xref: /linux/kernel/locking/rtmutex.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/sched/wake_q.h>
19 #include <linux/sched/debug.h>
20 #include <linux/timer.h>
21 
22 #include "rtmutex_common.h"
23 
24 /*
25  * lock->owner state tracking:
26  *
27  * lock->owner holds the task_struct pointer of the owner. Bit 0
28  * is used to keep track of the "lock has waiters" state.
29  *
30  * owner	bit0
31  * NULL		0	lock is free (fast acquire possible)
32  * NULL		1	lock is free and has waiters and the top waiter
33  *				is going to take the lock*
34  * taskpointer	0	lock is held (fast release possible)
35  * taskpointer	1	lock is held and has waiters**
36  *
37  * The fast atomic compare exchange based acquire and release is only
38  * possible when bit 0 of lock->owner is 0.
39  *
40  * (*) It also can be a transitional state when grabbing the lock
41  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
42  * we need to set the bit0 before looking at the lock, and the owner may be
43  * NULL in this small time, hence this can be a transitional state.
44  *
45  * (**) There is a small time when bit 0 is set but there are no
46  * waiters. This can happen when grabbing the lock in the slow path.
47  * To prevent a cmpxchg of the owner releasing the lock, we need to
48  * set this bit before looking at the lock.
49  */
50 
51 static void
52 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
53 {
54 	unsigned long val = (unsigned long)owner;
55 
56 	if (rt_mutex_has_waiters(lock))
57 		val |= RT_MUTEX_HAS_WAITERS;
58 
59 	lock->owner = (struct task_struct *)val;
60 }
61 
62 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
63 {
64 	lock->owner = (struct task_struct *)
65 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
66 }
67 
68 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
69 {
70 	unsigned long owner, *p = (unsigned long *) &lock->owner;
71 
72 	if (rt_mutex_has_waiters(lock))
73 		return;
74 
75 	/*
76 	 * The rbtree has no waiters enqueued, now make sure that the
77 	 * lock->owner still has the waiters bit set, otherwise the
78 	 * following can happen:
79 	 *
80 	 * CPU 0	CPU 1		CPU2
81 	 * l->owner=T1
82 	 *		rt_mutex_lock(l)
83 	 *		lock(l->lock)
84 	 *		l->owner = T1 | HAS_WAITERS;
85 	 *		enqueue(T2)
86 	 *		boost()
87 	 *		  unlock(l->lock)
88 	 *		block()
89 	 *
90 	 *				rt_mutex_lock(l)
91 	 *				lock(l->lock)
92 	 *				l->owner = T1 | HAS_WAITERS;
93 	 *				enqueue(T3)
94 	 *				boost()
95 	 *				  unlock(l->lock)
96 	 *				block()
97 	 *		signal(->T2)	signal(->T3)
98 	 *		lock(l->lock)
99 	 *		dequeue(T2)
100 	 *		deboost()
101 	 *		  unlock(l->lock)
102 	 *				lock(l->lock)
103 	 *				dequeue(T3)
104 	 *				 ==> wait list is empty
105 	 *				deboost()
106 	 *				 unlock(l->lock)
107 	 *		lock(l->lock)
108 	 *		fixup_rt_mutex_waiters()
109 	 *		  if (wait_list_empty(l) {
110 	 *		    l->owner = owner
111 	 *		    owner = l->owner & ~HAS_WAITERS;
112 	 *		      ==> l->owner = T1
113 	 *		  }
114 	 *				lock(l->lock)
115 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
116 	 *				  if (wait_list_empty(l) {
117 	 *				    owner = l->owner & ~HAS_WAITERS;
118 	 * cmpxchg(l->owner, T1, NULL)
119 	 *  ===> Success (l->owner = NULL)
120 	 *
121 	 *				    l->owner = owner
122 	 *				      ==> l->owner = T1
123 	 *				  }
124 	 *
125 	 * With the check for the waiter bit in place T3 on CPU2 will not
126 	 * overwrite. All tasks fiddling with the waiters bit are
127 	 * serialized by l->lock, so nothing else can modify the waiters
128 	 * bit. If the bit is set then nothing can change l->owner either
129 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
130 	 * happens in the middle of the RMW because the waiters bit is
131 	 * still set.
132 	 */
133 	owner = READ_ONCE(*p);
134 	if (owner & RT_MUTEX_HAS_WAITERS)
135 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
136 }
137 
138 /*
139  * We can speed up the acquire/release, if there's no debugging state to be
140  * set up.
141  */
142 #ifndef CONFIG_DEBUG_RT_MUTEXES
143 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146 
147 /*
148  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150  * relaxed semantics suffice.
151  */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 	unsigned long owner, *p = (unsigned long *) &lock->owner;
155 
156 	do {
157 		owner = *p;
158 	} while (cmpxchg_relaxed(p, owner,
159 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161 
162 /*
163  * Safe fastpath aware unlock:
164  * 1) Clear the waiters bit
165  * 2) Drop lock->wait_lock
166  * 3) Try to unlock the lock with cmpxchg
167  */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 					unsigned long flags)
170 	__releases(lock->wait_lock)
171 {
172 	struct task_struct *owner = rt_mutex_owner(lock);
173 
174 	clear_rt_mutex_waiters(lock);
175 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 	/*
177 	 * If a new waiter comes in between the unlock and the cmpxchg
178 	 * we have two situations:
179 	 *
180 	 * unlock(wait_lock);
181 	 *					lock(wait_lock);
182 	 * cmpxchg(p, owner, 0) == owner
183 	 *					mark_rt_mutex_waiters(lock);
184 	 *					acquire(lock);
185 	 * or:
186 	 *
187 	 * unlock(wait_lock);
188 	 *					lock(wait_lock);
189 	 *					mark_rt_mutex_waiters(lock);
190 	 *
191 	 * cmpxchg(p, owner, 0) != owner
192 	 *					enqueue_waiter();
193 	 *					unlock(wait_lock);
194 	 * lock(wait_lock);
195 	 * wake waiter();
196 	 * unlock(wait_lock);
197 	 *					lock(wait_lock);
198 	 *					acquire(lock);
199 	 */
200 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202 
203 #else
204 # define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
205 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
206 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
207 
208 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
209 {
210 	lock->owner = (struct task_struct *)
211 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
212 }
213 
214 /*
215  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
216  */
217 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
218 					unsigned long flags)
219 	__releases(lock->wait_lock)
220 {
221 	lock->owner = NULL;
222 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
223 	return true;
224 }
225 #endif
226 
227 static inline int
228 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
229 		     struct rt_mutex_waiter *right)
230 {
231 	if (left->prio < right->prio)
232 		return 1;
233 
234 	/*
235 	 * If both waiters have dl_prio(), we check the deadlines of the
236 	 * associated tasks.
237 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
238 	 * then right waiter has a dl_prio() too.
239 	 */
240 	if (dl_prio(left->prio))
241 		return dl_time_before(left->task->dl.deadline,
242 				      right->task->dl.deadline);
243 
244 	return 0;
245 }
246 
247 static void
248 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
249 {
250 	struct rb_node **link = &lock->waiters.rb_node;
251 	struct rb_node *parent = NULL;
252 	struct rt_mutex_waiter *entry;
253 	int leftmost = 1;
254 
255 	while (*link) {
256 		parent = *link;
257 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
258 		if (rt_mutex_waiter_less(waiter, entry)) {
259 			link = &parent->rb_left;
260 		} else {
261 			link = &parent->rb_right;
262 			leftmost = 0;
263 		}
264 	}
265 
266 	if (leftmost)
267 		lock->waiters_leftmost = &waiter->tree_entry;
268 
269 	rb_link_node(&waiter->tree_entry, parent, link);
270 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
271 }
272 
273 static void
274 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
275 {
276 	if (RB_EMPTY_NODE(&waiter->tree_entry))
277 		return;
278 
279 	if (lock->waiters_leftmost == &waiter->tree_entry)
280 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
281 
282 	rb_erase(&waiter->tree_entry, &lock->waiters);
283 	RB_CLEAR_NODE(&waiter->tree_entry);
284 }
285 
286 static void
287 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
288 {
289 	struct rb_node **link = &task->pi_waiters.rb_node;
290 	struct rb_node *parent = NULL;
291 	struct rt_mutex_waiter *entry;
292 	int leftmost = 1;
293 
294 	while (*link) {
295 		parent = *link;
296 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
297 		if (rt_mutex_waiter_less(waiter, entry)) {
298 			link = &parent->rb_left;
299 		} else {
300 			link = &parent->rb_right;
301 			leftmost = 0;
302 		}
303 	}
304 
305 	if (leftmost)
306 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
307 
308 	rb_link_node(&waiter->pi_tree_entry, parent, link);
309 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
310 }
311 
312 static void
313 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
314 {
315 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
316 		return;
317 
318 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
319 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
320 
321 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
322 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
323 }
324 
325 /*
326  * Calculate task priority from the waiter tree priority
327  *
328  * Return task->normal_prio when the waiter tree is empty or when
329  * the waiter is not allowed to do priority boosting
330  */
331 int rt_mutex_getprio(struct task_struct *task)
332 {
333 	if (likely(!task_has_pi_waiters(task)))
334 		return task->normal_prio;
335 
336 	return min(task_top_pi_waiter(task)->prio,
337 		   task->normal_prio);
338 }
339 
340 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
341 {
342 	if (likely(!task_has_pi_waiters(task)))
343 		return NULL;
344 
345 	return task_top_pi_waiter(task)->task;
346 }
347 
348 /*
349  * Called by sched_setscheduler() to get the priority which will be
350  * effective after the change.
351  */
352 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
353 {
354 	if (!task_has_pi_waiters(task))
355 		return newprio;
356 
357 	if (task_top_pi_waiter(task)->task->prio <= newprio)
358 		return task_top_pi_waiter(task)->task->prio;
359 	return newprio;
360 }
361 
362 /*
363  * Adjust the priority of a task, after its pi_waiters got modified.
364  *
365  * This can be both boosting and unboosting. task->pi_lock must be held.
366  */
367 static void __rt_mutex_adjust_prio(struct task_struct *task)
368 {
369 	int prio = rt_mutex_getprio(task);
370 
371 	if (task->prio != prio || dl_prio(prio))
372 		rt_mutex_setprio(task, prio);
373 }
374 
375 /*
376  * Adjust task priority (undo boosting). Called from the exit path of
377  * rt_mutex_slowunlock() and rt_mutex_slowlock().
378  *
379  * (Note: We do this outside of the protection of lock->wait_lock to
380  * allow the lock to be taken while or before we readjust the priority
381  * of task. We do not use the spin_xx_mutex() variants here as we are
382  * outside of the debug path.)
383  */
384 void rt_mutex_adjust_prio(struct task_struct *task)
385 {
386 	unsigned long flags;
387 
388 	raw_spin_lock_irqsave(&task->pi_lock, flags);
389 	__rt_mutex_adjust_prio(task);
390 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
391 }
392 
393 /*
394  * Deadlock detection is conditional:
395  *
396  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
397  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
398  *
399  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
400  * conducted independent of the detect argument.
401  *
402  * If the waiter argument is NULL this indicates the deboost path and
403  * deadlock detection is disabled independent of the detect argument
404  * and the config settings.
405  */
406 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
407 					  enum rtmutex_chainwalk chwalk)
408 {
409 	/*
410 	 * This is just a wrapper function for the following call,
411 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
412 	 * debug feature and I wanted to keep the cond function in the
413 	 * main source file along with the comments instead of having
414 	 * two of the same in the headers.
415 	 */
416 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
417 }
418 
419 /*
420  * Max number of times we'll walk the boosting chain:
421  */
422 int max_lock_depth = 1024;
423 
424 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
425 {
426 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
427 }
428 
429 /*
430  * Adjust the priority chain. Also used for deadlock detection.
431  * Decreases task's usage by one - may thus free the task.
432  *
433  * @task:	the task owning the mutex (owner) for which a chain walk is
434  *		probably needed
435  * @chwalk:	do we have to carry out deadlock detection?
436  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
437  *		things for a task that has just got its priority adjusted, and
438  *		is waiting on a mutex)
439  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
440  *		we dropped its pi_lock. Is never dereferenced, only used for
441  *		comparison to detect lock chain changes.
442  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
443  *		its priority to the mutex owner (can be NULL in the case
444  *		depicted above or if the top waiter is gone away and we are
445  *		actually deboosting the owner)
446  * @top_task:	the current top waiter
447  *
448  * Returns 0 or -EDEADLK.
449  *
450  * Chain walk basics and protection scope
451  *
452  * [R] refcount on task
453  * [P] task->pi_lock held
454  * [L] rtmutex->wait_lock held
455  *
456  * Step	Description				Protected by
457  *	function arguments:
458  *	@task					[R]
459  *	@orig_lock if != NULL			@top_task is blocked on it
460  *	@next_lock				Unprotected. Cannot be
461  *						dereferenced. Only used for
462  *						comparison.
463  *	@orig_waiter if != NULL			@top_task is blocked on it
464  *	@top_task				current, or in case of proxy
465  *						locking protected by calling
466  *						code
467  *	again:
468  *	  loop_sanity_check();
469  *	retry:
470  * [1]	  lock(task->pi_lock);			[R] acquire [P]
471  * [2]	  waiter = task->pi_blocked_on;		[P]
472  * [3]	  check_exit_conditions_1();		[P]
473  * [4]	  lock = waiter->lock;			[P]
474  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
475  *	    unlock(task->pi_lock);		release [P]
476  *	    goto retry;
477  *	  }
478  * [6]	  check_exit_conditions_2();		[P] + [L]
479  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
480  * [8]	  unlock(task->pi_lock);		release [P]
481  *	  put_task_struct(task);		release [R]
482  * [9]	  check_exit_conditions_3();		[L]
483  * [10]	  task = owner(lock);			[L]
484  *	  get_task_struct(task);		[L] acquire [R]
485  *	  lock(task->pi_lock);			[L] acquire [P]
486  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
487  * [12]	  check_exit_conditions_4();		[P] + [L]
488  * [13]	  unlock(task->pi_lock);		release [P]
489  *	  unlock(lock->wait_lock);		release [L]
490  *	  goto again;
491  */
492 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
493 				      enum rtmutex_chainwalk chwalk,
494 				      struct rt_mutex *orig_lock,
495 				      struct rt_mutex *next_lock,
496 				      struct rt_mutex_waiter *orig_waiter,
497 				      struct task_struct *top_task)
498 {
499 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
500 	struct rt_mutex_waiter *prerequeue_top_waiter;
501 	int ret = 0, depth = 0;
502 	struct rt_mutex *lock;
503 	bool detect_deadlock;
504 	bool requeue = true;
505 
506 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
507 
508 	/*
509 	 * The (de)boosting is a step by step approach with a lot of
510 	 * pitfalls. We want this to be preemptible and we want hold a
511 	 * maximum of two locks per step. So we have to check
512 	 * carefully whether things change under us.
513 	 */
514  again:
515 	/*
516 	 * We limit the lock chain length for each invocation.
517 	 */
518 	if (++depth > max_lock_depth) {
519 		static int prev_max;
520 
521 		/*
522 		 * Print this only once. If the admin changes the limit,
523 		 * print a new message when reaching the limit again.
524 		 */
525 		if (prev_max != max_lock_depth) {
526 			prev_max = max_lock_depth;
527 			printk(KERN_WARNING "Maximum lock depth %d reached "
528 			       "task: %s (%d)\n", max_lock_depth,
529 			       top_task->comm, task_pid_nr(top_task));
530 		}
531 		put_task_struct(task);
532 
533 		return -EDEADLK;
534 	}
535 
536 	/*
537 	 * We are fully preemptible here and only hold the refcount on
538 	 * @task. So everything can have changed under us since the
539 	 * caller or our own code below (goto retry/again) dropped all
540 	 * locks.
541 	 */
542  retry:
543 	/*
544 	 * [1] Task cannot go away as we did a get_task() before !
545 	 */
546 	raw_spin_lock_irq(&task->pi_lock);
547 
548 	/*
549 	 * [2] Get the waiter on which @task is blocked on.
550 	 */
551 	waiter = task->pi_blocked_on;
552 
553 	/*
554 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
555 	 */
556 
557 	/*
558 	 * Check whether the end of the boosting chain has been
559 	 * reached or the state of the chain has changed while we
560 	 * dropped the locks.
561 	 */
562 	if (!waiter)
563 		goto out_unlock_pi;
564 
565 	/*
566 	 * Check the orig_waiter state. After we dropped the locks,
567 	 * the previous owner of the lock might have released the lock.
568 	 */
569 	if (orig_waiter && !rt_mutex_owner(orig_lock))
570 		goto out_unlock_pi;
571 
572 	/*
573 	 * We dropped all locks after taking a refcount on @task, so
574 	 * the task might have moved on in the lock chain or even left
575 	 * the chain completely and blocks now on an unrelated lock or
576 	 * on @orig_lock.
577 	 *
578 	 * We stored the lock on which @task was blocked in @next_lock,
579 	 * so we can detect the chain change.
580 	 */
581 	if (next_lock != waiter->lock)
582 		goto out_unlock_pi;
583 
584 	/*
585 	 * Drop out, when the task has no waiters. Note,
586 	 * top_waiter can be NULL, when we are in the deboosting
587 	 * mode!
588 	 */
589 	if (top_waiter) {
590 		if (!task_has_pi_waiters(task))
591 			goto out_unlock_pi;
592 		/*
593 		 * If deadlock detection is off, we stop here if we
594 		 * are not the top pi waiter of the task. If deadlock
595 		 * detection is enabled we continue, but stop the
596 		 * requeueing in the chain walk.
597 		 */
598 		if (top_waiter != task_top_pi_waiter(task)) {
599 			if (!detect_deadlock)
600 				goto out_unlock_pi;
601 			else
602 				requeue = false;
603 		}
604 	}
605 
606 	/*
607 	 * If the waiter priority is the same as the task priority
608 	 * then there is no further priority adjustment necessary.  If
609 	 * deadlock detection is off, we stop the chain walk. If its
610 	 * enabled we continue, but stop the requeueing in the chain
611 	 * walk.
612 	 */
613 	if (waiter->prio == task->prio) {
614 		if (!detect_deadlock)
615 			goto out_unlock_pi;
616 		else
617 			requeue = false;
618 	}
619 
620 	/*
621 	 * [4] Get the next lock
622 	 */
623 	lock = waiter->lock;
624 	/*
625 	 * [5] We need to trylock here as we are holding task->pi_lock,
626 	 * which is the reverse lock order versus the other rtmutex
627 	 * operations.
628 	 */
629 	if (!raw_spin_trylock(&lock->wait_lock)) {
630 		raw_spin_unlock_irq(&task->pi_lock);
631 		cpu_relax();
632 		goto retry;
633 	}
634 
635 	/*
636 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
637 	 * lock->wait_lock.
638 	 *
639 	 * Deadlock detection. If the lock is the same as the original
640 	 * lock which caused us to walk the lock chain or if the
641 	 * current lock is owned by the task which initiated the chain
642 	 * walk, we detected a deadlock.
643 	 */
644 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
645 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
646 		raw_spin_unlock(&lock->wait_lock);
647 		ret = -EDEADLK;
648 		goto out_unlock_pi;
649 	}
650 
651 	/*
652 	 * If we just follow the lock chain for deadlock detection, no
653 	 * need to do all the requeue operations. To avoid a truckload
654 	 * of conditionals around the various places below, just do the
655 	 * minimum chain walk checks.
656 	 */
657 	if (!requeue) {
658 		/*
659 		 * No requeue[7] here. Just release @task [8]
660 		 */
661 		raw_spin_unlock(&task->pi_lock);
662 		put_task_struct(task);
663 
664 		/*
665 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
666 		 * If there is no owner of the lock, end of chain.
667 		 */
668 		if (!rt_mutex_owner(lock)) {
669 			raw_spin_unlock_irq(&lock->wait_lock);
670 			return 0;
671 		}
672 
673 		/* [10] Grab the next task, i.e. owner of @lock */
674 		task = rt_mutex_owner(lock);
675 		get_task_struct(task);
676 		raw_spin_lock(&task->pi_lock);
677 
678 		/*
679 		 * No requeue [11] here. We just do deadlock detection.
680 		 *
681 		 * [12] Store whether owner is blocked
682 		 * itself. Decision is made after dropping the locks
683 		 */
684 		next_lock = task_blocked_on_lock(task);
685 		/*
686 		 * Get the top waiter for the next iteration
687 		 */
688 		top_waiter = rt_mutex_top_waiter(lock);
689 
690 		/* [13] Drop locks */
691 		raw_spin_unlock(&task->pi_lock);
692 		raw_spin_unlock_irq(&lock->wait_lock);
693 
694 		/* If owner is not blocked, end of chain. */
695 		if (!next_lock)
696 			goto out_put_task;
697 		goto again;
698 	}
699 
700 	/*
701 	 * Store the current top waiter before doing the requeue
702 	 * operation on @lock. We need it for the boost/deboost
703 	 * decision below.
704 	 */
705 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
706 
707 	/* [7] Requeue the waiter in the lock waiter tree. */
708 	rt_mutex_dequeue(lock, waiter);
709 	waiter->prio = task->prio;
710 	rt_mutex_enqueue(lock, waiter);
711 
712 	/* [8] Release the task */
713 	raw_spin_unlock(&task->pi_lock);
714 	put_task_struct(task);
715 
716 	/*
717 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
718 	 *
719 	 * We must abort the chain walk if there is no lock owner even
720 	 * in the dead lock detection case, as we have nothing to
721 	 * follow here. This is the end of the chain we are walking.
722 	 */
723 	if (!rt_mutex_owner(lock)) {
724 		/*
725 		 * If the requeue [7] above changed the top waiter,
726 		 * then we need to wake the new top waiter up to try
727 		 * to get the lock.
728 		 */
729 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
730 			wake_up_process(rt_mutex_top_waiter(lock)->task);
731 		raw_spin_unlock_irq(&lock->wait_lock);
732 		return 0;
733 	}
734 
735 	/* [10] Grab the next task, i.e. the owner of @lock */
736 	task = rt_mutex_owner(lock);
737 	get_task_struct(task);
738 	raw_spin_lock(&task->pi_lock);
739 
740 	/* [11] requeue the pi waiters if necessary */
741 	if (waiter == rt_mutex_top_waiter(lock)) {
742 		/*
743 		 * The waiter became the new top (highest priority)
744 		 * waiter on the lock. Replace the previous top waiter
745 		 * in the owner tasks pi waiters tree with this waiter
746 		 * and adjust the priority of the owner.
747 		 */
748 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
749 		rt_mutex_enqueue_pi(task, waiter);
750 		__rt_mutex_adjust_prio(task);
751 
752 	} else if (prerequeue_top_waiter == waiter) {
753 		/*
754 		 * The waiter was the top waiter on the lock, but is
755 		 * no longer the top prority waiter. Replace waiter in
756 		 * the owner tasks pi waiters tree with the new top
757 		 * (highest priority) waiter and adjust the priority
758 		 * of the owner.
759 		 * The new top waiter is stored in @waiter so that
760 		 * @waiter == @top_waiter evaluates to true below and
761 		 * we continue to deboost the rest of the chain.
762 		 */
763 		rt_mutex_dequeue_pi(task, waiter);
764 		waiter = rt_mutex_top_waiter(lock);
765 		rt_mutex_enqueue_pi(task, waiter);
766 		__rt_mutex_adjust_prio(task);
767 	} else {
768 		/*
769 		 * Nothing changed. No need to do any priority
770 		 * adjustment.
771 		 */
772 	}
773 
774 	/*
775 	 * [12] check_exit_conditions_4() protected by task->pi_lock
776 	 * and lock->wait_lock. The actual decisions are made after we
777 	 * dropped the locks.
778 	 *
779 	 * Check whether the task which owns the current lock is pi
780 	 * blocked itself. If yes we store a pointer to the lock for
781 	 * the lock chain change detection above. After we dropped
782 	 * task->pi_lock next_lock cannot be dereferenced anymore.
783 	 */
784 	next_lock = task_blocked_on_lock(task);
785 	/*
786 	 * Store the top waiter of @lock for the end of chain walk
787 	 * decision below.
788 	 */
789 	top_waiter = rt_mutex_top_waiter(lock);
790 
791 	/* [13] Drop the locks */
792 	raw_spin_unlock(&task->pi_lock);
793 	raw_spin_unlock_irq(&lock->wait_lock);
794 
795 	/*
796 	 * Make the actual exit decisions [12], based on the stored
797 	 * values.
798 	 *
799 	 * We reached the end of the lock chain. Stop right here. No
800 	 * point to go back just to figure that out.
801 	 */
802 	if (!next_lock)
803 		goto out_put_task;
804 
805 	/*
806 	 * If the current waiter is not the top waiter on the lock,
807 	 * then we can stop the chain walk here if we are not in full
808 	 * deadlock detection mode.
809 	 */
810 	if (!detect_deadlock && waiter != top_waiter)
811 		goto out_put_task;
812 
813 	goto again;
814 
815  out_unlock_pi:
816 	raw_spin_unlock_irq(&task->pi_lock);
817  out_put_task:
818 	put_task_struct(task);
819 
820 	return ret;
821 }
822 
823 /*
824  * Try to take an rt-mutex
825  *
826  * Must be called with lock->wait_lock held and interrupts disabled
827  *
828  * @lock:   The lock to be acquired.
829  * @task:   The task which wants to acquire the lock
830  * @waiter: The waiter that is queued to the lock's wait tree if the
831  *	    callsite called task_blocked_on_lock(), otherwise NULL
832  */
833 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
834 				struct rt_mutex_waiter *waiter)
835 {
836 	/*
837 	 * Before testing whether we can acquire @lock, we set the
838 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
839 	 * other tasks which try to modify @lock into the slow path
840 	 * and they serialize on @lock->wait_lock.
841 	 *
842 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
843 	 * as explained at the top of this file if and only if:
844 	 *
845 	 * - There is a lock owner. The caller must fixup the
846 	 *   transient state if it does a trylock or leaves the lock
847 	 *   function due to a signal or timeout.
848 	 *
849 	 * - @task acquires the lock and there are no other
850 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
851 	 *   the end of this function.
852 	 */
853 	mark_rt_mutex_waiters(lock);
854 
855 	/*
856 	 * If @lock has an owner, give up.
857 	 */
858 	if (rt_mutex_owner(lock))
859 		return 0;
860 
861 	/*
862 	 * If @waiter != NULL, @task has already enqueued the waiter
863 	 * into @lock waiter tree. If @waiter == NULL then this is a
864 	 * trylock attempt.
865 	 */
866 	if (waiter) {
867 		/*
868 		 * If waiter is not the highest priority waiter of
869 		 * @lock, give up.
870 		 */
871 		if (waiter != rt_mutex_top_waiter(lock))
872 			return 0;
873 
874 		/*
875 		 * We can acquire the lock. Remove the waiter from the
876 		 * lock waiters tree.
877 		 */
878 		rt_mutex_dequeue(lock, waiter);
879 
880 	} else {
881 		/*
882 		 * If the lock has waiters already we check whether @task is
883 		 * eligible to take over the lock.
884 		 *
885 		 * If there are no other waiters, @task can acquire
886 		 * the lock.  @task->pi_blocked_on is NULL, so it does
887 		 * not need to be dequeued.
888 		 */
889 		if (rt_mutex_has_waiters(lock)) {
890 			/*
891 			 * If @task->prio is greater than or equal to
892 			 * the top waiter priority (kernel view),
893 			 * @task lost.
894 			 */
895 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
896 				return 0;
897 
898 			/*
899 			 * The current top waiter stays enqueued. We
900 			 * don't have to change anything in the lock
901 			 * waiters order.
902 			 */
903 		} else {
904 			/*
905 			 * No waiters. Take the lock without the
906 			 * pi_lock dance.@task->pi_blocked_on is NULL
907 			 * and we have no waiters to enqueue in @task
908 			 * pi waiters tree.
909 			 */
910 			goto takeit;
911 		}
912 	}
913 
914 	/*
915 	 * Clear @task->pi_blocked_on. Requires protection by
916 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
917 	 * case, but conditionals are more expensive than a redundant
918 	 * store.
919 	 */
920 	raw_spin_lock(&task->pi_lock);
921 	task->pi_blocked_on = NULL;
922 	/*
923 	 * Finish the lock acquisition. @task is the new owner. If
924 	 * other waiters exist we have to insert the highest priority
925 	 * waiter into @task->pi_waiters tree.
926 	 */
927 	if (rt_mutex_has_waiters(lock))
928 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
929 	raw_spin_unlock(&task->pi_lock);
930 
931 takeit:
932 	/* We got the lock. */
933 	debug_rt_mutex_lock(lock);
934 
935 	/*
936 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
937 	 * are still waiters or clears it.
938 	 */
939 	rt_mutex_set_owner(lock, task);
940 
941 	rt_mutex_deadlock_account_lock(lock, task);
942 
943 	return 1;
944 }
945 
946 /*
947  * Task blocks on lock.
948  *
949  * Prepare waiter and propagate pi chain
950  *
951  * This must be called with lock->wait_lock held and interrupts disabled
952  */
953 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
954 				   struct rt_mutex_waiter *waiter,
955 				   struct task_struct *task,
956 				   enum rtmutex_chainwalk chwalk)
957 {
958 	struct task_struct *owner = rt_mutex_owner(lock);
959 	struct rt_mutex_waiter *top_waiter = waiter;
960 	struct rt_mutex *next_lock;
961 	int chain_walk = 0, res;
962 
963 	/*
964 	 * Early deadlock detection. We really don't want the task to
965 	 * enqueue on itself just to untangle the mess later. It's not
966 	 * only an optimization. We drop the locks, so another waiter
967 	 * can come in before the chain walk detects the deadlock. So
968 	 * the other will detect the deadlock and return -EDEADLOCK,
969 	 * which is wrong, as the other waiter is not in a deadlock
970 	 * situation.
971 	 */
972 	if (owner == task)
973 		return -EDEADLK;
974 
975 	raw_spin_lock(&task->pi_lock);
976 	__rt_mutex_adjust_prio(task);
977 	waiter->task = task;
978 	waiter->lock = lock;
979 	waiter->prio = task->prio;
980 
981 	/* Get the top priority waiter on the lock */
982 	if (rt_mutex_has_waiters(lock))
983 		top_waiter = rt_mutex_top_waiter(lock);
984 	rt_mutex_enqueue(lock, waiter);
985 
986 	task->pi_blocked_on = waiter;
987 
988 	raw_spin_unlock(&task->pi_lock);
989 
990 	if (!owner)
991 		return 0;
992 
993 	raw_spin_lock(&owner->pi_lock);
994 	if (waiter == rt_mutex_top_waiter(lock)) {
995 		rt_mutex_dequeue_pi(owner, top_waiter);
996 		rt_mutex_enqueue_pi(owner, waiter);
997 
998 		__rt_mutex_adjust_prio(owner);
999 		if (owner->pi_blocked_on)
1000 			chain_walk = 1;
1001 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1002 		chain_walk = 1;
1003 	}
1004 
1005 	/* Store the lock on which owner is blocked or NULL */
1006 	next_lock = task_blocked_on_lock(owner);
1007 
1008 	raw_spin_unlock(&owner->pi_lock);
1009 	/*
1010 	 * Even if full deadlock detection is on, if the owner is not
1011 	 * blocked itself, we can avoid finding this out in the chain
1012 	 * walk.
1013 	 */
1014 	if (!chain_walk || !next_lock)
1015 		return 0;
1016 
1017 	/*
1018 	 * The owner can't disappear while holding a lock,
1019 	 * so the owner struct is protected by wait_lock.
1020 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1021 	 */
1022 	get_task_struct(owner);
1023 
1024 	raw_spin_unlock_irq(&lock->wait_lock);
1025 
1026 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1027 					 next_lock, waiter, task);
1028 
1029 	raw_spin_lock_irq(&lock->wait_lock);
1030 
1031 	return res;
1032 }
1033 
1034 /*
1035  * Remove the top waiter from the current tasks pi waiter tree and
1036  * queue it up.
1037  *
1038  * Called with lock->wait_lock held and interrupts disabled.
1039  */
1040 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1041 				    struct rt_mutex *lock)
1042 {
1043 	struct rt_mutex_waiter *waiter;
1044 
1045 	raw_spin_lock(&current->pi_lock);
1046 
1047 	waiter = rt_mutex_top_waiter(lock);
1048 
1049 	/*
1050 	 * Remove it from current->pi_waiters. We do not adjust a
1051 	 * possible priority boost right now. We execute wakeup in the
1052 	 * boosted mode and go back to normal after releasing
1053 	 * lock->wait_lock.
1054 	 */
1055 	rt_mutex_dequeue_pi(current, waiter);
1056 
1057 	/*
1058 	 * As we are waking up the top waiter, and the waiter stays
1059 	 * queued on the lock until it gets the lock, this lock
1060 	 * obviously has waiters. Just set the bit here and this has
1061 	 * the added benefit of forcing all new tasks into the
1062 	 * slow path making sure no task of lower priority than
1063 	 * the top waiter can steal this lock.
1064 	 */
1065 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1066 
1067 	raw_spin_unlock(&current->pi_lock);
1068 
1069 	wake_q_add(wake_q, waiter->task);
1070 }
1071 
1072 /*
1073  * Remove a waiter from a lock and give up
1074  *
1075  * Must be called with lock->wait_lock held and interrupts disabled. I must
1076  * have just failed to try_to_take_rt_mutex().
1077  */
1078 static void remove_waiter(struct rt_mutex *lock,
1079 			  struct rt_mutex_waiter *waiter)
1080 {
1081 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1082 	struct task_struct *owner = rt_mutex_owner(lock);
1083 	struct rt_mutex *next_lock;
1084 
1085 	raw_spin_lock(&current->pi_lock);
1086 	rt_mutex_dequeue(lock, waiter);
1087 	current->pi_blocked_on = NULL;
1088 	raw_spin_unlock(&current->pi_lock);
1089 
1090 	/*
1091 	 * Only update priority if the waiter was the highest priority
1092 	 * waiter of the lock and there is an owner to update.
1093 	 */
1094 	if (!owner || !is_top_waiter)
1095 		return;
1096 
1097 	raw_spin_lock(&owner->pi_lock);
1098 
1099 	rt_mutex_dequeue_pi(owner, waiter);
1100 
1101 	if (rt_mutex_has_waiters(lock))
1102 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1103 
1104 	__rt_mutex_adjust_prio(owner);
1105 
1106 	/* Store the lock on which owner is blocked or NULL */
1107 	next_lock = task_blocked_on_lock(owner);
1108 
1109 	raw_spin_unlock(&owner->pi_lock);
1110 
1111 	/*
1112 	 * Don't walk the chain, if the owner task is not blocked
1113 	 * itself.
1114 	 */
1115 	if (!next_lock)
1116 		return;
1117 
1118 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1119 	get_task_struct(owner);
1120 
1121 	raw_spin_unlock_irq(&lock->wait_lock);
1122 
1123 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1124 				   next_lock, NULL, current);
1125 
1126 	raw_spin_lock_irq(&lock->wait_lock);
1127 }
1128 
1129 /*
1130  * Recheck the pi chain, in case we got a priority setting
1131  *
1132  * Called from sched_setscheduler
1133  */
1134 void rt_mutex_adjust_pi(struct task_struct *task)
1135 {
1136 	struct rt_mutex_waiter *waiter;
1137 	struct rt_mutex *next_lock;
1138 	unsigned long flags;
1139 
1140 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1141 
1142 	waiter = task->pi_blocked_on;
1143 	if (!waiter || (waiter->prio == task->prio &&
1144 			!dl_prio(task->prio))) {
1145 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1146 		return;
1147 	}
1148 	next_lock = waiter->lock;
1149 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1150 
1151 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1152 	get_task_struct(task);
1153 
1154 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1155 				   next_lock, NULL, task);
1156 }
1157 
1158 /**
1159  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1160  * @lock:		 the rt_mutex to take
1161  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1162  *			 or TASK_UNINTERRUPTIBLE)
1163  * @timeout:		 the pre-initialized and started timer, or NULL for none
1164  * @waiter:		 the pre-initialized rt_mutex_waiter
1165  *
1166  * Must be called with lock->wait_lock held and interrupts disabled
1167  */
1168 static int __sched
1169 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1170 		    struct hrtimer_sleeper *timeout,
1171 		    struct rt_mutex_waiter *waiter)
1172 {
1173 	int ret = 0;
1174 
1175 	for (;;) {
1176 		/* Try to acquire the lock: */
1177 		if (try_to_take_rt_mutex(lock, current, waiter))
1178 			break;
1179 
1180 		/*
1181 		 * TASK_INTERRUPTIBLE checks for signals and
1182 		 * timeout. Ignored otherwise.
1183 		 */
1184 		if (likely(state == TASK_INTERRUPTIBLE)) {
1185 			/* Signal pending? */
1186 			if (signal_pending(current))
1187 				ret = -EINTR;
1188 			if (timeout && !timeout->task)
1189 				ret = -ETIMEDOUT;
1190 			if (ret)
1191 				break;
1192 		}
1193 
1194 		raw_spin_unlock_irq(&lock->wait_lock);
1195 
1196 		debug_rt_mutex_print_deadlock(waiter);
1197 
1198 		schedule();
1199 
1200 		raw_spin_lock_irq(&lock->wait_lock);
1201 		set_current_state(state);
1202 	}
1203 
1204 	__set_current_state(TASK_RUNNING);
1205 	return ret;
1206 }
1207 
1208 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1209 				     struct rt_mutex_waiter *w)
1210 {
1211 	/*
1212 	 * If the result is not -EDEADLOCK or the caller requested
1213 	 * deadlock detection, nothing to do here.
1214 	 */
1215 	if (res != -EDEADLOCK || detect_deadlock)
1216 		return;
1217 
1218 	/*
1219 	 * Yell lowdly and stop the task right here.
1220 	 */
1221 	rt_mutex_print_deadlock(w);
1222 	while (1) {
1223 		set_current_state(TASK_INTERRUPTIBLE);
1224 		schedule();
1225 	}
1226 }
1227 
1228 /*
1229  * Slow path lock function:
1230  */
1231 static int __sched
1232 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1233 		  struct hrtimer_sleeper *timeout,
1234 		  enum rtmutex_chainwalk chwalk)
1235 {
1236 	struct rt_mutex_waiter waiter;
1237 	unsigned long flags;
1238 	int ret = 0;
1239 
1240 	debug_rt_mutex_init_waiter(&waiter);
1241 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1242 	RB_CLEAR_NODE(&waiter.tree_entry);
1243 
1244 	/*
1245 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1246 	 * be called in early boot if the cmpxchg() fast path is disabled
1247 	 * (debug, no architecture support). In this case we will acquire the
1248 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1249 	 * enable interrupts in that early boot case. So we need to use the
1250 	 * irqsave/restore variants.
1251 	 */
1252 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1253 
1254 	/* Try to acquire the lock again: */
1255 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1256 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1257 		return 0;
1258 	}
1259 
1260 	set_current_state(state);
1261 
1262 	/* Setup the timer, when timeout != NULL */
1263 	if (unlikely(timeout))
1264 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1265 
1266 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1267 
1268 	if (likely(!ret))
1269 		/* sleep on the mutex */
1270 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1271 
1272 	if (unlikely(ret)) {
1273 		__set_current_state(TASK_RUNNING);
1274 		if (rt_mutex_has_waiters(lock))
1275 			remove_waiter(lock, &waiter);
1276 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1277 	}
1278 
1279 	/*
1280 	 * try_to_take_rt_mutex() sets the waiter bit
1281 	 * unconditionally. We might have to fix that up.
1282 	 */
1283 	fixup_rt_mutex_waiters(lock);
1284 
1285 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1286 
1287 	/* Remove pending timer: */
1288 	if (unlikely(timeout))
1289 		hrtimer_cancel(&timeout->timer);
1290 
1291 	debug_rt_mutex_free_waiter(&waiter);
1292 
1293 	return ret;
1294 }
1295 
1296 /*
1297  * Slow path try-lock function:
1298  */
1299 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1300 {
1301 	unsigned long flags;
1302 	int ret;
1303 
1304 	/*
1305 	 * If the lock already has an owner we fail to get the lock.
1306 	 * This can be done without taking the @lock->wait_lock as
1307 	 * it is only being read, and this is a trylock anyway.
1308 	 */
1309 	if (rt_mutex_owner(lock))
1310 		return 0;
1311 
1312 	/*
1313 	 * The mutex has currently no owner. Lock the wait lock and try to
1314 	 * acquire the lock. We use irqsave here to support early boot calls.
1315 	 */
1316 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1317 
1318 	ret = try_to_take_rt_mutex(lock, current, NULL);
1319 
1320 	/*
1321 	 * try_to_take_rt_mutex() sets the lock waiters bit
1322 	 * unconditionally. Clean this up.
1323 	 */
1324 	fixup_rt_mutex_waiters(lock);
1325 
1326 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1327 
1328 	return ret;
1329 }
1330 
1331 /*
1332  * Slow path to release a rt-mutex.
1333  * Return whether the current task needs to undo a potential priority boosting.
1334  */
1335 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1336 					struct wake_q_head *wake_q)
1337 {
1338 	unsigned long flags;
1339 
1340 	/* irqsave required to support early boot calls */
1341 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1342 
1343 	debug_rt_mutex_unlock(lock);
1344 
1345 	rt_mutex_deadlock_account_unlock(current);
1346 
1347 	/*
1348 	 * We must be careful here if the fast path is enabled. If we
1349 	 * have no waiters queued we cannot set owner to NULL here
1350 	 * because of:
1351 	 *
1352 	 * foo->lock->owner = NULL;
1353 	 *			rtmutex_lock(foo->lock);   <- fast path
1354 	 *			free = atomic_dec_and_test(foo->refcnt);
1355 	 *			rtmutex_unlock(foo->lock); <- fast path
1356 	 *			if (free)
1357 	 *				kfree(foo);
1358 	 * raw_spin_unlock(foo->lock->wait_lock);
1359 	 *
1360 	 * So for the fastpath enabled kernel:
1361 	 *
1362 	 * Nothing can set the waiters bit as long as we hold
1363 	 * lock->wait_lock. So we do the following sequence:
1364 	 *
1365 	 *	owner = rt_mutex_owner(lock);
1366 	 *	clear_rt_mutex_waiters(lock);
1367 	 *	raw_spin_unlock(&lock->wait_lock);
1368 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1369 	 *		return;
1370 	 *	goto retry;
1371 	 *
1372 	 * The fastpath disabled variant is simple as all access to
1373 	 * lock->owner is serialized by lock->wait_lock:
1374 	 *
1375 	 *	lock->owner = NULL;
1376 	 *	raw_spin_unlock(&lock->wait_lock);
1377 	 */
1378 	while (!rt_mutex_has_waiters(lock)) {
1379 		/* Drops lock->wait_lock ! */
1380 		if (unlock_rt_mutex_safe(lock, flags) == true)
1381 			return false;
1382 		/* Relock the rtmutex and try again */
1383 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1384 	}
1385 
1386 	/*
1387 	 * The wakeup next waiter path does not suffer from the above
1388 	 * race. See the comments there.
1389 	 *
1390 	 * Queue the next waiter for wakeup once we release the wait_lock.
1391 	 */
1392 	mark_wakeup_next_waiter(wake_q, lock);
1393 
1394 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1395 
1396 	/* check PI boosting */
1397 	return true;
1398 }
1399 
1400 /*
1401  * debug aware fast / slowpath lock,trylock,unlock
1402  *
1403  * The atomic acquire/release ops are compiled away, when either the
1404  * architecture does not support cmpxchg or when debugging is enabled.
1405  */
1406 static inline int
1407 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1408 		  int (*slowfn)(struct rt_mutex *lock, int state,
1409 				struct hrtimer_sleeper *timeout,
1410 				enum rtmutex_chainwalk chwalk))
1411 {
1412 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1413 		rt_mutex_deadlock_account_lock(lock, current);
1414 		return 0;
1415 	} else
1416 		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1417 }
1418 
1419 static inline int
1420 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1421 			struct hrtimer_sleeper *timeout,
1422 			enum rtmutex_chainwalk chwalk,
1423 			int (*slowfn)(struct rt_mutex *lock, int state,
1424 				      struct hrtimer_sleeper *timeout,
1425 				      enum rtmutex_chainwalk chwalk))
1426 {
1427 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1428 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1429 		rt_mutex_deadlock_account_lock(lock, current);
1430 		return 0;
1431 	} else
1432 		return slowfn(lock, state, timeout, chwalk);
1433 }
1434 
1435 static inline int
1436 rt_mutex_fasttrylock(struct rt_mutex *lock,
1437 		     int (*slowfn)(struct rt_mutex *lock))
1438 {
1439 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1440 		rt_mutex_deadlock_account_lock(lock, current);
1441 		return 1;
1442 	}
1443 	return slowfn(lock);
1444 }
1445 
1446 static inline void
1447 rt_mutex_fastunlock(struct rt_mutex *lock,
1448 		    bool (*slowfn)(struct rt_mutex *lock,
1449 				   struct wake_q_head *wqh))
1450 {
1451 	DEFINE_WAKE_Q(wake_q);
1452 
1453 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1454 		rt_mutex_deadlock_account_unlock(current);
1455 
1456 	} else {
1457 		bool deboost = slowfn(lock, &wake_q);
1458 
1459 		wake_up_q(&wake_q);
1460 
1461 		/* Undo pi boosting if necessary: */
1462 		if (deboost)
1463 			rt_mutex_adjust_prio(current);
1464 	}
1465 }
1466 
1467 /**
1468  * rt_mutex_lock - lock a rt_mutex
1469  *
1470  * @lock: the rt_mutex to be locked
1471  */
1472 void __sched rt_mutex_lock(struct rt_mutex *lock)
1473 {
1474 	might_sleep();
1475 
1476 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1477 }
1478 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1479 
1480 /**
1481  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1482  *
1483  * @lock:		the rt_mutex to be locked
1484  *
1485  * Returns:
1486  *  0		on success
1487  * -EINTR	when interrupted by a signal
1488  */
1489 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1490 {
1491 	might_sleep();
1492 
1493 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1494 }
1495 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1496 
1497 /*
1498  * Futex variant with full deadlock detection.
1499  */
1500 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1501 			      struct hrtimer_sleeper *timeout)
1502 {
1503 	might_sleep();
1504 
1505 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1506 				       RT_MUTEX_FULL_CHAINWALK,
1507 				       rt_mutex_slowlock);
1508 }
1509 
1510 /**
1511  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1512  *			the timeout structure is provided
1513  *			by the caller
1514  *
1515  * @lock:		the rt_mutex to be locked
1516  * @timeout:		timeout structure or NULL (no timeout)
1517  *
1518  * Returns:
1519  *  0		on success
1520  * -EINTR	when interrupted by a signal
1521  * -ETIMEDOUT	when the timeout expired
1522  */
1523 int
1524 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1525 {
1526 	might_sleep();
1527 
1528 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1529 				       RT_MUTEX_MIN_CHAINWALK,
1530 				       rt_mutex_slowlock);
1531 }
1532 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1533 
1534 /**
1535  * rt_mutex_trylock - try to lock a rt_mutex
1536  *
1537  * @lock:	the rt_mutex to be locked
1538  *
1539  * This function can only be called in thread context. It's safe to
1540  * call it from atomic regions, but not from hard interrupt or soft
1541  * interrupt context.
1542  *
1543  * Returns 1 on success and 0 on contention
1544  */
1545 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1546 {
1547 	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1548 		return 0;
1549 
1550 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1551 }
1552 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1553 
1554 /**
1555  * rt_mutex_unlock - unlock a rt_mutex
1556  *
1557  * @lock: the rt_mutex to be unlocked
1558  */
1559 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1560 {
1561 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1562 }
1563 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1564 
1565 /**
1566  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1567  * @lock: the rt_mutex to be unlocked
1568  *
1569  * Returns: true/false indicating whether priority adjustment is
1570  * required or not.
1571  */
1572 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1573 				   struct wake_q_head *wqh)
1574 {
1575 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1576 		rt_mutex_deadlock_account_unlock(current);
1577 		return false;
1578 	}
1579 	return rt_mutex_slowunlock(lock, wqh);
1580 }
1581 
1582 /**
1583  * rt_mutex_destroy - mark a mutex unusable
1584  * @lock: the mutex to be destroyed
1585  *
1586  * This function marks the mutex uninitialized, and any subsequent
1587  * use of the mutex is forbidden. The mutex must not be locked when
1588  * this function is called.
1589  */
1590 void rt_mutex_destroy(struct rt_mutex *lock)
1591 {
1592 	WARN_ON(rt_mutex_is_locked(lock));
1593 #ifdef CONFIG_DEBUG_RT_MUTEXES
1594 	lock->magic = NULL;
1595 #endif
1596 }
1597 
1598 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1599 
1600 /**
1601  * __rt_mutex_init - initialize the rt lock
1602  *
1603  * @lock: the rt lock to be initialized
1604  *
1605  * Initialize the rt lock to unlocked state.
1606  *
1607  * Initializing of a locked rt lock is not allowed
1608  */
1609 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1610 {
1611 	lock->owner = NULL;
1612 	raw_spin_lock_init(&lock->wait_lock);
1613 	lock->waiters = RB_ROOT;
1614 	lock->waiters_leftmost = NULL;
1615 
1616 	debug_rt_mutex_init(lock, name);
1617 }
1618 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1619 
1620 /**
1621  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1622  *				proxy owner
1623  *
1624  * @lock:	the rt_mutex to be locked
1625  * @proxy_owner:the task to set as owner
1626  *
1627  * No locking. Caller has to do serializing itself
1628  *
1629  * Special API call for PI-futex support. This initializes the rtmutex and
1630  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1631  * possible at this point because the pi_state which contains the rtmutex
1632  * is not yet visible to other tasks.
1633  */
1634 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1635 				struct task_struct *proxy_owner)
1636 {
1637 	__rt_mutex_init(lock, NULL);
1638 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1639 	rt_mutex_set_owner(lock, proxy_owner);
1640 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1641 }
1642 
1643 /**
1644  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1645  *
1646  * @lock:	the rt_mutex to be locked
1647  *
1648  * No locking. Caller has to do serializing itself
1649  *
1650  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1651  * (debugging) state. Concurrent operations on this rt_mutex are not
1652  * possible because it belongs to the pi_state which is about to be freed
1653  * and it is not longer visible to other tasks.
1654  */
1655 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1656 			   struct task_struct *proxy_owner)
1657 {
1658 	debug_rt_mutex_proxy_unlock(lock);
1659 	rt_mutex_set_owner(lock, NULL);
1660 	rt_mutex_deadlock_account_unlock(proxy_owner);
1661 }
1662 
1663 /**
1664  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1665  * @lock:		the rt_mutex to take
1666  * @waiter:		the pre-initialized rt_mutex_waiter
1667  * @task:		the task to prepare
1668  *
1669  * Returns:
1670  *  0 - task blocked on lock
1671  *  1 - acquired the lock for task, caller should wake it up
1672  * <0 - error
1673  *
1674  * Special API call for FUTEX_REQUEUE_PI support.
1675  */
1676 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1677 			      struct rt_mutex_waiter *waiter,
1678 			      struct task_struct *task)
1679 {
1680 	int ret;
1681 
1682 	raw_spin_lock_irq(&lock->wait_lock);
1683 
1684 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1685 		raw_spin_unlock_irq(&lock->wait_lock);
1686 		return 1;
1687 	}
1688 
1689 	/* We enforce deadlock detection for futexes */
1690 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1691 				      RT_MUTEX_FULL_CHAINWALK);
1692 
1693 	if (ret && !rt_mutex_owner(lock)) {
1694 		/*
1695 		 * Reset the return value. We might have
1696 		 * returned with -EDEADLK and the owner
1697 		 * released the lock while we were walking the
1698 		 * pi chain.  Let the waiter sort it out.
1699 		 */
1700 		ret = 0;
1701 	}
1702 
1703 	if (unlikely(ret))
1704 		remove_waiter(lock, waiter);
1705 
1706 	raw_spin_unlock_irq(&lock->wait_lock);
1707 
1708 	debug_rt_mutex_print_deadlock(waiter);
1709 
1710 	return ret;
1711 }
1712 
1713 /**
1714  * rt_mutex_next_owner - return the next owner of the lock
1715  *
1716  * @lock: the rt lock query
1717  *
1718  * Returns the next owner of the lock or NULL
1719  *
1720  * Caller has to serialize against other accessors to the lock
1721  * itself.
1722  *
1723  * Special API call for PI-futex support
1724  */
1725 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1726 {
1727 	if (!rt_mutex_has_waiters(lock))
1728 		return NULL;
1729 
1730 	return rt_mutex_top_waiter(lock)->task;
1731 }
1732 
1733 /**
1734  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1735  * @lock:		the rt_mutex we were woken on
1736  * @to:			the timeout, null if none. hrtimer should already have
1737  *			been started.
1738  * @waiter:		the pre-initialized rt_mutex_waiter
1739  *
1740  * Complete the lock acquisition started our behalf by another thread.
1741  *
1742  * Returns:
1743  *  0 - success
1744  * <0 - error, one of -EINTR, -ETIMEDOUT
1745  *
1746  * Special API call for PI-futex requeue support
1747  */
1748 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1749 			       struct hrtimer_sleeper *to,
1750 			       struct rt_mutex_waiter *waiter)
1751 {
1752 	int ret;
1753 
1754 	raw_spin_lock_irq(&lock->wait_lock);
1755 
1756 	set_current_state(TASK_INTERRUPTIBLE);
1757 
1758 	/* sleep on the mutex */
1759 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1760 
1761 	if (unlikely(ret))
1762 		remove_waiter(lock, waiter);
1763 
1764 	/*
1765 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1766 	 * have to fix that up.
1767 	 */
1768 	fixup_rt_mutex_waiters(lock);
1769 
1770 	raw_spin_unlock_irq(&lock->wait_lock);
1771 
1772 	return ret;
1773 }
1774