146 
147 	return __rwbase_read_lock(rwb, state);
148 }
149 
150 static void __sched __rwbase_read_unlock(struct rwbase_rt *rwb,
151 					 unsigned int state)
152 {
153 	struct rt_mutex_base *rtm = &rwb->rtmutex;
154 	struct task_struct *owner;
155 	DEFINE_RT_WAKE_Q(wqh);
156 
157 	raw_spin_lock_irq(&rtm->wait_lock);
158 	/*
159 	 * Wake the writer, i.e. the rtmutex owner. It might release the
160 	 * rtmutex concurrently in the fast path (due to a signal), but to
161 	 * clean up rwb->readers it needs to acquire rtm->wait_lock. The
162 	 * worst case which can happen is a spurious wakeup.
163 	 */
164 	owner = rt_mutex_owner(rtm);
165 	if (owner)
166 		rt_mutex_wake_q_add_task(&wqh, owner, state);
167 
168 	/* Pairs with the preempt_enable in rt_mutex_wake_up_q() */
169 	preempt_disable();
170 	raw_spin_unlock_irq(&rtm->wait_lock);
171 	rt_mutex_wake_up_q(&wqh);
172 }
173 
174 static __always_inline void rwbase_read_unlock(struct rwbase_rt *rwb,
175 					       unsigned int state)
176 {
177 	/*
178 	 * rwb->readers can only hit 0 when a writer is waiting for the
179 	 * active readers to leave the critical section.
180 	 *
181 	 * dec_and_test() is fully ordered, provides RELEASE.
182 	 */
183 	if (unlikely(atomic_dec_and_test(&rwb->readers)))
184 		__rwbase_read_unlock(rwb, state);
185 }
186 
187 static inline void __rwbase_write_unlock(struct rwbase_rt *rwb, int bias,
188 					 unsigned long flags)
189 {
190 	struct rt_mutex_base *rtm = &rwb->rtmutex;
191 
192 	/*
193 	 * _release() is needed in case that reader is in fast path, pairing
194 	 * with atomic_try_cmpxchg_acquire() in rwbase_read_trylock().
195 	 */
196 	(void)atomic_add_return_release(READER_BIAS - bias, &rwb->readers);
197 	raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
198 	rwbase_rtmutex_unlock(rtm);
199 }
200 
201 static inline void rwbase_write_unlock(struct rwbase_rt *rwb)
202 {
203 	struct rt_mutex_base *rtm = &rwb->rtmutex;
204 	unsigned long flags;
205 
206 	raw_spin_lock_irqsave(&rtm->wait_lock, flags);
207 	__rwbase_write_unlock(rwb, WRITER_BIAS, flags);
208 }
209 
210 static inline void rwbase_write_downgrade(struct rwbase_rt *rwb)
211 {
212 	struct rt_mutex_base *rtm = &rwb->rtmutex;
213 	unsigned long flags;
214 
215 	raw_spin_lock_irqsave(&rtm->wait_lock, flags);
216 	/* Release it and account current as reader */
217 	__rwbase_write_unlock(rwb, WRITER_BIAS - 1, flags);
218 }
219 
220 static inline bool __rwbase_write_trylock(struct rwbase_rt *rwb)
221 {
222 	/* Can do without CAS because we're serialized by wait_lock. */
223 	lockdep_assert_held(&rwb->rtmutex.wait_lock);
224 
225 	/*
226 	 * _acquire is needed in case the reader is in the fast path, pairing
227 	 * with rwbase_read_unlock(), provides ACQUIRE.
228 	 */
229 	if (!atomic_read_acquire(&rwb->readers)) {
230 		atomic_set(&rwb->readers, WRITER_BIAS);
231 		return 1;
232 	}
233 
234 	return 0;
235 }
236 
237 static int __sched rwbase_write_lock(struct rwbase_rt *rwb,
238 				     unsigned int state)
239 {
240 	struct rt_mutex_base *rtm = &rwb->rtmutex;
241 	unsigned long flags;
242 
243 	/* Take the rtmutex as a first step */
244 	if (rwbase_rtmutex_lock_state(rtm, state))
245 		return -EINTR;
246 
247 	/* Force readers into slow path */
248 	atomic_sub(READER_BIAS, &rwb->readers);
249 
250 	rwbase_pre_schedule();
251 
252 	raw_spin_lock_irqsave(&rtm->wait_lock, flags);
253 	if (__rwbase_write_trylock(rwb))
254 		goto out_unlock;
255 
256 	rwbase_set_and_save_current_state(state);
257 	trace_contention_begin(rwb, LCB_F_RT | LCB_F_WRITE);
258 	for (;;) {
259 		/* Optimized out for rwlocks */
260 		if (rwbase_signal_pending_state(state, current)) {
261 			rwbase_restore_current_state();
262 			__rwbase_write_unlock(rwb, 0, flags);
263 			rwbase_post_schedule();
264 			trace_contention_end(rwb, -EINTR);
265 			return -EINTR;
266 		}
267 
268 		if (__rwbase_write_trylock(rwb))
269 			break;
270 
271 		raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
272 		rwbase_schedule();
273 		raw_spin_lock_irqsave(&rtm->wait_lock, flags);
274 
275 		set_current_state(state);
276 	}
277 	rwbase_restore_current_state();
278 	trace_contention_end(rwb, 0);
279 
280 out_unlock:
281 	raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
282 	rwbase_post_schedule();
283 	return 0;
284 }
285 
286 static inline int rwbase_write_trylock(struct rwbase_rt *rwb)
287 {
288 	struct rt_mutex_base *rtm = &rwb->rtmutex;
289 	unsigned long flags;
290 
291 	if (!rwbase_rtmutex_trylock(rtm))
292 		return 0;
293 
294 	atomic_sub(READER_BIAS, &rwb->readers);
295 
296 	raw_spin_lock_irqsave(&rtm->wait_lock, flags);
297 	if (__rwbase_write_trylock(rwb)) {
298 		raw_spin_unlock_irqrestore(&rtm->wait_lock, flags);
299 		return 1;
300 	}
301 	__rwbase_write_unlock(rwb, 0, flags);
302 	return 0;
303 }
304