xref: /linux/kernel/locking/rtmutex.c (revision cc04a46f11ea046ed53e2c832ae29e4790f7e35f)
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19 
20 #include "rtmutex_common.h"
21 
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner	bit0
29  * NULL		0	lock is free (fast acquire possible)
30  * NULL		1	lock is free and has waiters and the top waiter
31  *				is going to take the lock*
32  * taskpointer	0	lock is held (fast release possible)
33  * taskpointer	1	lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48 
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52 	unsigned long val = (unsigned long)owner;
53 
54 	if (rt_mutex_has_waiters(lock))
55 		val |= RT_MUTEX_HAS_WAITERS;
56 
57 	lock->owner = (struct task_struct *)val;
58 }
59 
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62 	lock->owner = (struct task_struct *)
63 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65 
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68 	if (!rt_mutex_has_waiters(lock))
69 		clear_rt_mutex_waiters(lock);
70 }
71 
72 /*
73  * We can speed up the acquire/release, if there's no debugging state to be
74  * set up.
75  */
76 #ifndef CONFIG_DEBUG_RT_MUTEXES
77 # define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
79 {
80 	unsigned long owner, *p = (unsigned long *) &lock->owner;
81 
82 	do {
83 		owner = *p;
84 	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
85 }
86 
87 /*
88  * Safe fastpath aware unlock:
89  * 1) Clear the waiters bit
90  * 2) Drop lock->wait_lock
91  * 3) Try to unlock the lock with cmpxchg
92  */
93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
94 	__releases(lock->wait_lock)
95 {
96 	struct task_struct *owner = rt_mutex_owner(lock);
97 
98 	clear_rt_mutex_waiters(lock);
99 	raw_spin_unlock(&lock->wait_lock);
100 	/*
101 	 * If a new waiter comes in between the unlock and the cmpxchg
102 	 * we have two situations:
103 	 *
104 	 * unlock(wait_lock);
105 	 *					lock(wait_lock);
106 	 * cmpxchg(p, owner, 0) == owner
107 	 *					mark_rt_mutex_waiters(lock);
108 	 *					acquire(lock);
109 	 * or:
110 	 *
111 	 * unlock(wait_lock);
112 	 *					lock(wait_lock);
113 	 *					mark_rt_mutex_waiters(lock);
114 	 *
115 	 * cmpxchg(p, owner, 0) != owner
116 	 *					enqueue_waiter();
117 	 *					unlock(wait_lock);
118 	 * lock(wait_lock);
119 	 * wake waiter();
120 	 * unlock(wait_lock);
121 	 *					lock(wait_lock);
122 	 *					acquire(lock);
123 	 */
124 	return rt_mutex_cmpxchg(lock, owner, NULL);
125 }
126 
127 #else
128 # define rt_mutex_cmpxchg(l,c,n)	(0)
129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
130 {
131 	lock->owner = (struct task_struct *)
132 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
133 }
134 
135 /*
136  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
137  */
138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
139 	__releases(lock->wait_lock)
140 {
141 	lock->owner = NULL;
142 	raw_spin_unlock(&lock->wait_lock);
143 	return true;
144 }
145 #endif
146 
147 static inline int
148 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
149 		     struct rt_mutex_waiter *right)
150 {
151 	if (left->prio < right->prio)
152 		return 1;
153 
154 	/*
155 	 * If both waiters have dl_prio(), we check the deadlines of the
156 	 * associated tasks.
157 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
158 	 * then right waiter has a dl_prio() too.
159 	 */
160 	if (dl_prio(left->prio))
161 		return (left->task->dl.deadline < right->task->dl.deadline);
162 
163 	return 0;
164 }
165 
166 static void
167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
168 {
169 	struct rb_node **link = &lock->waiters.rb_node;
170 	struct rb_node *parent = NULL;
171 	struct rt_mutex_waiter *entry;
172 	int leftmost = 1;
173 
174 	while (*link) {
175 		parent = *link;
176 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
177 		if (rt_mutex_waiter_less(waiter, entry)) {
178 			link = &parent->rb_left;
179 		} else {
180 			link = &parent->rb_right;
181 			leftmost = 0;
182 		}
183 	}
184 
185 	if (leftmost)
186 		lock->waiters_leftmost = &waiter->tree_entry;
187 
188 	rb_link_node(&waiter->tree_entry, parent, link);
189 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
190 }
191 
192 static void
193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
194 {
195 	if (RB_EMPTY_NODE(&waiter->tree_entry))
196 		return;
197 
198 	if (lock->waiters_leftmost == &waiter->tree_entry)
199 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
200 
201 	rb_erase(&waiter->tree_entry, &lock->waiters);
202 	RB_CLEAR_NODE(&waiter->tree_entry);
203 }
204 
205 static void
206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
207 {
208 	struct rb_node **link = &task->pi_waiters.rb_node;
209 	struct rb_node *parent = NULL;
210 	struct rt_mutex_waiter *entry;
211 	int leftmost = 1;
212 
213 	while (*link) {
214 		parent = *link;
215 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
216 		if (rt_mutex_waiter_less(waiter, entry)) {
217 			link = &parent->rb_left;
218 		} else {
219 			link = &parent->rb_right;
220 			leftmost = 0;
221 		}
222 	}
223 
224 	if (leftmost)
225 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
226 
227 	rb_link_node(&waiter->pi_tree_entry, parent, link);
228 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
229 }
230 
231 static void
232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
233 {
234 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
235 		return;
236 
237 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
238 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
239 
240 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
241 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
242 }
243 
244 /*
245  * Calculate task priority from the waiter tree priority
246  *
247  * Return task->normal_prio when the waiter tree is empty or when
248  * the waiter is not allowed to do priority boosting
249  */
250 int rt_mutex_getprio(struct task_struct *task)
251 {
252 	if (likely(!task_has_pi_waiters(task)))
253 		return task->normal_prio;
254 
255 	return min(task_top_pi_waiter(task)->prio,
256 		   task->normal_prio);
257 }
258 
259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
260 {
261 	if (likely(!task_has_pi_waiters(task)))
262 		return NULL;
263 
264 	return task_top_pi_waiter(task)->task;
265 }
266 
267 /*
268  * Called by sched_setscheduler() to get the priority which will be
269  * effective after the change.
270  */
271 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
272 {
273 	if (!task_has_pi_waiters(task))
274 		return newprio;
275 
276 	if (task_top_pi_waiter(task)->task->prio <= newprio)
277 		return task_top_pi_waiter(task)->task->prio;
278 	return newprio;
279 }
280 
281 /*
282  * Adjust the priority of a task, after its pi_waiters got modified.
283  *
284  * This can be both boosting and unboosting. task->pi_lock must be held.
285  */
286 static void __rt_mutex_adjust_prio(struct task_struct *task)
287 {
288 	int prio = rt_mutex_getprio(task);
289 
290 	if (task->prio != prio || dl_prio(prio))
291 		rt_mutex_setprio(task, prio);
292 }
293 
294 /*
295  * Adjust task priority (undo boosting). Called from the exit path of
296  * rt_mutex_slowunlock() and rt_mutex_slowlock().
297  *
298  * (Note: We do this outside of the protection of lock->wait_lock to
299  * allow the lock to be taken while or before we readjust the priority
300  * of task. We do not use the spin_xx_mutex() variants here as we are
301  * outside of the debug path.)
302  */
303 void rt_mutex_adjust_prio(struct task_struct *task)
304 {
305 	unsigned long flags;
306 
307 	raw_spin_lock_irqsave(&task->pi_lock, flags);
308 	__rt_mutex_adjust_prio(task);
309 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
310 }
311 
312 /*
313  * Deadlock detection is conditional:
314  *
315  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
316  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
317  *
318  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
319  * conducted independent of the detect argument.
320  *
321  * If the waiter argument is NULL this indicates the deboost path and
322  * deadlock detection is disabled independent of the detect argument
323  * and the config settings.
324  */
325 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
326 					  enum rtmutex_chainwalk chwalk)
327 {
328 	/*
329 	 * This is just a wrapper function for the following call,
330 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
331 	 * debug feature and I wanted to keep the cond function in the
332 	 * main source file along with the comments instead of having
333 	 * two of the same in the headers.
334 	 */
335 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
336 }
337 
338 /*
339  * Max number of times we'll walk the boosting chain:
340  */
341 int max_lock_depth = 1024;
342 
343 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
344 {
345 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
346 }
347 
348 /*
349  * Adjust the priority chain. Also used for deadlock detection.
350  * Decreases task's usage by one - may thus free the task.
351  *
352  * @task:	the task owning the mutex (owner) for which a chain walk is
353  *		probably needed
354  * @chwalk:	do we have to carry out deadlock detection?
355  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
356  *		things for a task that has just got its priority adjusted, and
357  *		is waiting on a mutex)
358  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
359  *		we dropped its pi_lock. Is never dereferenced, only used for
360  *		comparison to detect lock chain changes.
361  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
362  *		its priority to the mutex owner (can be NULL in the case
363  *		depicted above or if the top waiter is gone away and we are
364  *		actually deboosting the owner)
365  * @top_task:	the current top waiter
366  *
367  * Returns 0 or -EDEADLK.
368  *
369  * Chain walk basics and protection scope
370  *
371  * [R] refcount on task
372  * [P] task->pi_lock held
373  * [L] rtmutex->wait_lock held
374  *
375  * Step	Description				Protected by
376  *	function arguments:
377  *	@task					[R]
378  *	@orig_lock if != NULL			@top_task is blocked on it
379  *	@next_lock				Unprotected. Cannot be
380  *						dereferenced. Only used for
381  *						comparison.
382  *	@orig_waiter if != NULL			@top_task is blocked on it
383  *	@top_task				current, or in case of proxy
384  *						locking protected by calling
385  *						code
386  *	again:
387  *	  loop_sanity_check();
388  *	retry:
389  * [1]	  lock(task->pi_lock);			[R] acquire [P]
390  * [2]	  waiter = task->pi_blocked_on;		[P]
391  * [3]	  check_exit_conditions_1();		[P]
392  * [4]	  lock = waiter->lock;			[P]
393  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
394  *	    unlock(task->pi_lock);		release [P]
395  *	    goto retry;
396  *	  }
397  * [6]	  check_exit_conditions_2();		[P] + [L]
398  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
399  * [8]	  unlock(task->pi_lock);		release [P]
400  *	  put_task_struct(task);		release [R]
401  * [9]	  check_exit_conditions_3();		[L]
402  * [10]	  task = owner(lock);			[L]
403  *	  get_task_struct(task);		[L] acquire [R]
404  *	  lock(task->pi_lock);			[L] acquire [P]
405  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
406  * [12]	  check_exit_conditions_4();		[P] + [L]
407  * [13]	  unlock(task->pi_lock);		release [P]
408  *	  unlock(lock->wait_lock);		release [L]
409  *	  goto again;
410  */
411 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
412 				      enum rtmutex_chainwalk chwalk,
413 				      struct rt_mutex *orig_lock,
414 				      struct rt_mutex *next_lock,
415 				      struct rt_mutex_waiter *orig_waiter,
416 				      struct task_struct *top_task)
417 {
418 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
419 	struct rt_mutex_waiter *prerequeue_top_waiter;
420 	int ret = 0, depth = 0;
421 	struct rt_mutex *lock;
422 	bool detect_deadlock;
423 	unsigned long flags;
424 	bool requeue = true;
425 
426 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
427 
428 	/*
429 	 * The (de)boosting is a step by step approach with a lot of
430 	 * pitfalls. We want this to be preemptible and we want hold a
431 	 * maximum of two locks per step. So we have to check
432 	 * carefully whether things change under us.
433 	 */
434  again:
435 	/*
436 	 * We limit the lock chain length for each invocation.
437 	 */
438 	if (++depth > max_lock_depth) {
439 		static int prev_max;
440 
441 		/*
442 		 * Print this only once. If the admin changes the limit,
443 		 * print a new message when reaching the limit again.
444 		 */
445 		if (prev_max != max_lock_depth) {
446 			prev_max = max_lock_depth;
447 			printk(KERN_WARNING "Maximum lock depth %d reached "
448 			       "task: %s (%d)\n", max_lock_depth,
449 			       top_task->comm, task_pid_nr(top_task));
450 		}
451 		put_task_struct(task);
452 
453 		return -EDEADLK;
454 	}
455 
456 	/*
457 	 * We are fully preemptible here and only hold the refcount on
458 	 * @task. So everything can have changed under us since the
459 	 * caller or our own code below (goto retry/again) dropped all
460 	 * locks.
461 	 */
462  retry:
463 	/*
464 	 * [1] Task cannot go away as we did a get_task() before !
465 	 */
466 	raw_spin_lock_irqsave(&task->pi_lock, flags);
467 
468 	/*
469 	 * [2] Get the waiter on which @task is blocked on.
470 	 */
471 	waiter = task->pi_blocked_on;
472 
473 	/*
474 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
475 	 */
476 
477 	/*
478 	 * Check whether the end of the boosting chain has been
479 	 * reached or the state of the chain has changed while we
480 	 * dropped the locks.
481 	 */
482 	if (!waiter)
483 		goto out_unlock_pi;
484 
485 	/*
486 	 * Check the orig_waiter state. After we dropped the locks,
487 	 * the previous owner of the lock might have released the lock.
488 	 */
489 	if (orig_waiter && !rt_mutex_owner(orig_lock))
490 		goto out_unlock_pi;
491 
492 	/*
493 	 * We dropped all locks after taking a refcount on @task, so
494 	 * the task might have moved on in the lock chain or even left
495 	 * the chain completely and blocks now on an unrelated lock or
496 	 * on @orig_lock.
497 	 *
498 	 * We stored the lock on which @task was blocked in @next_lock,
499 	 * so we can detect the chain change.
500 	 */
501 	if (next_lock != waiter->lock)
502 		goto out_unlock_pi;
503 
504 	/*
505 	 * Drop out, when the task has no waiters. Note,
506 	 * top_waiter can be NULL, when we are in the deboosting
507 	 * mode!
508 	 */
509 	if (top_waiter) {
510 		if (!task_has_pi_waiters(task))
511 			goto out_unlock_pi;
512 		/*
513 		 * If deadlock detection is off, we stop here if we
514 		 * are not the top pi waiter of the task. If deadlock
515 		 * detection is enabled we continue, but stop the
516 		 * requeueing in the chain walk.
517 		 */
518 		if (top_waiter != task_top_pi_waiter(task)) {
519 			if (!detect_deadlock)
520 				goto out_unlock_pi;
521 			else
522 				requeue = false;
523 		}
524 	}
525 
526 	/*
527 	 * If the waiter priority is the same as the task priority
528 	 * then there is no further priority adjustment necessary.  If
529 	 * deadlock detection is off, we stop the chain walk. If its
530 	 * enabled we continue, but stop the requeueing in the chain
531 	 * walk.
532 	 */
533 	if (waiter->prio == task->prio) {
534 		if (!detect_deadlock)
535 			goto out_unlock_pi;
536 		else
537 			requeue = false;
538 	}
539 
540 	/*
541 	 * [4] Get the next lock
542 	 */
543 	lock = waiter->lock;
544 	/*
545 	 * [5] We need to trylock here as we are holding task->pi_lock,
546 	 * which is the reverse lock order versus the other rtmutex
547 	 * operations.
548 	 */
549 	if (!raw_spin_trylock(&lock->wait_lock)) {
550 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
551 		cpu_relax();
552 		goto retry;
553 	}
554 
555 	/*
556 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
557 	 * lock->wait_lock.
558 	 *
559 	 * Deadlock detection. If the lock is the same as the original
560 	 * lock which caused us to walk the lock chain or if the
561 	 * current lock is owned by the task which initiated the chain
562 	 * walk, we detected a deadlock.
563 	 */
564 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
565 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
566 		raw_spin_unlock(&lock->wait_lock);
567 		ret = -EDEADLK;
568 		goto out_unlock_pi;
569 	}
570 
571 	/*
572 	 * If we just follow the lock chain for deadlock detection, no
573 	 * need to do all the requeue operations. To avoid a truckload
574 	 * of conditionals around the various places below, just do the
575 	 * minimum chain walk checks.
576 	 */
577 	if (!requeue) {
578 		/*
579 		 * No requeue[7] here. Just release @task [8]
580 		 */
581 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
582 		put_task_struct(task);
583 
584 		/*
585 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
586 		 * If there is no owner of the lock, end of chain.
587 		 */
588 		if (!rt_mutex_owner(lock)) {
589 			raw_spin_unlock(&lock->wait_lock);
590 			return 0;
591 		}
592 
593 		/* [10] Grab the next task, i.e. owner of @lock */
594 		task = rt_mutex_owner(lock);
595 		get_task_struct(task);
596 		raw_spin_lock_irqsave(&task->pi_lock, flags);
597 
598 		/*
599 		 * No requeue [11] here. We just do deadlock detection.
600 		 *
601 		 * [12] Store whether owner is blocked
602 		 * itself. Decision is made after dropping the locks
603 		 */
604 		next_lock = task_blocked_on_lock(task);
605 		/*
606 		 * Get the top waiter for the next iteration
607 		 */
608 		top_waiter = rt_mutex_top_waiter(lock);
609 
610 		/* [13] Drop locks */
611 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
612 		raw_spin_unlock(&lock->wait_lock);
613 
614 		/* If owner is not blocked, end of chain. */
615 		if (!next_lock)
616 			goto out_put_task;
617 		goto again;
618 	}
619 
620 	/*
621 	 * Store the current top waiter before doing the requeue
622 	 * operation on @lock. We need it for the boost/deboost
623 	 * decision below.
624 	 */
625 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
626 
627 	/* [7] Requeue the waiter in the lock waiter tree. */
628 	rt_mutex_dequeue(lock, waiter);
629 	waiter->prio = task->prio;
630 	rt_mutex_enqueue(lock, waiter);
631 
632 	/* [8] Release the task */
633 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
634 	put_task_struct(task);
635 
636 	/*
637 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
638 	 *
639 	 * We must abort the chain walk if there is no lock owner even
640 	 * in the dead lock detection case, as we have nothing to
641 	 * follow here. This is the end of the chain we are walking.
642 	 */
643 	if (!rt_mutex_owner(lock)) {
644 		/*
645 		 * If the requeue [7] above changed the top waiter,
646 		 * then we need to wake the new top waiter up to try
647 		 * to get the lock.
648 		 */
649 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
650 			wake_up_process(rt_mutex_top_waiter(lock)->task);
651 		raw_spin_unlock(&lock->wait_lock);
652 		return 0;
653 	}
654 
655 	/* [10] Grab the next task, i.e. the owner of @lock */
656 	task = rt_mutex_owner(lock);
657 	get_task_struct(task);
658 	raw_spin_lock_irqsave(&task->pi_lock, flags);
659 
660 	/* [11] requeue the pi waiters if necessary */
661 	if (waiter == rt_mutex_top_waiter(lock)) {
662 		/*
663 		 * The waiter became the new top (highest priority)
664 		 * waiter on the lock. Replace the previous top waiter
665 		 * in the owner tasks pi waiters tree with this waiter
666 		 * and adjust the priority of the owner.
667 		 */
668 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
669 		rt_mutex_enqueue_pi(task, waiter);
670 		__rt_mutex_adjust_prio(task);
671 
672 	} else if (prerequeue_top_waiter == waiter) {
673 		/*
674 		 * The waiter was the top waiter on the lock, but is
675 		 * no longer the top prority waiter. Replace waiter in
676 		 * the owner tasks pi waiters tree with the new top
677 		 * (highest priority) waiter and adjust the priority
678 		 * of the owner.
679 		 * The new top waiter is stored in @waiter so that
680 		 * @waiter == @top_waiter evaluates to true below and
681 		 * we continue to deboost the rest of the chain.
682 		 */
683 		rt_mutex_dequeue_pi(task, waiter);
684 		waiter = rt_mutex_top_waiter(lock);
685 		rt_mutex_enqueue_pi(task, waiter);
686 		__rt_mutex_adjust_prio(task);
687 	} else {
688 		/*
689 		 * Nothing changed. No need to do any priority
690 		 * adjustment.
691 		 */
692 	}
693 
694 	/*
695 	 * [12] check_exit_conditions_4() protected by task->pi_lock
696 	 * and lock->wait_lock. The actual decisions are made after we
697 	 * dropped the locks.
698 	 *
699 	 * Check whether the task which owns the current lock is pi
700 	 * blocked itself. If yes we store a pointer to the lock for
701 	 * the lock chain change detection above. After we dropped
702 	 * task->pi_lock next_lock cannot be dereferenced anymore.
703 	 */
704 	next_lock = task_blocked_on_lock(task);
705 	/*
706 	 * Store the top waiter of @lock for the end of chain walk
707 	 * decision below.
708 	 */
709 	top_waiter = rt_mutex_top_waiter(lock);
710 
711 	/* [13] Drop the locks */
712 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
713 	raw_spin_unlock(&lock->wait_lock);
714 
715 	/*
716 	 * Make the actual exit decisions [12], based on the stored
717 	 * values.
718 	 *
719 	 * We reached the end of the lock chain. Stop right here. No
720 	 * point to go back just to figure that out.
721 	 */
722 	if (!next_lock)
723 		goto out_put_task;
724 
725 	/*
726 	 * If the current waiter is not the top waiter on the lock,
727 	 * then we can stop the chain walk here if we are not in full
728 	 * deadlock detection mode.
729 	 */
730 	if (!detect_deadlock && waiter != top_waiter)
731 		goto out_put_task;
732 
733 	goto again;
734 
735  out_unlock_pi:
736 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
737  out_put_task:
738 	put_task_struct(task);
739 
740 	return ret;
741 }
742 
743 /*
744  * Try to take an rt-mutex
745  *
746  * Must be called with lock->wait_lock held.
747  *
748  * @lock:   The lock to be acquired.
749  * @task:   The task which wants to acquire the lock
750  * @waiter: The waiter that is queued to the lock's wait tree if the
751  *	    callsite called task_blocked_on_lock(), otherwise NULL
752  */
753 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
754 				struct rt_mutex_waiter *waiter)
755 {
756 	unsigned long flags;
757 
758 	/*
759 	 * Before testing whether we can acquire @lock, we set the
760 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
761 	 * other tasks which try to modify @lock into the slow path
762 	 * and they serialize on @lock->wait_lock.
763 	 *
764 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
765 	 * as explained at the top of this file if and only if:
766 	 *
767 	 * - There is a lock owner. The caller must fixup the
768 	 *   transient state if it does a trylock or leaves the lock
769 	 *   function due to a signal or timeout.
770 	 *
771 	 * - @task acquires the lock and there are no other
772 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
773 	 *   the end of this function.
774 	 */
775 	mark_rt_mutex_waiters(lock);
776 
777 	/*
778 	 * If @lock has an owner, give up.
779 	 */
780 	if (rt_mutex_owner(lock))
781 		return 0;
782 
783 	/*
784 	 * If @waiter != NULL, @task has already enqueued the waiter
785 	 * into @lock waiter tree. If @waiter == NULL then this is a
786 	 * trylock attempt.
787 	 */
788 	if (waiter) {
789 		/*
790 		 * If waiter is not the highest priority waiter of
791 		 * @lock, give up.
792 		 */
793 		if (waiter != rt_mutex_top_waiter(lock))
794 			return 0;
795 
796 		/*
797 		 * We can acquire the lock. Remove the waiter from the
798 		 * lock waiters tree.
799 		 */
800 		rt_mutex_dequeue(lock, waiter);
801 
802 	} else {
803 		/*
804 		 * If the lock has waiters already we check whether @task is
805 		 * eligible to take over the lock.
806 		 *
807 		 * If there are no other waiters, @task can acquire
808 		 * the lock.  @task->pi_blocked_on is NULL, so it does
809 		 * not need to be dequeued.
810 		 */
811 		if (rt_mutex_has_waiters(lock)) {
812 			/*
813 			 * If @task->prio is greater than or equal to
814 			 * the top waiter priority (kernel view),
815 			 * @task lost.
816 			 */
817 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
818 				return 0;
819 
820 			/*
821 			 * The current top waiter stays enqueued. We
822 			 * don't have to change anything in the lock
823 			 * waiters order.
824 			 */
825 		} else {
826 			/*
827 			 * No waiters. Take the lock without the
828 			 * pi_lock dance.@task->pi_blocked_on is NULL
829 			 * and we have no waiters to enqueue in @task
830 			 * pi waiters tree.
831 			 */
832 			goto takeit;
833 		}
834 	}
835 
836 	/*
837 	 * Clear @task->pi_blocked_on. Requires protection by
838 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
839 	 * case, but conditionals are more expensive than a redundant
840 	 * store.
841 	 */
842 	raw_spin_lock_irqsave(&task->pi_lock, flags);
843 	task->pi_blocked_on = NULL;
844 	/*
845 	 * Finish the lock acquisition. @task is the new owner. If
846 	 * other waiters exist we have to insert the highest priority
847 	 * waiter into @task->pi_waiters tree.
848 	 */
849 	if (rt_mutex_has_waiters(lock))
850 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
851 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
852 
853 takeit:
854 	/* We got the lock. */
855 	debug_rt_mutex_lock(lock);
856 
857 	/*
858 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
859 	 * are still waiters or clears it.
860 	 */
861 	rt_mutex_set_owner(lock, task);
862 
863 	rt_mutex_deadlock_account_lock(lock, task);
864 
865 	return 1;
866 }
867 
868 /*
869  * Task blocks on lock.
870  *
871  * Prepare waiter and propagate pi chain
872  *
873  * This must be called with lock->wait_lock held.
874  */
875 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
876 				   struct rt_mutex_waiter *waiter,
877 				   struct task_struct *task,
878 				   enum rtmutex_chainwalk chwalk)
879 {
880 	struct task_struct *owner = rt_mutex_owner(lock);
881 	struct rt_mutex_waiter *top_waiter = waiter;
882 	struct rt_mutex *next_lock;
883 	int chain_walk = 0, res;
884 	unsigned long flags;
885 
886 	/*
887 	 * Early deadlock detection. We really don't want the task to
888 	 * enqueue on itself just to untangle the mess later. It's not
889 	 * only an optimization. We drop the locks, so another waiter
890 	 * can come in before the chain walk detects the deadlock. So
891 	 * the other will detect the deadlock and return -EDEADLOCK,
892 	 * which is wrong, as the other waiter is not in a deadlock
893 	 * situation.
894 	 */
895 	if (owner == task)
896 		return -EDEADLK;
897 
898 	raw_spin_lock_irqsave(&task->pi_lock, flags);
899 	__rt_mutex_adjust_prio(task);
900 	waiter->task = task;
901 	waiter->lock = lock;
902 	waiter->prio = task->prio;
903 
904 	/* Get the top priority waiter on the lock */
905 	if (rt_mutex_has_waiters(lock))
906 		top_waiter = rt_mutex_top_waiter(lock);
907 	rt_mutex_enqueue(lock, waiter);
908 
909 	task->pi_blocked_on = waiter;
910 
911 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
912 
913 	if (!owner)
914 		return 0;
915 
916 	raw_spin_lock_irqsave(&owner->pi_lock, flags);
917 	if (waiter == rt_mutex_top_waiter(lock)) {
918 		rt_mutex_dequeue_pi(owner, top_waiter);
919 		rt_mutex_enqueue_pi(owner, waiter);
920 
921 		__rt_mutex_adjust_prio(owner);
922 		if (owner->pi_blocked_on)
923 			chain_walk = 1;
924 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
925 		chain_walk = 1;
926 	}
927 
928 	/* Store the lock on which owner is blocked or NULL */
929 	next_lock = task_blocked_on_lock(owner);
930 
931 	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
932 	/*
933 	 * Even if full deadlock detection is on, if the owner is not
934 	 * blocked itself, we can avoid finding this out in the chain
935 	 * walk.
936 	 */
937 	if (!chain_walk || !next_lock)
938 		return 0;
939 
940 	/*
941 	 * The owner can't disappear while holding a lock,
942 	 * so the owner struct is protected by wait_lock.
943 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
944 	 */
945 	get_task_struct(owner);
946 
947 	raw_spin_unlock(&lock->wait_lock);
948 
949 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
950 					 next_lock, waiter, task);
951 
952 	raw_spin_lock(&lock->wait_lock);
953 
954 	return res;
955 }
956 
957 /*
958  * Remove the top waiter from the current tasks pi waiter tree and
959  * queue it up.
960  *
961  * Called with lock->wait_lock held.
962  */
963 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
964 				    struct rt_mutex *lock)
965 {
966 	struct rt_mutex_waiter *waiter;
967 	unsigned long flags;
968 
969 	raw_spin_lock_irqsave(&current->pi_lock, flags);
970 
971 	waiter = rt_mutex_top_waiter(lock);
972 
973 	/*
974 	 * Remove it from current->pi_waiters. We do not adjust a
975 	 * possible priority boost right now. We execute wakeup in the
976 	 * boosted mode and go back to normal after releasing
977 	 * lock->wait_lock.
978 	 */
979 	rt_mutex_dequeue_pi(current, waiter);
980 
981 	/*
982 	 * As we are waking up the top waiter, and the waiter stays
983 	 * queued on the lock until it gets the lock, this lock
984 	 * obviously has waiters. Just set the bit here and this has
985 	 * the added benefit of forcing all new tasks into the
986 	 * slow path making sure no task of lower priority than
987 	 * the top waiter can steal this lock.
988 	 */
989 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
990 
991 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
992 
993 	wake_q_add(wake_q, waiter->task);
994 }
995 
996 /*
997  * Remove a waiter from a lock and give up
998  *
999  * Must be called with lock->wait_lock held and
1000  * have just failed to try_to_take_rt_mutex().
1001  */
1002 static void remove_waiter(struct rt_mutex *lock,
1003 			  struct rt_mutex_waiter *waiter)
1004 {
1005 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1006 	struct task_struct *owner = rt_mutex_owner(lock);
1007 	struct rt_mutex *next_lock;
1008 	unsigned long flags;
1009 
1010 	raw_spin_lock_irqsave(&current->pi_lock, flags);
1011 	rt_mutex_dequeue(lock, waiter);
1012 	current->pi_blocked_on = NULL;
1013 	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
1014 
1015 	/*
1016 	 * Only update priority if the waiter was the highest priority
1017 	 * waiter of the lock and there is an owner to update.
1018 	 */
1019 	if (!owner || !is_top_waiter)
1020 		return;
1021 
1022 	raw_spin_lock_irqsave(&owner->pi_lock, flags);
1023 
1024 	rt_mutex_dequeue_pi(owner, waiter);
1025 
1026 	if (rt_mutex_has_waiters(lock))
1027 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1028 
1029 	__rt_mutex_adjust_prio(owner);
1030 
1031 	/* Store the lock on which owner is blocked or NULL */
1032 	next_lock = task_blocked_on_lock(owner);
1033 
1034 	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
1035 
1036 	/*
1037 	 * Don't walk the chain, if the owner task is not blocked
1038 	 * itself.
1039 	 */
1040 	if (!next_lock)
1041 		return;
1042 
1043 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1044 	get_task_struct(owner);
1045 
1046 	raw_spin_unlock(&lock->wait_lock);
1047 
1048 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1049 				   next_lock, NULL, current);
1050 
1051 	raw_spin_lock(&lock->wait_lock);
1052 }
1053 
1054 /*
1055  * Recheck the pi chain, in case we got a priority setting
1056  *
1057  * Called from sched_setscheduler
1058  */
1059 void rt_mutex_adjust_pi(struct task_struct *task)
1060 {
1061 	struct rt_mutex_waiter *waiter;
1062 	struct rt_mutex *next_lock;
1063 	unsigned long flags;
1064 
1065 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1066 
1067 	waiter = task->pi_blocked_on;
1068 	if (!waiter || (waiter->prio == task->prio &&
1069 			!dl_prio(task->prio))) {
1070 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1071 		return;
1072 	}
1073 	next_lock = waiter->lock;
1074 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1075 
1076 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1077 	get_task_struct(task);
1078 
1079 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1080 				   next_lock, NULL, task);
1081 }
1082 
1083 /**
1084  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1085  * @lock:		 the rt_mutex to take
1086  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1087  * 			 or TASK_UNINTERRUPTIBLE)
1088  * @timeout:		 the pre-initialized and started timer, or NULL for none
1089  * @waiter:		 the pre-initialized rt_mutex_waiter
1090  *
1091  * lock->wait_lock must be held by the caller.
1092  */
1093 static int __sched
1094 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1095 		    struct hrtimer_sleeper *timeout,
1096 		    struct rt_mutex_waiter *waiter)
1097 {
1098 	int ret = 0;
1099 
1100 	for (;;) {
1101 		/* Try to acquire the lock: */
1102 		if (try_to_take_rt_mutex(lock, current, waiter))
1103 			break;
1104 
1105 		/*
1106 		 * TASK_INTERRUPTIBLE checks for signals and
1107 		 * timeout. Ignored otherwise.
1108 		 */
1109 		if (unlikely(state == TASK_INTERRUPTIBLE)) {
1110 			/* Signal pending? */
1111 			if (signal_pending(current))
1112 				ret = -EINTR;
1113 			if (timeout && !timeout->task)
1114 				ret = -ETIMEDOUT;
1115 			if (ret)
1116 				break;
1117 		}
1118 
1119 		raw_spin_unlock(&lock->wait_lock);
1120 
1121 		debug_rt_mutex_print_deadlock(waiter);
1122 
1123 		schedule();
1124 
1125 		raw_spin_lock(&lock->wait_lock);
1126 		set_current_state(state);
1127 	}
1128 
1129 	__set_current_state(TASK_RUNNING);
1130 	return ret;
1131 }
1132 
1133 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1134 				     struct rt_mutex_waiter *w)
1135 {
1136 	/*
1137 	 * If the result is not -EDEADLOCK or the caller requested
1138 	 * deadlock detection, nothing to do here.
1139 	 */
1140 	if (res != -EDEADLOCK || detect_deadlock)
1141 		return;
1142 
1143 	/*
1144 	 * Yell lowdly and stop the task right here.
1145 	 */
1146 	rt_mutex_print_deadlock(w);
1147 	while (1) {
1148 		set_current_state(TASK_INTERRUPTIBLE);
1149 		schedule();
1150 	}
1151 }
1152 
1153 /*
1154  * Slow path lock function:
1155  */
1156 static int __sched
1157 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1158 		  struct hrtimer_sleeper *timeout,
1159 		  enum rtmutex_chainwalk chwalk)
1160 {
1161 	struct rt_mutex_waiter waiter;
1162 	int ret = 0;
1163 
1164 	debug_rt_mutex_init_waiter(&waiter);
1165 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1166 	RB_CLEAR_NODE(&waiter.tree_entry);
1167 
1168 	raw_spin_lock(&lock->wait_lock);
1169 
1170 	/* Try to acquire the lock again: */
1171 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1172 		raw_spin_unlock(&lock->wait_lock);
1173 		return 0;
1174 	}
1175 
1176 	set_current_state(state);
1177 
1178 	/* Setup the timer, when timeout != NULL */
1179 	if (unlikely(timeout))
1180 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1181 
1182 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1183 
1184 	if (likely(!ret))
1185 		/* sleep on the mutex */
1186 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1187 
1188 	if (unlikely(ret)) {
1189 		__set_current_state(TASK_RUNNING);
1190 		if (rt_mutex_has_waiters(lock))
1191 			remove_waiter(lock, &waiter);
1192 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1193 	}
1194 
1195 	/*
1196 	 * try_to_take_rt_mutex() sets the waiter bit
1197 	 * unconditionally. We might have to fix that up.
1198 	 */
1199 	fixup_rt_mutex_waiters(lock);
1200 
1201 	raw_spin_unlock(&lock->wait_lock);
1202 
1203 	/* Remove pending timer: */
1204 	if (unlikely(timeout))
1205 		hrtimer_cancel(&timeout->timer);
1206 
1207 	debug_rt_mutex_free_waiter(&waiter);
1208 
1209 	return ret;
1210 }
1211 
1212 /*
1213  * Slow path try-lock function:
1214  */
1215 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1216 {
1217 	int ret;
1218 
1219 	/*
1220 	 * If the lock already has an owner we fail to get the lock.
1221 	 * This can be done without taking the @lock->wait_lock as
1222 	 * it is only being read, and this is a trylock anyway.
1223 	 */
1224 	if (rt_mutex_owner(lock))
1225 		return 0;
1226 
1227 	/*
1228 	 * The mutex has currently no owner. Lock the wait lock and
1229 	 * try to acquire the lock.
1230 	 */
1231 	raw_spin_lock(&lock->wait_lock);
1232 
1233 	ret = try_to_take_rt_mutex(lock, current, NULL);
1234 
1235 	/*
1236 	 * try_to_take_rt_mutex() sets the lock waiters bit
1237 	 * unconditionally. Clean this up.
1238 	 */
1239 	fixup_rt_mutex_waiters(lock);
1240 
1241 	raw_spin_unlock(&lock->wait_lock);
1242 
1243 	return ret;
1244 }
1245 
1246 /*
1247  * Slow path to release a rt-mutex.
1248  * Return whether the current task needs to undo a potential priority boosting.
1249  */
1250 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1251 					struct wake_q_head *wake_q)
1252 {
1253 	raw_spin_lock(&lock->wait_lock);
1254 
1255 	debug_rt_mutex_unlock(lock);
1256 
1257 	rt_mutex_deadlock_account_unlock(current);
1258 
1259 	/*
1260 	 * We must be careful here if the fast path is enabled. If we
1261 	 * have no waiters queued we cannot set owner to NULL here
1262 	 * because of:
1263 	 *
1264 	 * foo->lock->owner = NULL;
1265 	 *			rtmutex_lock(foo->lock);   <- fast path
1266 	 *			free = atomic_dec_and_test(foo->refcnt);
1267 	 *			rtmutex_unlock(foo->lock); <- fast path
1268 	 *			if (free)
1269 	 *				kfree(foo);
1270 	 * raw_spin_unlock(foo->lock->wait_lock);
1271 	 *
1272 	 * So for the fastpath enabled kernel:
1273 	 *
1274 	 * Nothing can set the waiters bit as long as we hold
1275 	 * lock->wait_lock. So we do the following sequence:
1276 	 *
1277 	 *	owner = rt_mutex_owner(lock);
1278 	 *	clear_rt_mutex_waiters(lock);
1279 	 *	raw_spin_unlock(&lock->wait_lock);
1280 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1281 	 *		return;
1282 	 *	goto retry;
1283 	 *
1284 	 * The fastpath disabled variant is simple as all access to
1285 	 * lock->owner is serialized by lock->wait_lock:
1286 	 *
1287 	 *	lock->owner = NULL;
1288 	 *	raw_spin_unlock(&lock->wait_lock);
1289 	 */
1290 	while (!rt_mutex_has_waiters(lock)) {
1291 		/* Drops lock->wait_lock ! */
1292 		if (unlock_rt_mutex_safe(lock) == true)
1293 			return false;
1294 		/* Relock the rtmutex and try again */
1295 		raw_spin_lock(&lock->wait_lock);
1296 	}
1297 
1298 	/*
1299 	 * The wakeup next waiter path does not suffer from the above
1300 	 * race. See the comments there.
1301 	 *
1302 	 * Queue the next waiter for wakeup once we release the wait_lock.
1303 	 */
1304 	mark_wakeup_next_waiter(wake_q, lock);
1305 
1306 	raw_spin_unlock(&lock->wait_lock);
1307 
1308 	/* check PI boosting */
1309 	return true;
1310 }
1311 
1312 /*
1313  * debug aware fast / slowpath lock,trylock,unlock
1314  *
1315  * The atomic acquire/release ops are compiled away, when either the
1316  * architecture does not support cmpxchg or when debugging is enabled.
1317  */
1318 static inline int
1319 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1320 		  int (*slowfn)(struct rt_mutex *lock, int state,
1321 				struct hrtimer_sleeper *timeout,
1322 				enum rtmutex_chainwalk chwalk))
1323 {
1324 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1325 		rt_mutex_deadlock_account_lock(lock, current);
1326 		return 0;
1327 	} else
1328 		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1329 }
1330 
1331 static inline int
1332 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1333 			struct hrtimer_sleeper *timeout,
1334 			enum rtmutex_chainwalk chwalk,
1335 			int (*slowfn)(struct rt_mutex *lock, int state,
1336 				      struct hrtimer_sleeper *timeout,
1337 				      enum rtmutex_chainwalk chwalk))
1338 {
1339 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1340 	    likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1341 		rt_mutex_deadlock_account_lock(lock, current);
1342 		return 0;
1343 	} else
1344 		return slowfn(lock, state, timeout, chwalk);
1345 }
1346 
1347 static inline int
1348 rt_mutex_fasttrylock(struct rt_mutex *lock,
1349 		     int (*slowfn)(struct rt_mutex *lock))
1350 {
1351 	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
1352 		rt_mutex_deadlock_account_lock(lock, current);
1353 		return 1;
1354 	}
1355 	return slowfn(lock);
1356 }
1357 
1358 static inline void
1359 rt_mutex_fastunlock(struct rt_mutex *lock,
1360 		    bool (*slowfn)(struct rt_mutex *lock,
1361 				   struct wake_q_head *wqh))
1362 {
1363 	WAKE_Q(wake_q);
1364 
1365 	if (likely(rt_mutex_cmpxchg(lock, current, NULL))) {
1366 		rt_mutex_deadlock_account_unlock(current);
1367 
1368 	} else {
1369 		bool deboost = slowfn(lock, &wake_q);
1370 
1371 		wake_up_q(&wake_q);
1372 
1373 		/* Undo pi boosting if necessary: */
1374 		if (deboost)
1375 			rt_mutex_adjust_prio(current);
1376 	}
1377 }
1378 
1379 /**
1380  * rt_mutex_lock - lock a rt_mutex
1381  *
1382  * @lock: the rt_mutex to be locked
1383  */
1384 void __sched rt_mutex_lock(struct rt_mutex *lock)
1385 {
1386 	might_sleep();
1387 
1388 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1389 }
1390 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1391 
1392 /**
1393  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1394  *
1395  * @lock:		the rt_mutex to be locked
1396  *
1397  * Returns:
1398  *  0		on success
1399  * -EINTR	when interrupted by a signal
1400  */
1401 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1402 {
1403 	might_sleep();
1404 
1405 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1406 }
1407 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1408 
1409 /*
1410  * Futex variant with full deadlock detection.
1411  */
1412 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1413 			      struct hrtimer_sleeper *timeout)
1414 {
1415 	might_sleep();
1416 
1417 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1418 				       RT_MUTEX_FULL_CHAINWALK,
1419 				       rt_mutex_slowlock);
1420 }
1421 
1422 /**
1423  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1424  *			the timeout structure is provided
1425  *			by the caller
1426  *
1427  * @lock:		the rt_mutex to be locked
1428  * @timeout:		timeout structure or NULL (no timeout)
1429  *
1430  * Returns:
1431  *  0		on success
1432  * -EINTR	when interrupted by a signal
1433  * -ETIMEDOUT	when the timeout expired
1434  */
1435 int
1436 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1437 {
1438 	might_sleep();
1439 
1440 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1441 				       RT_MUTEX_MIN_CHAINWALK,
1442 				       rt_mutex_slowlock);
1443 }
1444 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1445 
1446 /**
1447  * rt_mutex_trylock - try to lock a rt_mutex
1448  *
1449  * @lock:	the rt_mutex to be locked
1450  *
1451  * This function can only be called in thread context. It's safe to
1452  * call it from atomic regions, but not from hard interrupt or soft
1453  * interrupt context.
1454  *
1455  * Returns 1 on success and 0 on contention
1456  */
1457 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1458 {
1459 	if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq()))
1460 		return 0;
1461 
1462 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1463 }
1464 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1465 
1466 /**
1467  * rt_mutex_unlock - unlock a rt_mutex
1468  *
1469  * @lock: the rt_mutex to be unlocked
1470  */
1471 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1472 {
1473 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1474 }
1475 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1476 
1477 /**
1478  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1479  * @lock: the rt_mutex to be unlocked
1480  *
1481  * Returns: true/false indicating whether priority adjustment is
1482  * required or not.
1483  */
1484 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1485 				   struct wake_q_head *wqh)
1486 {
1487 	if (likely(rt_mutex_cmpxchg(lock, current, NULL))) {
1488 		rt_mutex_deadlock_account_unlock(current);
1489 		return false;
1490 	}
1491 	return rt_mutex_slowunlock(lock, wqh);
1492 }
1493 
1494 /**
1495  * rt_mutex_destroy - mark a mutex unusable
1496  * @lock: the mutex to be destroyed
1497  *
1498  * This function marks the mutex uninitialized, and any subsequent
1499  * use of the mutex is forbidden. The mutex must not be locked when
1500  * this function is called.
1501  */
1502 void rt_mutex_destroy(struct rt_mutex *lock)
1503 {
1504 	WARN_ON(rt_mutex_is_locked(lock));
1505 #ifdef CONFIG_DEBUG_RT_MUTEXES
1506 	lock->magic = NULL;
1507 #endif
1508 }
1509 
1510 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1511 
1512 /**
1513  * __rt_mutex_init - initialize the rt lock
1514  *
1515  * @lock: the rt lock to be initialized
1516  *
1517  * Initialize the rt lock to unlocked state.
1518  *
1519  * Initializing of a locked rt lock is not allowed
1520  */
1521 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1522 {
1523 	lock->owner = NULL;
1524 	raw_spin_lock_init(&lock->wait_lock);
1525 	lock->waiters = RB_ROOT;
1526 	lock->waiters_leftmost = NULL;
1527 
1528 	debug_rt_mutex_init(lock, name);
1529 }
1530 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1531 
1532 /**
1533  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1534  *				proxy owner
1535  *
1536  * @lock: 	the rt_mutex to be locked
1537  * @proxy_owner:the task to set as owner
1538  *
1539  * No locking. Caller has to do serializing itself
1540  * Special API call for PI-futex support
1541  */
1542 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1543 				struct task_struct *proxy_owner)
1544 {
1545 	__rt_mutex_init(lock, NULL);
1546 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1547 	rt_mutex_set_owner(lock, proxy_owner);
1548 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1549 }
1550 
1551 /**
1552  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1553  *
1554  * @lock: 	the rt_mutex to be locked
1555  *
1556  * No locking. Caller has to do serializing itself
1557  * Special API call for PI-futex support
1558  */
1559 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1560 			   struct task_struct *proxy_owner)
1561 {
1562 	debug_rt_mutex_proxy_unlock(lock);
1563 	rt_mutex_set_owner(lock, NULL);
1564 	rt_mutex_deadlock_account_unlock(proxy_owner);
1565 }
1566 
1567 /**
1568  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1569  * @lock:		the rt_mutex to take
1570  * @waiter:		the pre-initialized rt_mutex_waiter
1571  * @task:		the task to prepare
1572  *
1573  * Returns:
1574  *  0 - task blocked on lock
1575  *  1 - acquired the lock for task, caller should wake it up
1576  * <0 - error
1577  *
1578  * Special API call for FUTEX_REQUEUE_PI support.
1579  */
1580 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1581 			      struct rt_mutex_waiter *waiter,
1582 			      struct task_struct *task)
1583 {
1584 	int ret;
1585 
1586 	raw_spin_lock(&lock->wait_lock);
1587 
1588 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1589 		raw_spin_unlock(&lock->wait_lock);
1590 		return 1;
1591 	}
1592 
1593 	/* We enforce deadlock detection for futexes */
1594 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1595 				      RT_MUTEX_FULL_CHAINWALK);
1596 
1597 	if (ret && !rt_mutex_owner(lock)) {
1598 		/*
1599 		 * Reset the return value. We might have
1600 		 * returned with -EDEADLK and the owner
1601 		 * released the lock while we were walking the
1602 		 * pi chain.  Let the waiter sort it out.
1603 		 */
1604 		ret = 0;
1605 	}
1606 
1607 	if (unlikely(ret))
1608 		remove_waiter(lock, waiter);
1609 
1610 	raw_spin_unlock(&lock->wait_lock);
1611 
1612 	debug_rt_mutex_print_deadlock(waiter);
1613 
1614 	return ret;
1615 }
1616 
1617 /**
1618  * rt_mutex_next_owner - return the next owner of the lock
1619  *
1620  * @lock: the rt lock query
1621  *
1622  * Returns the next owner of the lock or NULL
1623  *
1624  * Caller has to serialize against other accessors to the lock
1625  * itself.
1626  *
1627  * Special API call for PI-futex support
1628  */
1629 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1630 {
1631 	if (!rt_mutex_has_waiters(lock))
1632 		return NULL;
1633 
1634 	return rt_mutex_top_waiter(lock)->task;
1635 }
1636 
1637 /**
1638  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1639  * @lock:		the rt_mutex we were woken on
1640  * @to:			the timeout, null if none. hrtimer should already have
1641  *			been started.
1642  * @waiter:		the pre-initialized rt_mutex_waiter
1643  *
1644  * Complete the lock acquisition started our behalf by another thread.
1645  *
1646  * Returns:
1647  *  0 - success
1648  * <0 - error, one of -EINTR, -ETIMEDOUT
1649  *
1650  * Special API call for PI-futex requeue support
1651  */
1652 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1653 			       struct hrtimer_sleeper *to,
1654 			       struct rt_mutex_waiter *waiter)
1655 {
1656 	int ret;
1657 
1658 	raw_spin_lock(&lock->wait_lock);
1659 
1660 	set_current_state(TASK_INTERRUPTIBLE);
1661 
1662 	/* sleep on the mutex */
1663 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1664 
1665 	if (unlikely(ret))
1666 		remove_waiter(lock, waiter);
1667 
1668 	/*
1669 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1670 	 * have to fix that up.
1671 	 */
1672 	fixup_rt_mutex_waiters(lock);
1673 
1674 	raw_spin_unlock(&lock->wait_lock);
1675 
1676 	return ret;
1677 }
1678