xref: /linux/kernel/locking/rtmutex.c (revision f6154d8babbb8a98f0d3ea325aafae2e33bfd8be)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *				     and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26 
27 #include <trace/events/lock.h>
28 
29 #include "rtmutex_common.h"
30 
31 #ifndef WW_RT
32 # define build_ww_mutex()	(false)
33 # define ww_container_of(rtm)	NULL
34 
35 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
36 					struct rt_mutex *lock,
37 					struct ww_acquire_ctx *ww_ctx)
38 {
39 	return 0;
40 }
41 
42 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
43 					    struct ww_acquire_ctx *ww_ctx)
44 {
45 }
46 
47 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
48 					  struct ww_acquire_ctx *ww_ctx)
49 {
50 }
51 
52 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
53 					struct rt_mutex_waiter *waiter,
54 					struct ww_acquire_ctx *ww_ctx)
55 {
56 	return 0;
57 }
58 
59 #else
60 # define build_ww_mutex()	(true)
61 # define ww_container_of(rtm)	container_of(rtm, struct ww_mutex, base)
62 # include "ww_mutex.h"
63 #endif
64 
65 /*
66  * lock->owner state tracking:
67  *
68  * lock->owner holds the task_struct pointer of the owner. Bit 0
69  * is used to keep track of the "lock has waiters" state.
70  *
71  * owner	bit0
72  * NULL		0	lock is free (fast acquire possible)
73  * NULL		1	lock is free and has waiters and the top waiter
74  *				is going to take the lock*
75  * taskpointer	0	lock is held (fast release possible)
76  * taskpointer	1	lock is held and has waiters**
77  *
78  * The fast atomic compare exchange based acquire and release is only
79  * possible when bit 0 of lock->owner is 0.
80  *
81  * (*) It also can be a transitional state when grabbing the lock
82  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
83  * we need to set the bit0 before looking at the lock, and the owner may be
84  * NULL in this small time, hence this can be a transitional state.
85  *
86  * (**) There is a small time when bit 0 is set but there are no
87  * waiters. This can happen when grabbing the lock in the slow path.
88  * To prevent a cmpxchg of the owner releasing the lock, we need to
89  * set this bit before looking at the lock.
90  */
91 
92 static __always_inline struct task_struct *
93 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
94 {
95 	unsigned long val = (unsigned long)owner;
96 
97 	if (rt_mutex_has_waiters(lock))
98 		val |= RT_MUTEX_HAS_WAITERS;
99 
100 	return (struct task_struct *)val;
101 }
102 
103 static __always_inline void
104 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
105 {
106 	/*
107 	 * lock->wait_lock is held but explicit acquire semantics are needed
108 	 * for a new lock owner so WRITE_ONCE is insufficient.
109 	 */
110 	xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
111 }
112 
113 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
114 {
115 	/* lock->wait_lock is held so the unlock provides release semantics. */
116 	WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
117 }
118 
119 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
120 {
121 	lock->owner = (struct task_struct *)
122 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
123 }
124 
125 static __always_inline void
126 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
127 {
128 	unsigned long owner, *p = (unsigned long *) &lock->owner;
129 
130 	if (rt_mutex_has_waiters(lock))
131 		return;
132 
133 	/*
134 	 * The rbtree has no waiters enqueued, now make sure that the
135 	 * lock->owner still has the waiters bit set, otherwise the
136 	 * following can happen:
137 	 *
138 	 * CPU 0	CPU 1		CPU2
139 	 * l->owner=T1
140 	 *		rt_mutex_lock(l)
141 	 *		lock(l->lock)
142 	 *		l->owner = T1 | HAS_WAITERS;
143 	 *		enqueue(T2)
144 	 *		boost()
145 	 *		  unlock(l->lock)
146 	 *		block()
147 	 *
148 	 *				rt_mutex_lock(l)
149 	 *				lock(l->lock)
150 	 *				l->owner = T1 | HAS_WAITERS;
151 	 *				enqueue(T3)
152 	 *				boost()
153 	 *				  unlock(l->lock)
154 	 *				block()
155 	 *		signal(->T2)	signal(->T3)
156 	 *		lock(l->lock)
157 	 *		dequeue(T2)
158 	 *		deboost()
159 	 *		  unlock(l->lock)
160 	 *				lock(l->lock)
161 	 *				dequeue(T3)
162 	 *				 ==> wait list is empty
163 	 *				deboost()
164 	 *				 unlock(l->lock)
165 	 *		lock(l->lock)
166 	 *		fixup_rt_mutex_waiters()
167 	 *		  if (wait_list_empty(l) {
168 	 *		    l->owner = owner
169 	 *		    owner = l->owner & ~HAS_WAITERS;
170 	 *		      ==> l->owner = T1
171 	 *		  }
172 	 *				lock(l->lock)
173 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
174 	 *				  if (wait_list_empty(l) {
175 	 *				    owner = l->owner & ~HAS_WAITERS;
176 	 * cmpxchg(l->owner, T1, NULL)
177 	 *  ===> Success (l->owner = NULL)
178 	 *
179 	 *				    l->owner = owner
180 	 *				      ==> l->owner = T1
181 	 *				  }
182 	 *
183 	 * With the check for the waiter bit in place T3 on CPU2 will not
184 	 * overwrite. All tasks fiddling with the waiters bit are
185 	 * serialized by l->lock, so nothing else can modify the waiters
186 	 * bit. If the bit is set then nothing can change l->owner either
187 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
188 	 * happens in the middle of the RMW because the waiters bit is
189 	 * still set.
190 	 */
191 	owner = READ_ONCE(*p);
192 	if (owner & RT_MUTEX_HAS_WAITERS) {
193 		/*
194 		 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
195 		 * why xchg_acquire() is used for updating owner for
196 		 * locking and WRITE_ONCE() for unlocking.
197 		 *
198 		 * WRITE_ONCE() would work for the acquire case too, but
199 		 * in case that the lock acquisition failed it might
200 		 * force other lockers into the slow path unnecessarily.
201 		 */
202 		if (acquire_lock)
203 			xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
204 		else
205 			WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
206 	}
207 }
208 
209 /*
210  * We can speed up the acquire/release, if there's no debugging state to be
211  * set up.
212  */
213 #ifndef CONFIG_DEBUG_RT_MUTEXES
214 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
215 						     struct task_struct *old,
216 						     struct task_struct *new)
217 {
218 	return try_cmpxchg_acquire(&lock->owner, &old, new);
219 }
220 
221 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
222 {
223 	return rt_mutex_cmpxchg_acquire(lock, NULL, current);
224 }
225 
226 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
227 						     struct task_struct *old,
228 						     struct task_struct *new)
229 {
230 	return try_cmpxchg_release(&lock->owner, &old, new);
231 }
232 
233 /*
234  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
235  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
236  * relaxed semantics suffice.
237  */
238 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
239 {
240 	unsigned long owner, *p = (unsigned long *) &lock->owner;
241 
242 	do {
243 		owner = *p;
244 	} while (cmpxchg_relaxed(p, owner,
245 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
246 
247 	/*
248 	 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
249 	 * operations in the event of contention. Ensure the successful
250 	 * cmpxchg is visible.
251 	 */
252 	smp_mb__after_atomic();
253 }
254 
255 /*
256  * Safe fastpath aware unlock:
257  * 1) Clear the waiters bit
258  * 2) Drop lock->wait_lock
259  * 3) Try to unlock the lock with cmpxchg
260  */
261 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
262 						 unsigned long flags)
263 	__releases(lock->wait_lock)
264 {
265 	struct task_struct *owner = rt_mutex_owner(lock);
266 
267 	clear_rt_mutex_waiters(lock);
268 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
269 	/*
270 	 * If a new waiter comes in between the unlock and the cmpxchg
271 	 * we have two situations:
272 	 *
273 	 * unlock(wait_lock);
274 	 *					lock(wait_lock);
275 	 * cmpxchg(p, owner, 0) == owner
276 	 *					mark_rt_mutex_waiters(lock);
277 	 *					acquire(lock);
278 	 * or:
279 	 *
280 	 * unlock(wait_lock);
281 	 *					lock(wait_lock);
282 	 *					mark_rt_mutex_waiters(lock);
283 	 *
284 	 * cmpxchg(p, owner, 0) != owner
285 	 *					enqueue_waiter();
286 	 *					unlock(wait_lock);
287 	 * lock(wait_lock);
288 	 * wake waiter();
289 	 * unlock(wait_lock);
290 	 *					lock(wait_lock);
291 	 *					acquire(lock);
292 	 */
293 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
294 }
295 
296 #else
297 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
298 						     struct task_struct *old,
299 						     struct task_struct *new)
300 {
301 	return false;
302 
303 }
304 
305 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock);
306 
307 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
308 {
309 	/*
310 	 * With debug enabled rt_mutex_cmpxchg trylock() will always fail.
311 	 *
312 	 * Avoid unconditionally taking the slow path by using
313 	 * rt_mutex_slow_trylock() which is covered by the debug code and can
314 	 * acquire a non-contended rtmutex.
315 	 */
316 	return rt_mutex_slowtrylock(lock);
317 }
318 
319 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
320 						     struct task_struct *old,
321 						     struct task_struct *new)
322 {
323 	return false;
324 }
325 
326 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
327 {
328 	lock->owner = (struct task_struct *)
329 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
330 }
331 
332 /*
333  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
334  */
335 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
336 						 unsigned long flags)
337 	__releases(lock->wait_lock)
338 {
339 	lock->owner = NULL;
340 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
341 	return true;
342 }
343 #endif
344 
345 static __always_inline int __waiter_prio(struct task_struct *task)
346 {
347 	int prio = task->prio;
348 
349 	if (!rt_prio(prio))
350 		return DEFAULT_PRIO;
351 
352 	return prio;
353 }
354 
355 /*
356  * Update the waiter->tree copy of the sort keys.
357  */
358 static __always_inline void
359 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
360 {
361 	lockdep_assert_held(&waiter->lock->wait_lock);
362 	lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
363 
364 	waiter->tree.prio = __waiter_prio(task);
365 	waiter->tree.deadline = task->dl.deadline;
366 }
367 
368 /*
369  * Update the waiter->pi_tree copy of the sort keys (from the tree copy).
370  */
371 static __always_inline void
372 waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
373 {
374 	lockdep_assert_held(&waiter->lock->wait_lock);
375 	lockdep_assert_held(&task->pi_lock);
376 	lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
377 
378 	waiter->pi_tree.prio = waiter->tree.prio;
379 	waiter->pi_tree.deadline = waiter->tree.deadline;
380 }
381 
382 /*
383  * Only use with rt_waiter_node_{less,equal}()
384  */
385 #define task_to_waiter_node(p)	\
386 	&(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
387 #define task_to_waiter(p)	\
388 	&(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
389 
390 static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
391 					       struct rt_waiter_node *right)
392 {
393 	if (left->prio < right->prio)
394 		return 1;
395 
396 	/*
397 	 * If both waiters have dl_prio(), we check the deadlines of the
398 	 * associated tasks.
399 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
400 	 * then right waiter has a dl_prio() too.
401 	 */
402 	if (dl_prio(left->prio))
403 		return dl_time_before(left->deadline, right->deadline);
404 
405 	return 0;
406 }
407 
408 static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
409 						 struct rt_waiter_node *right)
410 {
411 	if (left->prio != right->prio)
412 		return 0;
413 
414 	/*
415 	 * If both waiters have dl_prio(), we check the deadlines of the
416 	 * associated tasks.
417 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
418 	 * then right waiter has a dl_prio() too.
419 	 */
420 	if (dl_prio(left->prio))
421 		return left->deadline == right->deadline;
422 
423 	return 1;
424 }
425 
426 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
427 				  struct rt_mutex_waiter *top_waiter)
428 {
429 	if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
430 		return true;
431 
432 #ifdef RT_MUTEX_BUILD_SPINLOCKS
433 	/*
434 	 * Note that RT tasks are excluded from same priority (lateral)
435 	 * steals to prevent the introduction of an unbounded latency.
436 	 */
437 	if (rt_prio(waiter->tree.prio) || dl_prio(waiter->tree.prio))
438 		return false;
439 
440 	return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
441 #else
442 	return false;
443 #endif
444 }
445 
446 #define __node_2_waiter(node) \
447 	rb_entry((node), struct rt_mutex_waiter, tree.entry)
448 
449 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
450 {
451 	struct rt_mutex_waiter *aw = __node_2_waiter(a);
452 	struct rt_mutex_waiter *bw = __node_2_waiter(b);
453 
454 	if (rt_waiter_node_less(&aw->tree, &bw->tree))
455 		return 1;
456 
457 	if (!build_ww_mutex())
458 		return 0;
459 
460 	if (rt_waiter_node_less(&bw->tree, &aw->tree))
461 		return 0;
462 
463 	/* NOTE: relies on waiter->ww_ctx being set before insertion */
464 	if (aw->ww_ctx) {
465 		if (!bw->ww_ctx)
466 			return 1;
467 
468 		return (signed long)(aw->ww_ctx->stamp -
469 				     bw->ww_ctx->stamp) < 0;
470 	}
471 
472 	return 0;
473 }
474 
475 static __always_inline void
476 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
477 {
478 	lockdep_assert_held(&lock->wait_lock);
479 
480 	rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
481 }
482 
483 static __always_inline void
484 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
485 {
486 	lockdep_assert_held(&lock->wait_lock);
487 
488 	if (RB_EMPTY_NODE(&waiter->tree.entry))
489 		return;
490 
491 	rb_erase_cached(&waiter->tree.entry, &lock->waiters);
492 	RB_CLEAR_NODE(&waiter->tree.entry);
493 }
494 
495 #define __node_2_rt_node(node) \
496 	rb_entry((node), struct rt_waiter_node, entry)
497 
498 static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
499 {
500 	return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
501 }
502 
503 static __always_inline void
504 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
505 {
506 	lockdep_assert_held(&task->pi_lock);
507 
508 	rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
509 }
510 
511 static __always_inline void
512 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
513 {
514 	lockdep_assert_held(&task->pi_lock);
515 
516 	if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
517 		return;
518 
519 	rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
520 	RB_CLEAR_NODE(&waiter->pi_tree.entry);
521 }
522 
523 static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
524 						 struct task_struct *p)
525 {
526 	struct task_struct *pi_task = NULL;
527 
528 	lockdep_assert_held(&lock->wait_lock);
529 	lockdep_assert(rt_mutex_owner(lock) == p);
530 	lockdep_assert_held(&p->pi_lock);
531 
532 	if (task_has_pi_waiters(p))
533 		pi_task = task_top_pi_waiter(p)->task;
534 
535 	rt_mutex_setprio(p, pi_task);
536 }
537 
538 /* RT mutex specific wake_q wrappers */
539 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
540 						     struct task_struct *task,
541 						     unsigned int wake_state)
542 {
543 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
544 		if (IS_ENABLED(CONFIG_PROVE_LOCKING))
545 			WARN_ON_ONCE(wqh->rtlock_task);
546 		get_task_struct(task);
547 		wqh->rtlock_task = task;
548 	} else {
549 		wake_q_add(&wqh->head, task);
550 	}
551 }
552 
553 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
554 						struct rt_mutex_waiter *w)
555 {
556 	rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
557 }
558 
559 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
560 {
561 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
562 		wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
563 		put_task_struct(wqh->rtlock_task);
564 		wqh->rtlock_task = NULL;
565 	}
566 
567 	if (!wake_q_empty(&wqh->head))
568 		wake_up_q(&wqh->head);
569 
570 	/* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
571 	preempt_enable();
572 }
573 
574 /*
575  * Deadlock detection is conditional:
576  *
577  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
578  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
579  *
580  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
581  * conducted independent of the detect argument.
582  *
583  * If the waiter argument is NULL this indicates the deboost path and
584  * deadlock detection is disabled independent of the detect argument
585  * and the config settings.
586  */
587 static __always_inline bool
588 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
589 			      enum rtmutex_chainwalk chwalk)
590 {
591 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
592 		return waiter != NULL;
593 	return chwalk == RT_MUTEX_FULL_CHAINWALK;
594 }
595 
596 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
597 {
598 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
599 }
600 
601 /*
602  * Adjust the priority chain. Also used for deadlock detection.
603  * Decreases task's usage by one - may thus free the task.
604  *
605  * @task:	the task owning the mutex (owner) for which a chain walk is
606  *		probably needed
607  * @chwalk:	do we have to carry out deadlock detection?
608  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
609  *		things for a task that has just got its priority adjusted, and
610  *		is waiting on a mutex)
611  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
612  *		we dropped its pi_lock. Is never dereferenced, only used for
613  *		comparison to detect lock chain changes.
614  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
615  *		its priority to the mutex owner (can be NULL in the case
616  *		depicted above or if the top waiter is gone away and we are
617  *		actually deboosting the owner)
618  * @top_task:	the current top waiter
619  *
620  * Returns 0 or -EDEADLK.
621  *
622  * Chain walk basics and protection scope
623  *
624  * [R] refcount on task
625  * [Pn] task->pi_lock held
626  * [L] rtmutex->wait_lock held
627  *
628  * Normal locking order:
629  *
630  *   rtmutex->wait_lock
631  *     task->pi_lock
632  *
633  * Step	Description				Protected by
634  *	function arguments:
635  *	@task					[R]
636  *	@orig_lock if != NULL			@top_task is blocked on it
637  *	@next_lock				Unprotected. Cannot be
638  *						dereferenced. Only used for
639  *						comparison.
640  *	@orig_waiter if != NULL			@top_task is blocked on it
641  *	@top_task				current, or in case of proxy
642  *						locking protected by calling
643  *						code
644  *	again:
645  *	  loop_sanity_check();
646  *	retry:
647  * [1]	  lock(task->pi_lock);			[R] acquire [P1]
648  * [2]	  waiter = task->pi_blocked_on;		[P1]
649  * [3]	  check_exit_conditions_1();		[P1]
650  * [4]	  lock = waiter->lock;			[P1]
651  * [5]	  if (!try_lock(lock->wait_lock)) {	[P1] try to acquire [L]
652  *	    unlock(task->pi_lock);		release [P1]
653  *	    goto retry;
654  *	  }
655  * [6]	  check_exit_conditions_2();		[P1] + [L]
656  * [7]	  requeue_lock_waiter(lock, waiter);	[P1] + [L]
657  * [8]	  unlock(task->pi_lock);		release [P1]
658  *	  put_task_struct(task);		release [R]
659  * [9]	  check_exit_conditions_3();		[L]
660  * [10]	  task = owner(lock);			[L]
661  *	  get_task_struct(task);		[L] acquire [R]
662  *	  lock(task->pi_lock);			[L] acquire [P2]
663  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
664  * [12]	  check_exit_conditions_4();		[P2] + [L]
665  * [13]	  unlock(task->pi_lock);		release [P2]
666  *	  unlock(lock->wait_lock);		release [L]
667  *	  goto again;
668  *
669  * Where P1 is the blocking task and P2 is the lock owner; going up one step
670  * the owner becomes the next blocked task etc..
671  *
672 *
673  */
674 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
675 					      enum rtmutex_chainwalk chwalk,
676 					      struct rt_mutex_base *orig_lock,
677 					      struct rt_mutex_base *next_lock,
678 					      struct rt_mutex_waiter *orig_waiter,
679 					      struct task_struct *top_task)
680 {
681 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
682 	struct rt_mutex_waiter *prerequeue_top_waiter;
683 	int ret = 0, depth = 0;
684 	struct rt_mutex_base *lock;
685 	bool detect_deadlock;
686 	bool requeue = true;
687 
688 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
689 
690 	/*
691 	 * The (de)boosting is a step by step approach with a lot of
692 	 * pitfalls. We want this to be preemptible and we want hold a
693 	 * maximum of two locks per step. So we have to check
694 	 * carefully whether things change under us.
695 	 */
696  again:
697 	/*
698 	 * We limit the lock chain length for each invocation.
699 	 */
700 	if (++depth > max_lock_depth) {
701 		static int prev_max;
702 
703 		/*
704 		 * Print this only once. If the admin changes the limit,
705 		 * print a new message when reaching the limit again.
706 		 */
707 		if (prev_max != max_lock_depth) {
708 			prev_max = max_lock_depth;
709 			printk(KERN_WARNING "Maximum lock depth %d reached "
710 			       "task: %s (%d)\n", max_lock_depth,
711 			       top_task->comm, task_pid_nr(top_task));
712 		}
713 		put_task_struct(task);
714 
715 		return -EDEADLK;
716 	}
717 
718 	/*
719 	 * We are fully preemptible here and only hold the refcount on
720 	 * @task. So everything can have changed under us since the
721 	 * caller or our own code below (goto retry/again) dropped all
722 	 * locks.
723 	 */
724  retry:
725 	/*
726 	 * [1] Task cannot go away as we did a get_task() before !
727 	 */
728 	raw_spin_lock_irq(&task->pi_lock);
729 
730 	/*
731 	 * [2] Get the waiter on which @task is blocked on.
732 	 */
733 	waiter = task->pi_blocked_on;
734 
735 	/*
736 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
737 	 */
738 
739 	/*
740 	 * Check whether the end of the boosting chain has been
741 	 * reached or the state of the chain has changed while we
742 	 * dropped the locks.
743 	 */
744 	if (!waiter)
745 		goto out_unlock_pi;
746 
747 	/*
748 	 * Check the orig_waiter state. After we dropped the locks,
749 	 * the previous owner of the lock might have released the lock.
750 	 */
751 	if (orig_waiter && !rt_mutex_owner(orig_lock))
752 		goto out_unlock_pi;
753 
754 	/*
755 	 * We dropped all locks after taking a refcount on @task, so
756 	 * the task might have moved on in the lock chain or even left
757 	 * the chain completely and blocks now on an unrelated lock or
758 	 * on @orig_lock.
759 	 *
760 	 * We stored the lock on which @task was blocked in @next_lock,
761 	 * so we can detect the chain change.
762 	 */
763 	if (next_lock != waiter->lock)
764 		goto out_unlock_pi;
765 
766 	/*
767 	 * There could be 'spurious' loops in the lock graph due to ww_mutex,
768 	 * consider:
769 	 *
770 	 *   P1: A, ww_A, ww_B
771 	 *   P2: ww_B, ww_A
772 	 *   P3: A
773 	 *
774 	 * P3 should not return -EDEADLK because it gets trapped in the cycle
775 	 * created by P1 and P2 (which will resolve -- and runs into
776 	 * max_lock_depth above). Therefore disable detect_deadlock such that
777 	 * the below termination condition can trigger once all relevant tasks
778 	 * are boosted.
779 	 *
780 	 * Even when we start with ww_mutex we can disable deadlock detection,
781 	 * since we would supress a ww_mutex induced deadlock at [6] anyway.
782 	 * Supressing it here however is not sufficient since we might still
783 	 * hit [6] due to adjustment driven iteration.
784 	 *
785 	 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
786 	 * utterly fail to report it; lockdep should.
787 	 */
788 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
789 		detect_deadlock = false;
790 
791 	/*
792 	 * Drop out, when the task has no waiters. Note,
793 	 * top_waiter can be NULL, when we are in the deboosting
794 	 * mode!
795 	 */
796 	if (top_waiter) {
797 		if (!task_has_pi_waiters(task))
798 			goto out_unlock_pi;
799 		/*
800 		 * If deadlock detection is off, we stop here if we
801 		 * are not the top pi waiter of the task. If deadlock
802 		 * detection is enabled we continue, but stop the
803 		 * requeueing in the chain walk.
804 		 */
805 		if (top_waiter != task_top_pi_waiter(task)) {
806 			if (!detect_deadlock)
807 				goto out_unlock_pi;
808 			else
809 				requeue = false;
810 		}
811 	}
812 
813 	/*
814 	 * If the waiter priority is the same as the task priority
815 	 * then there is no further priority adjustment necessary.  If
816 	 * deadlock detection is off, we stop the chain walk. If its
817 	 * enabled we continue, but stop the requeueing in the chain
818 	 * walk.
819 	 */
820 	if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
821 		if (!detect_deadlock)
822 			goto out_unlock_pi;
823 		else
824 			requeue = false;
825 	}
826 
827 	/*
828 	 * [4] Get the next lock; per holding task->pi_lock we can't unblock
829 	 * and guarantee @lock's existence.
830 	 */
831 	lock = waiter->lock;
832 	/*
833 	 * [5] We need to trylock here as we are holding task->pi_lock,
834 	 * which is the reverse lock order versus the other rtmutex
835 	 * operations.
836 	 *
837 	 * Per the above, holding task->pi_lock guarantees lock exists, so
838 	 * inverting this lock order is infeasible from a life-time
839 	 * perspective.
840 	 */
841 	if (!raw_spin_trylock(&lock->wait_lock)) {
842 		raw_spin_unlock_irq(&task->pi_lock);
843 		cpu_relax();
844 		goto retry;
845 	}
846 
847 	/*
848 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
849 	 * lock->wait_lock.
850 	 *
851 	 * Deadlock detection. If the lock is the same as the original
852 	 * lock which caused us to walk the lock chain or if the
853 	 * current lock is owned by the task which initiated the chain
854 	 * walk, we detected a deadlock.
855 	 */
856 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
857 		ret = -EDEADLK;
858 
859 		/*
860 		 * When the deadlock is due to ww_mutex; also see above. Don't
861 		 * report the deadlock and instead let the ww_mutex wound/die
862 		 * logic pick which of the contending threads gets -EDEADLK.
863 		 *
864 		 * NOTE: assumes the cycle only contains a single ww_class; any
865 		 * other configuration and we fail to report; also, see
866 		 * lockdep.
867 		 */
868 		if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
869 			ret = 0;
870 
871 		raw_spin_unlock(&lock->wait_lock);
872 		goto out_unlock_pi;
873 	}
874 
875 	/*
876 	 * If we just follow the lock chain for deadlock detection, no
877 	 * need to do all the requeue operations. To avoid a truckload
878 	 * of conditionals around the various places below, just do the
879 	 * minimum chain walk checks.
880 	 */
881 	if (!requeue) {
882 		/*
883 		 * No requeue[7] here. Just release @task [8]
884 		 */
885 		raw_spin_unlock(&task->pi_lock);
886 		put_task_struct(task);
887 
888 		/*
889 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
890 		 * If there is no owner of the lock, end of chain.
891 		 */
892 		if (!rt_mutex_owner(lock)) {
893 			raw_spin_unlock_irq(&lock->wait_lock);
894 			return 0;
895 		}
896 
897 		/* [10] Grab the next task, i.e. owner of @lock */
898 		task = get_task_struct(rt_mutex_owner(lock));
899 		raw_spin_lock(&task->pi_lock);
900 
901 		/*
902 		 * No requeue [11] here. We just do deadlock detection.
903 		 *
904 		 * [12] Store whether owner is blocked
905 		 * itself. Decision is made after dropping the locks
906 		 */
907 		next_lock = task_blocked_on_lock(task);
908 		/*
909 		 * Get the top waiter for the next iteration
910 		 */
911 		top_waiter = rt_mutex_top_waiter(lock);
912 
913 		/* [13] Drop locks */
914 		raw_spin_unlock(&task->pi_lock);
915 		raw_spin_unlock_irq(&lock->wait_lock);
916 
917 		/* If owner is not blocked, end of chain. */
918 		if (!next_lock)
919 			goto out_put_task;
920 		goto again;
921 	}
922 
923 	/*
924 	 * Store the current top waiter before doing the requeue
925 	 * operation on @lock. We need it for the boost/deboost
926 	 * decision below.
927 	 */
928 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
929 
930 	/* [7] Requeue the waiter in the lock waiter tree. */
931 	rt_mutex_dequeue(lock, waiter);
932 
933 	/*
934 	 * Update the waiter prio fields now that we're dequeued.
935 	 *
936 	 * These values can have changed through either:
937 	 *
938 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
939 	 *
940 	 * or
941 	 *
942 	 *   DL CBS enforcement advancing the effective deadline.
943 	 */
944 	waiter_update_prio(waiter, task);
945 
946 	rt_mutex_enqueue(lock, waiter);
947 
948 	/*
949 	 * [8] Release the (blocking) task in preparation for
950 	 * taking the owner task in [10].
951 	 *
952 	 * Since we hold lock->waiter_lock, task cannot unblock, even if we
953 	 * release task->pi_lock.
954 	 */
955 	raw_spin_unlock(&task->pi_lock);
956 	put_task_struct(task);
957 
958 	/*
959 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
960 	 *
961 	 * We must abort the chain walk if there is no lock owner even
962 	 * in the dead lock detection case, as we have nothing to
963 	 * follow here. This is the end of the chain we are walking.
964 	 */
965 	if (!rt_mutex_owner(lock)) {
966 		/*
967 		 * If the requeue [7] above changed the top waiter,
968 		 * then we need to wake the new top waiter up to try
969 		 * to get the lock.
970 		 */
971 		top_waiter = rt_mutex_top_waiter(lock);
972 		if (prerequeue_top_waiter != top_waiter)
973 			wake_up_state(top_waiter->task, top_waiter->wake_state);
974 		raw_spin_unlock_irq(&lock->wait_lock);
975 		return 0;
976 	}
977 
978 	/*
979 	 * [10] Grab the next task, i.e. the owner of @lock
980 	 *
981 	 * Per holding lock->wait_lock and checking for !owner above, there
982 	 * must be an owner and it cannot go away.
983 	 */
984 	task = get_task_struct(rt_mutex_owner(lock));
985 	raw_spin_lock(&task->pi_lock);
986 
987 	/* [11] requeue the pi waiters if necessary */
988 	if (waiter == rt_mutex_top_waiter(lock)) {
989 		/*
990 		 * The waiter became the new top (highest priority)
991 		 * waiter on the lock. Replace the previous top waiter
992 		 * in the owner tasks pi waiters tree with this waiter
993 		 * and adjust the priority of the owner.
994 		 */
995 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
996 		waiter_clone_prio(waiter, task);
997 		rt_mutex_enqueue_pi(task, waiter);
998 		rt_mutex_adjust_prio(lock, task);
999 
1000 	} else if (prerequeue_top_waiter == waiter) {
1001 		/*
1002 		 * The waiter was the top waiter on the lock, but is
1003 		 * no longer the top priority waiter. Replace waiter in
1004 		 * the owner tasks pi waiters tree with the new top
1005 		 * (highest priority) waiter and adjust the priority
1006 		 * of the owner.
1007 		 * The new top waiter is stored in @waiter so that
1008 		 * @waiter == @top_waiter evaluates to true below and
1009 		 * we continue to deboost the rest of the chain.
1010 		 */
1011 		rt_mutex_dequeue_pi(task, waiter);
1012 		waiter = rt_mutex_top_waiter(lock);
1013 		waiter_clone_prio(waiter, task);
1014 		rt_mutex_enqueue_pi(task, waiter);
1015 		rt_mutex_adjust_prio(lock, task);
1016 	} else {
1017 		/*
1018 		 * Nothing changed. No need to do any priority
1019 		 * adjustment.
1020 		 */
1021 	}
1022 
1023 	/*
1024 	 * [12] check_exit_conditions_4() protected by task->pi_lock
1025 	 * and lock->wait_lock. The actual decisions are made after we
1026 	 * dropped the locks.
1027 	 *
1028 	 * Check whether the task which owns the current lock is pi
1029 	 * blocked itself. If yes we store a pointer to the lock for
1030 	 * the lock chain change detection above. After we dropped
1031 	 * task->pi_lock next_lock cannot be dereferenced anymore.
1032 	 */
1033 	next_lock = task_blocked_on_lock(task);
1034 	/*
1035 	 * Store the top waiter of @lock for the end of chain walk
1036 	 * decision below.
1037 	 */
1038 	top_waiter = rt_mutex_top_waiter(lock);
1039 
1040 	/* [13] Drop the locks */
1041 	raw_spin_unlock(&task->pi_lock);
1042 	raw_spin_unlock_irq(&lock->wait_lock);
1043 
1044 	/*
1045 	 * Make the actual exit decisions [12], based on the stored
1046 	 * values.
1047 	 *
1048 	 * We reached the end of the lock chain. Stop right here. No
1049 	 * point to go back just to figure that out.
1050 	 */
1051 	if (!next_lock)
1052 		goto out_put_task;
1053 
1054 	/*
1055 	 * If the current waiter is not the top waiter on the lock,
1056 	 * then we can stop the chain walk here if we are not in full
1057 	 * deadlock detection mode.
1058 	 */
1059 	if (!detect_deadlock && waiter != top_waiter)
1060 		goto out_put_task;
1061 
1062 	goto again;
1063 
1064  out_unlock_pi:
1065 	raw_spin_unlock_irq(&task->pi_lock);
1066  out_put_task:
1067 	put_task_struct(task);
1068 
1069 	return ret;
1070 }
1071 
1072 /*
1073  * Try to take an rt-mutex
1074  *
1075  * Must be called with lock->wait_lock held and interrupts disabled
1076  *
1077  * @lock:   The lock to be acquired.
1078  * @task:   The task which wants to acquire the lock
1079  * @waiter: The waiter that is queued to the lock's wait tree if the
1080  *	    callsite called task_blocked_on_lock(), otherwise NULL
1081  */
1082 static int __sched
1083 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1084 		     struct rt_mutex_waiter *waiter)
1085 {
1086 	lockdep_assert_held(&lock->wait_lock);
1087 
1088 	/*
1089 	 * Before testing whether we can acquire @lock, we set the
1090 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1091 	 * other tasks which try to modify @lock into the slow path
1092 	 * and they serialize on @lock->wait_lock.
1093 	 *
1094 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1095 	 * as explained at the top of this file if and only if:
1096 	 *
1097 	 * - There is a lock owner. The caller must fixup the
1098 	 *   transient state if it does a trylock or leaves the lock
1099 	 *   function due to a signal or timeout.
1100 	 *
1101 	 * - @task acquires the lock and there are no other
1102 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
1103 	 *   the end of this function.
1104 	 */
1105 	mark_rt_mutex_waiters(lock);
1106 
1107 	/*
1108 	 * If @lock has an owner, give up.
1109 	 */
1110 	if (rt_mutex_owner(lock))
1111 		return 0;
1112 
1113 	/*
1114 	 * If @waiter != NULL, @task has already enqueued the waiter
1115 	 * into @lock waiter tree. If @waiter == NULL then this is a
1116 	 * trylock attempt.
1117 	 */
1118 	if (waiter) {
1119 		struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1120 
1121 		/*
1122 		 * If waiter is the highest priority waiter of @lock,
1123 		 * or allowed to steal it, take it over.
1124 		 */
1125 		if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1126 			/*
1127 			 * We can acquire the lock. Remove the waiter from the
1128 			 * lock waiters tree.
1129 			 */
1130 			rt_mutex_dequeue(lock, waiter);
1131 		} else {
1132 			return 0;
1133 		}
1134 	} else {
1135 		/*
1136 		 * If the lock has waiters already we check whether @task is
1137 		 * eligible to take over the lock.
1138 		 *
1139 		 * If there are no other waiters, @task can acquire
1140 		 * the lock.  @task->pi_blocked_on is NULL, so it does
1141 		 * not need to be dequeued.
1142 		 */
1143 		if (rt_mutex_has_waiters(lock)) {
1144 			/* Check whether the trylock can steal it. */
1145 			if (!rt_mutex_steal(task_to_waiter(task),
1146 					    rt_mutex_top_waiter(lock)))
1147 				return 0;
1148 
1149 			/*
1150 			 * The current top waiter stays enqueued. We
1151 			 * don't have to change anything in the lock
1152 			 * waiters order.
1153 			 */
1154 		} else {
1155 			/*
1156 			 * No waiters. Take the lock without the
1157 			 * pi_lock dance.@task->pi_blocked_on is NULL
1158 			 * and we have no waiters to enqueue in @task
1159 			 * pi waiters tree.
1160 			 */
1161 			goto takeit;
1162 		}
1163 	}
1164 
1165 	/*
1166 	 * Clear @task->pi_blocked_on. Requires protection by
1167 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
1168 	 * case, but conditionals are more expensive than a redundant
1169 	 * store.
1170 	 */
1171 	raw_spin_lock(&task->pi_lock);
1172 	task->pi_blocked_on = NULL;
1173 	/*
1174 	 * Finish the lock acquisition. @task is the new owner. If
1175 	 * other waiters exist we have to insert the highest priority
1176 	 * waiter into @task->pi_waiters tree.
1177 	 */
1178 	if (rt_mutex_has_waiters(lock))
1179 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1180 	raw_spin_unlock(&task->pi_lock);
1181 
1182 takeit:
1183 	/*
1184 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1185 	 * are still waiters or clears it.
1186 	 */
1187 	rt_mutex_set_owner(lock, task);
1188 
1189 	return 1;
1190 }
1191 
1192 /*
1193  * Task blocks on lock.
1194  *
1195  * Prepare waiter and propagate pi chain
1196  *
1197  * This must be called with lock->wait_lock held and interrupts disabled
1198  */
1199 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1200 					   struct rt_mutex_waiter *waiter,
1201 					   struct task_struct *task,
1202 					   struct ww_acquire_ctx *ww_ctx,
1203 					   enum rtmutex_chainwalk chwalk)
1204 {
1205 	struct task_struct *owner = rt_mutex_owner(lock);
1206 	struct rt_mutex_waiter *top_waiter = waiter;
1207 	struct rt_mutex_base *next_lock;
1208 	int chain_walk = 0, res;
1209 
1210 	lockdep_assert_held(&lock->wait_lock);
1211 
1212 	/*
1213 	 * Early deadlock detection. We really don't want the task to
1214 	 * enqueue on itself just to untangle the mess later. It's not
1215 	 * only an optimization. We drop the locks, so another waiter
1216 	 * can come in before the chain walk detects the deadlock. So
1217 	 * the other will detect the deadlock and return -EDEADLOCK,
1218 	 * which is wrong, as the other waiter is not in a deadlock
1219 	 * situation.
1220 	 *
1221 	 * Except for ww_mutex, in that case the chain walk must already deal
1222 	 * with spurious cycles, see the comments at [3] and [6].
1223 	 */
1224 	if (owner == task && !(build_ww_mutex() && ww_ctx))
1225 		return -EDEADLK;
1226 
1227 	raw_spin_lock(&task->pi_lock);
1228 	waiter->task = task;
1229 	waiter->lock = lock;
1230 	waiter_update_prio(waiter, task);
1231 	waiter_clone_prio(waiter, task);
1232 
1233 	/* Get the top priority waiter on the lock */
1234 	if (rt_mutex_has_waiters(lock))
1235 		top_waiter = rt_mutex_top_waiter(lock);
1236 	rt_mutex_enqueue(lock, waiter);
1237 
1238 	task->pi_blocked_on = waiter;
1239 
1240 	raw_spin_unlock(&task->pi_lock);
1241 
1242 	if (build_ww_mutex() && ww_ctx) {
1243 		struct rt_mutex *rtm;
1244 
1245 		/* Check whether the waiter should back out immediately */
1246 		rtm = container_of(lock, struct rt_mutex, rtmutex);
1247 		res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1248 		if (res) {
1249 			raw_spin_lock(&task->pi_lock);
1250 			rt_mutex_dequeue(lock, waiter);
1251 			task->pi_blocked_on = NULL;
1252 			raw_spin_unlock(&task->pi_lock);
1253 			return res;
1254 		}
1255 	}
1256 
1257 	if (!owner)
1258 		return 0;
1259 
1260 	raw_spin_lock(&owner->pi_lock);
1261 	if (waiter == rt_mutex_top_waiter(lock)) {
1262 		rt_mutex_dequeue_pi(owner, top_waiter);
1263 		rt_mutex_enqueue_pi(owner, waiter);
1264 
1265 		rt_mutex_adjust_prio(lock, owner);
1266 		if (owner->pi_blocked_on)
1267 			chain_walk = 1;
1268 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1269 		chain_walk = 1;
1270 	}
1271 
1272 	/* Store the lock on which owner is blocked or NULL */
1273 	next_lock = task_blocked_on_lock(owner);
1274 
1275 	raw_spin_unlock(&owner->pi_lock);
1276 	/*
1277 	 * Even if full deadlock detection is on, if the owner is not
1278 	 * blocked itself, we can avoid finding this out in the chain
1279 	 * walk.
1280 	 */
1281 	if (!chain_walk || !next_lock)
1282 		return 0;
1283 
1284 	/*
1285 	 * The owner can't disappear while holding a lock,
1286 	 * so the owner struct is protected by wait_lock.
1287 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1288 	 */
1289 	get_task_struct(owner);
1290 
1291 	raw_spin_unlock_irq(&lock->wait_lock);
1292 
1293 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1294 					 next_lock, waiter, task);
1295 
1296 	raw_spin_lock_irq(&lock->wait_lock);
1297 
1298 	return res;
1299 }
1300 
1301 /*
1302  * Remove the top waiter from the current tasks pi waiter tree and
1303  * queue it up.
1304  *
1305  * Called with lock->wait_lock held and interrupts disabled.
1306  */
1307 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1308 					    struct rt_mutex_base *lock)
1309 {
1310 	struct rt_mutex_waiter *waiter;
1311 
1312 	lockdep_assert_held(&lock->wait_lock);
1313 
1314 	raw_spin_lock(&current->pi_lock);
1315 
1316 	waiter = rt_mutex_top_waiter(lock);
1317 
1318 	/*
1319 	 * Remove it from current->pi_waiters and deboost.
1320 	 *
1321 	 * We must in fact deboost here in order to ensure we call
1322 	 * rt_mutex_setprio() to update p->pi_top_task before the
1323 	 * task unblocks.
1324 	 */
1325 	rt_mutex_dequeue_pi(current, waiter);
1326 	rt_mutex_adjust_prio(lock, current);
1327 
1328 	/*
1329 	 * As we are waking up the top waiter, and the waiter stays
1330 	 * queued on the lock until it gets the lock, this lock
1331 	 * obviously has waiters. Just set the bit here and this has
1332 	 * the added benefit of forcing all new tasks into the
1333 	 * slow path making sure no task of lower priority than
1334 	 * the top waiter can steal this lock.
1335 	 */
1336 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1337 
1338 	/*
1339 	 * We deboosted before waking the top waiter task such that we don't
1340 	 * run two tasks with the 'same' priority (and ensure the
1341 	 * p->pi_top_task pointer points to a blocked task). This however can
1342 	 * lead to priority inversion if we would get preempted after the
1343 	 * deboost but before waking our donor task, hence the preempt_disable()
1344 	 * before unlock.
1345 	 *
1346 	 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1347 	 */
1348 	preempt_disable();
1349 	rt_mutex_wake_q_add(wqh, waiter);
1350 	raw_spin_unlock(&current->pi_lock);
1351 }
1352 
1353 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1354 {
1355 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1356 
1357 	/*
1358 	 * try_to_take_rt_mutex() sets the lock waiters bit
1359 	 * unconditionally. Clean this up.
1360 	 */
1361 	fixup_rt_mutex_waiters(lock, true);
1362 
1363 	return ret;
1364 }
1365 
1366 /*
1367  * Slow path try-lock function:
1368  */
1369 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1370 {
1371 	unsigned long flags;
1372 	int ret;
1373 
1374 	/*
1375 	 * If the lock already has an owner we fail to get the lock.
1376 	 * This can be done without taking the @lock->wait_lock as
1377 	 * it is only being read, and this is a trylock anyway.
1378 	 */
1379 	if (rt_mutex_owner(lock))
1380 		return 0;
1381 
1382 	/*
1383 	 * The mutex has currently no owner. Lock the wait lock and try to
1384 	 * acquire the lock. We use irqsave here to support early boot calls.
1385 	 */
1386 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1387 
1388 	ret = __rt_mutex_slowtrylock(lock);
1389 
1390 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1391 
1392 	return ret;
1393 }
1394 
1395 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1396 {
1397 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1398 		return 1;
1399 
1400 	return rt_mutex_slowtrylock(lock);
1401 }
1402 
1403 /*
1404  * Slow path to release a rt-mutex.
1405  */
1406 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1407 {
1408 	DEFINE_RT_WAKE_Q(wqh);
1409 	unsigned long flags;
1410 
1411 	/* irqsave required to support early boot calls */
1412 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1413 
1414 	debug_rt_mutex_unlock(lock);
1415 
1416 	/*
1417 	 * We must be careful here if the fast path is enabled. If we
1418 	 * have no waiters queued we cannot set owner to NULL here
1419 	 * because of:
1420 	 *
1421 	 * foo->lock->owner = NULL;
1422 	 *			rtmutex_lock(foo->lock);   <- fast path
1423 	 *			free = atomic_dec_and_test(foo->refcnt);
1424 	 *			rtmutex_unlock(foo->lock); <- fast path
1425 	 *			if (free)
1426 	 *				kfree(foo);
1427 	 * raw_spin_unlock(foo->lock->wait_lock);
1428 	 *
1429 	 * So for the fastpath enabled kernel:
1430 	 *
1431 	 * Nothing can set the waiters bit as long as we hold
1432 	 * lock->wait_lock. So we do the following sequence:
1433 	 *
1434 	 *	owner = rt_mutex_owner(lock);
1435 	 *	clear_rt_mutex_waiters(lock);
1436 	 *	raw_spin_unlock(&lock->wait_lock);
1437 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1438 	 *		return;
1439 	 *	goto retry;
1440 	 *
1441 	 * The fastpath disabled variant is simple as all access to
1442 	 * lock->owner is serialized by lock->wait_lock:
1443 	 *
1444 	 *	lock->owner = NULL;
1445 	 *	raw_spin_unlock(&lock->wait_lock);
1446 	 */
1447 	while (!rt_mutex_has_waiters(lock)) {
1448 		/* Drops lock->wait_lock ! */
1449 		if (unlock_rt_mutex_safe(lock, flags) == true)
1450 			return;
1451 		/* Relock the rtmutex and try again */
1452 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1453 	}
1454 
1455 	/*
1456 	 * The wakeup next waiter path does not suffer from the above
1457 	 * race. See the comments there.
1458 	 *
1459 	 * Queue the next waiter for wakeup once we release the wait_lock.
1460 	 */
1461 	mark_wakeup_next_waiter(&wqh, lock);
1462 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1463 
1464 	rt_mutex_wake_up_q(&wqh);
1465 }
1466 
1467 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1468 {
1469 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1470 		return;
1471 
1472 	rt_mutex_slowunlock(lock);
1473 }
1474 
1475 #ifdef CONFIG_SMP
1476 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1477 				  struct rt_mutex_waiter *waiter,
1478 				  struct task_struct *owner)
1479 {
1480 	bool res = true;
1481 
1482 	rcu_read_lock();
1483 	for (;;) {
1484 		/* If owner changed, trylock again. */
1485 		if (owner != rt_mutex_owner(lock))
1486 			break;
1487 		/*
1488 		 * Ensure that @owner is dereferenced after checking that
1489 		 * the lock owner still matches @owner. If that fails,
1490 		 * @owner might point to freed memory. If it still matches,
1491 		 * the rcu_read_lock() ensures the memory stays valid.
1492 		 */
1493 		barrier();
1494 		/*
1495 		 * Stop spinning when:
1496 		 *  - the lock owner has been scheduled out
1497 		 *  - current is not longer the top waiter
1498 		 *  - current is requested to reschedule (redundant
1499 		 *    for CONFIG_PREEMPT_RCU=y)
1500 		 *  - the VCPU on which owner runs is preempted
1501 		 */
1502 		if (!owner_on_cpu(owner) || need_resched() ||
1503 		    !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1504 			res = false;
1505 			break;
1506 		}
1507 		cpu_relax();
1508 	}
1509 	rcu_read_unlock();
1510 	return res;
1511 }
1512 #else
1513 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1514 				  struct rt_mutex_waiter *waiter,
1515 				  struct task_struct *owner)
1516 {
1517 	return false;
1518 }
1519 #endif
1520 
1521 #ifdef RT_MUTEX_BUILD_MUTEX
1522 /*
1523  * Functions required for:
1524  *	- rtmutex, futex on all kernels
1525  *	- mutex and rwsem substitutions on RT kernels
1526  */
1527 
1528 /*
1529  * Remove a waiter from a lock and give up
1530  *
1531  * Must be called with lock->wait_lock held and interrupts disabled. It must
1532  * have just failed to try_to_take_rt_mutex().
1533  */
1534 static void __sched remove_waiter(struct rt_mutex_base *lock,
1535 				  struct rt_mutex_waiter *waiter)
1536 {
1537 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1538 	struct task_struct *owner = rt_mutex_owner(lock);
1539 	struct rt_mutex_base *next_lock;
1540 
1541 	lockdep_assert_held(&lock->wait_lock);
1542 
1543 	raw_spin_lock(&current->pi_lock);
1544 	rt_mutex_dequeue(lock, waiter);
1545 	current->pi_blocked_on = NULL;
1546 	raw_spin_unlock(&current->pi_lock);
1547 
1548 	/*
1549 	 * Only update priority if the waiter was the highest priority
1550 	 * waiter of the lock and there is an owner to update.
1551 	 */
1552 	if (!owner || !is_top_waiter)
1553 		return;
1554 
1555 	raw_spin_lock(&owner->pi_lock);
1556 
1557 	rt_mutex_dequeue_pi(owner, waiter);
1558 
1559 	if (rt_mutex_has_waiters(lock))
1560 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1561 
1562 	rt_mutex_adjust_prio(lock, owner);
1563 
1564 	/* Store the lock on which owner is blocked or NULL */
1565 	next_lock = task_blocked_on_lock(owner);
1566 
1567 	raw_spin_unlock(&owner->pi_lock);
1568 
1569 	/*
1570 	 * Don't walk the chain, if the owner task is not blocked
1571 	 * itself.
1572 	 */
1573 	if (!next_lock)
1574 		return;
1575 
1576 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1577 	get_task_struct(owner);
1578 
1579 	raw_spin_unlock_irq(&lock->wait_lock);
1580 
1581 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1582 				   next_lock, NULL, current);
1583 
1584 	raw_spin_lock_irq(&lock->wait_lock);
1585 }
1586 
1587 /**
1588  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1589  * @lock:		 the rt_mutex to take
1590  * @ww_ctx:		 WW mutex context pointer
1591  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1592  *			 or TASK_UNINTERRUPTIBLE)
1593  * @timeout:		 the pre-initialized and started timer, or NULL for none
1594  * @waiter:		 the pre-initialized rt_mutex_waiter
1595  *
1596  * Must be called with lock->wait_lock held and interrupts disabled
1597  */
1598 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1599 					   struct ww_acquire_ctx *ww_ctx,
1600 					   unsigned int state,
1601 					   struct hrtimer_sleeper *timeout,
1602 					   struct rt_mutex_waiter *waiter)
1603 {
1604 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1605 	struct task_struct *owner;
1606 	int ret = 0;
1607 
1608 	for (;;) {
1609 		/* Try to acquire the lock: */
1610 		if (try_to_take_rt_mutex(lock, current, waiter))
1611 			break;
1612 
1613 		if (timeout && !timeout->task) {
1614 			ret = -ETIMEDOUT;
1615 			break;
1616 		}
1617 		if (signal_pending_state(state, current)) {
1618 			ret = -EINTR;
1619 			break;
1620 		}
1621 
1622 		if (build_ww_mutex() && ww_ctx) {
1623 			ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1624 			if (ret)
1625 				break;
1626 		}
1627 
1628 		if (waiter == rt_mutex_top_waiter(lock))
1629 			owner = rt_mutex_owner(lock);
1630 		else
1631 			owner = NULL;
1632 		raw_spin_unlock_irq(&lock->wait_lock);
1633 
1634 		if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1635 			rt_mutex_schedule();
1636 
1637 		raw_spin_lock_irq(&lock->wait_lock);
1638 		set_current_state(state);
1639 	}
1640 
1641 	__set_current_state(TASK_RUNNING);
1642 	return ret;
1643 }
1644 
1645 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1646 					     struct rt_mutex_waiter *w)
1647 {
1648 	/*
1649 	 * If the result is not -EDEADLOCK or the caller requested
1650 	 * deadlock detection, nothing to do here.
1651 	 */
1652 	if (res != -EDEADLOCK || detect_deadlock)
1653 		return;
1654 
1655 	if (build_ww_mutex() && w->ww_ctx)
1656 		return;
1657 
1658 	/*
1659 	 * Yell loudly and stop the task right here.
1660 	 */
1661 	WARN(1, "rtmutex deadlock detected\n");
1662 	while (1) {
1663 		set_current_state(TASK_INTERRUPTIBLE);
1664 		rt_mutex_schedule();
1665 	}
1666 }
1667 
1668 /**
1669  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1670  * @lock:	The rtmutex to block lock
1671  * @ww_ctx:	WW mutex context pointer
1672  * @state:	The task state for sleeping
1673  * @chwalk:	Indicator whether full or partial chainwalk is requested
1674  * @waiter:	Initializer waiter for blocking
1675  */
1676 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1677 				       struct ww_acquire_ctx *ww_ctx,
1678 				       unsigned int state,
1679 				       enum rtmutex_chainwalk chwalk,
1680 				       struct rt_mutex_waiter *waiter)
1681 {
1682 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1683 	struct ww_mutex *ww = ww_container_of(rtm);
1684 	int ret;
1685 
1686 	lockdep_assert_held(&lock->wait_lock);
1687 
1688 	/* Try to acquire the lock again: */
1689 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1690 		if (build_ww_mutex() && ww_ctx) {
1691 			__ww_mutex_check_waiters(rtm, ww_ctx);
1692 			ww_mutex_lock_acquired(ww, ww_ctx);
1693 		}
1694 		return 0;
1695 	}
1696 
1697 	set_current_state(state);
1698 
1699 	trace_contention_begin(lock, LCB_F_RT);
1700 
1701 	ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1702 	if (likely(!ret))
1703 		ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1704 
1705 	if (likely(!ret)) {
1706 		/* acquired the lock */
1707 		if (build_ww_mutex() && ww_ctx) {
1708 			if (!ww_ctx->is_wait_die)
1709 				__ww_mutex_check_waiters(rtm, ww_ctx);
1710 			ww_mutex_lock_acquired(ww, ww_ctx);
1711 		}
1712 	} else {
1713 		__set_current_state(TASK_RUNNING);
1714 		remove_waiter(lock, waiter);
1715 		rt_mutex_handle_deadlock(ret, chwalk, waiter);
1716 	}
1717 
1718 	/*
1719 	 * try_to_take_rt_mutex() sets the waiter bit
1720 	 * unconditionally. We might have to fix that up.
1721 	 */
1722 	fixup_rt_mutex_waiters(lock, true);
1723 
1724 	trace_contention_end(lock, ret);
1725 
1726 	return ret;
1727 }
1728 
1729 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1730 					     struct ww_acquire_ctx *ww_ctx,
1731 					     unsigned int state)
1732 {
1733 	struct rt_mutex_waiter waiter;
1734 	int ret;
1735 
1736 	rt_mutex_init_waiter(&waiter);
1737 	waiter.ww_ctx = ww_ctx;
1738 
1739 	ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1740 				  &waiter);
1741 
1742 	debug_rt_mutex_free_waiter(&waiter);
1743 	return ret;
1744 }
1745 
1746 /*
1747  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1748  * @lock:	The rtmutex to block lock
1749  * @ww_ctx:	WW mutex context pointer
1750  * @state:	The task state for sleeping
1751  */
1752 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1753 				     struct ww_acquire_ctx *ww_ctx,
1754 				     unsigned int state)
1755 {
1756 	unsigned long flags;
1757 	int ret;
1758 
1759 	/*
1760 	 * Do all pre-schedule work here, before we queue a waiter and invoke
1761 	 * PI -- any such work that trips on rtlock (PREEMPT_RT spinlock) would
1762 	 * otherwise recurse back into task_blocks_on_rt_mutex() through
1763 	 * rtlock_slowlock() and will then enqueue a second waiter for this
1764 	 * same task and things get really confusing real fast.
1765 	 */
1766 	rt_mutex_pre_schedule();
1767 
1768 	/*
1769 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1770 	 * be called in early boot if the cmpxchg() fast path is disabled
1771 	 * (debug, no architecture support). In this case we will acquire the
1772 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1773 	 * enable interrupts in that early boot case. So we need to use the
1774 	 * irqsave/restore variants.
1775 	 */
1776 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1777 	ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1778 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1779 	rt_mutex_post_schedule();
1780 
1781 	return ret;
1782 }
1783 
1784 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1785 					   unsigned int state)
1786 {
1787 	lockdep_assert(!current->pi_blocked_on);
1788 
1789 	if (likely(rt_mutex_try_acquire(lock)))
1790 		return 0;
1791 
1792 	return rt_mutex_slowlock(lock, NULL, state);
1793 }
1794 #endif /* RT_MUTEX_BUILD_MUTEX */
1795 
1796 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1797 /*
1798  * Functions required for spin/rw_lock substitution on RT kernels
1799  */
1800 
1801 /**
1802  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1803  * @lock:	The underlying RT mutex
1804  */
1805 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1806 {
1807 	struct rt_mutex_waiter waiter;
1808 	struct task_struct *owner;
1809 
1810 	lockdep_assert_held(&lock->wait_lock);
1811 
1812 	if (try_to_take_rt_mutex(lock, current, NULL))
1813 		return;
1814 
1815 	rt_mutex_init_rtlock_waiter(&waiter);
1816 
1817 	/* Save current state and set state to TASK_RTLOCK_WAIT */
1818 	current_save_and_set_rtlock_wait_state();
1819 
1820 	trace_contention_begin(lock, LCB_F_RT);
1821 
1822 	task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1823 
1824 	for (;;) {
1825 		/* Try to acquire the lock again */
1826 		if (try_to_take_rt_mutex(lock, current, &waiter))
1827 			break;
1828 
1829 		if (&waiter == rt_mutex_top_waiter(lock))
1830 			owner = rt_mutex_owner(lock);
1831 		else
1832 			owner = NULL;
1833 		raw_spin_unlock_irq(&lock->wait_lock);
1834 
1835 		if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1836 			schedule_rtlock();
1837 
1838 		raw_spin_lock_irq(&lock->wait_lock);
1839 		set_current_state(TASK_RTLOCK_WAIT);
1840 	}
1841 
1842 	/* Restore the task state */
1843 	current_restore_rtlock_saved_state();
1844 
1845 	/*
1846 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1847 	 * We might have to fix that up:
1848 	 */
1849 	fixup_rt_mutex_waiters(lock, true);
1850 	debug_rt_mutex_free_waiter(&waiter);
1851 
1852 	trace_contention_end(lock, 0);
1853 }
1854 
1855 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1856 {
1857 	unsigned long flags;
1858 
1859 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1860 	rtlock_slowlock_locked(lock);
1861 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1862 }
1863 
1864 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1865