1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * rtmutex API 4 */ 5 #include <linux/spinlock.h> 6 #include <linux/export.h> 7 8 #define RT_MUTEX_BUILD_MUTEX 9 #include "rtmutex.c" 10 11 /* 12 * Max number of times we'll walk the boosting chain: 13 */ 14 int max_lock_depth = 1024; 15 16 /* 17 * Debug aware fast / slowpath lock,trylock,unlock 18 * 19 * The atomic acquire/release ops are compiled away, when either the 20 * architecture does not support cmpxchg or when debugging is enabled. 21 */ 22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock, 23 unsigned int state, 24 struct lockdep_map *nest_lock, 25 unsigned int subclass) 26 { 27 int ret; 28 29 might_sleep(); 30 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_); 31 ret = __rt_mutex_lock(&lock->rtmutex, state); 32 if (ret) 33 mutex_release(&lock->dep_map, _RET_IP_); 34 return ret; 35 } 36 37 void rt_mutex_base_init(struct rt_mutex_base *rtb) 38 { 39 __rt_mutex_base_init(rtb); 40 } 41 EXPORT_SYMBOL(rt_mutex_base_init); 42 43 #ifdef CONFIG_DEBUG_LOCK_ALLOC 44 /** 45 * rt_mutex_lock_nested - lock a rt_mutex 46 * 47 * @lock: the rt_mutex to be locked 48 * @subclass: the lockdep subclass 49 */ 50 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) 51 { 52 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass); 53 } 54 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); 55 56 void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock) 57 { 58 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0); 59 } 60 EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock); 61 62 #else /* !CONFIG_DEBUG_LOCK_ALLOC */ 63 64 /** 65 * rt_mutex_lock - lock a rt_mutex 66 * 67 * @lock: the rt_mutex to be locked 68 */ 69 void __sched rt_mutex_lock(struct rt_mutex *lock) 70 { 71 __rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0); 72 } 73 EXPORT_SYMBOL_GPL(rt_mutex_lock); 74 #endif 75 76 /** 77 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 78 * 79 * @lock: the rt_mutex to be locked 80 * 81 * Returns: 82 * 0 on success 83 * -EINTR when interrupted by a signal 84 */ 85 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 86 { 87 return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0); 88 } 89 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 90 91 /** 92 * rt_mutex_lock_killable - lock a rt_mutex killable 93 * 94 * @lock: the rt_mutex to be locked 95 * 96 * Returns: 97 * 0 on success 98 * -EINTR when interrupted by a signal 99 */ 100 int __sched rt_mutex_lock_killable(struct rt_mutex *lock) 101 { 102 return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0); 103 } 104 EXPORT_SYMBOL_GPL(rt_mutex_lock_killable); 105 106 /** 107 * rt_mutex_trylock - try to lock a rt_mutex 108 * 109 * @lock: the rt_mutex to be locked 110 * 111 * This function can only be called in thread context. It's safe to call it 112 * from atomic regions, but not from hard or soft interrupt context. 113 * 114 * Returns: 115 * 1 on success 116 * 0 on contention 117 */ 118 int __sched rt_mutex_trylock(struct rt_mutex *lock) 119 { 120 int ret; 121 122 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 123 return 0; 124 125 ret = __rt_mutex_trylock(&lock->rtmutex); 126 if (ret) 127 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 128 129 return ret; 130 } 131 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 132 133 /** 134 * rt_mutex_unlock - unlock a rt_mutex 135 * 136 * @lock: the rt_mutex to be unlocked 137 */ 138 void __sched rt_mutex_unlock(struct rt_mutex *lock) 139 { 140 mutex_release(&lock->dep_map, _RET_IP_); 141 __rt_mutex_unlock(&lock->rtmutex); 142 } 143 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 144 145 /* 146 * Futex variants, must not use fastpath. 147 */ 148 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock) 149 { 150 return rt_mutex_slowtrylock(lock); 151 } 152 153 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock) 154 { 155 return __rt_mutex_slowtrylock(lock); 156 } 157 158 /** 159 * __rt_mutex_futex_unlock - Futex variant, that since futex variants 160 * do not use the fast-path, can be simple and will not need to retry. 161 * 162 * @lock: The rt_mutex to be unlocked 163 * @wqh: The wake queue head from which to get the next lock waiter 164 */ 165 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock, 166 struct rt_wake_q_head *wqh) 167 { 168 lockdep_assert_held(&lock->wait_lock); 169 170 debug_rt_mutex_unlock(lock); 171 172 if (!rt_mutex_has_waiters(lock)) { 173 lock->owner = NULL; 174 return false; /* done */ 175 } 176 177 /* 178 * mark_wakeup_next_waiter() deboosts and retains preemption 179 * disabled when dropping the wait_lock, to avoid inversion prior 180 * to the wakeup. preempt_disable() therein pairs with the 181 * preempt_enable() in rt_mutex_postunlock(). 182 */ 183 mark_wakeup_next_waiter(wqh, lock); 184 185 return true; /* call postunlock() */ 186 } 187 188 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock) 189 { 190 DEFINE_RT_WAKE_Q(wqh); 191 unsigned long flags; 192 bool postunlock; 193 194 raw_spin_lock_irqsave(&lock->wait_lock, flags); 195 postunlock = __rt_mutex_futex_unlock(lock, &wqh); 196 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 197 198 if (postunlock) 199 rt_mutex_postunlock(&wqh); 200 } 201 202 /** 203 * __rt_mutex_init - initialize the rt_mutex 204 * 205 * @lock: The rt_mutex to be initialized 206 * @name: The lock name used for debugging 207 * @key: The lock class key used for debugging 208 * 209 * Initialize the rt_mutex to unlocked state. 210 * 211 * Initializing of a locked rt_mutex is not allowed 212 */ 213 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name, 214 struct lock_class_key *key) 215 { 216 debug_check_no_locks_freed((void *)lock, sizeof(*lock)); 217 __rt_mutex_base_init(&lock->rtmutex); 218 lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP); 219 } 220 EXPORT_SYMBOL_GPL(__rt_mutex_init); 221 222 /** 223 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 224 * proxy owner 225 * 226 * @lock: the rt_mutex to be locked 227 * @proxy_owner:the task to set as owner 228 * 229 * No locking. Caller has to do serializing itself 230 * 231 * Special API call for PI-futex support. This initializes the rtmutex and 232 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not 233 * possible at this point because the pi_state which contains the rtmutex 234 * is not yet visible to other tasks. 235 */ 236 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock, 237 struct task_struct *proxy_owner) 238 { 239 static struct lock_class_key pi_futex_key; 240 241 __rt_mutex_base_init(lock); 242 /* 243 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping' 244 * and rtmutex based. That causes a lockdep false positive, because 245 * some of the futex functions invoke spin_unlock(&hb->lock) with 246 * the wait_lock of the rtmutex associated to the pi_futex held. 247 * spin_unlock() in turn takes wait_lock of the rtmutex on which 248 * the spinlock is based, which makes lockdep notice a lock 249 * recursion. Give the futex/rtmutex wait_lock a separate key. 250 */ 251 lockdep_set_class(&lock->wait_lock, &pi_futex_key); 252 rt_mutex_set_owner(lock, proxy_owner); 253 } 254 255 /** 256 * rt_mutex_proxy_unlock - release a lock on behalf of owner 257 * 258 * @lock: the rt_mutex to be locked 259 * 260 * No locking. Caller has to do serializing itself 261 * 262 * Special API call for PI-futex support. This just cleans up the rtmutex 263 * (debugging) state. Concurrent operations on this rt_mutex are not 264 * possible because it belongs to the pi_state which is about to be freed 265 * and it is not longer visible to other tasks. 266 */ 267 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock) 268 { 269 debug_rt_mutex_proxy_unlock(lock); 270 rt_mutex_clear_owner(lock); 271 } 272 273 /** 274 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task 275 * @lock: the rt_mutex to take 276 * @waiter: the pre-initialized rt_mutex_waiter 277 * @task: the task to prepare 278 * @wake_q: the wake_q to wake tasks after we release the wait_lock 279 * 280 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 281 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 282 * 283 * NOTE: does _NOT_ remove the @waiter on failure; must either call 284 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. 285 * 286 * Returns: 287 * 0 - task blocked on lock 288 * 1 - acquired the lock for task, caller should wake it up 289 * <0 - error 290 * 291 * Special API call for PI-futex support. 292 */ 293 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 294 struct rt_mutex_waiter *waiter, 295 struct task_struct *task, 296 struct wake_q_head *wake_q) 297 { 298 int ret; 299 300 lockdep_assert_held(&lock->wait_lock); 301 302 if (try_to_take_rt_mutex(lock, task, NULL)) 303 return 1; 304 305 /* We enforce deadlock detection for futexes */ 306 ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL, 307 RT_MUTEX_FULL_CHAINWALK, wake_q); 308 309 if (ret && !rt_mutex_owner(lock)) { 310 /* 311 * Reset the return value. We might have 312 * returned with -EDEADLK and the owner 313 * released the lock while we were walking the 314 * pi chain. Let the waiter sort it out. 315 */ 316 ret = 0; 317 } 318 319 return ret; 320 } 321 322 /** 323 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 324 * @lock: the rt_mutex to take 325 * @waiter: the pre-initialized rt_mutex_waiter 326 * @task: the task to prepare 327 * 328 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 329 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 330 * 331 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter 332 * on failure. 333 * 334 * Returns: 335 * 0 - task blocked on lock 336 * 1 - acquired the lock for task, caller should wake it up 337 * <0 - error 338 * 339 * Special API call for PI-futex support. 340 */ 341 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock, 342 struct rt_mutex_waiter *waiter, 343 struct task_struct *task) 344 { 345 int ret; 346 DEFINE_WAKE_Q(wake_q); 347 348 raw_spin_lock_irq(&lock->wait_lock); 349 ret = __rt_mutex_start_proxy_lock(lock, waiter, task, &wake_q); 350 if (unlikely(ret)) 351 remove_waiter(lock, waiter); 352 preempt_disable(); 353 raw_spin_unlock_irq(&lock->wait_lock); 354 wake_up_q(&wake_q); 355 preempt_enable(); 356 357 return ret; 358 } 359 360 /** 361 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition 362 * @lock: the rt_mutex we were woken on 363 * @to: the timeout, null if none. hrtimer should already have 364 * been started. 365 * @waiter: the pre-initialized rt_mutex_waiter 366 * 367 * Wait for the lock acquisition started on our behalf by 368 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call 369 * rt_mutex_cleanup_proxy_lock(). 370 * 371 * Returns: 372 * 0 - success 373 * <0 - error, one of -EINTR, -ETIMEDOUT 374 * 375 * Special API call for PI-futex support 376 */ 377 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock, 378 struct hrtimer_sleeper *to, 379 struct rt_mutex_waiter *waiter) 380 { 381 int ret; 382 383 raw_spin_lock_irq(&lock->wait_lock); 384 /* sleep on the mutex */ 385 set_current_state(TASK_INTERRUPTIBLE); 386 ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter, NULL); 387 /* 388 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 389 * have to fix that up. 390 */ 391 fixup_rt_mutex_waiters(lock, true); 392 raw_spin_unlock_irq(&lock->wait_lock); 393 394 return ret; 395 } 396 397 /** 398 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition 399 * @lock: the rt_mutex we were woken on 400 * @waiter: the pre-initialized rt_mutex_waiter 401 * 402 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or 403 * rt_mutex_wait_proxy_lock(). 404 * 405 * Unless we acquired the lock; we're still enqueued on the wait-list and can 406 * in fact still be granted ownership until we're removed. Therefore we can 407 * find we are in fact the owner and must disregard the 408 * rt_mutex_wait_proxy_lock() failure. 409 * 410 * Returns: 411 * true - did the cleanup, we done. 412 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, 413 * caller should disregards its return value. 414 * 415 * Special API call for PI-futex support 416 */ 417 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock, 418 struct rt_mutex_waiter *waiter) 419 { 420 bool cleanup = false; 421 422 raw_spin_lock_irq(&lock->wait_lock); 423 /* 424 * Do an unconditional try-lock, this deals with the lock stealing 425 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() 426 * sets a NULL owner. 427 * 428 * We're not interested in the return value, because the subsequent 429 * test on rt_mutex_owner() will infer that. If the trylock succeeded, 430 * we will own the lock and it will have removed the waiter. If we 431 * failed the trylock, we're still not owner and we need to remove 432 * ourselves. 433 */ 434 try_to_take_rt_mutex(lock, current, waiter); 435 /* 436 * Unless we're the owner; we're still enqueued on the wait_list. 437 * So check if we became owner, if not, take us off the wait_list. 438 */ 439 if (rt_mutex_owner(lock) != current) { 440 remove_waiter(lock, waiter); 441 cleanup = true; 442 } 443 /* 444 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 445 * have to fix that up. 446 */ 447 fixup_rt_mutex_waiters(lock, false); 448 449 raw_spin_unlock_irq(&lock->wait_lock); 450 451 return cleanup; 452 } 453 454 /* 455 * Recheck the pi chain, in case we got a priority setting 456 * 457 * Called from sched_setscheduler 458 */ 459 void __sched rt_mutex_adjust_pi(struct task_struct *task) 460 { 461 struct rt_mutex_waiter *waiter; 462 struct rt_mutex_base *next_lock; 463 unsigned long flags; 464 465 raw_spin_lock_irqsave(&task->pi_lock, flags); 466 467 waiter = task->pi_blocked_on; 468 if (!waiter || rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) { 469 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 470 return; 471 } 472 next_lock = waiter->lock; 473 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 474 475 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 476 get_task_struct(task); 477 478 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 479 next_lock, NULL, task); 480 } 481 482 /* 483 * Performs the wakeup of the top-waiter and re-enables preemption. 484 */ 485 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh) 486 { 487 rt_mutex_wake_up_q(wqh); 488 } 489 490 #ifdef CONFIG_DEBUG_RT_MUTEXES 491 void rt_mutex_debug_task_free(struct task_struct *task) 492 { 493 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root)); 494 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); 495 } 496 #endif 497 498 #ifdef CONFIG_PREEMPT_RT 499 /* Mutexes */ 500 void __mutex_rt_init(struct mutex *mutex, const char *name, 501 struct lock_class_key *key) 502 { 503 debug_check_no_locks_freed((void *)mutex, sizeof(*mutex)); 504 lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP); 505 } 506 EXPORT_SYMBOL(__mutex_rt_init); 507 508 static __always_inline int __mutex_lock_common(struct mutex *lock, 509 unsigned int state, 510 unsigned int subclass, 511 struct lockdep_map *nest_lock, 512 unsigned long ip) 513 { 514 int ret; 515 516 might_sleep(); 517 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 518 ret = __rt_mutex_lock(&lock->rtmutex, state); 519 if (ret) 520 mutex_release(&lock->dep_map, ip); 521 else 522 lock_acquired(&lock->dep_map, ip); 523 return ret; 524 } 525 526 #ifdef CONFIG_DEBUG_LOCK_ALLOC 527 void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass) 528 { 529 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 530 } 531 EXPORT_SYMBOL_GPL(mutex_lock_nested); 532 533 void __sched _mutex_lock_nest_lock(struct mutex *lock, 534 struct lockdep_map *nest_lock) 535 { 536 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_); 537 } 538 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 539 540 int __sched mutex_lock_interruptible_nested(struct mutex *lock, 541 unsigned int subclass) 542 { 543 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 544 } 545 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 546 547 int __sched mutex_lock_killable_nested(struct mutex *lock, 548 unsigned int subclass) 549 { 550 return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 551 } 552 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 553 554 void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 555 { 556 int token; 557 558 might_sleep(); 559 560 token = io_schedule_prepare(); 561 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 562 io_schedule_finish(token); 563 } 564 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 565 566 #else /* CONFIG_DEBUG_LOCK_ALLOC */ 567 568 void __sched mutex_lock(struct mutex *lock) 569 { 570 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 571 } 572 EXPORT_SYMBOL(mutex_lock); 573 574 int __sched mutex_lock_interruptible(struct mutex *lock) 575 { 576 return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 577 } 578 EXPORT_SYMBOL(mutex_lock_interruptible); 579 580 int __sched mutex_lock_killable(struct mutex *lock) 581 { 582 return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 583 } 584 EXPORT_SYMBOL(mutex_lock_killable); 585 586 void __sched mutex_lock_io(struct mutex *lock) 587 { 588 int token = io_schedule_prepare(); 589 590 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 591 io_schedule_finish(token); 592 } 593 EXPORT_SYMBOL(mutex_lock_io); 594 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ 595 596 int __sched mutex_trylock(struct mutex *lock) 597 { 598 int ret; 599 600 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 601 return 0; 602 603 ret = __rt_mutex_trylock(&lock->rtmutex); 604 if (ret) 605 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 606 607 return ret; 608 } 609 EXPORT_SYMBOL(mutex_trylock); 610 611 void __sched mutex_unlock(struct mutex *lock) 612 { 613 mutex_release(&lock->dep_map, _RET_IP_); 614 __rt_mutex_unlock(&lock->rtmutex); 615 } 616 EXPORT_SYMBOL(mutex_unlock); 617 618 #endif /* CONFIG_PREEMPT_RT */ 619