1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 4 * 5 * started by Ingo Molnar and Thomas Gleixner. 6 * 7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 10 * Copyright (C) 2006 Esben Nielsen 11 * Adaptive Spinlocks: 12 * Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich, 13 * and Peter Morreale, 14 * Adaptive Spinlocks simplification: 15 * Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com> 16 * 17 * See Documentation/locking/rt-mutex-design.rst for details. 18 */ 19 #include <linux/sched.h> 20 #include <linux/sched/debug.h> 21 #include <linux/sched/deadline.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/rt.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/ww_mutex.h> 26 27 #include <trace/events/lock.h> 28 29 #include "rtmutex_common.h" 30 31 #ifndef WW_RT 32 # define build_ww_mutex() (false) 33 # define ww_container_of(rtm) NULL 34 35 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter, 36 struct rt_mutex *lock, 37 struct ww_acquire_ctx *ww_ctx) 38 { 39 return 0; 40 } 41 42 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock, 43 struct ww_acquire_ctx *ww_ctx) 44 { 45 } 46 47 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock, 48 struct ww_acquire_ctx *ww_ctx) 49 { 50 } 51 52 static inline int __ww_mutex_check_kill(struct rt_mutex *lock, 53 struct rt_mutex_waiter *waiter, 54 struct ww_acquire_ctx *ww_ctx) 55 { 56 return 0; 57 } 58 59 #else 60 # define build_ww_mutex() (true) 61 # define ww_container_of(rtm) container_of(rtm, struct ww_mutex, base) 62 # include "ww_mutex.h" 63 #endif 64 65 /* 66 * lock->owner state tracking: 67 * 68 * lock->owner holds the task_struct pointer of the owner. Bit 0 69 * is used to keep track of the "lock has waiters" state. 70 * 71 * owner bit0 72 * NULL 0 lock is free (fast acquire possible) 73 * NULL 1 lock is free and has waiters and the top waiter 74 * is going to take the lock* 75 * taskpointer 0 lock is held (fast release possible) 76 * taskpointer 1 lock is held and has waiters** 77 * 78 * The fast atomic compare exchange based acquire and release is only 79 * possible when bit 0 of lock->owner is 0. 80 * 81 * (*) It also can be a transitional state when grabbing the lock 82 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 83 * we need to set the bit0 before looking at the lock, and the owner may be 84 * NULL in this small time, hence this can be a transitional state. 85 * 86 * (**) There is a small time when bit 0 is set but there are no 87 * waiters. This can happen when grabbing the lock in the slow path. 88 * To prevent a cmpxchg of the owner releasing the lock, we need to 89 * set this bit before looking at the lock. 90 */ 91 92 static __always_inline struct task_struct * 93 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner) 94 { 95 unsigned long val = (unsigned long)owner; 96 97 if (rt_mutex_has_waiters(lock)) 98 val |= RT_MUTEX_HAS_WAITERS; 99 100 return (struct task_struct *)val; 101 } 102 103 static __always_inline void 104 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner) 105 { 106 /* 107 * lock->wait_lock is held but explicit acquire semantics are needed 108 * for a new lock owner so WRITE_ONCE is insufficient. 109 */ 110 xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner)); 111 } 112 113 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock) 114 { 115 /* lock->wait_lock is held so the unlock provides release semantics. */ 116 WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL)); 117 } 118 119 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock) 120 { 121 lock->owner = (struct task_struct *) 122 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 123 } 124 125 static __always_inline void 126 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock) 127 { 128 unsigned long owner, *p = (unsigned long *) &lock->owner; 129 130 if (rt_mutex_has_waiters(lock)) 131 return; 132 133 /* 134 * The rbtree has no waiters enqueued, now make sure that the 135 * lock->owner still has the waiters bit set, otherwise the 136 * following can happen: 137 * 138 * CPU 0 CPU 1 CPU2 139 * l->owner=T1 140 * rt_mutex_lock(l) 141 * lock(l->lock) 142 * l->owner = T1 | HAS_WAITERS; 143 * enqueue(T2) 144 * boost() 145 * unlock(l->lock) 146 * block() 147 * 148 * rt_mutex_lock(l) 149 * lock(l->lock) 150 * l->owner = T1 | HAS_WAITERS; 151 * enqueue(T3) 152 * boost() 153 * unlock(l->lock) 154 * block() 155 * signal(->T2) signal(->T3) 156 * lock(l->lock) 157 * dequeue(T2) 158 * deboost() 159 * unlock(l->lock) 160 * lock(l->lock) 161 * dequeue(T3) 162 * ==> wait list is empty 163 * deboost() 164 * unlock(l->lock) 165 * lock(l->lock) 166 * fixup_rt_mutex_waiters() 167 * if (wait_list_empty(l) { 168 * l->owner = owner 169 * owner = l->owner & ~HAS_WAITERS; 170 * ==> l->owner = T1 171 * } 172 * lock(l->lock) 173 * rt_mutex_unlock(l) fixup_rt_mutex_waiters() 174 * if (wait_list_empty(l) { 175 * owner = l->owner & ~HAS_WAITERS; 176 * cmpxchg(l->owner, T1, NULL) 177 * ===> Success (l->owner = NULL) 178 * 179 * l->owner = owner 180 * ==> l->owner = T1 181 * } 182 * 183 * With the check for the waiter bit in place T3 on CPU2 will not 184 * overwrite. All tasks fiddling with the waiters bit are 185 * serialized by l->lock, so nothing else can modify the waiters 186 * bit. If the bit is set then nothing can change l->owner either 187 * so the simple RMW is safe. The cmpxchg() will simply fail if it 188 * happens in the middle of the RMW because the waiters bit is 189 * still set. 190 */ 191 owner = READ_ONCE(*p); 192 if (owner & RT_MUTEX_HAS_WAITERS) { 193 /* 194 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on 195 * why xchg_acquire() is used for updating owner for 196 * locking and WRITE_ONCE() for unlocking. 197 * 198 * WRITE_ONCE() would work for the acquire case too, but 199 * in case that the lock acquisition failed it might 200 * force other lockers into the slow path unnecessarily. 201 */ 202 if (acquire_lock) 203 xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS); 204 else 205 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS); 206 } 207 } 208 209 /* 210 * We can speed up the acquire/release, if there's no debugging state to be 211 * set up. 212 */ 213 #ifndef CONFIG_DEBUG_RT_MUTEXES 214 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock, 215 struct task_struct *old, 216 struct task_struct *new) 217 { 218 return try_cmpxchg_acquire(&lock->owner, &old, new); 219 } 220 221 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock, 222 struct task_struct *old, 223 struct task_struct *new) 224 { 225 return try_cmpxchg_release(&lock->owner, &old, new); 226 } 227 228 /* 229 * Callers must hold the ->wait_lock -- which is the whole purpose as we force 230 * all future threads that attempt to [Rmw] the lock to the slowpath. As such 231 * relaxed semantics suffice. 232 */ 233 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock) 234 { 235 unsigned long owner, *p = (unsigned long *) &lock->owner; 236 237 do { 238 owner = *p; 239 } while (cmpxchg_relaxed(p, owner, 240 owner | RT_MUTEX_HAS_WAITERS) != owner); 241 242 /* 243 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE 244 * operations in the event of contention. Ensure the successful 245 * cmpxchg is visible. 246 */ 247 smp_mb__after_atomic(); 248 } 249 250 /* 251 * Safe fastpath aware unlock: 252 * 1) Clear the waiters bit 253 * 2) Drop lock->wait_lock 254 * 3) Try to unlock the lock with cmpxchg 255 */ 256 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock, 257 unsigned long flags) 258 __releases(lock->wait_lock) 259 { 260 struct task_struct *owner = rt_mutex_owner(lock); 261 262 clear_rt_mutex_waiters(lock); 263 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 264 /* 265 * If a new waiter comes in between the unlock and the cmpxchg 266 * we have two situations: 267 * 268 * unlock(wait_lock); 269 * lock(wait_lock); 270 * cmpxchg(p, owner, 0) == owner 271 * mark_rt_mutex_waiters(lock); 272 * acquire(lock); 273 * or: 274 * 275 * unlock(wait_lock); 276 * lock(wait_lock); 277 * mark_rt_mutex_waiters(lock); 278 * 279 * cmpxchg(p, owner, 0) != owner 280 * enqueue_waiter(); 281 * unlock(wait_lock); 282 * lock(wait_lock); 283 * wake waiter(); 284 * unlock(wait_lock); 285 * lock(wait_lock); 286 * acquire(lock); 287 */ 288 return rt_mutex_cmpxchg_release(lock, owner, NULL); 289 } 290 291 #else 292 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock, 293 struct task_struct *old, 294 struct task_struct *new) 295 { 296 return false; 297 298 } 299 300 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock, 301 struct task_struct *old, 302 struct task_struct *new) 303 { 304 return false; 305 } 306 307 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock) 308 { 309 lock->owner = (struct task_struct *) 310 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 311 } 312 313 /* 314 * Simple slow path only version: lock->owner is protected by lock->wait_lock. 315 */ 316 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock, 317 unsigned long flags) 318 __releases(lock->wait_lock) 319 { 320 lock->owner = NULL; 321 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 322 return true; 323 } 324 #endif 325 326 static __always_inline int __waiter_prio(struct task_struct *task) 327 { 328 int prio = task->prio; 329 330 if (!rt_prio(prio)) 331 return DEFAULT_PRIO; 332 333 return prio; 334 } 335 336 static __always_inline void 337 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task) 338 { 339 waiter->prio = __waiter_prio(task); 340 waiter->deadline = task->dl.deadline; 341 } 342 343 /* 344 * Only use with rt_mutex_waiter_{less,equal}() 345 */ 346 #define task_to_waiter(p) \ 347 &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline } 348 349 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left, 350 struct rt_mutex_waiter *right) 351 { 352 if (left->prio < right->prio) 353 return 1; 354 355 /* 356 * If both waiters have dl_prio(), we check the deadlines of the 357 * associated tasks. 358 * If left waiter has a dl_prio(), and we didn't return 1 above, 359 * then right waiter has a dl_prio() too. 360 */ 361 if (dl_prio(left->prio)) 362 return dl_time_before(left->deadline, right->deadline); 363 364 return 0; 365 } 366 367 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left, 368 struct rt_mutex_waiter *right) 369 { 370 if (left->prio != right->prio) 371 return 0; 372 373 /* 374 * If both waiters have dl_prio(), we check the deadlines of the 375 * associated tasks. 376 * If left waiter has a dl_prio(), and we didn't return 0 above, 377 * then right waiter has a dl_prio() too. 378 */ 379 if (dl_prio(left->prio)) 380 return left->deadline == right->deadline; 381 382 return 1; 383 } 384 385 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter, 386 struct rt_mutex_waiter *top_waiter) 387 { 388 if (rt_mutex_waiter_less(waiter, top_waiter)) 389 return true; 390 391 #ifdef RT_MUTEX_BUILD_SPINLOCKS 392 /* 393 * Note that RT tasks are excluded from same priority (lateral) 394 * steals to prevent the introduction of an unbounded latency. 395 */ 396 if (rt_prio(waiter->prio) || dl_prio(waiter->prio)) 397 return false; 398 399 return rt_mutex_waiter_equal(waiter, top_waiter); 400 #else 401 return false; 402 #endif 403 } 404 405 #define __node_2_waiter(node) \ 406 rb_entry((node), struct rt_mutex_waiter, tree_entry) 407 408 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b) 409 { 410 struct rt_mutex_waiter *aw = __node_2_waiter(a); 411 struct rt_mutex_waiter *bw = __node_2_waiter(b); 412 413 if (rt_mutex_waiter_less(aw, bw)) 414 return 1; 415 416 if (!build_ww_mutex()) 417 return 0; 418 419 if (rt_mutex_waiter_less(bw, aw)) 420 return 0; 421 422 /* NOTE: relies on waiter->ww_ctx being set before insertion */ 423 if (aw->ww_ctx) { 424 if (!bw->ww_ctx) 425 return 1; 426 427 return (signed long)(aw->ww_ctx->stamp - 428 bw->ww_ctx->stamp) < 0; 429 } 430 431 return 0; 432 } 433 434 static __always_inline void 435 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter) 436 { 437 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less); 438 } 439 440 static __always_inline void 441 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter) 442 { 443 if (RB_EMPTY_NODE(&waiter->tree_entry)) 444 return; 445 446 rb_erase_cached(&waiter->tree_entry, &lock->waiters); 447 RB_CLEAR_NODE(&waiter->tree_entry); 448 } 449 450 #define __node_2_pi_waiter(node) \ 451 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry) 452 453 static __always_inline bool 454 __pi_waiter_less(struct rb_node *a, const struct rb_node *b) 455 { 456 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b)); 457 } 458 459 static __always_inline void 460 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 461 { 462 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less); 463 } 464 465 static __always_inline void 466 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 467 { 468 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 469 return; 470 471 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters); 472 RB_CLEAR_NODE(&waiter->pi_tree_entry); 473 } 474 475 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p) 476 { 477 struct task_struct *pi_task = NULL; 478 479 lockdep_assert_held(&p->pi_lock); 480 481 if (task_has_pi_waiters(p)) 482 pi_task = task_top_pi_waiter(p)->task; 483 484 rt_mutex_setprio(p, pi_task); 485 } 486 487 /* RT mutex specific wake_q wrappers */ 488 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh, 489 struct task_struct *task, 490 unsigned int wake_state) 491 { 492 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) { 493 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) 494 WARN_ON_ONCE(wqh->rtlock_task); 495 get_task_struct(task); 496 wqh->rtlock_task = task; 497 } else { 498 wake_q_add(&wqh->head, task); 499 } 500 } 501 502 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh, 503 struct rt_mutex_waiter *w) 504 { 505 rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state); 506 } 507 508 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh) 509 { 510 if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) { 511 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT); 512 put_task_struct(wqh->rtlock_task); 513 wqh->rtlock_task = NULL; 514 } 515 516 if (!wake_q_empty(&wqh->head)) 517 wake_up_q(&wqh->head); 518 519 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */ 520 preempt_enable(); 521 } 522 523 /* 524 * Deadlock detection is conditional: 525 * 526 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted 527 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. 528 * 529 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always 530 * conducted independent of the detect argument. 531 * 532 * If the waiter argument is NULL this indicates the deboost path and 533 * deadlock detection is disabled independent of the detect argument 534 * and the config settings. 535 */ 536 static __always_inline bool 537 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, 538 enum rtmutex_chainwalk chwalk) 539 { 540 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES)) 541 return waiter != NULL; 542 return chwalk == RT_MUTEX_FULL_CHAINWALK; 543 } 544 545 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p) 546 { 547 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; 548 } 549 550 /* 551 * Adjust the priority chain. Also used for deadlock detection. 552 * Decreases task's usage by one - may thus free the task. 553 * 554 * @task: the task owning the mutex (owner) for which a chain walk is 555 * probably needed 556 * @chwalk: do we have to carry out deadlock detection? 557 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 558 * things for a task that has just got its priority adjusted, and 559 * is waiting on a mutex) 560 * @next_lock: the mutex on which the owner of @orig_lock was blocked before 561 * we dropped its pi_lock. Is never dereferenced, only used for 562 * comparison to detect lock chain changes. 563 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 564 * its priority to the mutex owner (can be NULL in the case 565 * depicted above or if the top waiter is gone away and we are 566 * actually deboosting the owner) 567 * @top_task: the current top waiter 568 * 569 * Returns 0 or -EDEADLK. 570 * 571 * Chain walk basics and protection scope 572 * 573 * [R] refcount on task 574 * [P] task->pi_lock held 575 * [L] rtmutex->wait_lock held 576 * 577 * Step Description Protected by 578 * function arguments: 579 * @task [R] 580 * @orig_lock if != NULL @top_task is blocked on it 581 * @next_lock Unprotected. Cannot be 582 * dereferenced. Only used for 583 * comparison. 584 * @orig_waiter if != NULL @top_task is blocked on it 585 * @top_task current, or in case of proxy 586 * locking protected by calling 587 * code 588 * again: 589 * loop_sanity_check(); 590 * retry: 591 * [1] lock(task->pi_lock); [R] acquire [P] 592 * [2] waiter = task->pi_blocked_on; [P] 593 * [3] check_exit_conditions_1(); [P] 594 * [4] lock = waiter->lock; [P] 595 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L] 596 * unlock(task->pi_lock); release [P] 597 * goto retry; 598 * } 599 * [6] check_exit_conditions_2(); [P] + [L] 600 * [7] requeue_lock_waiter(lock, waiter); [P] + [L] 601 * [8] unlock(task->pi_lock); release [P] 602 * put_task_struct(task); release [R] 603 * [9] check_exit_conditions_3(); [L] 604 * [10] task = owner(lock); [L] 605 * get_task_struct(task); [L] acquire [R] 606 * lock(task->pi_lock); [L] acquire [P] 607 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L] 608 * [12] check_exit_conditions_4(); [P] + [L] 609 * [13] unlock(task->pi_lock); release [P] 610 * unlock(lock->wait_lock); release [L] 611 * goto again; 612 */ 613 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task, 614 enum rtmutex_chainwalk chwalk, 615 struct rt_mutex_base *orig_lock, 616 struct rt_mutex_base *next_lock, 617 struct rt_mutex_waiter *orig_waiter, 618 struct task_struct *top_task) 619 { 620 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 621 struct rt_mutex_waiter *prerequeue_top_waiter; 622 int ret = 0, depth = 0; 623 struct rt_mutex_base *lock; 624 bool detect_deadlock; 625 bool requeue = true; 626 627 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk); 628 629 /* 630 * The (de)boosting is a step by step approach with a lot of 631 * pitfalls. We want this to be preemptible and we want hold a 632 * maximum of two locks per step. So we have to check 633 * carefully whether things change under us. 634 */ 635 again: 636 /* 637 * We limit the lock chain length for each invocation. 638 */ 639 if (++depth > max_lock_depth) { 640 static int prev_max; 641 642 /* 643 * Print this only once. If the admin changes the limit, 644 * print a new message when reaching the limit again. 645 */ 646 if (prev_max != max_lock_depth) { 647 prev_max = max_lock_depth; 648 printk(KERN_WARNING "Maximum lock depth %d reached " 649 "task: %s (%d)\n", max_lock_depth, 650 top_task->comm, task_pid_nr(top_task)); 651 } 652 put_task_struct(task); 653 654 return -EDEADLK; 655 } 656 657 /* 658 * We are fully preemptible here and only hold the refcount on 659 * @task. So everything can have changed under us since the 660 * caller or our own code below (goto retry/again) dropped all 661 * locks. 662 */ 663 retry: 664 /* 665 * [1] Task cannot go away as we did a get_task() before ! 666 */ 667 raw_spin_lock_irq(&task->pi_lock); 668 669 /* 670 * [2] Get the waiter on which @task is blocked on. 671 */ 672 waiter = task->pi_blocked_on; 673 674 /* 675 * [3] check_exit_conditions_1() protected by task->pi_lock. 676 */ 677 678 /* 679 * Check whether the end of the boosting chain has been 680 * reached or the state of the chain has changed while we 681 * dropped the locks. 682 */ 683 if (!waiter) 684 goto out_unlock_pi; 685 686 /* 687 * Check the orig_waiter state. After we dropped the locks, 688 * the previous owner of the lock might have released the lock. 689 */ 690 if (orig_waiter && !rt_mutex_owner(orig_lock)) 691 goto out_unlock_pi; 692 693 /* 694 * We dropped all locks after taking a refcount on @task, so 695 * the task might have moved on in the lock chain or even left 696 * the chain completely and blocks now on an unrelated lock or 697 * on @orig_lock. 698 * 699 * We stored the lock on which @task was blocked in @next_lock, 700 * so we can detect the chain change. 701 */ 702 if (next_lock != waiter->lock) 703 goto out_unlock_pi; 704 705 /* 706 * There could be 'spurious' loops in the lock graph due to ww_mutex, 707 * consider: 708 * 709 * P1: A, ww_A, ww_B 710 * P2: ww_B, ww_A 711 * P3: A 712 * 713 * P3 should not return -EDEADLK because it gets trapped in the cycle 714 * created by P1 and P2 (which will resolve -- and runs into 715 * max_lock_depth above). Therefore disable detect_deadlock such that 716 * the below termination condition can trigger once all relevant tasks 717 * are boosted. 718 * 719 * Even when we start with ww_mutex we can disable deadlock detection, 720 * since we would supress a ww_mutex induced deadlock at [6] anyway. 721 * Supressing it here however is not sufficient since we might still 722 * hit [6] due to adjustment driven iteration. 723 * 724 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd 725 * utterly fail to report it; lockdep should. 726 */ 727 if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock) 728 detect_deadlock = false; 729 730 /* 731 * Drop out, when the task has no waiters. Note, 732 * top_waiter can be NULL, when we are in the deboosting 733 * mode! 734 */ 735 if (top_waiter) { 736 if (!task_has_pi_waiters(task)) 737 goto out_unlock_pi; 738 /* 739 * If deadlock detection is off, we stop here if we 740 * are not the top pi waiter of the task. If deadlock 741 * detection is enabled we continue, but stop the 742 * requeueing in the chain walk. 743 */ 744 if (top_waiter != task_top_pi_waiter(task)) { 745 if (!detect_deadlock) 746 goto out_unlock_pi; 747 else 748 requeue = false; 749 } 750 } 751 752 /* 753 * If the waiter priority is the same as the task priority 754 * then there is no further priority adjustment necessary. If 755 * deadlock detection is off, we stop the chain walk. If its 756 * enabled we continue, but stop the requeueing in the chain 757 * walk. 758 */ 759 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 760 if (!detect_deadlock) 761 goto out_unlock_pi; 762 else 763 requeue = false; 764 } 765 766 /* 767 * [4] Get the next lock 768 */ 769 lock = waiter->lock; 770 /* 771 * [5] We need to trylock here as we are holding task->pi_lock, 772 * which is the reverse lock order versus the other rtmutex 773 * operations. 774 */ 775 if (!raw_spin_trylock(&lock->wait_lock)) { 776 raw_spin_unlock_irq(&task->pi_lock); 777 cpu_relax(); 778 goto retry; 779 } 780 781 /* 782 * [6] check_exit_conditions_2() protected by task->pi_lock and 783 * lock->wait_lock. 784 * 785 * Deadlock detection. If the lock is the same as the original 786 * lock which caused us to walk the lock chain or if the 787 * current lock is owned by the task which initiated the chain 788 * walk, we detected a deadlock. 789 */ 790 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 791 ret = -EDEADLK; 792 793 /* 794 * When the deadlock is due to ww_mutex; also see above. Don't 795 * report the deadlock and instead let the ww_mutex wound/die 796 * logic pick which of the contending threads gets -EDEADLK. 797 * 798 * NOTE: assumes the cycle only contains a single ww_class; any 799 * other configuration and we fail to report; also, see 800 * lockdep. 801 */ 802 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx) 803 ret = 0; 804 805 raw_spin_unlock(&lock->wait_lock); 806 goto out_unlock_pi; 807 } 808 809 /* 810 * If we just follow the lock chain for deadlock detection, no 811 * need to do all the requeue operations. To avoid a truckload 812 * of conditionals around the various places below, just do the 813 * minimum chain walk checks. 814 */ 815 if (!requeue) { 816 /* 817 * No requeue[7] here. Just release @task [8] 818 */ 819 raw_spin_unlock(&task->pi_lock); 820 put_task_struct(task); 821 822 /* 823 * [9] check_exit_conditions_3 protected by lock->wait_lock. 824 * If there is no owner of the lock, end of chain. 825 */ 826 if (!rt_mutex_owner(lock)) { 827 raw_spin_unlock_irq(&lock->wait_lock); 828 return 0; 829 } 830 831 /* [10] Grab the next task, i.e. owner of @lock */ 832 task = get_task_struct(rt_mutex_owner(lock)); 833 raw_spin_lock(&task->pi_lock); 834 835 /* 836 * No requeue [11] here. We just do deadlock detection. 837 * 838 * [12] Store whether owner is blocked 839 * itself. Decision is made after dropping the locks 840 */ 841 next_lock = task_blocked_on_lock(task); 842 /* 843 * Get the top waiter for the next iteration 844 */ 845 top_waiter = rt_mutex_top_waiter(lock); 846 847 /* [13] Drop locks */ 848 raw_spin_unlock(&task->pi_lock); 849 raw_spin_unlock_irq(&lock->wait_lock); 850 851 /* If owner is not blocked, end of chain. */ 852 if (!next_lock) 853 goto out_put_task; 854 goto again; 855 } 856 857 /* 858 * Store the current top waiter before doing the requeue 859 * operation on @lock. We need it for the boost/deboost 860 * decision below. 861 */ 862 prerequeue_top_waiter = rt_mutex_top_waiter(lock); 863 864 /* [7] Requeue the waiter in the lock waiter tree. */ 865 rt_mutex_dequeue(lock, waiter); 866 867 /* 868 * Update the waiter prio fields now that we're dequeued. 869 * 870 * These values can have changed through either: 871 * 872 * sys_sched_set_scheduler() / sys_sched_setattr() 873 * 874 * or 875 * 876 * DL CBS enforcement advancing the effective deadline. 877 * 878 * Even though pi_waiters also uses these fields, and that tree is only 879 * updated in [11], we can do this here, since we hold [L], which 880 * serializes all pi_waiters access and rb_erase() does not care about 881 * the values of the node being removed. 882 */ 883 waiter_update_prio(waiter, task); 884 885 rt_mutex_enqueue(lock, waiter); 886 887 /* [8] Release the task */ 888 raw_spin_unlock(&task->pi_lock); 889 put_task_struct(task); 890 891 /* 892 * [9] check_exit_conditions_3 protected by lock->wait_lock. 893 * 894 * We must abort the chain walk if there is no lock owner even 895 * in the dead lock detection case, as we have nothing to 896 * follow here. This is the end of the chain we are walking. 897 */ 898 if (!rt_mutex_owner(lock)) { 899 /* 900 * If the requeue [7] above changed the top waiter, 901 * then we need to wake the new top waiter up to try 902 * to get the lock. 903 */ 904 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) 905 wake_up_state(waiter->task, waiter->wake_state); 906 raw_spin_unlock_irq(&lock->wait_lock); 907 return 0; 908 } 909 910 /* [10] Grab the next task, i.e. the owner of @lock */ 911 task = get_task_struct(rt_mutex_owner(lock)); 912 raw_spin_lock(&task->pi_lock); 913 914 /* [11] requeue the pi waiters if necessary */ 915 if (waiter == rt_mutex_top_waiter(lock)) { 916 /* 917 * The waiter became the new top (highest priority) 918 * waiter on the lock. Replace the previous top waiter 919 * in the owner tasks pi waiters tree with this waiter 920 * and adjust the priority of the owner. 921 */ 922 rt_mutex_dequeue_pi(task, prerequeue_top_waiter); 923 rt_mutex_enqueue_pi(task, waiter); 924 rt_mutex_adjust_prio(task); 925 926 } else if (prerequeue_top_waiter == waiter) { 927 /* 928 * The waiter was the top waiter on the lock, but is 929 * no longer the top priority waiter. Replace waiter in 930 * the owner tasks pi waiters tree with the new top 931 * (highest priority) waiter and adjust the priority 932 * of the owner. 933 * The new top waiter is stored in @waiter so that 934 * @waiter == @top_waiter evaluates to true below and 935 * we continue to deboost the rest of the chain. 936 */ 937 rt_mutex_dequeue_pi(task, waiter); 938 waiter = rt_mutex_top_waiter(lock); 939 rt_mutex_enqueue_pi(task, waiter); 940 rt_mutex_adjust_prio(task); 941 } else { 942 /* 943 * Nothing changed. No need to do any priority 944 * adjustment. 945 */ 946 } 947 948 /* 949 * [12] check_exit_conditions_4() protected by task->pi_lock 950 * and lock->wait_lock. The actual decisions are made after we 951 * dropped the locks. 952 * 953 * Check whether the task which owns the current lock is pi 954 * blocked itself. If yes we store a pointer to the lock for 955 * the lock chain change detection above. After we dropped 956 * task->pi_lock next_lock cannot be dereferenced anymore. 957 */ 958 next_lock = task_blocked_on_lock(task); 959 /* 960 * Store the top waiter of @lock for the end of chain walk 961 * decision below. 962 */ 963 top_waiter = rt_mutex_top_waiter(lock); 964 965 /* [13] Drop the locks */ 966 raw_spin_unlock(&task->pi_lock); 967 raw_spin_unlock_irq(&lock->wait_lock); 968 969 /* 970 * Make the actual exit decisions [12], based on the stored 971 * values. 972 * 973 * We reached the end of the lock chain. Stop right here. No 974 * point to go back just to figure that out. 975 */ 976 if (!next_lock) 977 goto out_put_task; 978 979 /* 980 * If the current waiter is not the top waiter on the lock, 981 * then we can stop the chain walk here if we are not in full 982 * deadlock detection mode. 983 */ 984 if (!detect_deadlock && waiter != top_waiter) 985 goto out_put_task; 986 987 goto again; 988 989 out_unlock_pi: 990 raw_spin_unlock_irq(&task->pi_lock); 991 out_put_task: 992 put_task_struct(task); 993 994 return ret; 995 } 996 997 /* 998 * Try to take an rt-mutex 999 * 1000 * Must be called with lock->wait_lock held and interrupts disabled 1001 * 1002 * @lock: The lock to be acquired. 1003 * @task: The task which wants to acquire the lock 1004 * @waiter: The waiter that is queued to the lock's wait tree if the 1005 * callsite called task_blocked_on_lock(), otherwise NULL 1006 */ 1007 static int __sched 1008 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task, 1009 struct rt_mutex_waiter *waiter) 1010 { 1011 lockdep_assert_held(&lock->wait_lock); 1012 1013 /* 1014 * Before testing whether we can acquire @lock, we set the 1015 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all 1016 * other tasks which try to modify @lock into the slow path 1017 * and they serialize on @lock->wait_lock. 1018 * 1019 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state 1020 * as explained at the top of this file if and only if: 1021 * 1022 * - There is a lock owner. The caller must fixup the 1023 * transient state if it does a trylock or leaves the lock 1024 * function due to a signal or timeout. 1025 * 1026 * - @task acquires the lock and there are no other 1027 * waiters. This is undone in rt_mutex_set_owner(@task) at 1028 * the end of this function. 1029 */ 1030 mark_rt_mutex_waiters(lock); 1031 1032 /* 1033 * If @lock has an owner, give up. 1034 */ 1035 if (rt_mutex_owner(lock)) 1036 return 0; 1037 1038 /* 1039 * If @waiter != NULL, @task has already enqueued the waiter 1040 * into @lock waiter tree. If @waiter == NULL then this is a 1041 * trylock attempt. 1042 */ 1043 if (waiter) { 1044 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock); 1045 1046 /* 1047 * If waiter is the highest priority waiter of @lock, 1048 * or allowed to steal it, take it over. 1049 */ 1050 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) { 1051 /* 1052 * We can acquire the lock. Remove the waiter from the 1053 * lock waiters tree. 1054 */ 1055 rt_mutex_dequeue(lock, waiter); 1056 } else { 1057 return 0; 1058 } 1059 } else { 1060 /* 1061 * If the lock has waiters already we check whether @task is 1062 * eligible to take over the lock. 1063 * 1064 * If there are no other waiters, @task can acquire 1065 * the lock. @task->pi_blocked_on is NULL, so it does 1066 * not need to be dequeued. 1067 */ 1068 if (rt_mutex_has_waiters(lock)) { 1069 /* Check whether the trylock can steal it. */ 1070 if (!rt_mutex_steal(task_to_waiter(task), 1071 rt_mutex_top_waiter(lock))) 1072 return 0; 1073 1074 /* 1075 * The current top waiter stays enqueued. We 1076 * don't have to change anything in the lock 1077 * waiters order. 1078 */ 1079 } else { 1080 /* 1081 * No waiters. Take the lock without the 1082 * pi_lock dance.@task->pi_blocked_on is NULL 1083 * and we have no waiters to enqueue in @task 1084 * pi waiters tree. 1085 */ 1086 goto takeit; 1087 } 1088 } 1089 1090 /* 1091 * Clear @task->pi_blocked_on. Requires protection by 1092 * @task->pi_lock. Redundant operation for the @waiter == NULL 1093 * case, but conditionals are more expensive than a redundant 1094 * store. 1095 */ 1096 raw_spin_lock(&task->pi_lock); 1097 task->pi_blocked_on = NULL; 1098 /* 1099 * Finish the lock acquisition. @task is the new owner. If 1100 * other waiters exist we have to insert the highest priority 1101 * waiter into @task->pi_waiters tree. 1102 */ 1103 if (rt_mutex_has_waiters(lock)) 1104 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock)); 1105 raw_spin_unlock(&task->pi_lock); 1106 1107 takeit: 1108 /* 1109 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there 1110 * are still waiters or clears it. 1111 */ 1112 rt_mutex_set_owner(lock, task); 1113 1114 return 1; 1115 } 1116 1117 /* 1118 * Task blocks on lock. 1119 * 1120 * Prepare waiter and propagate pi chain 1121 * 1122 * This must be called with lock->wait_lock held and interrupts disabled 1123 */ 1124 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock, 1125 struct rt_mutex_waiter *waiter, 1126 struct task_struct *task, 1127 struct ww_acquire_ctx *ww_ctx, 1128 enum rtmutex_chainwalk chwalk) 1129 { 1130 struct task_struct *owner = rt_mutex_owner(lock); 1131 struct rt_mutex_waiter *top_waiter = waiter; 1132 struct rt_mutex_base *next_lock; 1133 int chain_walk = 0, res; 1134 1135 lockdep_assert_held(&lock->wait_lock); 1136 1137 /* 1138 * Early deadlock detection. We really don't want the task to 1139 * enqueue on itself just to untangle the mess later. It's not 1140 * only an optimization. We drop the locks, so another waiter 1141 * can come in before the chain walk detects the deadlock. So 1142 * the other will detect the deadlock and return -EDEADLOCK, 1143 * which is wrong, as the other waiter is not in a deadlock 1144 * situation. 1145 * 1146 * Except for ww_mutex, in that case the chain walk must already deal 1147 * with spurious cycles, see the comments at [3] and [6]. 1148 */ 1149 if (owner == task && !(build_ww_mutex() && ww_ctx)) 1150 return -EDEADLK; 1151 1152 raw_spin_lock(&task->pi_lock); 1153 waiter->task = task; 1154 waiter->lock = lock; 1155 waiter_update_prio(waiter, task); 1156 1157 /* Get the top priority waiter on the lock */ 1158 if (rt_mutex_has_waiters(lock)) 1159 top_waiter = rt_mutex_top_waiter(lock); 1160 rt_mutex_enqueue(lock, waiter); 1161 1162 task->pi_blocked_on = waiter; 1163 1164 raw_spin_unlock(&task->pi_lock); 1165 1166 if (build_ww_mutex() && ww_ctx) { 1167 struct rt_mutex *rtm; 1168 1169 /* Check whether the waiter should back out immediately */ 1170 rtm = container_of(lock, struct rt_mutex, rtmutex); 1171 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx); 1172 if (res) { 1173 raw_spin_lock(&task->pi_lock); 1174 rt_mutex_dequeue(lock, waiter); 1175 task->pi_blocked_on = NULL; 1176 raw_spin_unlock(&task->pi_lock); 1177 return res; 1178 } 1179 } 1180 1181 if (!owner) 1182 return 0; 1183 1184 raw_spin_lock(&owner->pi_lock); 1185 if (waiter == rt_mutex_top_waiter(lock)) { 1186 rt_mutex_dequeue_pi(owner, top_waiter); 1187 rt_mutex_enqueue_pi(owner, waiter); 1188 1189 rt_mutex_adjust_prio(owner); 1190 if (owner->pi_blocked_on) 1191 chain_walk = 1; 1192 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { 1193 chain_walk = 1; 1194 } 1195 1196 /* Store the lock on which owner is blocked or NULL */ 1197 next_lock = task_blocked_on_lock(owner); 1198 1199 raw_spin_unlock(&owner->pi_lock); 1200 /* 1201 * Even if full deadlock detection is on, if the owner is not 1202 * blocked itself, we can avoid finding this out in the chain 1203 * walk. 1204 */ 1205 if (!chain_walk || !next_lock) 1206 return 0; 1207 1208 /* 1209 * The owner can't disappear while holding a lock, 1210 * so the owner struct is protected by wait_lock. 1211 * Gets dropped in rt_mutex_adjust_prio_chain()! 1212 */ 1213 get_task_struct(owner); 1214 1215 raw_spin_unlock_irq(&lock->wait_lock); 1216 1217 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock, 1218 next_lock, waiter, task); 1219 1220 raw_spin_lock_irq(&lock->wait_lock); 1221 1222 return res; 1223 } 1224 1225 /* 1226 * Remove the top waiter from the current tasks pi waiter tree and 1227 * queue it up. 1228 * 1229 * Called with lock->wait_lock held and interrupts disabled. 1230 */ 1231 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh, 1232 struct rt_mutex_base *lock) 1233 { 1234 struct rt_mutex_waiter *waiter; 1235 1236 raw_spin_lock(¤t->pi_lock); 1237 1238 waiter = rt_mutex_top_waiter(lock); 1239 1240 /* 1241 * Remove it from current->pi_waiters and deboost. 1242 * 1243 * We must in fact deboost here in order to ensure we call 1244 * rt_mutex_setprio() to update p->pi_top_task before the 1245 * task unblocks. 1246 */ 1247 rt_mutex_dequeue_pi(current, waiter); 1248 rt_mutex_adjust_prio(current); 1249 1250 /* 1251 * As we are waking up the top waiter, and the waiter stays 1252 * queued on the lock until it gets the lock, this lock 1253 * obviously has waiters. Just set the bit here and this has 1254 * the added benefit of forcing all new tasks into the 1255 * slow path making sure no task of lower priority than 1256 * the top waiter can steal this lock. 1257 */ 1258 lock->owner = (void *) RT_MUTEX_HAS_WAITERS; 1259 1260 /* 1261 * We deboosted before waking the top waiter task such that we don't 1262 * run two tasks with the 'same' priority (and ensure the 1263 * p->pi_top_task pointer points to a blocked task). This however can 1264 * lead to priority inversion if we would get preempted after the 1265 * deboost but before waking our donor task, hence the preempt_disable() 1266 * before unlock. 1267 * 1268 * Pairs with preempt_enable() in rt_mutex_wake_up_q(); 1269 */ 1270 preempt_disable(); 1271 rt_mutex_wake_q_add(wqh, waiter); 1272 raw_spin_unlock(¤t->pi_lock); 1273 } 1274 1275 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock) 1276 { 1277 int ret = try_to_take_rt_mutex(lock, current, NULL); 1278 1279 /* 1280 * try_to_take_rt_mutex() sets the lock waiters bit 1281 * unconditionally. Clean this up. 1282 */ 1283 fixup_rt_mutex_waiters(lock, true); 1284 1285 return ret; 1286 } 1287 1288 /* 1289 * Slow path try-lock function: 1290 */ 1291 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock) 1292 { 1293 unsigned long flags; 1294 int ret; 1295 1296 /* 1297 * If the lock already has an owner we fail to get the lock. 1298 * This can be done without taking the @lock->wait_lock as 1299 * it is only being read, and this is a trylock anyway. 1300 */ 1301 if (rt_mutex_owner(lock)) 1302 return 0; 1303 1304 /* 1305 * The mutex has currently no owner. Lock the wait lock and try to 1306 * acquire the lock. We use irqsave here to support early boot calls. 1307 */ 1308 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1309 1310 ret = __rt_mutex_slowtrylock(lock); 1311 1312 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1313 1314 return ret; 1315 } 1316 1317 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock) 1318 { 1319 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1320 return 1; 1321 1322 return rt_mutex_slowtrylock(lock); 1323 } 1324 1325 /* 1326 * Slow path to release a rt-mutex. 1327 */ 1328 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock) 1329 { 1330 DEFINE_RT_WAKE_Q(wqh); 1331 unsigned long flags; 1332 1333 /* irqsave required to support early boot calls */ 1334 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1335 1336 debug_rt_mutex_unlock(lock); 1337 1338 /* 1339 * We must be careful here if the fast path is enabled. If we 1340 * have no waiters queued we cannot set owner to NULL here 1341 * because of: 1342 * 1343 * foo->lock->owner = NULL; 1344 * rtmutex_lock(foo->lock); <- fast path 1345 * free = atomic_dec_and_test(foo->refcnt); 1346 * rtmutex_unlock(foo->lock); <- fast path 1347 * if (free) 1348 * kfree(foo); 1349 * raw_spin_unlock(foo->lock->wait_lock); 1350 * 1351 * So for the fastpath enabled kernel: 1352 * 1353 * Nothing can set the waiters bit as long as we hold 1354 * lock->wait_lock. So we do the following sequence: 1355 * 1356 * owner = rt_mutex_owner(lock); 1357 * clear_rt_mutex_waiters(lock); 1358 * raw_spin_unlock(&lock->wait_lock); 1359 * if (cmpxchg(&lock->owner, owner, 0) == owner) 1360 * return; 1361 * goto retry; 1362 * 1363 * The fastpath disabled variant is simple as all access to 1364 * lock->owner is serialized by lock->wait_lock: 1365 * 1366 * lock->owner = NULL; 1367 * raw_spin_unlock(&lock->wait_lock); 1368 */ 1369 while (!rt_mutex_has_waiters(lock)) { 1370 /* Drops lock->wait_lock ! */ 1371 if (unlock_rt_mutex_safe(lock, flags) == true) 1372 return; 1373 /* Relock the rtmutex and try again */ 1374 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1375 } 1376 1377 /* 1378 * The wakeup next waiter path does not suffer from the above 1379 * race. See the comments there. 1380 * 1381 * Queue the next waiter for wakeup once we release the wait_lock. 1382 */ 1383 mark_wakeup_next_waiter(&wqh, lock); 1384 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1385 1386 rt_mutex_wake_up_q(&wqh); 1387 } 1388 1389 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock) 1390 { 1391 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) 1392 return; 1393 1394 rt_mutex_slowunlock(lock); 1395 } 1396 1397 #ifdef CONFIG_SMP 1398 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock, 1399 struct rt_mutex_waiter *waiter, 1400 struct task_struct *owner) 1401 { 1402 bool res = true; 1403 1404 rcu_read_lock(); 1405 for (;;) { 1406 /* If owner changed, trylock again. */ 1407 if (owner != rt_mutex_owner(lock)) 1408 break; 1409 /* 1410 * Ensure that @owner is dereferenced after checking that 1411 * the lock owner still matches @owner. If that fails, 1412 * @owner might point to freed memory. If it still matches, 1413 * the rcu_read_lock() ensures the memory stays valid. 1414 */ 1415 barrier(); 1416 /* 1417 * Stop spinning when: 1418 * - the lock owner has been scheduled out 1419 * - current is not longer the top waiter 1420 * - current is requested to reschedule (redundant 1421 * for CONFIG_PREEMPT_RCU=y) 1422 * - the VCPU on which owner runs is preempted 1423 */ 1424 if (!owner_on_cpu(owner) || need_resched() || 1425 !rt_mutex_waiter_is_top_waiter(lock, waiter)) { 1426 res = false; 1427 break; 1428 } 1429 cpu_relax(); 1430 } 1431 rcu_read_unlock(); 1432 return res; 1433 } 1434 #else 1435 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock, 1436 struct rt_mutex_waiter *waiter, 1437 struct task_struct *owner) 1438 { 1439 return false; 1440 } 1441 #endif 1442 1443 #ifdef RT_MUTEX_BUILD_MUTEX 1444 /* 1445 * Functions required for: 1446 * - rtmutex, futex on all kernels 1447 * - mutex and rwsem substitutions on RT kernels 1448 */ 1449 1450 /* 1451 * Remove a waiter from a lock and give up 1452 * 1453 * Must be called with lock->wait_lock held and interrupts disabled. It must 1454 * have just failed to try_to_take_rt_mutex(). 1455 */ 1456 static void __sched remove_waiter(struct rt_mutex_base *lock, 1457 struct rt_mutex_waiter *waiter) 1458 { 1459 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); 1460 struct task_struct *owner = rt_mutex_owner(lock); 1461 struct rt_mutex_base *next_lock; 1462 1463 lockdep_assert_held(&lock->wait_lock); 1464 1465 raw_spin_lock(¤t->pi_lock); 1466 rt_mutex_dequeue(lock, waiter); 1467 current->pi_blocked_on = NULL; 1468 raw_spin_unlock(¤t->pi_lock); 1469 1470 /* 1471 * Only update priority if the waiter was the highest priority 1472 * waiter of the lock and there is an owner to update. 1473 */ 1474 if (!owner || !is_top_waiter) 1475 return; 1476 1477 raw_spin_lock(&owner->pi_lock); 1478 1479 rt_mutex_dequeue_pi(owner, waiter); 1480 1481 if (rt_mutex_has_waiters(lock)) 1482 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); 1483 1484 rt_mutex_adjust_prio(owner); 1485 1486 /* Store the lock on which owner is blocked or NULL */ 1487 next_lock = task_blocked_on_lock(owner); 1488 1489 raw_spin_unlock(&owner->pi_lock); 1490 1491 /* 1492 * Don't walk the chain, if the owner task is not blocked 1493 * itself. 1494 */ 1495 if (!next_lock) 1496 return; 1497 1498 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1499 get_task_struct(owner); 1500 1501 raw_spin_unlock_irq(&lock->wait_lock); 1502 1503 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, 1504 next_lock, NULL, current); 1505 1506 raw_spin_lock_irq(&lock->wait_lock); 1507 } 1508 1509 /** 1510 * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop 1511 * @lock: the rt_mutex to take 1512 * @ww_ctx: WW mutex context pointer 1513 * @state: the state the task should block in (TASK_INTERRUPTIBLE 1514 * or TASK_UNINTERRUPTIBLE) 1515 * @timeout: the pre-initialized and started timer, or NULL for none 1516 * @waiter: the pre-initialized rt_mutex_waiter 1517 * 1518 * Must be called with lock->wait_lock held and interrupts disabled 1519 */ 1520 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock, 1521 struct ww_acquire_ctx *ww_ctx, 1522 unsigned int state, 1523 struct hrtimer_sleeper *timeout, 1524 struct rt_mutex_waiter *waiter) 1525 { 1526 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex); 1527 struct task_struct *owner; 1528 int ret = 0; 1529 1530 for (;;) { 1531 /* Try to acquire the lock: */ 1532 if (try_to_take_rt_mutex(lock, current, waiter)) 1533 break; 1534 1535 if (timeout && !timeout->task) { 1536 ret = -ETIMEDOUT; 1537 break; 1538 } 1539 if (signal_pending_state(state, current)) { 1540 ret = -EINTR; 1541 break; 1542 } 1543 1544 if (build_ww_mutex() && ww_ctx) { 1545 ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx); 1546 if (ret) 1547 break; 1548 } 1549 1550 if (waiter == rt_mutex_top_waiter(lock)) 1551 owner = rt_mutex_owner(lock); 1552 else 1553 owner = NULL; 1554 raw_spin_unlock_irq(&lock->wait_lock); 1555 1556 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner)) 1557 schedule(); 1558 1559 raw_spin_lock_irq(&lock->wait_lock); 1560 set_current_state(state); 1561 } 1562 1563 __set_current_state(TASK_RUNNING); 1564 return ret; 1565 } 1566 1567 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock, 1568 struct rt_mutex_waiter *w) 1569 { 1570 /* 1571 * If the result is not -EDEADLOCK or the caller requested 1572 * deadlock detection, nothing to do here. 1573 */ 1574 if (res != -EDEADLOCK || detect_deadlock) 1575 return; 1576 1577 if (build_ww_mutex() && w->ww_ctx) 1578 return; 1579 1580 /* 1581 * Yell loudly and stop the task right here. 1582 */ 1583 WARN(1, "rtmutex deadlock detected\n"); 1584 while (1) { 1585 set_current_state(TASK_INTERRUPTIBLE); 1586 schedule(); 1587 } 1588 } 1589 1590 /** 1591 * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held 1592 * @lock: The rtmutex to block lock 1593 * @ww_ctx: WW mutex context pointer 1594 * @state: The task state for sleeping 1595 * @chwalk: Indicator whether full or partial chainwalk is requested 1596 * @waiter: Initializer waiter for blocking 1597 */ 1598 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock, 1599 struct ww_acquire_ctx *ww_ctx, 1600 unsigned int state, 1601 enum rtmutex_chainwalk chwalk, 1602 struct rt_mutex_waiter *waiter) 1603 { 1604 struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex); 1605 struct ww_mutex *ww = ww_container_of(rtm); 1606 int ret; 1607 1608 lockdep_assert_held(&lock->wait_lock); 1609 1610 /* Try to acquire the lock again: */ 1611 if (try_to_take_rt_mutex(lock, current, NULL)) { 1612 if (build_ww_mutex() && ww_ctx) { 1613 __ww_mutex_check_waiters(rtm, ww_ctx); 1614 ww_mutex_lock_acquired(ww, ww_ctx); 1615 } 1616 return 0; 1617 } 1618 1619 set_current_state(state); 1620 1621 trace_contention_begin(lock, LCB_F_RT); 1622 1623 ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk); 1624 if (likely(!ret)) 1625 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter); 1626 1627 if (likely(!ret)) { 1628 /* acquired the lock */ 1629 if (build_ww_mutex() && ww_ctx) { 1630 if (!ww_ctx->is_wait_die) 1631 __ww_mutex_check_waiters(rtm, ww_ctx); 1632 ww_mutex_lock_acquired(ww, ww_ctx); 1633 } 1634 } else { 1635 __set_current_state(TASK_RUNNING); 1636 remove_waiter(lock, waiter); 1637 rt_mutex_handle_deadlock(ret, chwalk, waiter); 1638 } 1639 1640 /* 1641 * try_to_take_rt_mutex() sets the waiter bit 1642 * unconditionally. We might have to fix that up. 1643 */ 1644 fixup_rt_mutex_waiters(lock, true); 1645 1646 trace_contention_end(lock, ret); 1647 1648 return ret; 1649 } 1650 1651 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock, 1652 struct ww_acquire_ctx *ww_ctx, 1653 unsigned int state) 1654 { 1655 struct rt_mutex_waiter waiter; 1656 int ret; 1657 1658 rt_mutex_init_waiter(&waiter); 1659 waiter.ww_ctx = ww_ctx; 1660 1661 ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK, 1662 &waiter); 1663 1664 debug_rt_mutex_free_waiter(&waiter); 1665 return ret; 1666 } 1667 1668 /* 1669 * rt_mutex_slowlock - Locking slowpath invoked when fast path fails 1670 * @lock: The rtmutex to block lock 1671 * @ww_ctx: WW mutex context pointer 1672 * @state: The task state for sleeping 1673 */ 1674 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock, 1675 struct ww_acquire_ctx *ww_ctx, 1676 unsigned int state) 1677 { 1678 unsigned long flags; 1679 int ret; 1680 1681 /* 1682 * Technically we could use raw_spin_[un]lock_irq() here, but this can 1683 * be called in early boot if the cmpxchg() fast path is disabled 1684 * (debug, no architecture support). In this case we will acquire the 1685 * rtmutex with lock->wait_lock held. But we cannot unconditionally 1686 * enable interrupts in that early boot case. So we need to use the 1687 * irqsave/restore variants. 1688 */ 1689 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1690 ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state); 1691 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1692 1693 return ret; 1694 } 1695 1696 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock, 1697 unsigned int state) 1698 { 1699 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1700 return 0; 1701 1702 return rt_mutex_slowlock(lock, NULL, state); 1703 } 1704 #endif /* RT_MUTEX_BUILD_MUTEX */ 1705 1706 #ifdef RT_MUTEX_BUILD_SPINLOCKS 1707 /* 1708 * Functions required for spin/rw_lock substitution on RT kernels 1709 */ 1710 1711 /** 1712 * rtlock_slowlock_locked - Slow path lock acquisition for RT locks 1713 * @lock: The underlying RT mutex 1714 */ 1715 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock) 1716 { 1717 struct rt_mutex_waiter waiter; 1718 struct task_struct *owner; 1719 1720 lockdep_assert_held(&lock->wait_lock); 1721 1722 if (try_to_take_rt_mutex(lock, current, NULL)) 1723 return; 1724 1725 rt_mutex_init_rtlock_waiter(&waiter); 1726 1727 /* Save current state and set state to TASK_RTLOCK_WAIT */ 1728 current_save_and_set_rtlock_wait_state(); 1729 1730 trace_contention_begin(lock, LCB_F_RT); 1731 1732 task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK); 1733 1734 for (;;) { 1735 /* Try to acquire the lock again */ 1736 if (try_to_take_rt_mutex(lock, current, &waiter)) 1737 break; 1738 1739 if (&waiter == rt_mutex_top_waiter(lock)) 1740 owner = rt_mutex_owner(lock); 1741 else 1742 owner = NULL; 1743 raw_spin_unlock_irq(&lock->wait_lock); 1744 1745 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner)) 1746 schedule_rtlock(); 1747 1748 raw_spin_lock_irq(&lock->wait_lock); 1749 set_current_state(TASK_RTLOCK_WAIT); 1750 } 1751 1752 /* Restore the task state */ 1753 current_restore_rtlock_saved_state(); 1754 1755 /* 1756 * try_to_take_rt_mutex() sets the waiter bit unconditionally. 1757 * We might have to fix that up: 1758 */ 1759 fixup_rt_mutex_waiters(lock, true); 1760 debug_rt_mutex_free_waiter(&waiter); 1761 1762 trace_contention_end(lock, 0); 1763 } 1764 1765 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock) 1766 { 1767 unsigned long flags; 1768 1769 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1770 rtlock_slowlock_locked(lock); 1771 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1772 } 1773 1774 #endif /* RT_MUTEX_BUILD_SPINLOCKS */ 1775