xref: /linux/kernel/locking/rtmutex_api.c (revision 5c2e7736e20d9b348a44cafbfa639fe2653fbc34)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * rtmutex API
4  */
5 #include <linux/spinlock.h>
6 #include <linux/export.h>
7 
8 #define RT_MUTEX_BUILD_MUTEX
9 #include "rtmutex.c"
10 
11 /*
12  * Max number of times we'll walk the boosting chain:
13  */
14 int max_lock_depth = 1024;
15 
16 /*
17  * Debug aware fast / slowpath lock,trylock,unlock
18  *
19  * The atomic acquire/release ops are compiled away, when either the
20  * architecture does not support cmpxchg or when debugging is enabled.
21  */
22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
23 						  unsigned int state,
24 						  struct lockdep_map *nest_lock,
25 						  unsigned int subclass)
26 {
27 	int ret;
28 
29 	might_sleep();
30 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, _RET_IP_);
31 	ret = __rt_mutex_lock(&lock->rtmutex, state);
32 	if (ret)
33 		mutex_release(&lock->dep_map, _RET_IP_);
34 	return ret;
35 }
36 
37 void rt_mutex_base_init(struct rt_mutex_base *rtb)
38 {
39 	__rt_mutex_base_init(rtb);
40 }
41 EXPORT_SYMBOL(rt_mutex_base_init);
42 
43 #ifdef CONFIG_DEBUG_LOCK_ALLOC
44 /**
45  * rt_mutex_lock_nested - lock a rt_mutex
46  *
47  * @lock: the rt_mutex to be locked
48  * @subclass: the lockdep subclass
49  */
50 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
51 {
52 	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, subclass);
53 }
54 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
55 
56 void __sched _rt_mutex_lock_nest_lock(struct rt_mutex *lock, struct lockdep_map *nest_lock)
57 {
58 	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, nest_lock, 0);
59 }
60 EXPORT_SYMBOL_GPL(_rt_mutex_lock_nest_lock);
61 
62 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
63 
64 /**
65  * rt_mutex_lock - lock a rt_mutex
66  *
67  * @lock: the rt_mutex to be locked
68  */
69 void __sched rt_mutex_lock(struct rt_mutex *lock)
70 {
71 	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, NULL, 0);
72 }
73 EXPORT_SYMBOL_GPL(rt_mutex_lock);
74 #endif
75 
76 /**
77  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
78  *
79  * @lock:		the rt_mutex to be locked
80  *
81  * Returns:
82  *  0		on success
83  * -EINTR	when interrupted by a signal
84  */
85 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
86 {
87 	return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, NULL, 0);
88 }
89 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
90 
91 /**
92  * rt_mutex_lock_killable - lock a rt_mutex killable
93  *
94  * @lock:		the rt_mutex to be locked
95  *
96  * Returns:
97  *  0		on success
98  * -EINTR	when interrupted by a signal
99  */
100 int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
101 {
102 	return __rt_mutex_lock_common(lock, TASK_KILLABLE, NULL, 0);
103 }
104 EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
105 
106 /**
107  * rt_mutex_trylock - try to lock a rt_mutex
108  *
109  * @lock:	the rt_mutex to be locked
110  *
111  * This function can only be called in thread context. It's safe to call it
112  * from atomic regions, but not from hard or soft interrupt context.
113  *
114  * Returns:
115  *  1 on success
116  *  0 on contention
117  */
118 int __sched rt_mutex_trylock(struct rt_mutex *lock)
119 {
120 	int ret;
121 
122 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
123 		return 0;
124 
125 	ret = __rt_mutex_trylock(&lock->rtmutex);
126 	if (ret)
127 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
128 
129 	return ret;
130 }
131 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
132 
133 /**
134  * rt_mutex_unlock - unlock a rt_mutex
135  *
136  * @lock: the rt_mutex to be unlocked
137  */
138 void __sched rt_mutex_unlock(struct rt_mutex *lock)
139 {
140 	mutex_release(&lock->dep_map, _RET_IP_);
141 	__rt_mutex_unlock(&lock->rtmutex);
142 }
143 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
144 
145 /*
146  * Futex variants, must not use fastpath.
147  */
148 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
149 {
150 	return rt_mutex_slowtrylock(lock);
151 }
152 
153 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
154 {
155 	return __rt_mutex_slowtrylock(lock);
156 }
157 
158 /**
159  * __rt_mutex_futex_unlock - Futex variant, that since futex variants
160  * do not use the fast-path, can be simple and will not need to retry.
161  *
162  * @lock:	The rt_mutex to be unlocked
163  * @wqh:	The wake queue head from which to get the next lock waiter
164  */
165 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
166 				     struct rt_wake_q_head *wqh)
167 {
168 	lockdep_assert_held(&lock->wait_lock);
169 
170 	debug_rt_mutex_unlock(lock);
171 
172 	if (!rt_mutex_has_waiters(lock)) {
173 		lock->owner = NULL;
174 		return false; /* done */
175 	}
176 
177 	/*
178 	 * mark_wakeup_next_waiter() deboosts and retains preemption
179 	 * disabled when dropping the wait_lock, to avoid inversion prior
180 	 * to the wakeup.  preempt_disable() therein pairs with the
181 	 * preempt_enable() in rt_mutex_postunlock().
182 	 */
183 	mark_wakeup_next_waiter(wqh, lock);
184 
185 	return true; /* call postunlock() */
186 }
187 
188 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
189 {
190 	DEFINE_RT_WAKE_Q(wqh);
191 	unsigned long flags;
192 	bool postunlock;
193 
194 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
195 	postunlock = __rt_mutex_futex_unlock(lock, &wqh);
196 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
197 
198 	if (postunlock)
199 		rt_mutex_postunlock(&wqh);
200 }
201 
202 /**
203  * __rt_mutex_init - initialize the rt_mutex
204  *
205  * @lock:	The rt_mutex to be initialized
206  * @name:	The lock name used for debugging
207  * @key:	The lock class key used for debugging
208  *
209  * Initialize the rt_mutex to unlocked state.
210  *
211  * Initializing of a locked rt_mutex is not allowed
212  */
213 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
214 			     struct lock_class_key *key)
215 {
216 	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
217 	__rt_mutex_base_init(&lock->rtmutex);
218 	lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
219 }
220 EXPORT_SYMBOL_GPL(__rt_mutex_init);
221 
222 /**
223  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
224  *				proxy owner
225  *
226  * @lock:	the rt_mutex to be locked
227  * @proxy_owner:the task to set as owner
228  *
229  * No locking. Caller has to do serializing itself
230  *
231  * Special API call for PI-futex support. This initializes the rtmutex and
232  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
233  * possible at this point because the pi_state which contains the rtmutex
234  * is not yet visible to other tasks.
235  */
236 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
237 					struct task_struct *proxy_owner)
238 {
239 	static struct lock_class_key pi_futex_key;
240 
241 	__rt_mutex_base_init(lock);
242 	/*
243 	 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
244 	 * and rtmutex based. That causes a lockdep false positive, because
245 	 * some of the futex functions invoke spin_unlock(&hb->lock) with
246 	 * the wait_lock of the rtmutex associated to the pi_futex held.
247 	 * spin_unlock() in turn takes wait_lock of the rtmutex on which
248 	 * the spinlock is based, which makes lockdep notice a lock
249 	 * recursion. Give the futex/rtmutex wait_lock a separate key.
250 	 */
251 	lockdep_set_class(&lock->wait_lock, &pi_futex_key);
252 	rt_mutex_set_owner(lock, proxy_owner);
253 }
254 
255 /**
256  * rt_mutex_proxy_unlock - release a lock on behalf of owner
257  *
258  * @lock:	the rt_mutex to be locked
259  *
260  * No locking. Caller has to do serializing itself
261  *
262  * Special API call for PI-futex support. This just cleans up the rtmutex
263  * (debugging) state. Concurrent operations on this rt_mutex are not
264  * possible because it belongs to the pi_state which is about to be freed
265  * and it is not longer visible to other tasks.
266  */
267 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
268 {
269 	debug_rt_mutex_proxy_unlock(lock);
270 	rt_mutex_clear_owner(lock);
271 }
272 
273 /**
274  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
275  * @lock:		the rt_mutex to take
276  * @waiter:		the pre-initialized rt_mutex_waiter
277  * @task:		the task to prepare
278  *
279  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
280  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
281  *
282  * NOTE: does _NOT_ remove the @waiter on failure; must either call
283  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
284  *
285  * Returns:
286  *  0 - task blocked on lock
287  *  1 - acquired the lock for task, caller should wake it up
288  * <0 - error
289  *
290  * Special API call for PI-futex support.
291  */
292 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
293 					struct rt_mutex_waiter *waiter,
294 					struct task_struct *task)
295 {
296 	int ret;
297 
298 	lockdep_assert_held(&lock->wait_lock);
299 
300 	if (try_to_take_rt_mutex(lock, task, NULL))
301 		return 1;
302 
303 	/* We enforce deadlock detection for futexes */
304 	ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
305 				      RT_MUTEX_FULL_CHAINWALK);
306 
307 	if (ret && !rt_mutex_owner(lock)) {
308 		/*
309 		 * Reset the return value. We might have
310 		 * returned with -EDEADLK and the owner
311 		 * released the lock while we were walking the
312 		 * pi chain.  Let the waiter sort it out.
313 		 */
314 		ret = 0;
315 	}
316 
317 	return ret;
318 }
319 
320 /**
321  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
322  * @lock:		the rt_mutex to take
323  * @waiter:		the pre-initialized rt_mutex_waiter
324  * @task:		the task to prepare
325  *
326  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
327  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
328  *
329  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
330  * on failure.
331  *
332  * Returns:
333  *  0 - task blocked on lock
334  *  1 - acquired the lock for task, caller should wake it up
335  * <0 - error
336  *
337  * Special API call for PI-futex support.
338  */
339 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
340 				      struct rt_mutex_waiter *waiter,
341 				      struct task_struct *task)
342 {
343 	int ret;
344 
345 	raw_spin_lock_irq(&lock->wait_lock);
346 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
347 	if (unlikely(ret))
348 		remove_waiter(lock, waiter);
349 	raw_spin_unlock_irq(&lock->wait_lock);
350 
351 	return ret;
352 }
353 
354 /**
355  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
356  * @lock:		the rt_mutex we were woken on
357  * @to:			the timeout, null if none. hrtimer should already have
358  *			been started.
359  * @waiter:		the pre-initialized rt_mutex_waiter
360  *
361  * Wait for the lock acquisition started on our behalf by
362  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
363  * rt_mutex_cleanup_proxy_lock().
364  *
365  * Returns:
366  *  0 - success
367  * <0 - error, one of -EINTR, -ETIMEDOUT
368  *
369  * Special API call for PI-futex support
370  */
371 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
372 				     struct hrtimer_sleeper *to,
373 				     struct rt_mutex_waiter *waiter)
374 {
375 	int ret;
376 
377 	raw_spin_lock_irq(&lock->wait_lock);
378 	/* sleep on the mutex */
379 	set_current_state(TASK_INTERRUPTIBLE);
380 	ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
381 	/*
382 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
383 	 * have to fix that up.
384 	 */
385 	fixup_rt_mutex_waiters(lock, true);
386 	raw_spin_unlock_irq(&lock->wait_lock);
387 
388 	return ret;
389 }
390 
391 /**
392  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
393  * @lock:		the rt_mutex we were woken on
394  * @waiter:		the pre-initialized rt_mutex_waiter
395  *
396  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
397  * rt_mutex_wait_proxy_lock().
398  *
399  * Unless we acquired the lock; we're still enqueued on the wait-list and can
400  * in fact still be granted ownership until we're removed. Therefore we can
401  * find we are in fact the owner and must disregard the
402  * rt_mutex_wait_proxy_lock() failure.
403  *
404  * Returns:
405  *  true  - did the cleanup, we done.
406  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
407  *          caller should disregards its return value.
408  *
409  * Special API call for PI-futex support
410  */
411 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
412 					 struct rt_mutex_waiter *waiter)
413 {
414 	bool cleanup = false;
415 
416 	raw_spin_lock_irq(&lock->wait_lock);
417 	/*
418 	 * Do an unconditional try-lock, this deals with the lock stealing
419 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
420 	 * sets a NULL owner.
421 	 *
422 	 * We're not interested in the return value, because the subsequent
423 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
424 	 * we will own the lock and it will have removed the waiter. If we
425 	 * failed the trylock, we're still not owner and we need to remove
426 	 * ourselves.
427 	 */
428 	try_to_take_rt_mutex(lock, current, waiter);
429 	/*
430 	 * Unless we're the owner; we're still enqueued on the wait_list.
431 	 * So check if we became owner, if not, take us off the wait_list.
432 	 */
433 	if (rt_mutex_owner(lock) != current) {
434 		remove_waiter(lock, waiter);
435 		cleanup = true;
436 	}
437 	/*
438 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
439 	 * have to fix that up.
440 	 */
441 	fixup_rt_mutex_waiters(lock, false);
442 
443 	raw_spin_unlock_irq(&lock->wait_lock);
444 
445 	return cleanup;
446 }
447 
448 /*
449  * Recheck the pi chain, in case we got a priority setting
450  *
451  * Called from sched_setscheduler
452  */
453 void __sched rt_mutex_adjust_pi(struct task_struct *task)
454 {
455 	struct rt_mutex_waiter *waiter;
456 	struct rt_mutex_base *next_lock;
457 	unsigned long flags;
458 
459 	raw_spin_lock_irqsave(&task->pi_lock, flags);
460 
461 	waiter = task->pi_blocked_on;
462 	if (!waiter || rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
463 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
464 		return;
465 	}
466 	next_lock = waiter->lock;
467 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
468 
469 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
470 	get_task_struct(task);
471 
472 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
473 				   next_lock, NULL, task);
474 }
475 
476 /*
477  * Performs the wakeup of the top-waiter and re-enables preemption.
478  */
479 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
480 {
481 	rt_mutex_wake_up_q(wqh);
482 }
483 
484 #ifdef CONFIG_DEBUG_RT_MUTEXES
485 void rt_mutex_debug_task_free(struct task_struct *task)
486 {
487 	DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
488 	DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
489 }
490 #endif
491 
492 #ifdef CONFIG_PREEMPT_RT
493 /* Mutexes */
494 void __mutex_rt_init(struct mutex *mutex, const char *name,
495 		     struct lock_class_key *key)
496 {
497 	debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
498 	lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
499 }
500 EXPORT_SYMBOL(__mutex_rt_init);
501 
502 static __always_inline int __mutex_lock_common(struct mutex *lock,
503 					       unsigned int state,
504 					       unsigned int subclass,
505 					       struct lockdep_map *nest_lock,
506 					       unsigned long ip)
507 {
508 	int ret;
509 
510 	might_sleep();
511 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
512 	ret = __rt_mutex_lock(&lock->rtmutex, state);
513 	if (ret)
514 		mutex_release(&lock->dep_map, ip);
515 	else
516 		lock_acquired(&lock->dep_map, ip);
517 	return ret;
518 }
519 
520 #ifdef CONFIG_DEBUG_LOCK_ALLOC
521 void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
522 {
523 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
524 }
525 EXPORT_SYMBOL_GPL(mutex_lock_nested);
526 
527 void __sched _mutex_lock_nest_lock(struct mutex *lock,
528 				   struct lockdep_map *nest_lock)
529 {
530 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
531 }
532 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
533 
534 int __sched mutex_lock_interruptible_nested(struct mutex *lock,
535 					    unsigned int subclass)
536 {
537 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
538 }
539 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
540 
541 int __sched mutex_lock_killable_nested(struct mutex *lock,
542 					    unsigned int subclass)
543 {
544 	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
545 }
546 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
547 
548 void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
549 {
550 	int token;
551 
552 	might_sleep();
553 
554 	token = io_schedule_prepare();
555 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
556 	io_schedule_finish(token);
557 }
558 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
559 
560 #else /* CONFIG_DEBUG_LOCK_ALLOC */
561 
562 void __sched mutex_lock(struct mutex *lock)
563 {
564 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
565 }
566 EXPORT_SYMBOL(mutex_lock);
567 
568 int __sched mutex_lock_interruptible(struct mutex *lock)
569 {
570 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
571 }
572 EXPORT_SYMBOL(mutex_lock_interruptible);
573 
574 int __sched mutex_lock_killable(struct mutex *lock)
575 {
576 	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
577 }
578 EXPORT_SYMBOL(mutex_lock_killable);
579 
580 void __sched mutex_lock_io(struct mutex *lock)
581 {
582 	int token = io_schedule_prepare();
583 
584 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
585 	io_schedule_finish(token);
586 }
587 EXPORT_SYMBOL(mutex_lock_io);
588 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
589 
590 int __sched mutex_trylock(struct mutex *lock)
591 {
592 	int ret;
593 
594 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
595 		return 0;
596 
597 	ret = __rt_mutex_trylock(&lock->rtmutex);
598 	if (ret)
599 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
600 
601 	return ret;
602 }
603 EXPORT_SYMBOL(mutex_trylock);
604 
605 void __sched mutex_unlock(struct mutex *lock)
606 {
607 	mutex_release(&lock->dep_map, _RET_IP_);
608 	__rt_mutex_unlock(&lock->rtmutex);
609 }
610 EXPORT_SYMBOL(mutex_unlock);
611 
612 #endif /* CONFIG_PREEMPT_RT */
613