xref: /linux/kernel/locking/rtmutex.c (revision cdd30ebb1b9f36159d66f088b61aee264e649d7a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *				     and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26 
27 #include <trace/events/lock.h>
28 
29 #include "rtmutex_common.h"
30 
31 #ifndef WW_RT
32 # define build_ww_mutex()	(false)
33 # define ww_container_of(rtm)	NULL
34 
35 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
36 					struct rt_mutex *lock,
37 					struct ww_acquire_ctx *ww_ctx,
38 					struct wake_q_head *wake_q)
39 {
40 	return 0;
41 }
42 
43 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
44 					    struct ww_acquire_ctx *ww_ctx,
45 					    struct wake_q_head *wake_q)
46 {
47 }
48 
49 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
50 					  struct ww_acquire_ctx *ww_ctx)
51 {
52 }
53 
54 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
55 					struct rt_mutex_waiter *waiter,
56 					struct ww_acquire_ctx *ww_ctx)
57 {
58 	return 0;
59 }
60 
61 #else
62 # define build_ww_mutex()	(true)
63 # define ww_container_of(rtm)	container_of(rtm, struct ww_mutex, base)
64 # include "ww_mutex.h"
65 #endif
66 
67 /*
68  * lock->owner state tracking:
69  *
70  * lock->owner holds the task_struct pointer of the owner. Bit 0
71  * is used to keep track of the "lock has waiters" state.
72  *
73  * owner	bit0
74  * NULL		0	lock is free (fast acquire possible)
75  * NULL		1	lock is free and has waiters and the top waiter
76  *				is going to take the lock*
77  * taskpointer	0	lock is held (fast release possible)
78  * taskpointer	1	lock is held and has waiters**
79  *
80  * The fast atomic compare exchange based acquire and release is only
81  * possible when bit 0 of lock->owner is 0.
82  *
83  * (*) It also can be a transitional state when grabbing the lock
84  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
85  * we need to set the bit0 before looking at the lock, and the owner may be
86  * NULL in this small time, hence this can be a transitional state.
87  *
88  * (**) There is a small time when bit 0 is set but there are no
89  * waiters. This can happen when grabbing the lock in the slow path.
90  * To prevent a cmpxchg of the owner releasing the lock, we need to
91  * set this bit before looking at the lock.
92  */
93 
94 static __always_inline struct task_struct *
95 rt_mutex_owner_encode(struct rt_mutex_base *lock, struct task_struct *owner)
96 {
97 	unsigned long val = (unsigned long)owner;
98 
99 	if (rt_mutex_has_waiters(lock))
100 		val |= RT_MUTEX_HAS_WAITERS;
101 
102 	return (struct task_struct *)val;
103 }
104 
105 static __always_inline void
106 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
107 {
108 	/*
109 	 * lock->wait_lock is held but explicit acquire semantics are needed
110 	 * for a new lock owner so WRITE_ONCE is insufficient.
111 	 */
112 	xchg_acquire(&lock->owner, rt_mutex_owner_encode(lock, owner));
113 }
114 
115 static __always_inline void rt_mutex_clear_owner(struct rt_mutex_base *lock)
116 {
117 	/* lock->wait_lock is held so the unlock provides release semantics. */
118 	WRITE_ONCE(lock->owner, rt_mutex_owner_encode(lock, NULL));
119 }
120 
121 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
122 {
123 	lock->owner = (struct task_struct *)
124 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
125 }
126 
127 static __always_inline void
128 fixup_rt_mutex_waiters(struct rt_mutex_base *lock, bool acquire_lock)
129 {
130 	unsigned long owner, *p = (unsigned long *) &lock->owner;
131 
132 	if (rt_mutex_has_waiters(lock))
133 		return;
134 
135 	/*
136 	 * The rbtree has no waiters enqueued, now make sure that the
137 	 * lock->owner still has the waiters bit set, otherwise the
138 	 * following can happen:
139 	 *
140 	 * CPU 0	CPU 1		CPU2
141 	 * l->owner=T1
142 	 *		rt_mutex_lock(l)
143 	 *		lock(l->lock)
144 	 *		l->owner = T1 | HAS_WAITERS;
145 	 *		enqueue(T2)
146 	 *		boost()
147 	 *		  unlock(l->lock)
148 	 *		block()
149 	 *
150 	 *				rt_mutex_lock(l)
151 	 *				lock(l->lock)
152 	 *				l->owner = T1 | HAS_WAITERS;
153 	 *				enqueue(T3)
154 	 *				boost()
155 	 *				  unlock(l->lock)
156 	 *				block()
157 	 *		signal(->T2)	signal(->T3)
158 	 *		lock(l->lock)
159 	 *		dequeue(T2)
160 	 *		deboost()
161 	 *		  unlock(l->lock)
162 	 *				lock(l->lock)
163 	 *				dequeue(T3)
164 	 *				 ==> wait list is empty
165 	 *				deboost()
166 	 *				 unlock(l->lock)
167 	 *		lock(l->lock)
168 	 *		fixup_rt_mutex_waiters()
169 	 *		  if (wait_list_empty(l) {
170 	 *		    l->owner = owner
171 	 *		    owner = l->owner & ~HAS_WAITERS;
172 	 *		      ==> l->owner = T1
173 	 *		  }
174 	 *				lock(l->lock)
175 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
176 	 *				  if (wait_list_empty(l) {
177 	 *				    owner = l->owner & ~HAS_WAITERS;
178 	 * cmpxchg(l->owner, T1, NULL)
179 	 *  ===> Success (l->owner = NULL)
180 	 *
181 	 *				    l->owner = owner
182 	 *				      ==> l->owner = T1
183 	 *				  }
184 	 *
185 	 * With the check for the waiter bit in place T3 on CPU2 will not
186 	 * overwrite. All tasks fiddling with the waiters bit are
187 	 * serialized by l->lock, so nothing else can modify the waiters
188 	 * bit. If the bit is set then nothing can change l->owner either
189 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
190 	 * happens in the middle of the RMW because the waiters bit is
191 	 * still set.
192 	 */
193 	owner = READ_ONCE(*p);
194 	if (owner & RT_MUTEX_HAS_WAITERS) {
195 		/*
196 		 * See rt_mutex_set_owner() and rt_mutex_clear_owner() on
197 		 * why xchg_acquire() is used for updating owner for
198 		 * locking and WRITE_ONCE() for unlocking.
199 		 *
200 		 * WRITE_ONCE() would work for the acquire case too, but
201 		 * in case that the lock acquisition failed it might
202 		 * force other lockers into the slow path unnecessarily.
203 		 */
204 		if (acquire_lock)
205 			xchg_acquire(p, owner & ~RT_MUTEX_HAS_WAITERS);
206 		else
207 			WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
208 	}
209 }
210 
211 /*
212  * We can speed up the acquire/release, if there's no debugging state to be
213  * set up.
214  */
215 #ifndef CONFIG_DEBUG_RT_MUTEXES
216 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
217 						     struct task_struct *old,
218 						     struct task_struct *new)
219 {
220 	return try_cmpxchg_acquire(&lock->owner, &old, new);
221 }
222 
223 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
224 {
225 	return rt_mutex_cmpxchg_acquire(lock, NULL, current);
226 }
227 
228 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
229 						     struct task_struct *old,
230 						     struct task_struct *new)
231 {
232 	return try_cmpxchg_release(&lock->owner, &old, new);
233 }
234 
235 /*
236  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
237  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
238  * relaxed semantics suffice.
239  */
240 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
241 {
242 	unsigned long *p = (unsigned long *) &lock->owner;
243 	unsigned long owner, new;
244 
245 	owner = READ_ONCE(*p);
246 	do {
247 		new = owner | RT_MUTEX_HAS_WAITERS;
248 	} while (!try_cmpxchg_relaxed(p, &owner, new));
249 
250 	/*
251 	 * The cmpxchg loop above is relaxed to avoid back-to-back ACQUIRE
252 	 * operations in the event of contention. Ensure the successful
253 	 * cmpxchg is visible.
254 	 */
255 	smp_mb__after_atomic();
256 }
257 
258 /*
259  * Safe fastpath aware unlock:
260  * 1) Clear the waiters bit
261  * 2) Drop lock->wait_lock
262  * 3) Try to unlock the lock with cmpxchg
263  */
264 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
265 						 unsigned long flags)
266 	__releases(lock->wait_lock)
267 {
268 	struct task_struct *owner = rt_mutex_owner(lock);
269 
270 	clear_rt_mutex_waiters(lock);
271 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
272 	/*
273 	 * If a new waiter comes in between the unlock and the cmpxchg
274 	 * we have two situations:
275 	 *
276 	 * unlock(wait_lock);
277 	 *					lock(wait_lock);
278 	 * cmpxchg(p, owner, 0) == owner
279 	 *					mark_rt_mutex_waiters(lock);
280 	 *					acquire(lock);
281 	 * or:
282 	 *
283 	 * unlock(wait_lock);
284 	 *					lock(wait_lock);
285 	 *					mark_rt_mutex_waiters(lock);
286 	 *
287 	 * cmpxchg(p, owner, 0) != owner
288 	 *					enqueue_waiter();
289 	 *					unlock(wait_lock);
290 	 * lock(wait_lock);
291 	 * wake waiter();
292 	 * unlock(wait_lock);
293 	 *					lock(wait_lock);
294 	 *					acquire(lock);
295 	 */
296 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
297 }
298 
299 #else
300 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
301 						     struct task_struct *old,
302 						     struct task_struct *new)
303 {
304 	return false;
305 
306 }
307 
308 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock);
309 
310 static __always_inline bool rt_mutex_try_acquire(struct rt_mutex_base *lock)
311 {
312 	/*
313 	 * With debug enabled rt_mutex_cmpxchg trylock() will always fail.
314 	 *
315 	 * Avoid unconditionally taking the slow path by using
316 	 * rt_mutex_slow_trylock() which is covered by the debug code and can
317 	 * acquire a non-contended rtmutex.
318 	 */
319 	return rt_mutex_slowtrylock(lock);
320 }
321 
322 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
323 						     struct task_struct *old,
324 						     struct task_struct *new)
325 {
326 	return false;
327 }
328 
329 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
330 {
331 	lock->owner = (struct task_struct *)
332 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
333 }
334 
335 /*
336  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
337  */
338 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
339 						 unsigned long flags)
340 	__releases(lock->wait_lock)
341 {
342 	lock->owner = NULL;
343 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
344 	return true;
345 }
346 #endif
347 
348 static __always_inline int __waiter_prio(struct task_struct *task)
349 {
350 	int prio = task->prio;
351 
352 	if (!rt_or_dl_prio(prio))
353 		return DEFAULT_PRIO;
354 
355 	return prio;
356 }
357 
358 /*
359  * Update the waiter->tree copy of the sort keys.
360  */
361 static __always_inline void
362 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
363 {
364 	lockdep_assert_held(&waiter->lock->wait_lock);
365 	lockdep_assert(RB_EMPTY_NODE(&waiter->tree.entry));
366 
367 	waiter->tree.prio = __waiter_prio(task);
368 	waiter->tree.deadline = task->dl.deadline;
369 }
370 
371 /*
372  * Update the waiter->pi_tree copy of the sort keys (from the tree copy).
373  */
374 static __always_inline void
375 waiter_clone_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
376 {
377 	lockdep_assert_held(&waiter->lock->wait_lock);
378 	lockdep_assert_held(&task->pi_lock);
379 	lockdep_assert(RB_EMPTY_NODE(&waiter->pi_tree.entry));
380 
381 	waiter->pi_tree.prio = waiter->tree.prio;
382 	waiter->pi_tree.deadline = waiter->tree.deadline;
383 }
384 
385 /*
386  * Only use with rt_waiter_node_{less,equal}()
387  */
388 #define task_to_waiter_node(p)	\
389 	&(struct rt_waiter_node){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
390 #define task_to_waiter(p)	\
391 	&(struct rt_mutex_waiter){ .tree = *task_to_waiter_node(p) }
392 
393 static __always_inline int rt_waiter_node_less(struct rt_waiter_node *left,
394 					       struct rt_waiter_node *right)
395 {
396 	if (left->prio < right->prio)
397 		return 1;
398 
399 	/*
400 	 * If both waiters have dl_prio(), we check the deadlines of the
401 	 * associated tasks.
402 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
403 	 * then right waiter has a dl_prio() too.
404 	 */
405 	if (dl_prio(left->prio))
406 		return dl_time_before(left->deadline, right->deadline);
407 
408 	return 0;
409 }
410 
411 static __always_inline int rt_waiter_node_equal(struct rt_waiter_node *left,
412 						 struct rt_waiter_node *right)
413 {
414 	if (left->prio != right->prio)
415 		return 0;
416 
417 	/*
418 	 * If both waiters have dl_prio(), we check the deadlines of the
419 	 * associated tasks.
420 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
421 	 * then right waiter has a dl_prio() too.
422 	 */
423 	if (dl_prio(left->prio))
424 		return left->deadline == right->deadline;
425 
426 	return 1;
427 }
428 
429 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
430 				  struct rt_mutex_waiter *top_waiter)
431 {
432 	if (rt_waiter_node_less(&waiter->tree, &top_waiter->tree))
433 		return true;
434 
435 #ifdef RT_MUTEX_BUILD_SPINLOCKS
436 	/*
437 	 * Note that RT tasks are excluded from same priority (lateral)
438 	 * steals to prevent the introduction of an unbounded latency.
439 	 */
440 	if (rt_or_dl_prio(waiter->tree.prio))
441 		return false;
442 
443 	return rt_waiter_node_equal(&waiter->tree, &top_waiter->tree);
444 #else
445 	return false;
446 #endif
447 }
448 
449 #define __node_2_waiter(node) \
450 	rb_entry((node), struct rt_mutex_waiter, tree.entry)
451 
452 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
453 {
454 	struct rt_mutex_waiter *aw = __node_2_waiter(a);
455 	struct rt_mutex_waiter *bw = __node_2_waiter(b);
456 
457 	if (rt_waiter_node_less(&aw->tree, &bw->tree))
458 		return 1;
459 
460 	if (!build_ww_mutex())
461 		return 0;
462 
463 	if (rt_waiter_node_less(&bw->tree, &aw->tree))
464 		return 0;
465 
466 	/* NOTE: relies on waiter->ww_ctx being set before insertion */
467 	if (aw->ww_ctx) {
468 		if (!bw->ww_ctx)
469 			return 1;
470 
471 		return (signed long)(aw->ww_ctx->stamp -
472 				     bw->ww_ctx->stamp) < 0;
473 	}
474 
475 	return 0;
476 }
477 
478 static __always_inline void
479 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
480 {
481 	lockdep_assert_held(&lock->wait_lock);
482 
483 	rb_add_cached(&waiter->tree.entry, &lock->waiters, __waiter_less);
484 }
485 
486 static __always_inline void
487 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
488 {
489 	lockdep_assert_held(&lock->wait_lock);
490 
491 	if (RB_EMPTY_NODE(&waiter->tree.entry))
492 		return;
493 
494 	rb_erase_cached(&waiter->tree.entry, &lock->waiters);
495 	RB_CLEAR_NODE(&waiter->tree.entry);
496 }
497 
498 #define __node_2_rt_node(node) \
499 	rb_entry((node), struct rt_waiter_node, entry)
500 
501 static __always_inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
502 {
503 	return rt_waiter_node_less(__node_2_rt_node(a), __node_2_rt_node(b));
504 }
505 
506 static __always_inline void
507 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
508 {
509 	lockdep_assert_held(&task->pi_lock);
510 
511 	rb_add_cached(&waiter->pi_tree.entry, &task->pi_waiters, __pi_waiter_less);
512 }
513 
514 static __always_inline void
515 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
516 {
517 	lockdep_assert_held(&task->pi_lock);
518 
519 	if (RB_EMPTY_NODE(&waiter->pi_tree.entry))
520 		return;
521 
522 	rb_erase_cached(&waiter->pi_tree.entry, &task->pi_waiters);
523 	RB_CLEAR_NODE(&waiter->pi_tree.entry);
524 }
525 
526 static __always_inline void rt_mutex_adjust_prio(struct rt_mutex_base *lock,
527 						 struct task_struct *p)
528 {
529 	struct task_struct *pi_task = NULL;
530 
531 	lockdep_assert_held(&lock->wait_lock);
532 	lockdep_assert(rt_mutex_owner(lock) == p);
533 	lockdep_assert_held(&p->pi_lock);
534 
535 	if (task_has_pi_waiters(p))
536 		pi_task = task_top_pi_waiter(p)->task;
537 
538 	rt_mutex_setprio(p, pi_task);
539 }
540 
541 /* RT mutex specific wake_q wrappers */
542 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
543 						     struct task_struct *task,
544 						     unsigned int wake_state)
545 {
546 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
547 		if (IS_ENABLED(CONFIG_PROVE_LOCKING))
548 			WARN_ON_ONCE(wqh->rtlock_task);
549 		get_task_struct(task);
550 		wqh->rtlock_task = task;
551 	} else {
552 		wake_q_add(&wqh->head, task);
553 	}
554 }
555 
556 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
557 						struct rt_mutex_waiter *w)
558 {
559 	rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
560 }
561 
562 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
563 {
564 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
565 		wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
566 		put_task_struct(wqh->rtlock_task);
567 		wqh->rtlock_task = NULL;
568 	}
569 
570 	if (!wake_q_empty(&wqh->head))
571 		wake_up_q(&wqh->head);
572 
573 	/* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
574 	preempt_enable();
575 }
576 
577 /*
578  * Deadlock detection is conditional:
579  *
580  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
581  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
582  *
583  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
584  * conducted independent of the detect argument.
585  *
586  * If the waiter argument is NULL this indicates the deboost path and
587  * deadlock detection is disabled independent of the detect argument
588  * and the config settings.
589  */
590 static __always_inline bool
591 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
592 			      enum rtmutex_chainwalk chwalk)
593 {
594 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
595 		return waiter != NULL;
596 	return chwalk == RT_MUTEX_FULL_CHAINWALK;
597 }
598 
599 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
600 {
601 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
602 }
603 
604 /*
605  * Adjust the priority chain. Also used for deadlock detection.
606  * Decreases task's usage by one - may thus free the task.
607  *
608  * @task:	the task owning the mutex (owner) for which a chain walk is
609  *		probably needed
610  * @chwalk:	do we have to carry out deadlock detection?
611  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
612  *		things for a task that has just got its priority adjusted, and
613  *		is waiting on a mutex)
614  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
615  *		we dropped its pi_lock. Is never dereferenced, only used for
616  *		comparison to detect lock chain changes.
617  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
618  *		its priority to the mutex owner (can be NULL in the case
619  *		depicted above or if the top waiter is gone away and we are
620  *		actually deboosting the owner)
621  * @top_task:	the current top waiter
622  *
623  * Returns 0 or -EDEADLK.
624  *
625  * Chain walk basics and protection scope
626  *
627  * [R] refcount on task
628  * [Pn] task->pi_lock held
629  * [L] rtmutex->wait_lock held
630  *
631  * Normal locking order:
632  *
633  *   rtmutex->wait_lock
634  *     task->pi_lock
635  *
636  * Step	Description				Protected by
637  *	function arguments:
638  *	@task					[R]
639  *	@orig_lock if != NULL			@top_task is blocked on it
640  *	@next_lock				Unprotected. Cannot be
641  *						dereferenced. Only used for
642  *						comparison.
643  *	@orig_waiter if != NULL			@top_task is blocked on it
644  *	@top_task				current, or in case of proxy
645  *						locking protected by calling
646  *						code
647  *	again:
648  *	  loop_sanity_check();
649  *	retry:
650  * [1]	  lock(task->pi_lock);			[R] acquire [P1]
651  * [2]	  waiter = task->pi_blocked_on;		[P1]
652  * [3]	  check_exit_conditions_1();		[P1]
653  * [4]	  lock = waiter->lock;			[P1]
654  * [5]	  if (!try_lock(lock->wait_lock)) {	[P1] try to acquire [L]
655  *	    unlock(task->pi_lock);		release [P1]
656  *	    goto retry;
657  *	  }
658  * [6]	  check_exit_conditions_2();		[P1] + [L]
659  * [7]	  requeue_lock_waiter(lock, waiter);	[P1] + [L]
660  * [8]	  unlock(task->pi_lock);		release [P1]
661  *	  put_task_struct(task);		release [R]
662  * [9]	  check_exit_conditions_3();		[L]
663  * [10]	  task = owner(lock);			[L]
664  *	  get_task_struct(task);		[L] acquire [R]
665  *	  lock(task->pi_lock);			[L] acquire [P2]
666  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P2] + [L]
667  * [12]	  check_exit_conditions_4();		[P2] + [L]
668  * [13]	  unlock(task->pi_lock);		release [P2]
669  *	  unlock(lock->wait_lock);		release [L]
670  *	  goto again;
671  *
672  * Where P1 is the blocking task and P2 is the lock owner; going up one step
673  * the owner becomes the next blocked task etc..
674  *
675 *
676  */
677 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
678 					      enum rtmutex_chainwalk chwalk,
679 					      struct rt_mutex_base *orig_lock,
680 					      struct rt_mutex_base *next_lock,
681 					      struct rt_mutex_waiter *orig_waiter,
682 					      struct task_struct *top_task)
683 {
684 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
685 	struct rt_mutex_waiter *prerequeue_top_waiter;
686 	int ret = 0, depth = 0;
687 	struct rt_mutex_base *lock;
688 	bool detect_deadlock;
689 	bool requeue = true;
690 
691 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
692 
693 	/*
694 	 * The (de)boosting is a step by step approach with a lot of
695 	 * pitfalls. We want this to be preemptible and we want hold a
696 	 * maximum of two locks per step. So we have to check
697 	 * carefully whether things change under us.
698 	 */
699  again:
700 	/*
701 	 * We limit the lock chain length for each invocation.
702 	 */
703 	if (++depth > max_lock_depth) {
704 		static int prev_max;
705 
706 		/*
707 		 * Print this only once. If the admin changes the limit,
708 		 * print a new message when reaching the limit again.
709 		 */
710 		if (prev_max != max_lock_depth) {
711 			prev_max = max_lock_depth;
712 			printk(KERN_WARNING "Maximum lock depth %d reached "
713 			       "task: %s (%d)\n", max_lock_depth,
714 			       top_task->comm, task_pid_nr(top_task));
715 		}
716 		put_task_struct(task);
717 
718 		return -EDEADLK;
719 	}
720 
721 	/*
722 	 * We are fully preemptible here and only hold the refcount on
723 	 * @task. So everything can have changed under us since the
724 	 * caller or our own code below (goto retry/again) dropped all
725 	 * locks.
726 	 */
727  retry:
728 	/*
729 	 * [1] Task cannot go away as we did a get_task() before !
730 	 */
731 	raw_spin_lock_irq(&task->pi_lock);
732 
733 	/*
734 	 * [2] Get the waiter on which @task is blocked on.
735 	 */
736 	waiter = task->pi_blocked_on;
737 
738 	/*
739 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
740 	 */
741 
742 	/*
743 	 * Check whether the end of the boosting chain has been
744 	 * reached or the state of the chain has changed while we
745 	 * dropped the locks.
746 	 */
747 	if (!waiter)
748 		goto out_unlock_pi;
749 
750 	/*
751 	 * Check the orig_waiter state. After we dropped the locks,
752 	 * the previous owner of the lock might have released the lock.
753 	 */
754 	if (orig_waiter && !rt_mutex_owner(orig_lock))
755 		goto out_unlock_pi;
756 
757 	/*
758 	 * We dropped all locks after taking a refcount on @task, so
759 	 * the task might have moved on in the lock chain or even left
760 	 * the chain completely and blocks now on an unrelated lock or
761 	 * on @orig_lock.
762 	 *
763 	 * We stored the lock on which @task was blocked in @next_lock,
764 	 * so we can detect the chain change.
765 	 */
766 	if (next_lock != waiter->lock)
767 		goto out_unlock_pi;
768 
769 	/*
770 	 * There could be 'spurious' loops in the lock graph due to ww_mutex,
771 	 * consider:
772 	 *
773 	 *   P1: A, ww_A, ww_B
774 	 *   P2: ww_B, ww_A
775 	 *   P3: A
776 	 *
777 	 * P3 should not return -EDEADLK because it gets trapped in the cycle
778 	 * created by P1 and P2 (which will resolve -- and runs into
779 	 * max_lock_depth above). Therefore disable detect_deadlock such that
780 	 * the below termination condition can trigger once all relevant tasks
781 	 * are boosted.
782 	 *
783 	 * Even when we start with ww_mutex we can disable deadlock detection,
784 	 * since we would supress a ww_mutex induced deadlock at [6] anyway.
785 	 * Supressing it here however is not sufficient since we might still
786 	 * hit [6] due to adjustment driven iteration.
787 	 *
788 	 * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
789 	 * utterly fail to report it; lockdep should.
790 	 */
791 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
792 		detect_deadlock = false;
793 
794 	/*
795 	 * Drop out, when the task has no waiters. Note,
796 	 * top_waiter can be NULL, when we are in the deboosting
797 	 * mode!
798 	 */
799 	if (top_waiter) {
800 		if (!task_has_pi_waiters(task))
801 			goto out_unlock_pi;
802 		/*
803 		 * If deadlock detection is off, we stop here if we
804 		 * are not the top pi waiter of the task. If deadlock
805 		 * detection is enabled we continue, but stop the
806 		 * requeueing in the chain walk.
807 		 */
808 		if (top_waiter != task_top_pi_waiter(task)) {
809 			if (!detect_deadlock)
810 				goto out_unlock_pi;
811 			else
812 				requeue = false;
813 		}
814 	}
815 
816 	/*
817 	 * If the waiter priority is the same as the task priority
818 	 * then there is no further priority adjustment necessary.  If
819 	 * deadlock detection is off, we stop the chain walk. If its
820 	 * enabled we continue, but stop the requeueing in the chain
821 	 * walk.
822 	 */
823 	if (rt_waiter_node_equal(&waiter->tree, task_to_waiter_node(task))) {
824 		if (!detect_deadlock)
825 			goto out_unlock_pi;
826 		else
827 			requeue = false;
828 	}
829 
830 	/*
831 	 * [4] Get the next lock; per holding task->pi_lock we can't unblock
832 	 * and guarantee @lock's existence.
833 	 */
834 	lock = waiter->lock;
835 	/*
836 	 * [5] We need to trylock here as we are holding task->pi_lock,
837 	 * which is the reverse lock order versus the other rtmutex
838 	 * operations.
839 	 *
840 	 * Per the above, holding task->pi_lock guarantees lock exists, so
841 	 * inverting this lock order is infeasible from a life-time
842 	 * perspective.
843 	 */
844 	if (!raw_spin_trylock(&lock->wait_lock)) {
845 		raw_spin_unlock_irq(&task->pi_lock);
846 		cpu_relax();
847 		goto retry;
848 	}
849 
850 	/*
851 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
852 	 * lock->wait_lock.
853 	 *
854 	 * Deadlock detection. If the lock is the same as the original
855 	 * lock which caused us to walk the lock chain or if the
856 	 * current lock is owned by the task which initiated the chain
857 	 * walk, we detected a deadlock.
858 	 */
859 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
860 		ret = -EDEADLK;
861 
862 		/*
863 		 * When the deadlock is due to ww_mutex; also see above. Don't
864 		 * report the deadlock and instead let the ww_mutex wound/die
865 		 * logic pick which of the contending threads gets -EDEADLK.
866 		 *
867 		 * NOTE: assumes the cycle only contains a single ww_class; any
868 		 * other configuration and we fail to report; also, see
869 		 * lockdep.
870 		 */
871 		if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
872 			ret = 0;
873 
874 		raw_spin_unlock(&lock->wait_lock);
875 		goto out_unlock_pi;
876 	}
877 
878 	/*
879 	 * If we just follow the lock chain for deadlock detection, no
880 	 * need to do all the requeue operations. To avoid a truckload
881 	 * of conditionals around the various places below, just do the
882 	 * minimum chain walk checks.
883 	 */
884 	if (!requeue) {
885 		/*
886 		 * No requeue[7] here. Just release @task [8]
887 		 */
888 		raw_spin_unlock(&task->pi_lock);
889 		put_task_struct(task);
890 
891 		/*
892 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
893 		 * If there is no owner of the lock, end of chain.
894 		 */
895 		if (!rt_mutex_owner(lock)) {
896 			raw_spin_unlock_irq(&lock->wait_lock);
897 			return 0;
898 		}
899 
900 		/* [10] Grab the next task, i.e. owner of @lock */
901 		task = get_task_struct(rt_mutex_owner(lock));
902 		raw_spin_lock(&task->pi_lock);
903 
904 		/*
905 		 * No requeue [11] here. We just do deadlock detection.
906 		 *
907 		 * [12] Store whether owner is blocked
908 		 * itself. Decision is made after dropping the locks
909 		 */
910 		next_lock = task_blocked_on_lock(task);
911 		/*
912 		 * Get the top waiter for the next iteration
913 		 */
914 		top_waiter = rt_mutex_top_waiter(lock);
915 
916 		/* [13] Drop locks */
917 		raw_spin_unlock(&task->pi_lock);
918 		raw_spin_unlock_irq(&lock->wait_lock);
919 
920 		/* If owner is not blocked, end of chain. */
921 		if (!next_lock)
922 			goto out_put_task;
923 		goto again;
924 	}
925 
926 	/*
927 	 * Store the current top waiter before doing the requeue
928 	 * operation on @lock. We need it for the boost/deboost
929 	 * decision below.
930 	 */
931 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
932 
933 	/* [7] Requeue the waiter in the lock waiter tree. */
934 	rt_mutex_dequeue(lock, waiter);
935 
936 	/*
937 	 * Update the waiter prio fields now that we're dequeued.
938 	 *
939 	 * These values can have changed through either:
940 	 *
941 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
942 	 *
943 	 * or
944 	 *
945 	 *   DL CBS enforcement advancing the effective deadline.
946 	 */
947 	waiter_update_prio(waiter, task);
948 
949 	rt_mutex_enqueue(lock, waiter);
950 
951 	/*
952 	 * [8] Release the (blocking) task in preparation for
953 	 * taking the owner task in [10].
954 	 *
955 	 * Since we hold lock->waiter_lock, task cannot unblock, even if we
956 	 * release task->pi_lock.
957 	 */
958 	raw_spin_unlock(&task->pi_lock);
959 	put_task_struct(task);
960 
961 	/*
962 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
963 	 *
964 	 * We must abort the chain walk if there is no lock owner even
965 	 * in the dead lock detection case, as we have nothing to
966 	 * follow here. This is the end of the chain we are walking.
967 	 */
968 	if (!rt_mutex_owner(lock)) {
969 		/*
970 		 * If the requeue [7] above changed the top waiter,
971 		 * then we need to wake the new top waiter up to try
972 		 * to get the lock.
973 		 */
974 		top_waiter = rt_mutex_top_waiter(lock);
975 		if (prerequeue_top_waiter != top_waiter)
976 			wake_up_state(top_waiter->task, top_waiter->wake_state);
977 		raw_spin_unlock_irq(&lock->wait_lock);
978 		return 0;
979 	}
980 
981 	/*
982 	 * [10] Grab the next task, i.e. the owner of @lock
983 	 *
984 	 * Per holding lock->wait_lock and checking for !owner above, there
985 	 * must be an owner and it cannot go away.
986 	 */
987 	task = get_task_struct(rt_mutex_owner(lock));
988 	raw_spin_lock(&task->pi_lock);
989 
990 	/* [11] requeue the pi waiters if necessary */
991 	if (waiter == rt_mutex_top_waiter(lock)) {
992 		/*
993 		 * The waiter became the new top (highest priority)
994 		 * waiter on the lock. Replace the previous top waiter
995 		 * in the owner tasks pi waiters tree with this waiter
996 		 * and adjust the priority of the owner.
997 		 */
998 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
999 		waiter_clone_prio(waiter, task);
1000 		rt_mutex_enqueue_pi(task, waiter);
1001 		rt_mutex_adjust_prio(lock, task);
1002 
1003 	} else if (prerequeue_top_waiter == waiter) {
1004 		/*
1005 		 * The waiter was the top waiter on the lock, but is
1006 		 * no longer the top priority waiter. Replace waiter in
1007 		 * the owner tasks pi waiters tree with the new top
1008 		 * (highest priority) waiter and adjust the priority
1009 		 * of the owner.
1010 		 * The new top waiter is stored in @waiter so that
1011 		 * @waiter == @top_waiter evaluates to true below and
1012 		 * we continue to deboost the rest of the chain.
1013 		 */
1014 		rt_mutex_dequeue_pi(task, waiter);
1015 		waiter = rt_mutex_top_waiter(lock);
1016 		waiter_clone_prio(waiter, task);
1017 		rt_mutex_enqueue_pi(task, waiter);
1018 		rt_mutex_adjust_prio(lock, task);
1019 	} else {
1020 		/*
1021 		 * Nothing changed. No need to do any priority
1022 		 * adjustment.
1023 		 */
1024 	}
1025 
1026 	/*
1027 	 * [12] check_exit_conditions_4() protected by task->pi_lock
1028 	 * and lock->wait_lock. The actual decisions are made after we
1029 	 * dropped the locks.
1030 	 *
1031 	 * Check whether the task which owns the current lock is pi
1032 	 * blocked itself. If yes we store a pointer to the lock for
1033 	 * the lock chain change detection above. After we dropped
1034 	 * task->pi_lock next_lock cannot be dereferenced anymore.
1035 	 */
1036 	next_lock = task_blocked_on_lock(task);
1037 	/*
1038 	 * Store the top waiter of @lock for the end of chain walk
1039 	 * decision below.
1040 	 */
1041 	top_waiter = rt_mutex_top_waiter(lock);
1042 
1043 	/* [13] Drop the locks */
1044 	raw_spin_unlock(&task->pi_lock);
1045 	raw_spin_unlock_irq(&lock->wait_lock);
1046 
1047 	/*
1048 	 * Make the actual exit decisions [12], based on the stored
1049 	 * values.
1050 	 *
1051 	 * We reached the end of the lock chain. Stop right here. No
1052 	 * point to go back just to figure that out.
1053 	 */
1054 	if (!next_lock)
1055 		goto out_put_task;
1056 
1057 	/*
1058 	 * If the current waiter is not the top waiter on the lock,
1059 	 * then we can stop the chain walk here if we are not in full
1060 	 * deadlock detection mode.
1061 	 */
1062 	if (!detect_deadlock && waiter != top_waiter)
1063 		goto out_put_task;
1064 
1065 	goto again;
1066 
1067  out_unlock_pi:
1068 	raw_spin_unlock_irq(&task->pi_lock);
1069  out_put_task:
1070 	put_task_struct(task);
1071 
1072 	return ret;
1073 }
1074 
1075 /*
1076  * Try to take an rt-mutex
1077  *
1078  * Must be called with lock->wait_lock held and interrupts disabled
1079  *
1080  * @lock:   The lock to be acquired.
1081  * @task:   The task which wants to acquire the lock
1082  * @waiter: The waiter that is queued to the lock's wait tree if the
1083  *	    callsite called task_blocked_on_lock(), otherwise NULL
1084  */
1085 static int __sched
1086 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
1087 		     struct rt_mutex_waiter *waiter)
1088 {
1089 	lockdep_assert_held(&lock->wait_lock);
1090 
1091 	/*
1092 	 * Before testing whether we can acquire @lock, we set the
1093 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
1094 	 * other tasks which try to modify @lock into the slow path
1095 	 * and they serialize on @lock->wait_lock.
1096 	 *
1097 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
1098 	 * as explained at the top of this file if and only if:
1099 	 *
1100 	 * - There is a lock owner. The caller must fixup the
1101 	 *   transient state if it does a trylock or leaves the lock
1102 	 *   function due to a signal or timeout.
1103 	 *
1104 	 * - @task acquires the lock and there are no other
1105 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
1106 	 *   the end of this function.
1107 	 */
1108 	mark_rt_mutex_waiters(lock);
1109 
1110 	/*
1111 	 * If @lock has an owner, give up.
1112 	 */
1113 	if (rt_mutex_owner(lock))
1114 		return 0;
1115 
1116 	/*
1117 	 * If @waiter != NULL, @task has already enqueued the waiter
1118 	 * into @lock waiter tree. If @waiter == NULL then this is a
1119 	 * trylock attempt.
1120 	 */
1121 	if (waiter) {
1122 		struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1123 
1124 		/*
1125 		 * If waiter is the highest priority waiter of @lock,
1126 		 * or allowed to steal it, take it over.
1127 		 */
1128 		if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1129 			/*
1130 			 * We can acquire the lock. Remove the waiter from the
1131 			 * lock waiters tree.
1132 			 */
1133 			rt_mutex_dequeue(lock, waiter);
1134 		} else {
1135 			return 0;
1136 		}
1137 	} else {
1138 		/*
1139 		 * If the lock has waiters already we check whether @task is
1140 		 * eligible to take over the lock.
1141 		 *
1142 		 * If there are no other waiters, @task can acquire
1143 		 * the lock.  @task->pi_blocked_on is NULL, so it does
1144 		 * not need to be dequeued.
1145 		 */
1146 		if (rt_mutex_has_waiters(lock)) {
1147 			/* Check whether the trylock can steal it. */
1148 			if (!rt_mutex_steal(task_to_waiter(task),
1149 					    rt_mutex_top_waiter(lock)))
1150 				return 0;
1151 
1152 			/*
1153 			 * The current top waiter stays enqueued. We
1154 			 * don't have to change anything in the lock
1155 			 * waiters order.
1156 			 */
1157 		} else {
1158 			/*
1159 			 * No waiters. Take the lock without the
1160 			 * pi_lock dance.@task->pi_blocked_on is NULL
1161 			 * and we have no waiters to enqueue in @task
1162 			 * pi waiters tree.
1163 			 */
1164 			goto takeit;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * Clear @task->pi_blocked_on. Requires protection by
1170 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
1171 	 * case, but conditionals are more expensive than a redundant
1172 	 * store.
1173 	 */
1174 	raw_spin_lock(&task->pi_lock);
1175 	task->pi_blocked_on = NULL;
1176 	/*
1177 	 * Finish the lock acquisition. @task is the new owner. If
1178 	 * other waiters exist we have to insert the highest priority
1179 	 * waiter into @task->pi_waiters tree.
1180 	 */
1181 	if (rt_mutex_has_waiters(lock))
1182 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1183 	raw_spin_unlock(&task->pi_lock);
1184 
1185 takeit:
1186 	/*
1187 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1188 	 * are still waiters or clears it.
1189 	 */
1190 	rt_mutex_set_owner(lock, task);
1191 
1192 	return 1;
1193 }
1194 
1195 /*
1196  * Task blocks on lock.
1197  *
1198  * Prepare waiter and propagate pi chain
1199  *
1200  * This must be called with lock->wait_lock held and interrupts disabled
1201  */
1202 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1203 					   struct rt_mutex_waiter *waiter,
1204 					   struct task_struct *task,
1205 					   struct ww_acquire_ctx *ww_ctx,
1206 					   enum rtmutex_chainwalk chwalk,
1207 					   struct wake_q_head *wake_q)
1208 {
1209 	struct task_struct *owner = rt_mutex_owner(lock);
1210 	struct rt_mutex_waiter *top_waiter = waiter;
1211 	struct rt_mutex_base *next_lock;
1212 	int chain_walk = 0, res;
1213 
1214 	lockdep_assert_held(&lock->wait_lock);
1215 
1216 	/*
1217 	 * Early deadlock detection. We really don't want the task to
1218 	 * enqueue on itself just to untangle the mess later. It's not
1219 	 * only an optimization. We drop the locks, so another waiter
1220 	 * can come in before the chain walk detects the deadlock. So
1221 	 * the other will detect the deadlock and return -EDEADLOCK,
1222 	 * which is wrong, as the other waiter is not in a deadlock
1223 	 * situation.
1224 	 *
1225 	 * Except for ww_mutex, in that case the chain walk must already deal
1226 	 * with spurious cycles, see the comments at [3] and [6].
1227 	 */
1228 	if (owner == task && !(build_ww_mutex() && ww_ctx))
1229 		return -EDEADLK;
1230 
1231 	raw_spin_lock(&task->pi_lock);
1232 	waiter->task = task;
1233 	waiter->lock = lock;
1234 	waiter_update_prio(waiter, task);
1235 	waiter_clone_prio(waiter, task);
1236 
1237 	/* Get the top priority waiter on the lock */
1238 	if (rt_mutex_has_waiters(lock))
1239 		top_waiter = rt_mutex_top_waiter(lock);
1240 	rt_mutex_enqueue(lock, waiter);
1241 
1242 	task->pi_blocked_on = waiter;
1243 
1244 	raw_spin_unlock(&task->pi_lock);
1245 
1246 	if (build_ww_mutex() && ww_ctx) {
1247 		struct rt_mutex *rtm;
1248 
1249 		/* Check whether the waiter should back out immediately */
1250 		rtm = container_of(lock, struct rt_mutex, rtmutex);
1251 		preempt_disable();
1252 		res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx, wake_q);
1253 		wake_up_q(wake_q);
1254 		preempt_enable();
1255 		if (res) {
1256 			raw_spin_lock(&task->pi_lock);
1257 			rt_mutex_dequeue(lock, waiter);
1258 			task->pi_blocked_on = NULL;
1259 			raw_spin_unlock(&task->pi_lock);
1260 			return res;
1261 		}
1262 	}
1263 
1264 	if (!owner)
1265 		return 0;
1266 
1267 	raw_spin_lock(&owner->pi_lock);
1268 	if (waiter == rt_mutex_top_waiter(lock)) {
1269 		rt_mutex_dequeue_pi(owner, top_waiter);
1270 		rt_mutex_enqueue_pi(owner, waiter);
1271 
1272 		rt_mutex_adjust_prio(lock, owner);
1273 		if (owner->pi_blocked_on)
1274 			chain_walk = 1;
1275 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1276 		chain_walk = 1;
1277 	}
1278 
1279 	/* Store the lock on which owner is blocked or NULL */
1280 	next_lock = task_blocked_on_lock(owner);
1281 
1282 	raw_spin_unlock(&owner->pi_lock);
1283 	/*
1284 	 * Even if full deadlock detection is on, if the owner is not
1285 	 * blocked itself, we can avoid finding this out in the chain
1286 	 * walk.
1287 	 */
1288 	if (!chain_walk || !next_lock)
1289 		return 0;
1290 
1291 	/*
1292 	 * The owner can't disappear while holding a lock,
1293 	 * so the owner struct is protected by wait_lock.
1294 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1295 	 */
1296 	get_task_struct(owner);
1297 
1298 	raw_spin_unlock_irq(&lock->wait_lock);
1299 
1300 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1301 					 next_lock, waiter, task);
1302 
1303 	raw_spin_lock_irq(&lock->wait_lock);
1304 
1305 	return res;
1306 }
1307 
1308 /*
1309  * Remove the top waiter from the current tasks pi waiter tree and
1310  * queue it up.
1311  *
1312  * Called with lock->wait_lock held and interrupts disabled.
1313  */
1314 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1315 					    struct rt_mutex_base *lock)
1316 {
1317 	struct rt_mutex_waiter *waiter;
1318 
1319 	lockdep_assert_held(&lock->wait_lock);
1320 
1321 	raw_spin_lock(&current->pi_lock);
1322 
1323 	waiter = rt_mutex_top_waiter(lock);
1324 
1325 	/*
1326 	 * Remove it from current->pi_waiters and deboost.
1327 	 *
1328 	 * We must in fact deboost here in order to ensure we call
1329 	 * rt_mutex_setprio() to update p->pi_top_task before the
1330 	 * task unblocks.
1331 	 */
1332 	rt_mutex_dequeue_pi(current, waiter);
1333 	rt_mutex_adjust_prio(lock, current);
1334 
1335 	/*
1336 	 * As we are waking up the top waiter, and the waiter stays
1337 	 * queued on the lock until it gets the lock, this lock
1338 	 * obviously has waiters. Just set the bit here and this has
1339 	 * the added benefit of forcing all new tasks into the
1340 	 * slow path making sure no task of lower priority than
1341 	 * the top waiter can steal this lock.
1342 	 */
1343 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1344 
1345 	/*
1346 	 * We deboosted before waking the top waiter task such that we don't
1347 	 * run two tasks with the 'same' priority (and ensure the
1348 	 * p->pi_top_task pointer points to a blocked task). This however can
1349 	 * lead to priority inversion if we would get preempted after the
1350 	 * deboost but before waking our donor task, hence the preempt_disable()
1351 	 * before unlock.
1352 	 *
1353 	 * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1354 	 */
1355 	preempt_disable();
1356 	rt_mutex_wake_q_add(wqh, waiter);
1357 	raw_spin_unlock(&current->pi_lock);
1358 }
1359 
1360 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1361 {
1362 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1363 
1364 	/*
1365 	 * try_to_take_rt_mutex() sets the lock waiters bit
1366 	 * unconditionally. Clean this up.
1367 	 */
1368 	fixup_rt_mutex_waiters(lock, true);
1369 
1370 	return ret;
1371 }
1372 
1373 /*
1374  * Slow path try-lock function:
1375  */
1376 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1377 {
1378 	unsigned long flags;
1379 	int ret;
1380 
1381 	/*
1382 	 * If the lock already has an owner we fail to get the lock.
1383 	 * This can be done without taking the @lock->wait_lock as
1384 	 * it is only being read, and this is a trylock anyway.
1385 	 */
1386 	if (rt_mutex_owner(lock))
1387 		return 0;
1388 
1389 	/*
1390 	 * The mutex has currently no owner. Lock the wait lock and try to
1391 	 * acquire the lock. We use irqsave here to support early boot calls.
1392 	 */
1393 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1394 
1395 	ret = __rt_mutex_slowtrylock(lock);
1396 
1397 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1398 
1399 	return ret;
1400 }
1401 
1402 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1403 {
1404 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1405 		return 1;
1406 
1407 	return rt_mutex_slowtrylock(lock);
1408 }
1409 
1410 /*
1411  * Slow path to release a rt-mutex.
1412  */
1413 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1414 {
1415 	DEFINE_RT_WAKE_Q(wqh);
1416 	unsigned long flags;
1417 
1418 	/* irqsave required to support early boot calls */
1419 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1420 
1421 	debug_rt_mutex_unlock(lock);
1422 
1423 	/*
1424 	 * We must be careful here if the fast path is enabled. If we
1425 	 * have no waiters queued we cannot set owner to NULL here
1426 	 * because of:
1427 	 *
1428 	 * foo->lock->owner = NULL;
1429 	 *			rtmutex_lock(foo->lock);   <- fast path
1430 	 *			free = atomic_dec_and_test(foo->refcnt);
1431 	 *			rtmutex_unlock(foo->lock); <- fast path
1432 	 *			if (free)
1433 	 *				kfree(foo);
1434 	 * raw_spin_unlock(foo->lock->wait_lock);
1435 	 *
1436 	 * So for the fastpath enabled kernel:
1437 	 *
1438 	 * Nothing can set the waiters bit as long as we hold
1439 	 * lock->wait_lock. So we do the following sequence:
1440 	 *
1441 	 *	owner = rt_mutex_owner(lock);
1442 	 *	clear_rt_mutex_waiters(lock);
1443 	 *	raw_spin_unlock(&lock->wait_lock);
1444 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1445 	 *		return;
1446 	 *	goto retry;
1447 	 *
1448 	 * The fastpath disabled variant is simple as all access to
1449 	 * lock->owner is serialized by lock->wait_lock:
1450 	 *
1451 	 *	lock->owner = NULL;
1452 	 *	raw_spin_unlock(&lock->wait_lock);
1453 	 */
1454 	while (!rt_mutex_has_waiters(lock)) {
1455 		/* Drops lock->wait_lock ! */
1456 		if (unlock_rt_mutex_safe(lock, flags) == true)
1457 			return;
1458 		/* Relock the rtmutex and try again */
1459 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1460 	}
1461 
1462 	/*
1463 	 * The wakeup next waiter path does not suffer from the above
1464 	 * race. See the comments there.
1465 	 *
1466 	 * Queue the next waiter for wakeup once we release the wait_lock.
1467 	 */
1468 	mark_wakeup_next_waiter(&wqh, lock);
1469 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1470 
1471 	rt_mutex_wake_up_q(&wqh);
1472 }
1473 
1474 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1475 {
1476 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1477 		return;
1478 
1479 	rt_mutex_slowunlock(lock);
1480 }
1481 
1482 #ifdef CONFIG_SMP
1483 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1484 				  struct rt_mutex_waiter *waiter,
1485 				  struct task_struct *owner)
1486 {
1487 	bool res = true;
1488 
1489 	rcu_read_lock();
1490 	for (;;) {
1491 		/* If owner changed, trylock again. */
1492 		if (owner != rt_mutex_owner(lock))
1493 			break;
1494 		/*
1495 		 * Ensure that @owner is dereferenced after checking that
1496 		 * the lock owner still matches @owner. If that fails,
1497 		 * @owner might point to freed memory. If it still matches,
1498 		 * the rcu_read_lock() ensures the memory stays valid.
1499 		 */
1500 		barrier();
1501 		/*
1502 		 * Stop spinning when:
1503 		 *  - the lock owner has been scheduled out
1504 		 *  - current is not longer the top waiter
1505 		 *  - current is requested to reschedule (redundant
1506 		 *    for CONFIG_PREEMPT_RCU=y)
1507 		 *  - the VCPU on which owner runs is preempted
1508 		 */
1509 		if (!owner_on_cpu(owner) || need_resched() ||
1510 		    !rt_mutex_waiter_is_top_waiter(lock, waiter)) {
1511 			res = false;
1512 			break;
1513 		}
1514 		cpu_relax();
1515 	}
1516 	rcu_read_unlock();
1517 	return res;
1518 }
1519 #else
1520 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1521 				  struct rt_mutex_waiter *waiter,
1522 				  struct task_struct *owner)
1523 {
1524 	return false;
1525 }
1526 #endif
1527 
1528 #ifdef RT_MUTEX_BUILD_MUTEX
1529 /*
1530  * Functions required for:
1531  *	- rtmutex, futex on all kernels
1532  *	- mutex and rwsem substitutions on RT kernels
1533  */
1534 
1535 /*
1536  * Remove a waiter from a lock and give up
1537  *
1538  * Must be called with lock->wait_lock held and interrupts disabled. It must
1539  * have just failed to try_to_take_rt_mutex().
1540  */
1541 static void __sched remove_waiter(struct rt_mutex_base *lock,
1542 				  struct rt_mutex_waiter *waiter)
1543 {
1544 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1545 	struct task_struct *owner = rt_mutex_owner(lock);
1546 	struct rt_mutex_base *next_lock;
1547 
1548 	lockdep_assert_held(&lock->wait_lock);
1549 
1550 	raw_spin_lock(&current->pi_lock);
1551 	rt_mutex_dequeue(lock, waiter);
1552 	current->pi_blocked_on = NULL;
1553 	raw_spin_unlock(&current->pi_lock);
1554 
1555 	/*
1556 	 * Only update priority if the waiter was the highest priority
1557 	 * waiter of the lock and there is an owner to update.
1558 	 */
1559 	if (!owner || !is_top_waiter)
1560 		return;
1561 
1562 	raw_spin_lock(&owner->pi_lock);
1563 
1564 	rt_mutex_dequeue_pi(owner, waiter);
1565 
1566 	if (rt_mutex_has_waiters(lock))
1567 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1568 
1569 	rt_mutex_adjust_prio(lock, owner);
1570 
1571 	/* Store the lock on which owner is blocked or NULL */
1572 	next_lock = task_blocked_on_lock(owner);
1573 
1574 	raw_spin_unlock(&owner->pi_lock);
1575 
1576 	/*
1577 	 * Don't walk the chain, if the owner task is not blocked
1578 	 * itself.
1579 	 */
1580 	if (!next_lock)
1581 		return;
1582 
1583 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1584 	get_task_struct(owner);
1585 
1586 	raw_spin_unlock_irq(&lock->wait_lock);
1587 
1588 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1589 				   next_lock, NULL, current);
1590 
1591 	raw_spin_lock_irq(&lock->wait_lock);
1592 }
1593 
1594 /**
1595  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1596  * @lock:		 the rt_mutex to take
1597  * @ww_ctx:		 WW mutex context pointer
1598  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1599  *			 or TASK_UNINTERRUPTIBLE)
1600  * @timeout:		 the pre-initialized and started timer, or NULL for none
1601  * @waiter:		 the pre-initialized rt_mutex_waiter
1602  *
1603  * Must be called with lock->wait_lock held and interrupts disabled
1604  */
1605 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1606 					   struct ww_acquire_ctx *ww_ctx,
1607 					   unsigned int state,
1608 					   struct hrtimer_sleeper *timeout,
1609 					   struct rt_mutex_waiter *waiter)
1610 	__releases(&lock->wait_lock) __acquires(&lock->wait_lock)
1611 {
1612 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1613 	struct task_struct *owner;
1614 	int ret = 0;
1615 
1616 	for (;;) {
1617 		/* Try to acquire the lock: */
1618 		if (try_to_take_rt_mutex(lock, current, waiter))
1619 			break;
1620 
1621 		if (timeout && !timeout->task) {
1622 			ret = -ETIMEDOUT;
1623 			break;
1624 		}
1625 		if (signal_pending_state(state, current)) {
1626 			ret = -EINTR;
1627 			break;
1628 		}
1629 
1630 		if (build_ww_mutex() && ww_ctx) {
1631 			ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1632 			if (ret)
1633 				break;
1634 		}
1635 
1636 		if (waiter == rt_mutex_top_waiter(lock))
1637 			owner = rt_mutex_owner(lock);
1638 		else
1639 			owner = NULL;
1640 		raw_spin_unlock_irq(&lock->wait_lock);
1641 
1642 		if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1643 			rt_mutex_schedule();
1644 
1645 		raw_spin_lock_irq(&lock->wait_lock);
1646 		set_current_state(state);
1647 	}
1648 
1649 	__set_current_state(TASK_RUNNING);
1650 	return ret;
1651 }
1652 
1653 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1654 					     struct rt_mutex_base *lock,
1655 					     struct rt_mutex_waiter *w)
1656 {
1657 	/*
1658 	 * If the result is not -EDEADLOCK or the caller requested
1659 	 * deadlock detection, nothing to do here.
1660 	 */
1661 	if (res != -EDEADLOCK || detect_deadlock)
1662 		return;
1663 
1664 	if (build_ww_mutex() && w->ww_ctx)
1665 		return;
1666 
1667 	raw_spin_unlock_irq(&lock->wait_lock);
1668 
1669 	WARN(1, "rtmutex deadlock detected\n");
1670 
1671 	while (1) {
1672 		set_current_state(TASK_INTERRUPTIBLE);
1673 		rt_mutex_schedule();
1674 	}
1675 }
1676 
1677 /**
1678  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1679  * @lock:	The rtmutex to block lock
1680  * @ww_ctx:	WW mutex context pointer
1681  * @state:	The task state for sleeping
1682  * @chwalk:	Indicator whether full or partial chainwalk is requested
1683  * @waiter:	Initializer waiter for blocking
1684  * @wake_q:	The wake_q to wake tasks after we release the wait_lock
1685  */
1686 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1687 				       struct ww_acquire_ctx *ww_ctx,
1688 				       unsigned int state,
1689 				       enum rtmutex_chainwalk chwalk,
1690 				       struct rt_mutex_waiter *waiter,
1691 				       struct wake_q_head *wake_q)
1692 {
1693 	struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1694 	struct ww_mutex *ww = ww_container_of(rtm);
1695 	int ret;
1696 
1697 	lockdep_assert_held(&lock->wait_lock);
1698 
1699 	/* Try to acquire the lock again: */
1700 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1701 		if (build_ww_mutex() && ww_ctx) {
1702 			__ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
1703 			ww_mutex_lock_acquired(ww, ww_ctx);
1704 		}
1705 		return 0;
1706 	}
1707 
1708 	set_current_state(state);
1709 
1710 	trace_contention_begin(lock, LCB_F_RT);
1711 
1712 	ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk, wake_q);
1713 	if (likely(!ret))
1714 		ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1715 
1716 	if (likely(!ret)) {
1717 		/* acquired the lock */
1718 		if (build_ww_mutex() && ww_ctx) {
1719 			if (!ww_ctx->is_wait_die)
1720 				__ww_mutex_check_waiters(rtm, ww_ctx, wake_q);
1721 			ww_mutex_lock_acquired(ww, ww_ctx);
1722 		}
1723 	} else {
1724 		__set_current_state(TASK_RUNNING);
1725 		remove_waiter(lock, waiter);
1726 		rt_mutex_handle_deadlock(ret, chwalk, lock, waiter);
1727 	}
1728 
1729 	/*
1730 	 * try_to_take_rt_mutex() sets the waiter bit
1731 	 * unconditionally. We might have to fix that up.
1732 	 */
1733 	fixup_rt_mutex_waiters(lock, true);
1734 
1735 	trace_contention_end(lock, ret);
1736 
1737 	return ret;
1738 }
1739 
1740 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1741 					     struct ww_acquire_ctx *ww_ctx,
1742 					     unsigned int state,
1743 					     struct wake_q_head *wake_q)
1744 {
1745 	struct rt_mutex_waiter waiter;
1746 	int ret;
1747 
1748 	rt_mutex_init_waiter(&waiter);
1749 	waiter.ww_ctx = ww_ctx;
1750 
1751 	ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1752 				  &waiter, wake_q);
1753 
1754 	debug_rt_mutex_free_waiter(&waiter);
1755 	return ret;
1756 }
1757 
1758 /*
1759  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1760  * @lock:	The rtmutex to block lock
1761  * @ww_ctx:	WW mutex context pointer
1762  * @state:	The task state for sleeping
1763  */
1764 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1765 				     struct ww_acquire_ctx *ww_ctx,
1766 				     unsigned int state)
1767 {
1768 	DEFINE_WAKE_Q(wake_q);
1769 	unsigned long flags;
1770 	int ret;
1771 
1772 	/*
1773 	 * Do all pre-schedule work here, before we queue a waiter and invoke
1774 	 * PI -- any such work that trips on rtlock (PREEMPT_RT spinlock) would
1775 	 * otherwise recurse back into task_blocks_on_rt_mutex() through
1776 	 * rtlock_slowlock() and will then enqueue a second waiter for this
1777 	 * same task and things get really confusing real fast.
1778 	 */
1779 	rt_mutex_pre_schedule();
1780 
1781 	/*
1782 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1783 	 * be called in early boot if the cmpxchg() fast path is disabled
1784 	 * (debug, no architecture support). In this case we will acquire the
1785 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1786 	 * enable interrupts in that early boot case. So we need to use the
1787 	 * irqsave/restore variants.
1788 	 */
1789 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1790 	ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state, &wake_q);
1791 	preempt_disable();
1792 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1793 	wake_up_q(&wake_q);
1794 	preempt_enable();
1795 	rt_mutex_post_schedule();
1796 
1797 	return ret;
1798 }
1799 
1800 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1801 					   unsigned int state)
1802 {
1803 	lockdep_assert(!current->pi_blocked_on);
1804 
1805 	if (likely(rt_mutex_try_acquire(lock)))
1806 		return 0;
1807 
1808 	return rt_mutex_slowlock(lock, NULL, state);
1809 }
1810 #endif /* RT_MUTEX_BUILD_MUTEX */
1811 
1812 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1813 /*
1814  * Functions required for spin/rw_lock substitution on RT kernels
1815  */
1816 
1817 /**
1818  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1819  * @lock:	The underlying RT mutex
1820  * @wake_q:	The wake_q to wake tasks after we release the wait_lock
1821  */
1822 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock,
1823 					   struct wake_q_head *wake_q)
1824 	__releases(&lock->wait_lock) __acquires(&lock->wait_lock)
1825 {
1826 	struct rt_mutex_waiter waiter;
1827 	struct task_struct *owner;
1828 
1829 	lockdep_assert_held(&lock->wait_lock);
1830 
1831 	if (try_to_take_rt_mutex(lock, current, NULL))
1832 		return;
1833 
1834 	rt_mutex_init_rtlock_waiter(&waiter);
1835 
1836 	/* Save current state and set state to TASK_RTLOCK_WAIT */
1837 	current_save_and_set_rtlock_wait_state();
1838 
1839 	trace_contention_begin(lock, LCB_F_RT);
1840 
1841 	task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK, wake_q);
1842 
1843 	for (;;) {
1844 		/* Try to acquire the lock again */
1845 		if (try_to_take_rt_mutex(lock, current, &waiter))
1846 			break;
1847 
1848 		if (&waiter == rt_mutex_top_waiter(lock))
1849 			owner = rt_mutex_owner(lock);
1850 		else
1851 			owner = NULL;
1852 		preempt_disable();
1853 		raw_spin_unlock_irq(&lock->wait_lock);
1854 		wake_up_q(wake_q);
1855 		wake_q_init(wake_q);
1856 		preempt_enable();
1857 
1858 		if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1859 			schedule_rtlock();
1860 
1861 		raw_spin_lock_irq(&lock->wait_lock);
1862 		set_current_state(TASK_RTLOCK_WAIT);
1863 	}
1864 
1865 	/* Restore the task state */
1866 	current_restore_rtlock_saved_state();
1867 
1868 	/*
1869 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1870 	 * We might have to fix that up:
1871 	 */
1872 	fixup_rt_mutex_waiters(lock, true);
1873 	debug_rt_mutex_free_waiter(&waiter);
1874 
1875 	trace_contention_end(lock, 0);
1876 }
1877 
1878 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1879 {
1880 	unsigned long flags;
1881 	DEFINE_WAKE_Q(wake_q);
1882 
1883 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1884 	rtlock_slowlock_locked(lock, &wake_q);
1885 	preempt_disable();
1886 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1887 	wake_up_q(&wake_q);
1888 	preempt_enable();
1889 }
1890 
1891 #endif /* RT_MUTEX_BUILD_SPINLOCKS */
1892