xref: /linux/kernel/locking/rtmutex.c (revision ec8a42e7343234802b9054874fe01810880289ce)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  *
12  *  See Documentation/locking/rt-mutex-design.rst for details.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22 
23 #include "rtmutex_common.h"
24 
25 /*
26  * lock->owner state tracking:
27  *
28  * lock->owner holds the task_struct pointer of the owner. Bit 0
29  * is used to keep track of the "lock has waiters" state.
30  *
31  * owner	bit0
32  * NULL		0	lock is free (fast acquire possible)
33  * NULL		1	lock is free and has waiters and the top waiter
34  *				is going to take the lock*
35  * taskpointer	0	lock is held (fast release possible)
36  * taskpointer	1	lock is held and has waiters**
37  *
38  * The fast atomic compare exchange based acquire and release is only
39  * possible when bit 0 of lock->owner is 0.
40  *
41  * (*) It also can be a transitional state when grabbing the lock
42  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43  * we need to set the bit0 before looking at the lock, and the owner may be
44  * NULL in this small time, hence this can be a transitional state.
45  *
46  * (**) There is a small time when bit 0 is set but there are no
47  * waiters. This can happen when grabbing the lock in the slow path.
48  * To prevent a cmpxchg of the owner releasing the lock, we need to
49  * set this bit before looking at the lock.
50  */
51 
52 static void
53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55 	unsigned long val = (unsigned long)owner;
56 
57 	if (rt_mutex_has_waiters(lock))
58 		val |= RT_MUTEX_HAS_WAITERS;
59 
60 	WRITE_ONCE(lock->owner, (struct task_struct *)val);
61 }
62 
63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65 	lock->owner = (struct task_struct *)
66 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68 
69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71 	unsigned long owner, *p = (unsigned long *) &lock->owner;
72 
73 	if (rt_mutex_has_waiters(lock))
74 		return;
75 
76 	/*
77 	 * The rbtree has no waiters enqueued, now make sure that the
78 	 * lock->owner still has the waiters bit set, otherwise the
79 	 * following can happen:
80 	 *
81 	 * CPU 0	CPU 1		CPU2
82 	 * l->owner=T1
83 	 *		rt_mutex_lock(l)
84 	 *		lock(l->lock)
85 	 *		l->owner = T1 | HAS_WAITERS;
86 	 *		enqueue(T2)
87 	 *		boost()
88 	 *		  unlock(l->lock)
89 	 *		block()
90 	 *
91 	 *				rt_mutex_lock(l)
92 	 *				lock(l->lock)
93 	 *				l->owner = T1 | HAS_WAITERS;
94 	 *				enqueue(T3)
95 	 *				boost()
96 	 *				  unlock(l->lock)
97 	 *				block()
98 	 *		signal(->T2)	signal(->T3)
99 	 *		lock(l->lock)
100 	 *		dequeue(T2)
101 	 *		deboost()
102 	 *		  unlock(l->lock)
103 	 *				lock(l->lock)
104 	 *				dequeue(T3)
105 	 *				 ==> wait list is empty
106 	 *				deboost()
107 	 *				 unlock(l->lock)
108 	 *		lock(l->lock)
109 	 *		fixup_rt_mutex_waiters()
110 	 *		  if (wait_list_empty(l) {
111 	 *		    l->owner = owner
112 	 *		    owner = l->owner & ~HAS_WAITERS;
113 	 *		      ==> l->owner = T1
114 	 *		  }
115 	 *				lock(l->lock)
116 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
117 	 *				  if (wait_list_empty(l) {
118 	 *				    owner = l->owner & ~HAS_WAITERS;
119 	 * cmpxchg(l->owner, T1, NULL)
120 	 *  ===> Success (l->owner = NULL)
121 	 *
122 	 *				    l->owner = owner
123 	 *				      ==> l->owner = T1
124 	 *				  }
125 	 *
126 	 * With the check for the waiter bit in place T3 on CPU2 will not
127 	 * overwrite. All tasks fiddling with the waiters bit are
128 	 * serialized by l->lock, so nothing else can modify the waiters
129 	 * bit. If the bit is set then nothing can change l->owner either
130 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 	 * happens in the middle of the RMW because the waiters bit is
132 	 * still set.
133 	 */
134 	owner = READ_ONCE(*p);
135 	if (owner & RT_MUTEX_HAS_WAITERS)
136 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138 
139 /*
140  * We can speed up the acquire/release, if there's no debugging state to be
141  * set up.
142  */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146 
147 /*
148  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150  * relaxed semantics suffice.
151  */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 	unsigned long owner, *p = (unsigned long *) &lock->owner;
155 
156 	do {
157 		owner = *p;
158 	} while (cmpxchg_relaxed(p, owner,
159 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161 
162 /*
163  * Safe fastpath aware unlock:
164  * 1) Clear the waiters bit
165  * 2) Drop lock->wait_lock
166  * 3) Try to unlock the lock with cmpxchg
167  */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 					unsigned long flags)
170 	__releases(lock->wait_lock)
171 {
172 	struct task_struct *owner = rt_mutex_owner(lock);
173 
174 	clear_rt_mutex_waiters(lock);
175 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 	/*
177 	 * If a new waiter comes in between the unlock and the cmpxchg
178 	 * we have two situations:
179 	 *
180 	 * unlock(wait_lock);
181 	 *					lock(wait_lock);
182 	 * cmpxchg(p, owner, 0) == owner
183 	 *					mark_rt_mutex_waiters(lock);
184 	 *					acquire(lock);
185 	 * or:
186 	 *
187 	 * unlock(wait_lock);
188 	 *					lock(wait_lock);
189 	 *					mark_rt_mutex_waiters(lock);
190 	 *
191 	 * cmpxchg(p, owner, 0) != owner
192 	 *					enqueue_waiter();
193 	 *					unlock(wait_lock);
194 	 * lock(wait_lock);
195 	 * wake waiter();
196 	 * unlock(wait_lock);
197 	 *					lock(wait_lock);
198 	 *					acquire(lock);
199 	 */
200 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202 
203 #else
204 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
205 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
206 
207 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208 {
209 	lock->owner = (struct task_struct *)
210 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211 }
212 
213 /*
214  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215  */
216 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 					unsigned long flags)
218 	__releases(lock->wait_lock)
219 {
220 	lock->owner = NULL;
221 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 	return true;
223 }
224 #endif
225 
226 /*
227  * Only use with rt_mutex_waiter_{less,equal}()
228  */
229 #define task_to_waiter(p)	\
230 	&(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231 
232 static inline int
233 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234 		     struct rt_mutex_waiter *right)
235 {
236 	if (left->prio < right->prio)
237 		return 1;
238 
239 	/*
240 	 * If both waiters have dl_prio(), we check the deadlines of the
241 	 * associated tasks.
242 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
243 	 * then right waiter has a dl_prio() too.
244 	 */
245 	if (dl_prio(left->prio))
246 		return dl_time_before(left->deadline, right->deadline);
247 
248 	return 0;
249 }
250 
251 static inline int
252 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253 		      struct rt_mutex_waiter *right)
254 {
255 	if (left->prio != right->prio)
256 		return 0;
257 
258 	/*
259 	 * If both waiters have dl_prio(), we check the deadlines of the
260 	 * associated tasks.
261 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
262 	 * then right waiter has a dl_prio() too.
263 	 */
264 	if (dl_prio(left->prio))
265 		return left->deadline == right->deadline;
266 
267 	return 1;
268 }
269 
270 static void
271 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
272 {
273 	struct rb_node **link = &lock->waiters.rb_root.rb_node;
274 	struct rb_node *parent = NULL;
275 	struct rt_mutex_waiter *entry;
276 	bool leftmost = true;
277 
278 	while (*link) {
279 		parent = *link;
280 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
281 		if (rt_mutex_waiter_less(waiter, entry)) {
282 			link = &parent->rb_left;
283 		} else {
284 			link = &parent->rb_right;
285 			leftmost = false;
286 		}
287 	}
288 
289 	rb_link_node(&waiter->tree_entry, parent, link);
290 	rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
291 }
292 
293 static void
294 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
295 {
296 	if (RB_EMPTY_NODE(&waiter->tree_entry))
297 		return;
298 
299 	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
300 	RB_CLEAR_NODE(&waiter->tree_entry);
301 }
302 
303 static void
304 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
305 {
306 	struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
307 	struct rb_node *parent = NULL;
308 	struct rt_mutex_waiter *entry;
309 	bool leftmost = true;
310 
311 	while (*link) {
312 		parent = *link;
313 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
314 		if (rt_mutex_waiter_less(waiter, entry)) {
315 			link = &parent->rb_left;
316 		} else {
317 			link = &parent->rb_right;
318 			leftmost = false;
319 		}
320 	}
321 
322 	rb_link_node(&waiter->pi_tree_entry, parent, link);
323 	rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
324 }
325 
326 static void
327 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
328 {
329 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
330 		return;
331 
332 	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
333 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
334 }
335 
336 static void rt_mutex_adjust_prio(struct task_struct *p)
337 {
338 	struct task_struct *pi_task = NULL;
339 
340 	lockdep_assert_held(&p->pi_lock);
341 
342 	if (task_has_pi_waiters(p))
343 		pi_task = task_top_pi_waiter(p)->task;
344 
345 	rt_mutex_setprio(p, pi_task);
346 }
347 
348 /*
349  * Deadlock detection is conditional:
350  *
351  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
352  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
353  *
354  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
355  * conducted independent of the detect argument.
356  *
357  * If the waiter argument is NULL this indicates the deboost path and
358  * deadlock detection is disabled independent of the detect argument
359  * and the config settings.
360  */
361 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
362 					  enum rtmutex_chainwalk chwalk)
363 {
364 	/*
365 	 * This is just a wrapper function for the following call,
366 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
367 	 * debug feature and I wanted to keep the cond function in the
368 	 * main source file along with the comments instead of having
369 	 * two of the same in the headers.
370 	 */
371 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
372 }
373 
374 /*
375  * Max number of times we'll walk the boosting chain:
376  */
377 int max_lock_depth = 1024;
378 
379 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
380 {
381 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
382 }
383 
384 /*
385  * Adjust the priority chain. Also used for deadlock detection.
386  * Decreases task's usage by one - may thus free the task.
387  *
388  * @task:	the task owning the mutex (owner) for which a chain walk is
389  *		probably needed
390  * @chwalk:	do we have to carry out deadlock detection?
391  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
392  *		things for a task that has just got its priority adjusted, and
393  *		is waiting on a mutex)
394  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
395  *		we dropped its pi_lock. Is never dereferenced, only used for
396  *		comparison to detect lock chain changes.
397  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
398  *		its priority to the mutex owner (can be NULL in the case
399  *		depicted above or if the top waiter is gone away and we are
400  *		actually deboosting the owner)
401  * @top_task:	the current top waiter
402  *
403  * Returns 0 or -EDEADLK.
404  *
405  * Chain walk basics and protection scope
406  *
407  * [R] refcount on task
408  * [P] task->pi_lock held
409  * [L] rtmutex->wait_lock held
410  *
411  * Step	Description				Protected by
412  *	function arguments:
413  *	@task					[R]
414  *	@orig_lock if != NULL			@top_task is blocked on it
415  *	@next_lock				Unprotected. Cannot be
416  *						dereferenced. Only used for
417  *						comparison.
418  *	@orig_waiter if != NULL			@top_task is blocked on it
419  *	@top_task				current, or in case of proxy
420  *						locking protected by calling
421  *						code
422  *	again:
423  *	  loop_sanity_check();
424  *	retry:
425  * [1]	  lock(task->pi_lock);			[R] acquire [P]
426  * [2]	  waiter = task->pi_blocked_on;		[P]
427  * [3]	  check_exit_conditions_1();		[P]
428  * [4]	  lock = waiter->lock;			[P]
429  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
430  *	    unlock(task->pi_lock);		release [P]
431  *	    goto retry;
432  *	  }
433  * [6]	  check_exit_conditions_2();		[P] + [L]
434  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
435  * [8]	  unlock(task->pi_lock);		release [P]
436  *	  put_task_struct(task);		release [R]
437  * [9]	  check_exit_conditions_3();		[L]
438  * [10]	  task = owner(lock);			[L]
439  *	  get_task_struct(task);		[L] acquire [R]
440  *	  lock(task->pi_lock);			[L] acquire [P]
441  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
442  * [12]	  check_exit_conditions_4();		[P] + [L]
443  * [13]	  unlock(task->pi_lock);		release [P]
444  *	  unlock(lock->wait_lock);		release [L]
445  *	  goto again;
446  */
447 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
448 				      enum rtmutex_chainwalk chwalk,
449 				      struct rt_mutex *orig_lock,
450 				      struct rt_mutex *next_lock,
451 				      struct rt_mutex_waiter *orig_waiter,
452 				      struct task_struct *top_task)
453 {
454 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
455 	struct rt_mutex_waiter *prerequeue_top_waiter;
456 	int ret = 0, depth = 0;
457 	struct rt_mutex *lock;
458 	bool detect_deadlock;
459 	bool requeue = true;
460 
461 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
462 
463 	/*
464 	 * The (de)boosting is a step by step approach with a lot of
465 	 * pitfalls. We want this to be preemptible and we want hold a
466 	 * maximum of two locks per step. So we have to check
467 	 * carefully whether things change under us.
468 	 */
469  again:
470 	/*
471 	 * We limit the lock chain length for each invocation.
472 	 */
473 	if (++depth > max_lock_depth) {
474 		static int prev_max;
475 
476 		/*
477 		 * Print this only once. If the admin changes the limit,
478 		 * print a new message when reaching the limit again.
479 		 */
480 		if (prev_max != max_lock_depth) {
481 			prev_max = max_lock_depth;
482 			printk(KERN_WARNING "Maximum lock depth %d reached "
483 			       "task: %s (%d)\n", max_lock_depth,
484 			       top_task->comm, task_pid_nr(top_task));
485 		}
486 		put_task_struct(task);
487 
488 		return -EDEADLK;
489 	}
490 
491 	/*
492 	 * We are fully preemptible here and only hold the refcount on
493 	 * @task. So everything can have changed under us since the
494 	 * caller or our own code below (goto retry/again) dropped all
495 	 * locks.
496 	 */
497  retry:
498 	/*
499 	 * [1] Task cannot go away as we did a get_task() before !
500 	 */
501 	raw_spin_lock_irq(&task->pi_lock);
502 
503 	/*
504 	 * [2] Get the waiter on which @task is blocked on.
505 	 */
506 	waiter = task->pi_blocked_on;
507 
508 	/*
509 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
510 	 */
511 
512 	/*
513 	 * Check whether the end of the boosting chain has been
514 	 * reached or the state of the chain has changed while we
515 	 * dropped the locks.
516 	 */
517 	if (!waiter)
518 		goto out_unlock_pi;
519 
520 	/*
521 	 * Check the orig_waiter state. After we dropped the locks,
522 	 * the previous owner of the lock might have released the lock.
523 	 */
524 	if (orig_waiter && !rt_mutex_owner(orig_lock))
525 		goto out_unlock_pi;
526 
527 	/*
528 	 * We dropped all locks after taking a refcount on @task, so
529 	 * the task might have moved on in the lock chain or even left
530 	 * the chain completely and blocks now on an unrelated lock or
531 	 * on @orig_lock.
532 	 *
533 	 * We stored the lock on which @task was blocked in @next_lock,
534 	 * so we can detect the chain change.
535 	 */
536 	if (next_lock != waiter->lock)
537 		goto out_unlock_pi;
538 
539 	/*
540 	 * Drop out, when the task has no waiters. Note,
541 	 * top_waiter can be NULL, when we are in the deboosting
542 	 * mode!
543 	 */
544 	if (top_waiter) {
545 		if (!task_has_pi_waiters(task))
546 			goto out_unlock_pi;
547 		/*
548 		 * If deadlock detection is off, we stop here if we
549 		 * are not the top pi waiter of the task. If deadlock
550 		 * detection is enabled we continue, but stop the
551 		 * requeueing in the chain walk.
552 		 */
553 		if (top_waiter != task_top_pi_waiter(task)) {
554 			if (!detect_deadlock)
555 				goto out_unlock_pi;
556 			else
557 				requeue = false;
558 		}
559 	}
560 
561 	/*
562 	 * If the waiter priority is the same as the task priority
563 	 * then there is no further priority adjustment necessary.  If
564 	 * deadlock detection is off, we stop the chain walk. If its
565 	 * enabled we continue, but stop the requeueing in the chain
566 	 * walk.
567 	 */
568 	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
569 		if (!detect_deadlock)
570 			goto out_unlock_pi;
571 		else
572 			requeue = false;
573 	}
574 
575 	/*
576 	 * [4] Get the next lock
577 	 */
578 	lock = waiter->lock;
579 	/*
580 	 * [5] We need to trylock here as we are holding task->pi_lock,
581 	 * which is the reverse lock order versus the other rtmutex
582 	 * operations.
583 	 */
584 	if (!raw_spin_trylock(&lock->wait_lock)) {
585 		raw_spin_unlock_irq(&task->pi_lock);
586 		cpu_relax();
587 		goto retry;
588 	}
589 
590 	/*
591 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
592 	 * lock->wait_lock.
593 	 *
594 	 * Deadlock detection. If the lock is the same as the original
595 	 * lock which caused us to walk the lock chain or if the
596 	 * current lock is owned by the task which initiated the chain
597 	 * walk, we detected a deadlock.
598 	 */
599 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
600 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
601 		raw_spin_unlock(&lock->wait_lock);
602 		ret = -EDEADLK;
603 		goto out_unlock_pi;
604 	}
605 
606 	/*
607 	 * If we just follow the lock chain for deadlock detection, no
608 	 * need to do all the requeue operations. To avoid a truckload
609 	 * of conditionals around the various places below, just do the
610 	 * minimum chain walk checks.
611 	 */
612 	if (!requeue) {
613 		/*
614 		 * No requeue[7] here. Just release @task [8]
615 		 */
616 		raw_spin_unlock(&task->pi_lock);
617 		put_task_struct(task);
618 
619 		/*
620 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
621 		 * If there is no owner of the lock, end of chain.
622 		 */
623 		if (!rt_mutex_owner(lock)) {
624 			raw_spin_unlock_irq(&lock->wait_lock);
625 			return 0;
626 		}
627 
628 		/* [10] Grab the next task, i.e. owner of @lock */
629 		task = get_task_struct(rt_mutex_owner(lock));
630 		raw_spin_lock(&task->pi_lock);
631 
632 		/*
633 		 * No requeue [11] here. We just do deadlock detection.
634 		 *
635 		 * [12] Store whether owner is blocked
636 		 * itself. Decision is made after dropping the locks
637 		 */
638 		next_lock = task_blocked_on_lock(task);
639 		/*
640 		 * Get the top waiter for the next iteration
641 		 */
642 		top_waiter = rt_mutex_top_waiter(lock);
643 
644 		/* [13] Drop locks */
645 		raw_spin_unlock(&task->pi_lock);
646 		raw_spin_unlock_irq(&lock->wait_lock);
647 
648 		/* If owner is not blocked, end of chain. */
649 		if (!next_lock)
650 			goto out_put_task;
651 		goto again;
652 	}
653 
654 	/*
655 	 * Store the current top waiter before doing the requeue
656 	 * operation on @lock. We need it for the boost/deboost
657 	 * decision below.
658 	 */
659 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
660 
661 	/* [7] Requeue the waiter in the lock waiter tree. */
662 	rt_mutex_dequeue(lock, waiter);
663 
664 	/*
665 	 * Update the waiter prio fields now that we're dequeued.
666 	 *
667 	 * These values can have changed through either:
668 	 *
669 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
670 	 *
671 	 * or
672 	 *
673 	 *   DL CBS enforcement advancing the effective deadline.
674 	 *
675 	 * Even though pi_waiters also uses these fields, and that tree is only
676 	 * updated in [11], we can do this here, since we hold [L], which
677 	 * serializes all pi_waiters access and rb_erase() does not care about
678 	 * the values of the node being removed.
679 	 */
680 	waiter->prio = task->prio;
681 	waiter->deadline = task->dl.deadline;
682 
683 	rt_mutex_enqueue(lock, waiter);
684 
685 	/* [8] Release the task */
686 	raw_spin_unlock(&task->pi_lock);
687 	put_task_struct(task);
688 
689 	/*
690 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
691 	 *
692 	 * We must abort the chain walk if there is no lock owner even
693 	 * in the dead lock detection case, as we have nothing to
694 	 * follow here. This is the end of the chain we are walking.
695 	 */
696 	if (!rt_mutex_owner(lock)) {
697 		/*
698 		 * If the requeue [7] above changed the top waiter,
699 		 * then we need to wake the new top waiter up to try
700 		 * to get the lock.
701 		 */
702 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
703 			wake_up_process(rt_mutex_top_waiter(lock)->task);
704 		raw_spin_unlock_irq(&lock->wait_lock);
705 		return 0;
706 	}
707 
708 	/* [10] Grab the next task, i.e. the owner of @lock */
709 	task = get_task_struct(rt_mutex_owner(lock));
710 	raw_spin_lock(&task->pi_lock);
711 
712 	/* [11] requeue the pi waiters if necessary */
713 	if (waiter == rt_mutex_top_waiter(lock)) {
714 		/*
715 		 * The waiter became the new top (highest priority)
716 		 * waiter on the lock. Replace the previous top waiter
717 		 * in the owner tasks pi waiters tree with this waiter
718 		 * and adjust the priority of the owner.
719 		 */
720 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
721 		rt_mutex_enqueue_pi(task, waiter);
722 		rt_mutex_adjust_prio(task);
723 
724 	} else if (prerequeue_top_waiter == waiter) {
725 		/*
726 		 * The waiter was the top waiter on the lock, but is
727 		 * no longer the top prority waiter. Replace waiter in
728 		 * the owner tasks pi waiters tree with the new top
729 		 * (highest priority) waiter and adjust the priority
730 		 * of the owner.
731 		 * The new top waiter is stored in @waiter so that
732 		 * @waiter == @top_waiter evaluates to true below and
733 		 * we continue to deboost the rest of the chain.
734 		 */
735 		rt_mutex_dequeue_pi(task, waiter);
736 		waiter = rt_mutex_top_waiter(lock);
737 		rt_mutex_enqueue_pi(task, waiter);
738 		rt_mutex_adjust_prio(task);
739 	} else {
740 		/*
741 		 * Nothing changed. No need to do any priority
742 		 * adjustment.
743 		 */
744 	}
745 
746 	/*
747 	 * [12] check_exit_conditions_4() protected by task->pi_lock
748 	 * and lock->wait_lock. The actual decisions are made after we
749 	 * dropped the locks.
750 	 *
751 	 * Check whether the task which owns the current lock is pi
752 	 * blocked itself. If yes we store a pointer to the lock for
753 	 * the lock chain change detection above. After we dropped
754 	 * task->pi_lock next_lock cannot be dereferenced anymore.
755 	 */
756 	next_lock = task_blocked_on_lock(task);
757 	/*
758 	 * Store the top waiter of @lock for the end of chain walk
759 	 * decision below.
760 	 */
761 	top_waiter = rt_mutex_top_waiter(lock);
762 
763 	/* [13] Drop the locks */
764 	raw_spin_unlock(&task->pi_lock);
765 	raw_spin_unlock_irq(&lock->wait_lock);
766 
767 	/*
768 	 * Make the actual exit decisions [12], based on the stored
769 	 * values.
770 	 *
771 	 * We reached the end of the lock chain. Stop right here. No
772 	 * point to go back just to figure that out.
773 	 */
774 	if (!next_lock)
775 		goto out_put_task;
776 
777 	/*
778 	 * If the current waiter is not the top waiter on the lock,
779 	 * then we can stop the chain walk here if we are not in full
780 	 * deadlock detection mode.
781 	 */
782 	if (!detect_deadlock && waiter != top_waiter)
783 		goto out_put_task;
784 
785 	goto again;
786 
787  out_unlock_pi:
788 	raw_spin_unlock_irq(&task->pi_lock);
789  out_put_task:
790 	put_task_struct(task);
791 
792 	return ret;
793 }
794 
795 /*
796  * Try to take an rt-mutex
797  *
798  * Must be called with lock->wait_lock held and interrupts disabled
799  *
800  * @lock:   The lock to be acquired.
801  * @task:   The task which wants to acquire the lock
802  * @waiter: The waiter that is queued to the lock's wait tree if the
803  *	    callsite called task_blocked_on_lock(), otherwise NULL
804  */
805 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
806 				struct rt_mutex_waiter *waiter)
807 {
808 	lockdep_assert_held(&lock->wait_lock);
809 
810 	/*
811 	 * Before testing whether we can acquire @lock, we set the
812 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
813 	 * other tasks which try to modify @lock into the slow path
814 	 * and they serialize on @lock->wait_lock.
815 	 *
816 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
817 	 * as explained at the top of this file if and only if:
818 	 *
819 	 * - There is a lock owner. The caller must fixup the
820 	 *   transient state if it does a trylock or leaves the lock
821 	 *   function due to a signal or timeout.
822 	 *
823 	 * - @task acquires the lock and there are no other
824 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
825 	 *   the end of this function.
826 	 */
827 	mark_rt_mutex_waiters(lock);
828 
829 	/*
830 	 * If @lock has an owner, give up.
831 	 */
832 	if (rt_mutex_owner(lock))
833 		return 0;
834 
835 	/*
836 	 * If @waiter != NULL, @task has already enqueued the waiter
837 	 * into @lock waiter tree. If @waiter == NULL then this is a
838 	 * trylock attempt.
839 	 */
840 	if (waiter) {
841 		/*
842 		 * If waiter is not the highest priority waiter of
843 		 * @lock, give up.
844 		 */
845 		if (waiter != rt_mutex_top_waiter(lock))
846 			return 0;
847 
848 		/*
849 		 * We can acquire the lock. Remove the waiter from the
850 		 * lock waiters tree.
851 		 */
852 		rt_mutex_dequeue(lock, waiter);
853 
854 	} else {
855 		/*
856 		 * If the lock has waiters already we check whether @task is
857 		 * eligible to take over the lock.
858 		 *
859 		 * If there are no other waiters, @task can acquire
860 		 * the lock.  @task->pi_blocked_on is NULL, so it does
861 		 * not need to be dequeued.
862 		 */
863 		if (rt_mutex_has_waiters(lock)) {
864 			/*
865 			 * If @task->prio is greater than or equal to
866 			 * the top waiter priority (kernel view),
867 			 * @task lost.
868 			 */
869 			if (!rt_mutex_waiter_less(task_to_waiter(task),
870 						  rt_mutex_top_waiter(lock)))
871 				return 0;
872 
873 			/*
874 			 * The current top waiter stays enqueued. We
875 			 * don't have to change anything in the lock
876 			 * waiters order.
877 			 */
878 		} else {
879 			/*
880 			 * No waiters. Take the lock without the
881 			 * pi_lock dance.@task->pi_blocked_on is NULL
882 			 * and we have no waiters to enqueue in @task
883 			 * pi waiters tree.
884 			 */
885 			goto takeit;
886 		}
887 	}
888 
889 	/*
890 	 * Clear @task->pi_blocked_on. Requires protection by
891 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
892 	 * case, but conditionals are more expensive than a redundant
893 	 * store.
894 	 */
895 	raw_spin_lock(&task->pi_lock);
896 	task->pi_blocked_on = NULL;
897 	/*
898 	 * Finish the lock acquisition. @task is the new owner. If
899 	 * other waiters exist we have to insert the highest priority
900 	 * waiter into @task->pi_waiters tree.
901 	 */
902 	if (rt_mutex_has_waiters(lock))
903 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
904 	raw_spin_unlock(&task->pi_lock);
905 
906 takeit:
907 	/* We got the lock. */
908 	debug_rt_mutex_lock(lock);
909 
910 	/*
911 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
912 	 * are still waiters or clears it.
913 	 */
914 	rt_mutex_set_owner(lock, task);
915 
916 	return 1;
917 }
918 
919 /*
920  * Task blocks on lock.
921  *
922  * Prepare waiter and propagate pi chain
923  *
924  * This must be called with lock->wait_lock held and interrupts disabled
925  */
926 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
927 				   struct rt_mutex_waiter *waiter,
928 				   struct task_struct *task,
929 				   enum rtmutex_chainwalk chwalk)
930 {
931 	struct task_struct *owner = rt_mutex_owner(lock);
932 	struct rt_mutex_waiter *top_waiter = waiter;
933 	struct rt_mutex *next_lock;
934 	int chain_walk = 0, res;
935 
936 	lockdep_assert_held(&lock->wait_lock);
937 
938 	/*
939 	 * Early deadlock detection. We really don't want the task to
940 	 * enqueue on itself just to untangle the mess later. It's not
941 	 * only an optimization. We drop the locks, so another waiter
942 	 * can come in before the chain walk detects the deadlock. So
943 	 * the other will detect the deadlock and return -EDEADLOCK,
944 	 * which is wrong, as the other waiter is not in a deadlock
945 	 * situation.
946 	 */
947 	if (owner == task)
948 		return -EDEADLK;
949 
950 	raw_spin_lock(&task->pi_lock);
951 	waiter->task = task;
952 	waiter->lock = lock;
953 	waiter->prio = task->prio;
954 	waiter->deadline = task->dl.deadline;
955 
956 	/* Get the top priority waiter on the lock */
957 	if (rt_mutex_has_waiters(lock))
958 		top_waiter = rt_mutex_top_waiter(lock);
959 	rt_mutex_enqueue(lock, waiter);
960 
961 	task->pi_blocked_on = waiter;
962 
963 	raw_spin_unlock(&task->pi_lock);
964 
965 	if (!owner)
966 		return 0;
967 
968 	raw_spin_lock(&owner->pi_lock);
969 	if (waiter == rt_mutex_top_waiter(lock)) {
970 		rt_mutex_dequeue_pi(owner, top_waiter);
971 		rt_mutex_enqueue_pi(owner, waiter);
972 
973 		rt_mutex_adjust_prio(owner);
974 		if (owner->pi_blocked_on)
975 			chain_walk = 1;
976 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
977 		chain_walk = 1;
978 	}
979 
980 	/* Store the lock on which owner is blocked or NULL */
981 	next_lock = task_blocked_on_lock(owner);
982 
983 	raw_spin_unlock(&owner->pi_lock);
984 	/*
985 	 * Even if full deadlock detection is on, if the owner is not
986 	 * blocked itself, we can avoid finding this out in the chain
987 	 * walk.
988 	 */
989 	if (!chain_walk || !next_lock)
990 		return 0;
991 
992 	/*
993 	 * The owner can't disappear while holding a lock,
994 	 * so the owner struct is protected by wait_lock.
995 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
996 	 */
997 	get_task_struct(owner);
998 
999 	raw_spin_unlock_irq(&lock->wait_lock);
1000 
1001 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1002 					 next_lock, waiter, task);
1003 
1004 	raw_spin_lock_irq(&lock->wait_lock);
1005 
1006 	return res;
1007 }
1008 
1009 /*
1010  * Remove the top waiter from the current tasks pi waiter tree and
1011  * queue it up.
1012  *
1013  * Called with lock->wait_lock held and interrupts disabled.
1014  */
1015 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1016 				    struct rt_mutex *lock)
1017 {
1018 	struct rt_mutex_waiter *waiter;
1019 
1020 	raw_spin_lock(&current->pi_lock);
1021 
1022 	waiter = rt_mutex_top_waiter(lock);
1023 
1024 	/*
1025 	 * Remove it from current->pi_waiters and deboost.
1026 	 *
1027 	 * We must in fact deboost here in order to ensure we call
1028 	 * rt_mutex_setprio() to update p->pi_top_task before the
1029 	 * task unblocks.
1030 	 */
1031 	rt_mutex_dequeue_pi(current, waiter);
1032 	rt_mutex_adjust_prio(current);
1033 
1034 	/*
1035 	 * As we are waking up the top waiter, and the waiter stays
1036 	 * queued on the lock until it gets the lock, this lock
1037 	 * obviously has waiters. Just set the bit here and this has
1038 	 * the added benefit of forcing all new tasks into the
1039 	 * slow path making sure no task of lower priority than
1040 	 * the top waiter can steal this lock.
1041 	 */
1042 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1043 
1044 	/*
1045 	 * We deboosted before waking the top waiter task such that we don't
1046 	 * run two tasks with the 'same' priority (and ensure the
1047 	 * p->pi_top_task pointer points to a blocked task). This however can
1048 	 * lead to priority inversion if we would get preempted after the
1049 	 * deboost but before waking our donor task, hence the preempt_disable()
1050 	 * before unlock.
1051 	 *
1052 	 * Pairs with preempt_enable() in rt_mutex_postunlock();
1053 	 */
1054 	preempt_disable();
1055 	wake_q_add(wake_q, waiter->task);
1056 	raw_spin_unlock(&current->pi_lock);
1057 }
1058 
1059 /*
1060  * Remove a waiter from a lock and give up
1061  *
1062  * Must be called with lock->wait_lock held and interrupts disabled. I must
1063  * have just failed to try_to_take_rt_mutex().
1064  */
1065 static void remove_waiter(struct rt_mutex *lock,
1066 			  struct rt_mutex_waiter *waiter)
1067 {
1068 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1069 	struct task_struct *owner = rt_mutex_owner(lock);
1070 	struct rt_mutex *next_lock;
1071 
1072 	lockdep_assert_held(&lock->wait_lock);
1073 
1074 	raw_spin_lock(&current->pi_lock);
1075 	rt_mutex_dequeue(lock, waiter);
1076 	current->pi_blocked_on = NULL;
1077 	raw_spin_unlock(&current->pi_lock);
1078 
1079 	/*
1080 	 * Only update priority if the waiter was the highest priority
1081 	 * waiter of the lock and there is an owner to update.
1082 	 */
1083 	if (!owner || !is_top_waiter)
1084 		return;
1085 
1086 	raw_spin_lock(&owner->pi_lock);
1087 
1088 	rt_mutex_dequeue_pi(owner, waiter);
1089 
1090 	if (rt_mutex_has_waiters(lock))
1091 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1092 
1093 	rt_mutex_adjust_prio(owner);
1094 
1095 	/* Store the lock on which owner is blocked or NULL */
1096 	next_lock = task_blocked_on_lock(owner);
1097 
1098 	raw_spin_unlock(&owner->pi_lock);
1099 
1100 	/*
1101 	 * Don't walk the chain, if the owner task is not blocked
1102 	 * itself.
1103 	 */
1104 	if (!next_lock)
1105 		return;
1106 
1107 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1108 	get_task_struct(owner);
1109 
1110 	raw_spin_unlock_irq(&lock->wait_lock);
1111 
1112 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1113 				   next_lock, NULL, current);
1114 
1115 	raw_spin_lock_irq(&lock->wait_lock);
1116 }
1117 
1118 /*
1119  * Recheck the pi chain, in case we got a priority setting
1120  *
1121  * Called from sched_setscheduler
1122  */
1123 void rt_mutex_adjust_pi(struct task_struct *task)
1124 {
1125 	struct rt_mutex_waiter *waiter;
1126 	struct rt_mutex *next_lock;
1127 	unsigned long flags;
1128 
1129 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1130 
1131 	waiter = task->pi_blocked_on;
1132 	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1133 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1134 		return;
1135 	}
1136 	next_lock = waiter->lock;
1137 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138 
1139 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1140 	get_task_struct(task);
1141 
1142 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1143 				   next_lock, NULL, task);
1144 }
1145 
1146 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1147 {
1148 	debug_rt_mutex_init_waiter(waiter);
1149 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
1150 	RB_CLEAR_NODE(&waiter->tree_entry);
1151 	waiter->task = NULL;
1152 }
1153 
1154 /**
1155  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1156  * @lock:		 the rt_mutex to take
1157  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1158  *			 or TASK_UNINTERRUPTIBLE)
1159  * @timeout:		 the pre-initialized and started timer, or NULL for none
1160  * @waiter:		 the pre-initialized rt_mutex_waiter
1161  *
1162  * Must be called with lock->wait_lock held and interrupts disabled
1163  */
1164 static int __sched
1165 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1166 		    struct hrtimer_sleeper *timeout,
1167 		    struct rt_mutex_waiter *waiter)
1168 {
1169 	int ret = 0;
1170 
1171 	for (;;) {
1172 		/* Try to acquire the lock: */
1173 		if (try_to_take_rt_mutex(lock, current, waiter))
1174 			break;
1175 
1176 		/*
1177 		 * TASK_INTERRUPTIBLE checks for signals and
1178 		 * timeout. Ignored otherwise.
1179 		 */
1180 		if (likely(state == TASK_INTERRUPTIBLE)) {
1181 			/* Signal pending? */
1182 			if (signal_pending(current))
1183 				ret = -EINTR;
1184 			if (timeout && !timeout->task)
1185 				ret = -ETIMEDOUT;
1186 			if (ret)
1187 				break;
1188 		}
1189 
1190 		raw_spin_unlock_irq(&lock->wait_lock);
1191 
1192 		debug_rt_mutex_print_deadlock(waiter);
1193 
1194 		schedule();
1195 
1196 		raw_spin_lock_irq(&lock->wait_lock);
1197 		set_current_state(state);
1198 	}
1199 
1200 	__set_current_state(TASK_RUNNING);
1201 	return ret;
1202 }
1203 
1204 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1205 				     struct rt_mutex_waiter *w)
1206 {
1207 	/*
1208 	 * If the result is not -EDEADLOCK or the caller requested
1209 	 * deadlock detection, nothing to do here.
1210 	 */
1211 	if (res != -EDEADLOCK || detect_deadlock)
1212 		return;
1213 
1214 	/*
1215 	 * Yell lowdly and stop the task right here.
1216 	 */
1217 	rt_mutex_print_deadlock(w);
1218 	while (1) {
1219 		set_current_state(TASK_INTERRUPTIBLE);
1220 		schedule();
1221 	}
1222 }
1223 
1224 /*
1225  * Slow path lock function:
1226  */
1227 static int __sched
1228 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1229 		  struct hrtimer_sleeper *timeout,
1230 		  enum rtmutex_chainwalk chwalk)
1231 {
1232 	struct rt_mutex_waiter waiter;
1233 	unsigned long flags;
1234 	int ret = 0;
1235 
1236 	rt_mutex_init_waiter(&waiter);
1237 
1238 	/*
1239 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1240 	 * be called in early boot if the cmpxchg() fast path is disabled
1241 	 * (debug, no architecture support). In this case we will acquire the
1242 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1243 	 * enable interrupts in that early boot case. So we need to use the
1244 	 * irqsave/restore variants.
1245 	 */
1246 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1247 
1248 	/* Try to acquire the lock again: */
1249 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1250 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1251 		return 0;
1252 	}
1253 
1254 	set_current_state(state);
1255 
1256 	/* Setup the timer, when timeout != NULL */
1257 	if (unlikely(timeout))
1258 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1259 
1260 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1261 
1262 	if (likely(!ret))
1263 		/* sleep on the mutex */
1264 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1265 
1266 	if (unlikely(ret)) {
1267 		__set_current_state(TASK_RUNNING);
1268 		remove_waiter(lock, &waiter);
1269 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1270 	}
1271 
1272 	/*
1273 	 * try_to_take_rt_mutex() sets the waiter bit
1274 	 * unconditionally. We might have to fix that up.
1275 	 */
1276 	fixup_rt_mutex_waiters(lock);
1277 
1278 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1279 
1280 	/* Remove pending timer: */
1281 	if (unlikely(timeout))
1282 		hrtimer_cancel(&timeout->timer);
1283 
1284 	debug_rt_mutex_free_waiter(&waiter);
1285 
1286 	return ret;
1287 }
1288 
1289 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1290 {
1291 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1292 
1293 	/*
1294 	 * try_to_take_rt_mutex() sets the lock waiters bit
1295 	 * unconditionally. Clean this up.
1296 	 */
1297 	fixup_rt_mutex_waiters(lock);
1298 
1299 	return ret;
1300 }
1301 
1302 /*
1303  * Slow path try-lock function:
1304  */
1305 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1306 {
1307 	unsigned long flags;
1308 	int ret;
1309 
1310 	/*
1311 	 * If the lock already has an owner we fail to get the lock.
1312 	 * This can be done without taking the @lock->wait_lock as
1313 	 * it is only being read, and this is a trylock anyway.
1314 	 */
1315 	if (rt_mutex_owner(lock))
1316 		return 0;
1317 
1318 	/*
1319 	 * The mutex has currently no owner. Lock the wait lock and try to
1320 	 * acquire the lock. We use irqsave here to support early boot calls.
1321 	 */
1322 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1323 
1324 	ret = __rt_mutex_slowtrylock(lock);
1325 
1326 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1327 
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Slow path to release a rt-mutex.
1333  *
1334  * Return whether the current task needs to call rt_mutex_postunlock().
1335  */
1336 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1337 					struct wake_q_head *wake_q)
1338 {
1339 	unsigned long flags;
1340 
1341 	/* irqsave required to support early boot calls */
1342 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1343 
1344 	debug_rt_mutex_unlock(lock);
1345 
1346 	/*
1347 	 * We must be careful here if the fast path is enabled. If we
1348 	 * have no waiters queued we cannot set owner to NULL here
1349 	 * because of:
1350 	 *
1351 	 * foo->lock->owner = NULL;
1352 	 *			rtmutex_lock(foo->lock);   <- fast path
1353 	 *			free = atomic_dec_and_test(foo->refcnt);
1354 	 *			rtmutex_unlock(foo->lock); <- fast path
1355 	 *			if (free)
1356 	 *				kfree(foo);
1357 	 * raw_spin_unlock(foo->lock->wait_lock);
1358 	 *
1359 	 * So for the fastpath enabled kernel:
1360 	 *
1361 	 * Nothing can set the waiters bit as long as we hold
1362 	 * lock->wait_lock. So we do the following sequence:
1363 	 *
1364 	 *	owner = rt_mutex_owner(lock);
1365 	 *	clear_rt_mutex_waiters(lock);
1366 	 *	raw_spin_unlock(&lock->wait_lock);
1367 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1368 	 *		return;
1369 	 *	goto retry;
1370 	 *
1371 	 * The fastpath disabled variant is simple as all access to
1372 	 * lock->owner is serialized by lock->wait_lock:
1373 	 *
1374 	 *	lock->owner = NULL;
1375 	 *	raw_spin_unlock(&lock->wait_lock);
1376 	 */
1377 	while (!rt_mutex_has_waiters(lock)) {
1378 		/* Drops lock->wait_lock ! */
1379 		if (unlock_rt_mutex_safe(lock, flags) == true)
1380 			return false;
1381 		/* Relock the rtmutex and try again */
1382 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1383 	}
1384 
1385 	/*
1386 	 * The wakeup next waiter path does not suffer from the above
1387 	 * race. See the comments there.
1388 	 *
1389 	 * Queue the next waiter for wakeup once we release the wait_lock.
1390 	 */
1391 	mark_wakeup_next_waiter(wake_q, lock);
1392 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1393 
1394 	return true; /* call rt_mutex_postunlock() */
1395 }
1396 
1397 /*
1398  * debug aware fast / slowpath lock,trylock,unlock
1399  *
1400  * The atomic acquire/release ops are compiled away, when either the
1401  * architecture does not support cmpxchg or when debugging is enabled.
1402  */
1403 static inline int
1404 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1405 		  int (*slowfn)(struct rt_mutex *lock, int state,
1406 				struct hrtimer_sleeper *timeout,
1407 				enum rtmutex_chainwalk chwalk))
1408 {
1409 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1410 		return 0;
1411 
1412 	return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1413 }
1414 
1415 static inline int
1416 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1417 			struct hrtimer_sleeper *timeout,
1418 			enum rtmutex_chainwalk chwalk,
1419 			int (*slowfn)(struct rt_mutex *lock, int state,
1420 				      struct hrtimer_sleeper *timeout,
1421 				      enum rtmutex_chainwalk chwalk))
1422 {
1423 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1424 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1425 		return 0;
1426 
1427 	return slowfn(lock, state, timeout, chwalk);
1428 }
1429 
1430 static inline int
1431 rt_mutex_fasttrylock(struct rt_mutex *lock,
1432 		     int (*slowfn)(struct rt_mutex *lock))
1433 {
1434 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1435 		return 1;
1436 
1437 	return slowfn(lock);
1438 }
1439 
1440 /*
1441  * Performs the wakeup of the the top-waiter and re-enables preemption.
1442  */
1443 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1444 {
1445 	wake_up_q(wake_q);
1446 
1447 	/* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1448 	preempt_enable();
1449 }
1450 
1451 static inline void
1452 rt_mutex_fastunlock(struct rt_mutex *lock,
1453 		    bool (*slowfn)(struct rt_mutex *lock,
1454 				   struct wake_q_head *wqh))
1455 {
1456 	DEFINE_WAKE_Q(wake_q);
1457 
1458 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1459 		return;
1460 
1461 	if (slowfn(lock, &wake_q))
1462 		rt_mutex_postunlock(&wake_q);
1463 }
1464 
1465 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1466 {
1467 	might_sleep();
1468 
1469 	mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1470 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1471 }
1472 
1473 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1474 /**
1475  * rt_mutex_lock_nested - lock a rt_mutex
1476  *
1477  * @lock: the rt_mutex to be locked
1478  * @subclass: the lockdep subclass
1479  */
1480 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1481 {
1482 	__rt_mutex_lock(lock, subclass);
1483 }
1484 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1485 
1486 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1487 
1488 /**
1489  * rt_mutex_lock - lock a rt_mutex
1490  *
1491  * @lock: the rt_mutex to be locked
1492  */
1493 void __sched rt_mutex_lock(struct rt_mutex *lock)
1494 {
1495 	__rt_mutex_lock(lock, 0);
1496 }
1497 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1498 #endif
1499 
1500 /**
1501  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1502  *
1503  * @lock:		the rt_mutex to be locked
1504  *
1505  * Returns:
1506  *  0		on success
1507  * -EINTR	when interrupted by a signal
1508  */
1509 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1510 {
1511 	int ret;
1512 
1513 	might_sleep();
1514 
1515 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1516 	ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1517 	if (ret)
1518 		mutex_release(&lock->dep_map, _RET_IP_);
1519 
1520 	return ret;
1521 }
1522 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1523 
1524 /*
1525  * Futex variant, must not use fastpath.
1526  */
1527 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1528 {
1529 	return rt_mutex_slowtrylock(lock);
1530 }
1531 
1532 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1533 {
1534 	return __rt_mutex_slowtrylock(lock);
1535 }
1536 
1537 /**
1538  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1539  *			the timeout structure is provided
1540  *			by the caller
1541  *
1542  * @lock:		the rt_mutex to be locked
1543  * @timeout:		timeout structure or NULL (no timeout)
1544  *
1545  * Returns:
1546  *  0		on success
1547  * -EINTR	when interrupted by a signal
1548  * -ETIMEDOUT	when the timeout expired
1549  */
1550 int
1551 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1552 {
1553 	int ret;
1554 
1555 	might_sleep();
1556 
1557 	mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1558 	ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1559 				       RT_MUTEX_MIN_CHAINWALK,
1560 				       rt_mutex_slowlock);
1561 	if (ret)
1562 		mutex_release(&lock->dep_map, _RET_IP_);
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1567 
1568 /**
1569  * rt_mutex_trylock - try to lock a rt_mutex
1570  *
1571  * @lock:	the rt_mutex to be locked
1572  *
1573  * This function can only be called in thread context. It's safe to
1574  * call it from atomic regions, but not from hard interrupt or soft
1575  * interrupt context.
1576  *
1577  * Returns 1 on success and 0 on contention
1578  */
1579 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1580 {
1581 	int ret;
1582 
1583 	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1584 		return 0;
1585 
1586 	ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1587 	if (ret)
1588 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1589 
1590 	return ret;
1591 }
1592 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1593 
1594 /**
1595  * rt_mutex_unlock - unlock a rt_mutex
1596  *
1597  * @lock: the rt_mutex to be unlocked
1598  */
1599 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1600 {
1601 	mutex_release(&lock->dep_map, _RET_IP_);
1602 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1603 }
1604 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1605 
1606 /**
1607  * Futex variant, that since futex variants do not use the fast-path, can be
1608  * simple and will not need to retry.
1609  */
1610 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1611 				    struct wake_q_head *wake_q)
1612 {
1613 	lockdep_assert_held(&lock->wait_lock);
1614 
1615 	debug_rt_mutex_unlock(lock);
1616 
1617 	if (!rt_mutex_has_waiters(lock)) {
1618 		lock->owner = NULL;
1619 		return false; /* done */
1620 	}
1621 
1622 	/*
1623 	 * We've already deboosted, mark_wakeup_next_waiter() will
1624 	 * retain preempt_disabled when we drop the wait_lock, to
1625 	 * avoid inversion prior to the wakeup.  preempt_disable()
1626 	 * therein pairs with rt_mutex_postunlock().
1627 	 */
1628 	mark_wakeup_next_waiter(wake_q, lock);
1629 
1630 	return true; /* call postunlock() */
1631 }
1632 
1633 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1634 {
1635 	DEFINE_WAKE_Q(wake_q);
1636 	unsigned long flags;
1637 	bool postunlock;
1638 
1639 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1640 	postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1641 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1642 
1643 	if (postunlock)
1644 		rt_mutex_postunlock(&wake_q);
1645 }
1646 
1647 /**
1648  * rt_mutex_destroy - mark a mutex unusable
1649  * @lock: the mutex to be destroyed
1650  *
1651  * This function marks the mutex uninitialized, and any subsequent
1652  * use of the mutex is forbidden. The mutex must not be locked when
1653  * this function is called.
1654  */
1655 void rt_mutex_destroy(struct rt_mutex *lock)
1656 {
1657 	WARN_ON(rt_mutex_is_locked(lock));
1658 #ifdef CONFIG_DEBUG_RT_MUTEXES
1659 	lock->magic = NULL;
1660 #endif
1661 }
1662 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1663 
1664 /**
1665  * __rt_mutex_init - initialize the rt lock
1666  *
1667  * @lock: the rt lock to be initialized
1668  *
1669  * Initialize the rt lock to unlocked state.
1670  *
1671  * Initializing of a locked rt lock is not allowed
1672  */
1673 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1674 		     struct lock_class_key *key)
1675 {
1676 	lock->owner = NULL;
1677 	raw_spin_lock_init(&lock->wait_lock);
1678 	lock->waiters = RB_ROOT_CACHED;
1679 
1680 	if (name && key)
1681 		debug_rt_mutex_init(lock, name, key);
1682 }
1683 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1684 
1685 /**
1686  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1687  *				proxy owner
1688  *
1689  * @lock:	the rt_mutex to be locked
1690  * @proxy_owner:the task to set as owner
1691  *
1692  * No locking. Caller has to do serializing itself
1693  *
1694  * Special API call for PI-futex support. This initializes the rtmutex and
1695  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1696  * possible at this point because the pi_state which contains the rtmutex
1697  * is not yet visible to other tasks.
1698  */
1699 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1700 				struct task_struct *proxy_owner)
1701 {
1702 	__rt_mutex_init(lock, NULL, NULL);
1703 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1704 	rt_mutex_set_owner(lock, proxy_owner);
1705 }
1706 
1707 /**
1708  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1709  *
1710  * @lock:	the rt_mutex to be locked
1711  *
1712  * No locking. Caller has to do serializing itself
1713  *
1714  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1715  * (debugging) state. Concurrent operations on this rt_mutex are not
1716  * possible because it belongs to the pi_state which is about to be freed
1717  * and it is not longer visible to other tasks.
1718  */
1719 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1720 {
1721 	debug_rt_mutex_proxy_unlock(lock);
1722 	rt_mutex_set_owner(lock, NULL);
1723 }
1724 
1725 /**
1726  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1727  * @lock:		the rt_mutex to take
1728  * @waiter:		the pre-initialized rt_mutex_waiter
1729  * @task:		the task to prepare
1730  *
1731  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1732  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1733  *
1734  * NOTE: does _NOT_ remove the @waiter on failure; must either call
1735  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1736  *
1737  * Returns:
1738  *  0 - task blocked on lock
1739  *  1 - acquired the lock for task, caller should wake it up
1740  * <0 - error
1741  *
1742  * Special API call for PI-futex support.
1743  */
1744 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1745 			      struct rt_mutex_waiter *waiter,
1746 			      struct task_struct *task)
1747 {
1748 	int ret;
1749 
1750 	lockdep_assert_held(&lock->wait_lock);
1751 
1752 	if (try_to_take_rt_mutex(lock, task, NULL))
1753 		return 1;
1754 
1755 	/* We enforce deadlock detection for futexes */
1756 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1757 				      RT_MUTEX_FULL_CHAINWALK);
1758 
1759 	if (ret && !rt_mutex_owner(lock)) {
1760 		/*
1761 		 * Reset the return value. We might have
1762 		 * returned with -EDEADLK and the owner
1763 		 * released the lock while we were walking the
1764 		 * pi chain.  Let the waiter sort it out.
1765 		 */
1766 		ret = 0;
1767 	}
1768 
1769 	debug_rt_mutex_print_deadlock(waiter);
1770 
1771 	return ret;
1772 }
1773 
1774 /**
1775  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1776  * @lock:		the rt_mutex to take
1777  * @waiter:		the pre-initialized rt_mutex_waiter
1778  * @task:		the task to prepare
1779  *
1780  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1781  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1782  *
1783  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1784  * on failure.
1785  *
1786  * Returns:
1787  *  0 - task blocked on lock
1788  *  1 - acquired the lock for task, caller should wake it up
1789  * <0 - error
1790  *
1791  * Special API call for PI-futex support.
1792  */
1793 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1794 			      struct rt_mutex_waiter *waiter,
1795 			      struct task_struct *task)
1796 {
1797 	int ret;
1798 
1799 	raw_spin_lock_irq(&lock->wait_lock);
1800 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1801 	if (unlikely(ret))
1802 		remove_waiter(lock, waiter);
1803 	raw_spin_unlock_irq(&lock->wait_lock);
1804 
1805 	return ret;
1806 }
1807 
1808 /**
1809  * rt_mutex_next_owner - return the next owner of the lock
1810  *
1811  * @lock: the rt lock query
1812  *
1813  * Returns the next owner of the lock or NULL
1814  *
1815  * Caller has to serialize against other accessors to the lock
1816  * itself.
1817  *
1818  * Special API call for PI-futex support
1819  */
1820 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1821 {
1822 	if (!rt_mutex_has_waiters(lock))
1823 		return NULL;
1824 
1825 	return rt_mutex_top_waiter(lock)->task;
1826 }
1827 
1828 /**
1829  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1830  * @lock:		the rt_mutex we were woken on
1831  * @to:			the timeout, null if none. hrtimer should already have
1832  *			been started.
1833  * @waiter:		the pre-initialized rt_mutex_waiter
1834  *
1835  * Wait for the the lock acquisition started on our behalf by
1836  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1837  * rt_mutex_cleanup_proxy_lock().
1838  *
1839  * Returns:
1840  *  0 - success
1841  * <0 - error, one of -EINTR, -ETIMEDOUT
1842  *
1843  * Special API call for PI-futex support
1844  */
1845 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1846 			       struct hrtimer_sleeper *to,
1847 			       struct rt_mutex_waiter *waiter)
1848 {
1849 	int ret;
1850 
1851 	raw_spin_lock_irq(&lock->wait_lock);
1852 	/* sleep on the mutex */
1853 	set_current_state(TASK_INTERRUPTIBLE);
1854 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1855 	/*
1856 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1857 	 * have to fix that up.
1858 	 */
1859 	fixup_rt_mutex_waiters(lock);
1860 	raw_spin_unlock_irq(&lock->wait_lock);
1861 
1862 	return ret;
1863 }
1864 
1865 /**
1866  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1867  * @lock:		the rt_mutex we were woken on
1868  * @waiter:		the pre-initialized rt_mutex_waiter
1869  *
1870  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1871  * rt_mutex_wait_proxy_lock().
1872  *
1873  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1874  * in fact still be granted ownership until we're removed. Therefore we can
1875  * find we are in fact the owner and must disregard the
1876  * rt_mutex_wait_proxy_lock() failure.
1877  *
1878  * Returns:
1879  *  true  - did the cleanup, we done.
1880  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1881  *          caller should disregards its return value.
1882  *
1883  * Special API call for PI-futex support
1884  */
1885 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1886 				 struct rt_mutex_waiter *waiter)
1887 {
1888 	bool cleanup = false;
1889 
1890 	raw_spin_lock_irq(&lock->wait_lock);
1891 	/*
1892 	 * Do an unconditional try-lock, this deals with the lock stealing
1893 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1894 	 * sets a NULL owner.
1895 	 *
1896 	 * We're not interested in the return value, because the subsequent
1897 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1898 	 * we will own the lock and it will have removed the waiter. If we
1899 	 * failed the trylock, we're still not owner and we need to remove
1900 	 * ourselves.
1901 	 */
1902 	try_to_take_rt_mutex(lock, current, waiter);
1903 	/*
1904 	 * Unless we're the owner; we're still enqueued on the wait_list.
1905 	 * So check if we became owner, if not, take us off the wait_list.
1906 	 */
1907 	if (rt_mutex_owner(lock) != current) {
1908 		remove_waiter(lock, waiter);
1909 		cleanup = true;
1910 	}
1911 	/*
1912 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1913 	 * have to fix that up.
1914 	 */
1915 	fixup_rt_mutex_waiters(lock);
1916 
1917 	raw_spin_unlock_irq(&lock->wait_lock);
1918 
1919 	return cleanup;
1920 }
1921