xref: /linux/kernel/locking/rtmutex_api.c (revision 32d7e03d26fd93187c87ed0fbf59ec7023a61404)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * rtmutex API
4  */
5 #include <linux/spinlock.h>
6 #include <linux/export.h>
7 
8 #define RT_MUTEX_BUILD_MUTEX
9 #include "rtmutex.c"
10 
11 /*
12  * Max number of times we'll walk the boosting chain:
13  */
14 int max_lock_depth = 1024;
15 
16 /*
17  * Debug aware fast / slowpath lock,trylock,unlock
18  *
19  * The atomic acquire/release ops are compiled away, when either the
20  * architecture does not support cmpxchg or when debugging is enabled.
21  */
22 static __always_inline int __rt_mutex_lock_common(struct rt_mutex *lock,
23 						  unsigned int state,
24 						  unsigned int subclass)
25 {
26 	int ret;
27 
28 	might_sleep();
29 	mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
30 	ret = __rt_mutex_lock(&lock->rtmutex, state);
31 	if (ret)
32 		mutex_release(&lock->dep_map, _RET_IP_);
33 	return ret;
34 }
35 
36 void rt_mutex_base_init(struct rt_mutex_base *rtb)
37 {
38 	__rt_mutex_base_init(rtb);
39 }
40 EXPORT_SYMBOL(rt_mutex_base_init);
41 
42 #ifdef CONFIG_DEBUG_LOCK_ALLOC
43 /**
44  * rt_mutex_lock_nested - lock a rt_mutex
45  *
46  * @lock: the rt_mutex to be locked
47  * @subclass: the lockdep subclass
48  */
49 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
50 {
51 	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass);
52 }
53 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
54 
55 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
56 
57 /**
58  * rt_mutex_lock - lock a rt_mutex
59  *
60  * @lock: the rt_mutex to be locked
61  */
62 void __sched rt_mutex_lock(struct rt_mutex *lock)
63 {
64 	__rt_mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0);
65 }
66 EXPORT_SYMBOL_GPL(rt_mutex_lock);
67 #endif
68 
69 /**
70  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
71  *
72  * @lock:		the rt_mutex to be locked
73  *
74  * Returns:
75  *  0		on success
76  * -EINTR	when interrupted by a signal
77  */
78 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
79 {
80 	return __rt_mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0);
81 }
82 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
83 
84 /**
85  * rt_mutex_trylock - try to lock a rt_mutex
86  *
87  * @lock:	the rt_mutex to be locked
88  *
89  * This function can only be called in thread context. It's safe to call it
90  * from atomic regions, but not from hard or soft interrupt context.
91  *
92  * Returns:
93  *  1 on success
94  *  0 on contention
95  */
96 int __sched rt_mutex_trylock(struct rt_mutex *lock)
97 {
98 	int ret;
99 
100 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
101 		return 0;
102 
103 	ret = __rt_mutex_trylock(&lock->rtmutex);
104 	if (ret)
105 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
106 
107 	return ret;
108 }
109 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
110 
111 /**
112  * rt_mutex_unlock - unlock a rt_mutex
113  *
114  * @lock: the rt_mutex to be unlocked
115  */
116 void __sched rt_mutex_unlock(struct rt_mutex *lock)
117 {
118 	mutex_release(&lock->dep_map, _RET_IP_);
119 	__rt_mutex_unlock(&lock->rtmutex);
120 }
121 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
122 
123 /*
124  * Futex variants, must not use fastpath.
125  */
126 int __sched rt_mutex_futex_trylock(struct rt_mutex_base *lock)
127 {
128 	return rt_mutex_slowtrylock(lock);
129 }
130 
131 int __sched __rt_mutex_futex_trylock(struct rt_mutex_base *lock)
132 {
133 	return __rt_mutex_slowtrylock(lock);
134 }
135 
136 /**
137  * __rt_mutex_futex_unlock - Futex variant, that since futex variants
138  * do not use the fast-path, can be simple and will not need to retry.
139  *
140  * @lock:	The rt_mutex to be unlocked
141  * @wqh:	The wake queue head from which to get the next lock waiter
142  */
143 bool __sched __rt_mutex_futex_unlock(struct rt_mutex_base *lock,
144 				     struct rt_wake_q_head *wqh)
145 {
146 	lockdep_assert_held(&lock->wait_lock);
147 
148 	debug_rt_mutex_unlock(lock);
149 
150 	if (!rt_mutex_has_waiters(lock)) {
151 		lock->owner = NULL;
152 		return false; /* done */
153 	}
154 
155 	/*
156 	 * We've already deboosted, mark_wakeup_next_waiter() will
157 	 * retain preempt_disabled when we drop the wait_lock, to
158 	 * avoid inversion prior to the wakeup.  preempt_disable()
159 	 * therein pairs with rt_mutex_postunlock().
160 	 */
161 	mark_wakeup_next_waiter(wqh, lock);
162 
163 	return true; /* call postunlock() */
164 }
165 
166 void __sched rt_mutex_futex_unlock(struct rt_mutex_base *lock)
167 {
168 	DEFINE_RT_WAKE_Q(wqh);
169 	unsigned long flags;
170 	bool postunlock;
171 
172 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
173 	postunlock = __rt_mutex_futex_unlock(lock, &wqh);
174 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
175 
176 	if (postunlock)
177 		rt_mutex_postunlock(&wqh);
178 }
179 
180 /**
181  * __rt_mutex_init - initialize the rt_mutex
182  *
183  * @lock:	The rt_mutex to be initialized
184  * @name:	The lock name used for debugging
185  * @key:	The lock class key used for debugging
186  *
187  * Initialize the rt_mutex to unlocked state.
188  *
189  * Initializing of a locked rt_mutex is not allowed
190  */
191 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
192 			     struct lock_class_key *key)
193 {
194 	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
195 	__rt_mutex_base_init(&lock->rtmutex);
196 	lockdep_init_map_wait(&lock->dep_map, name, key, 0, LD_WAIT_SLEEP);
197 }
198 EXPORT_SYMBOL_GPL(__rt_mutex_init);
199 
200 /**
201  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
202  *				proxy owner
203  *
204  * @lock:	the rt_mutex to be locked
205  * @proxy_owner:the task to set as owner
206  *
207  * No locking. Caller has to do serializing itself
208  *
209  * Special API call for PI-futex support. This initializes the rtmutex and
210  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
211  * possible at this point because the pi_state which contains the rtmutex
212  * is not yet visible to other tasks.
213  */
214 void __sched rt_mutex_init_proxy_locked(struct rt_mutex_base *lock,
215 					struct task_struct *proxy_owner)
216 {
217 	static struct lock_class_key pi_futex_key;
218 
219 	__rt_mutex_base_init(lock);
220 	/*
221 	 * On PREEMPT_RT the futex hashbucket spinlock becomes 'sleeping'
222 	 * and rtmutex based. That causes a lockdep false positive, because
223 	 * some of the futex functions invoke spin_unlock(&hb->lock) with
224 	 * the wait_lock of the rtmutex associated to the pi_futex held.
225 	 * spin_unlock() in turn takes wait_lock of the rtmutex on which
226 	 * the spinlock is based, which makes lockdep notice a lock
227 	 * recursion. Give the futex/rtmutex wait_lock a separate key.
228 	 */
229 	lockdep_set_class(&lock->wait_lock, &pi_futex_key);
230 	rt_mutex_set_owner(lock, proxy_owner);
231 }
232 
233 /**
234  * rt_mutex_proxy_unlock - release a lock on behalf of owner
235  *
236  * @lock:	the rt_mutex to be locked
237  *
238  * No locking. Caller has to do serializing itself
239  *
240  * Special API call for PI-futex support. This just cleans up the rtmutex
241  * (debugging) state. Concurrent operations on this rt_mutex are not
242  * possible because it belongs to the pi_state which is about to be freed
243  * and it is not longer visible to other tasks.
244  */
245 void __sched rt_mutex_proxy_unlock(struct rt_mutex_base *lock)
246 {
247 	debug_rt_mutex_proxy_unlock(lock);
248 	rt_mutex_set_owner(lock, NULL);
249 }
250 
251 /**
252  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
253  * @lock:		the rt_mutex to take
254  * @waiter:		the pre-initialized rt_mutex_waiter
255  * @task:		the task to prepare
256  *
257  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
258  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
259  *
260  * NOTE: does _NOT_ remove the @waiter on failure; must either call
261  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
262  *
263  * Returns:
264  *  0 - task blocked on lock
265  *  1 - acquired the lock for task, caller should wake it up
266  * <0 - error
267  *
268  * Special API call for PI-futex support.
269  */
270 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
271 					struct rt_mutex_waiter *waiter,
272 					struct task_struct *task)
273 {
274 	int ret;
275 
276 	lockdep_assert_held(&lock->wait_lock);
277 
278 	if (try_to_take_rt_mutex(lock, task, NULL))
279 		return 1;
280 
281 	/* We enforce deadlock detection for futexes */
282 	ret = task_blocks_on_rt_mutex(lock, waiter, task, NULL,
283 				      RT_MUTEX_FULL_CHAINWALK);
284 
285 	if (ret && !rt_mutex_owner(lock)) {
286 		/*
287 		 * Reset the return value. We might have
288 		 * returned with -EDEADLK and the owner
289 		 * released the lock while we were walking the
290 		 * pi chain.  Let the waiter sort it out.
291 		 */
292 		ret = 0;
293 	}
294 
295 	return ret;
296 }
297 
298 /**
299  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
300  * @lock:		the rt_mutex to take
301  * @waiter:		the pre-initialized rt_mutex_waiter
302  * @task:		the task to prepare
303  *
304  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
305  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
306  *
307  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
308  * on failure.
309  *
310  * Returns:
311  *  0 - task blocked on lock
312  *  1 - acquired the lock for task, caller should wake it up
313  * <0 - error
314  *
315  * Special API call for PI-futex support.
316  */
317 int __sched rt_mutex_start_proxy_lock(struct rt_mutex_base *lock,
318 				      struct rt_mutex_waiter *waiter,
319 				      struct task_struct *task)
320 {
321 	int ret;
322 
323 	raw_spin_lock_irq(&lock->wait_lock);
324 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
325 	if (unlikely(ret))
326 		remove_waiter(lock, waiter);
327 	raw_spin_unlock_irq(&lock->wait_lock);
328 
329 	return ret;
330 }
331 
332 /**
333  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
334  * @lock:		the rt_mutex we were woken on
335  * @to:			the timeout, null if none. hrtimer should already have
336  *			been started.
337  * @waiter:		the pre-initialized rt_mutex_waiter
338  *
339  * Wait for the lock acquisition started on our behalf by
340  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
341  * rt_mutex_cleanup_proxy_lock().
342  *
343  * Returns:
344  *  0 - success
345  * <0 - error, one of -EINTR, -ETIMEDOUT
346  *
347  * Special API call for PI-futex support
348  */
349 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex_base *lock,
350 				     struct hrtimer_sleeper *to,
351 				     struct rt_mutex_waiter *waiter)
352 {
353 	int ret;
354 
355 	raw_spin_lock_irq(&lock->wait_lock);
356 	/* sleep on the mutex */
357 	set_current_state(TASK_INTERRUPTIBLE);
358 	ret = rt_mutex_slowlock_block(lock, NULL, TASK_INTERRUPTIBLE, to, waiter);
359 	/*
360 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
361 	 * have to fix that up.
362 	 */
363 	fixup_rt_mutex_waiters(lock);
364 	raw_spin_unlock_irq(&lock->wait_lock);
365 
366 	return ret;
367 }
368 
369 /**
370  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
371  * @lock:		the rt_mutex we were woken on
372  * @waiter:		the pre-initialized rt_mutex_waiter
373  *
374  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
375  * rt_mutex_wait_proxy_lock().
376  *
377  * Unless we acquired the lock; we're still enqueued on the wait-list and can
378  * in fact still be granted ownership until we're removed. Therefore we can
379  * find we are in fact the owner and must disregard the
380  * rt_mutex_wait_proxy_lock() failure.
381  *
382  * Returns:
383  *  true  - did the cleanup, we done.
384  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
385  *          caller should disregards its return value.
386  *
387  * Special API call for PI-futex support
388  */
389 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex_base *lock,
390 					 struct rt_mutex_waiter *waiter)
391 {
392 	bool cleanup = false;
393 
394 	raw_spin_lock_irq(&lock->wait_lock);
395 	/*
396 	 * Do an unconditional try-lock, this deals with the lock stealing
397 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
398 	 * sets a NULL owner.
399 	 *
400 	 * We're not interested in the return value, because the subsequent
401 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
402 	 * we will own the lock and it will have removed the waiter. If we
403 	 * failed the trylock, we're still not owner and we need to remove
404 	 * ourselves.
405 	 */
406 	try_to_take_rt_mutex(lock, current, waiter);
407 	/*
408 	 * Unless we're the owner; we're still enqueued on the wait_list.
409 	 * So check if we became owner, if not, take us off the wait_list.
410 	 */
411 	if (rt_mutex_owner(lock) != current) {
412 		remove_waiter(lock, waiter);
413 		cleanup = true;
414 	}
415 	/*
416 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
417 	 * have to fix that up.
418 	 */
419 	fixup_rt_mutex_waiters(lock);
420 
421 	raw_spin_unlock_irq(&lock->wait_lock);
422 
423 	return cleanup;
424 }
425 
426 /*
427  * Recheck the pi chain, in case we got a priority setting
428  *
429  * Called from sched_setscheduler
430  */
431 void __sched rt_mutex_adjust_pi(struct task_struct *task)
432 {
433 	struct rt_mutex_waiter *waiter;
434 	struct rt_mutex_base *next_lock;
435 	unsigned long flags;
436 
437 	raw_spin_lock_irqsave(&task->pi_lock, flags);
438 
439 	waiter = task->pi_blocked_on;
440 	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
441 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
442 		return;
443 	}
444 	next_lock = waiter->lock;
445 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
446 
447 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
448 	get_task_struct(task);
449 
450 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
451 				   next_lock, NULL, task);
452 }
453 
454 /*
455  * Performs the wakeup of the top-waiter and re-enables preemption.
456  */
457 void __sched rt_mutex_postunlock(struct rt_wake_q_head *wqh)
458 {
459 	rt_mutex_wake_up_q(wqh);
460 }
461 
462 #ifdef CONFIG_DEBUG_RT_MUTEXES
463 void rt_mutex_debug_task_free(struct task_struct *task)
464 {
465 	DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
466 	DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
467 }
468 #endif
469 
470 #ifdef CONFIG_PREEMPT_RT
471 /* Mutexes */
472 void __mutex_rt_init(struct mutex *mutex, const char *name,
473 		     struct lock_class_key *key)
474 {
475 	debug_check_no_locks_freed((void *)mutex, sizeof(*mutex));
476 	lockdep_init_map_wait(&mutex->dep_map, name, key, 0, LD_WAIT_SLEEP);
477 }
478 EXPORT_SYMBOL(__mutex_rt_init);
479 
480 static __always_inline int __mutex_lock_common(struct mutex *lock,
481 					       unsigned int state,
482 					       unsigned int subclass,
483 					       struct lockdep_map *nest_lock,
484 					       unsigned long ip)
485 {
486 	int ret;
487 
488 	might_sleep();
489 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
490 	ret = __rt_mutex_lock(&lock->rtmutex, state);
491 	if (ret)
492 		mutex_release(&lock->dep_map, ip);
493 	else
494 		lock_acquired(&lock->dep_map, ip);
495 	return ret;
496 }
497 
498 #ifdef CONFIG_DEBUG_LOCK_ALLOC
499 void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass)
500 {
501 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
502 }
503 EXPORT_SYMBOL_GPL(mutex_lock_nested);
504 
505 void __sched _mutex_lock_nest_lock(struct mutex *lock,
506 				   struct lockdep_map *nest_lock)
507 {
508 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest_lock, _RET_IP_);
509 }
510 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
511 
512 int __sched mutex_lock_interruptible_nested(struct mutex *lock,
513 					    unsigned int subclass)
514 {
515 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
516 }
517 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
518 
519 int __sched mutex_lock_killable_nested(struct mutex *lock,
520 					    unsigned int subclass)
521 {
522 	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
523 }
524 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
525 
526 void __sched mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
527 {
528 	int token;
529 
530 	might_sleep();
531 
532 	token = io_schedule_prepare();
533 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
534 	io_schedule_finish(token);
535 }
536 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
537 
538 #else /* CONFIG_DEBUG_LOCK_ALLOC */
539 
540 void __sched mutex_lock(struct mutex *lock)
541 {
542 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
543 }
544 EXPORT_SYMBOL(mutex_lock);
545 
546 int __sched mutex_lock_interruptible(struct mutex *lock)
547 {
548 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
549 }
550 EXPORT_SYMBOL(mutex_lock_interruptible);
551 
552 int __sched mutex_lock_killable(struct mutex *lock)
553 {
554 	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
555 }
556 EXPORT_SYMBOL(mutex_lock_killable);
557 
558 void __sched mutex_lock_io(struct mutex *lock)
559 {
560 	int token = io_schedule_prepare();
561 
562 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
563 	io_schedule_finish(token);
564 }
565 EXPORT_SYMBOL(mutex_lock_io);
566 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
567 
568 int __sched mutex_trylock(struct mutex *lock)
569 {
570 	int ret;
571 
572 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
573 		return 0;
574 
575 	ret = __rt_mutex_trylock(&lock->rtmutex);
576 	if (ret)
577 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
578 
579 	return ret;
580 }
581 EXPORT_SYMBOL(mutex_trylock);
582 
583 void __sched mutex_unlock(struct mutex *lock)
584 {
585 	mutex_release(&lock->dep_map, _RET_IP_);
586 	__rt_mutex_unlock(&lock->rtmutex);
587 }
588 EXPORT_SYMBOL(mutex_unlock);
589 
590 #endif /* CONFIG_PREEMPT_RT */
591