1 /* 2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 3 * 4 * started by Ingo Molnar and Thomas Gleixner. 5 * 6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 9 * Copyright (C) 2006 Esben Nielsen 10 * 11 * See Documentation/locking/rt-mutex-design.txt for details. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/sched/rt.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/timer.h> 19 20 #include "rtmutex_common.h" 21 22 /* 23 * lock->owner state tracking: 24 * 25 * lock->owner holds the task_struct pointer of the owner. Bit 0 26 * is used to keep track of the "lock has waiters" state. 27 * 28 * owner bit0 29 * NULL 0 lock is free (fast acquire possible) 30 * NULL 1 lock is free and has waiters and the top waiter 31 * is going to take the lock* 32 * taskpointer 0 lock is held (fast release possible) 33 * taskpointer 1 lock is held and has waiters** 34 * 35 * The fast atomic compare exchange based acquire and release is only 36 * possible when bit 0 of lock->owner is 0. 37 * 38 * (*) It also can be a transitional state when grabbing the lock 39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 40 * we need to set the bit0 before looking at the lock, and the owner may be 41 * NULL in this small time, hence this can be a transitional state. 42 * 43 * (**) There is a small time when bit 0 is set but there are no 44 * waiters. This can happen when grabbing the lock in the slow path. 45 * To prevent a cmpxchg of the owner releasing the lock, we need to 46 * set this bit before looking at the lock. 47 */ 48 49 static void 50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 51 { 52 unsigned long val = (unsigned long)owner; 53 54 if (rt_mutex_has_waiters(lock)) 55 val |= RT_MUTEX_HAS_WAITERS; 56 57 lock->owner = (struct task_struct *)val; 58 } 59 60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 61 { 62 lock->owner = (struct task_struct *) 63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 64 } 65 66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 67 { 68 if (!rt_mutex_has_waiters(lock)) 69 clear_rt_mutex_waiters(lock); 70 } 71 72 /* 73 * We can speed up the acquire/release, if there's no debugging state to be 74 * set up. 75 */ 76 #ifndef CONFIG_DEBUG_RT_MUTEXES 77 # define rt_mutex_cmpxchg(l,c,n) (cmpxchg(&l->owner, c, n) == c) 78 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 79 { 80 unsigned long owner, *p = (unsigned long *) &lock->owner; 81 82 do { 83 owner = *p; 84 } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner); 85 } 86 87 /* 88 * Safe fastpath aware unlock: 89 * 1) Clear the waiters bit 90 * 2) Drop lock->wait_lock 91 * 3) Try to unlock the lock with cmpxchg 92 */ 93 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock) 94 __releases(lock->wait_lock) 95 { 96 struct task_struct *owner = rt_mutex_owner(lock); 97 98 clear_rt_mutex_waiters(lock); 99 raw_spin_unlock(&lock->wait_lock); 100 /* 101 * If a new waiter comes in between the unlock and the cmpxchg 102 * we have two situations: 103 * 104 * unlock(wait_lock); 105 * lock(wait_lock); 106 * cmpxchg(p, owner, 0) == owner 107 * mark_rt_mutex_waiters(lock); 108 * acquire(lock); 109 * or: 110 * 111 * unlock(wait_lock); 112 * lock(wait_lock); 113 * mark_rt_mutex_waiters(lock); 114 * 115 * cmpxchg(p, owner, 0) != owner 116 * enqueue_waiter(); 117 * unlock(wait_lock); 118 * lock(wait_lock); 119 * wake waiter(); 120 * unlock(wait_lock); 121 * lock(wait_lock); 122 * acquire(lock); 123 */ 124 return rt_mutex_cmpxchg(lock, owner, NULL); 125 } 126 127 #else 128 # define rt_mutex_cmpxchg(l,c,n) (0) 129 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 130 { 131 lock->owner = (struct task_struct *) 132 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 133 } 134 135 /* 136 * Simple slow path only version: lock->owner is protected by lock->wait_lock. 137 */ 138 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock) 139 __releases(lock->wait_lock) 140 { 141 lock->owner = NULL; 142 raw_spin_unlock(&lock->wait_lock); 143 return true; 144 } 145 #endif 146 147 static inline int 148 rt_mutex_waiter_less(struct rt_mutex_waiter *left, 149 struct rt_mutex_waiter *right) 150 { 151 if (left->prio < right->prio) 152 return 1; 153 154 /* 155 * If both waiters have dl_prio(), we check the deadlines of the 156 * associated tasks. 157 * If left waiter has a dl_prio(), and we didn't return 1 above, 158 * then right waiter has a dl_prio() too. 159 */ 160 if (dl_prio(left->prio)) 161 return (left->task->dl.deadline < right->task->dl.deadline); 162 163 return 0; 164 } 165 166 static void 167 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 168 { 169 struct rb_node **link = &lock->waiters.rb_node; 170 struct rb_node *parent = NULL; 171 struct rt_mutex_waiter *entry; 172 int leftmost = 1; 173 174 while (*link) { 175 parent = *link; 176 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry); 177 if (rt_mutex_waiter_less(waiter, entry)) { 178 link = &parent->rb_left; 179 } else { 180 link = &parent->rb_right; 181 leftmost = 0; 182 } 183 } 184 185 if (leftmost) 186 lock->waiters_leftmost = &waiter->tree_entry; 187 188 rb_link_node(&waiter->tree_entry, parent, link); 189 rb_insert_color(&waiter->tree_entry, &lock->waiters); 190 } 191 192 static void 193 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 194 { 195 if (RB_EMPTY_NODE(&waiter->tree_entry)) 196 return; 197 198 if (lock->waiters_leftmost == &waiter->tree_entry) 199 lock->waiters_leftmost = rb_next(&waiter->tree_entry); 200 201 rb_erase(&waiter->tree_entry, &lock->waiters); 202 RB_CLEAR_NODE(&waiter->tree_entry); 203 } 204 205 static void 206 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 207 { 208 struct rb_node **link = &task->pi_waiters.rb_node; 209 struct rb_node *parent = NULL; 210 struct rt_mutex_waiter *entry; 211 int leftmost = 1; 212 213 while (*link) { 214 parent = *link; 215 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry); 216 if (rt_mutex_waiter_less(waiter, entry)) { 217 link = &parent->rb_left; 218 } else { 219 link = &parent->rb_right; 220 leftmost = 0; 221 } 222 } 223 224 if (leftmost) 225 task->pi_waiters_leftmost = &waiter->pi_tree_entry; 226 227 rb_link_node(&waiter->pi_tree_entry, parent, link); 228 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters); 229 } 230 231 static void 232 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 233 { 234 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 235 return; 236 237 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry) 238 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry); 239 240 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters); 241 RB_CLEAR_NODE(&waiter->pi_tree_entry); 242 } 243 244 /* 245 * Calculate task priority from the waiter tree priority 246 * 247 * Return task->normal_prio when the waiter tree is empty or when 248 * the waiter is not allowed to do priority boosting 249 */ 250 int rt_mutex_getprio(struct task_struct *task) 251 { 252 if (likely(!task_has_pi_waiters(task))) 253 return task->normal_prio; 254 255 return min(task_top_pi_waiter(task)->prio, 256 task->normal_prio); 257 } 258 259 struct task_struct *rt_mutex_get_top_task(struct task_struct *task) 260 { 261 if (likely(!task_has_pi_waiters(task))) 262 return NULL; 263 264 return task_top_pi_waiter(task)->task; 265 } 266 267 /* 268 * Called by sched_setscheduler() to get the priority which will be 269 * effective after the change. 270 */ 271 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio) 272 { 273 if (!task_has_pi_waiters(task)) 274 return newprio; 275 276 if (task_top_pi_waiter(task)->task->prio <= newprio) 277 return task_top_pi_waiter(task)->task->prio; 278 return newprio; 279 } 280 281 /* 282 * Adjust the priority of a task, after its pi_waiters got modified. 283 * 284 * This can be both boosting and unboosting. task->pi_lock must be held. 285 */ 286 static void __rt_mutex_adjust_prio(struct task_struct *task) 287 { 288 int prio = rt_mutex_getprio(task); 289 290 if (task->prio != prio || dl_prio(prio)) 291 rt_mutex_setprio(task, prio); 292 } 293 294 /* 295 * Adjust task priority (undo boosting). Called from the exit path of 296 * rt_mutex_slowunlock() and rt_mutex_slowlock(). 297 * 298 * (Note: We do this outside of the protection of lock->wait_lock to 299 * allow the lock to be taken while or before we readjust the priority 300 * of task. We do not use the spin_xx_mutex() variants here as we are 301 * outside of the debug path.) 302 */ 303 void rt_mutex_adjust_prio(struct task_struct *task) 304 { 305 unsigned long flags; 306 307 raw_spin_lock_irqsave(&task->pi_lock, flags); 308 __rt_mutex_adjust_prio(task); 309 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 310 } 311 312 /* 313 * Deadlock detection is conditional: 314 * 315 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted 316 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. 317 * 318 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always 319 * conducted independent of the detect argument. 320 * 321 * If the waiter argument is NULL this indicates the deboost path and 322 * deadlock detection is disabled independent of the detect argument 323 * and the config settings. 324 */ 325 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, 326 enum rtmutex_chainwalk chwalk) 327 { 328 /* 329 * This is just a wrapper function for the following call, 330 * because debug_rt_mutex_detect_deadlock() smells like a magic 331 * debug feature and I wanted to keep the cond function in the 332 * main source file along with the comments instead of having 333 * two of the same in the headers. 334 */ 335 return debug_rt_mutex_detect_deadlock(waiter, chwalk); 336 } 337 338 /* 339 * Max number of times we'll walk the boosting chain: 340 */ 341 int max_lock_depth = 1024; 342 343 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) 344 { 345 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; 346 } 347 348 /* 349 * Adjust the priority chain. Also used for deadlock detection. 350 * Decreases task's usage by one - may thus free the task. 351 * 352 * @task: the task owning the mutex (owner) for which a chain walk is 353 * probably needed 354 * @chwalk: do we have to carry out deadlock detection? 355 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 356 * things for a task that has just got its priority adjusted, and 357 * is waiting on a mutex) 358 * @next_lock: the mutex on which the owner of @orig_lock was blocked before 359 * we dropped its pi_lock. Is never dereferenced, only used for 360 * comparison to detect lock chain changes. 361 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 362 * its priority to the mutex owner (can be NULL in the case 363 * depicted above or if the top waiter is gone away and we are 364 * actually deboosting the owner) 365 * @top_task: the current top waiter 366 * 367 * Returns 0 or -EDEADLK. 368 * 369 * Chain walk basics and protection scope 370 * 371 * [R] refcount on task 372 * [P] task->pi_lock held 373 * [L] rtmutex->wait_lock held 374 * 375 * Step Description Protected by 376 * function arguments: 377 * @task [R] 378 * @orig_lock if != NULL @top_task is blocked on it 379 * @next_lock Unprotected. Cannot be 380 * dereferenced. Only used for 381 * comparison. 382 * @orig_waiter if != NULL @top_task is blocked on it 383 * @top_task current, or in case of proxy 384 * locking protected by calling 385 * code 386 * again: 387 * loop_sanity_check(); 388 * retry: 389 * [1] lock(task->pi_lock); [R] acquire [P] 390 * [2] waiter = task->pi_blocked_on; [P] 391 * [3] check_exit_conditions_1(); [P] 392 * [4] lock = waiter->lock; [P] 393 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L] 394 * unlock(task->pi_lock); release [P] 395 * goto retry; 396 * } 397 * [6] check_exit_conditions_2(); [P] + [L] 398 * [7] requeue_lock_waiter(lock, waiter); [P] + [L] 399 * [8] unlock(task->pi_lock); release [P] 400 * put_task_struct(task); release [R] 401 * [9] check_exit_conditions_3(); [L] 402 * [10] task = owner(lock); [L] 403 * get_task_struct(task); [L] acquire [R] 404 * lock(task->pi_lock); [L] acquire [P] 405 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L] 406 * [12] check_exit_conditions_4(); [P] + [L] 407 * [13] unlock(task->pi_lock); release [P] 408 * unlock(lock->wait_lock); release [L] 409 * goto again; 410 */ 411 static int rt_mutex_adjust_prio_chain(struct task_struct *task, 412 enum rtmutex_chainwalk chwalk, 413 struct rt_mutex *orig_lock, 414 struct rt_mutex *next_lock, 415 struct rt_mutex_waiter *orig_waiter, 416 struct task_struct *top_task) 417 { 418 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 419 struct rt_mutex_waiter *prerequeue_top_waiter; 420 int ret = 0, depth = 0; 421 struct rt_mutex *lock; 422 bool detect_deadlock; 423 unsigned long flags; 424 bool requeue = true; 425 426 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk); 427 428 /* 429 * The (de)boosting is a step by step approach with a lot of 430 * pitfalls. We want this to be preemptible and we want hold a 431 * maximum of two locks per step. So we have to check 432 * carefully whether things change under us. 433 */ 434 again: 435 /* 436 * We limit the lock chain length for each invocation. 437 */ 438 if (++depth > max_lock_depth) { 439 static int prev_max; 440 441 /* 442 * Print this only once. If the admin changes the limit, 443 * print a new message when reaching the limit again. 444 */ 445 if (prev_max != max_lock_depth) { 446 prev_max = max_lock_depth; 447 printk(KERN_WARNING "Maximum lock depth %d reached " 448 "task: %s (%d)\n", max_lock_depth, 449 top_task->comm, task_pid_nr(top_task)); 450 } 451 put_task_struct(task); 452 453 return -EDEADLK; 454 } 455 456 /* 457 * We are fully preemptible here and only hold the refcount on 458 * @task. So everything can have changed under us since the 459 * caller or our own code below (goto retry/again) dropped all 460 * locks. 461 */ 462 retry: 463 /* 464 * [1] Task cannot go away as we did a get_task() before ! 465 */ 466 raw_spin_lock_irqsave(&task->pi_lock, flags); 467 468 /* 469 * [2] Get the waiter on which @task is blocked on. 470 */ 471 waiter = task->pi_blocked_on; 472 473 /* 474 * [3] check_exit_conditions_1() protected by task->pi_lock. 475 */ 476 477 /* 478 * Check whether the end of the boosting chain has been 479 * reached or the state of the chain has changed while we 480 * dropped the locks. 481 */ 482 if (!waiter) 483 goto out_unlock_pi; 484 485 /* 486 * Check the orig_waiter state. After we dropped the locks, 487 * the previous owner of the lock might have released the lock. 488 */ 489 if (orig_waiter && !rt_mutex_owner(orig_lock)) 490 goto out_unlock_pi; 491 492 /* 493 * We dropped all locks after taking a refcount on @task, so 494 * the task might have moved on in the lock chain or even left 495 * the chain completely and blocks now on an unrelated lock or 496 * on @orig_lock. 497 * 498 * We stored the lock on which @task was blocked in @next_lock, 499 * so we can detect the chain change. 500 */ 501 if (next_lock != waiter->lock) 502 goto out_unlock_pi; 503 504 /* 505 * Drop out, when the task has no waiters. Note, 506 * top_waiter can be NULL, when we are in the deboosting 507 * mode! 508 */ 509 if (top_waiter) { 510 if (!task_has_pi_waiters(task)) 511 goto out_unlock_pi; 512 /* 513 * If deadlock detection is off, we stop here if we 514 * are not the top pi waiter of the task. If deadlock 515 * detection is enabled we continue, but stop the 516 * requeueing in the chain walk. 517 */ 518 if (top_waiter != task_top_pi_waiter(task)) { 519 if (!detect_deadlock) 520 goto out_unlock_pi; 521 else 522 requeue = false; 523 } 524 } 525 526 /* 527 * If the waiter priority is the same as the task priority 528 * then there is no further priority adjustment necessary. If 529 * deadlock detection is off, we stop the chain walk. If its 530 * enabled we continue, but stop the requeueing in the chain 531 * walk. 532 */ 533 if (waiter->prio == task->prio) { 534 if (!detect_deadlock) 535 goto out_unlock_pi; 536 else 537 requeue = false; 538 } 539 540 /* 541 * [4] Get the next lock 542 */ 543 lock = waiter->lock; 544 /* 545 * [5] We need to trylock here as we are holding task->pi_lock, 546 * which is the reverse lock order versus the other rtmutex 547 * operations. 548 */ 549 if (!raw_spin_trylock(&lock->wait_lock)) { 550 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 551 cpu_relax(); 552 goto retry; 553 } 554 555 /* 556 * [6] check_exit_conditions_2() protected by task->pi_lock and 557 * lock->wait_lock. 558 * 559 * Deadlock detection. If the lock is the same as the original 560 * lock which caused us to walk the lock chain or if the 561 * current lock is owned by the task which initiated the chain 562 * walk, we detected a deadlock. 563 */ 564 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 565 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock); 566 raw_spin_unlock(&lock->wait_lock); 567 ret = -EDEADLK; 568 goto out_unlock_pi; 569 } 570 571 /* 572 * If we just follow the lock chain for deadlock detection, no 573 * need to do all the requeue operations. To avoid a truckload 574 * of conditionals around the various places below, just do the 575 * minimum chain walk checks. 576 */ 577 if (!requeue) { 578 /* 579 * No requeue[7] here. Just release @task [8] 580 */ 581 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 582 put_task_struct(task); 583 584 /* 585 * [9] check_exit_conditions_3 protected by lock->wait_lock. 586 * If there is no owner of the lock, end of chain. 587 */ 588 if (!rt_mutex_owner(lock)) { 589 raw_spin_unlock(&lock->wait_lock); 590 return 0; 591 } 592 593 /* [10] Grab the next task, i.e. owner of @lock */ 594 task = rt_mutex_owner(lock); 595 get_task_struct(task); 596 raw_spin_lock_irqsave(&task->pi_lock, flags); 597 598 /* 599 * No requeue [11] here. We just do deadlock detection. 600 * 601 * [12] Store whether owner is blocked 602 * itself. Decision is made after dropping the locks 603 */ 604 next_lock = task_blocked_on_lock(task); 605 /* 606 * Get the top waiter for the next iteration 607 */ 608 top_waiter = rt_mutex_top_waiter(lock); 609 610 /* [13] Drop locks */ 611 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 612 raw_spin_unlock(&lock->wait_lock); 613 614 /* If owner is not blocked, end of chain. */ 615 if (!next_lock) 616 goto out_put_task; 617 goto again; 618 } 619 620 /* 621 * Store the current top waiter before doing the requeue 622 * operation on @lock. We need it for the boost/deboost 623 * decision below. 624 */ 625 prerequeue_top_waiter = rt_mutex_top_waiter(lock); 626 627 /* [7] Requeue the waiter in the lock waiter tree. */ 628 rt_mutex_dequeue(lock, waiter); 629 waiter->prio = task->prio; 630 rt_mutex_enqueue(lock, waiter); 631 632 /* [8] Release the task */ 633 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 634 put_task_struct(task); 635 636 /* 637 * [9] check_exit_conditions_3 protected by lock->wait_lock. 638 * 639 * We must abort the chain walk if there is no lock owner even 640 * in the dead lock detection case, as we have nothing to 641 * follow here. This is the end of the chain we are walking. 642 */ 643 if (!rt_mutex_owner(lock)) { 644 /* 645 * If the requeue [7] above changed the top waiter, 646 * then we need to wake the new top waiter up to try 647 * to get the lock. 648 */ 649 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) 650 wake_up_process(rt_mutex_top_waiter(lock)->task); 651 raw_spin_unlock(&lock->wait_lock); 652 return 0; 653 } 654 655 /* [10] Grab the next task, i.e. the owner of @lock */ 656 task = rt_mutex_owner(lock); 657 get_task_struct(task); 658 raw_spin_lock_irqsave(&task->pi_lock, flags); 659 660 /* [11] requeue the pi waiters if necessary */ 661 if (waiter == rt_mutex_top_waiter(lock)) { 662 /* 663 * The waiter became the new top (highest priority) 664 * waiter on the lock. Replace the previous top waiter 665 * in the owner tasks pi waiters tree with this waiter 666 * and adjust the priority of the owner. 667 */ 668 rt_mutex_dequeue_pi(task, prerequeue_top_waiter); 669 rt_mutex_enqueue_pi(task, waiter); 670 __rt_mutex_adjust_prio(task); 671 672 } else if (prerequeue_top_waiter == waiter) { 673 /* 674 * The waiter was the top waiter on the lock, but is 675 * no longer the top prority waiter. Replace waiter in 676 * the owner tasks pi waiters tree with the new top 677 * (highest priority) waiter and adjust the priority 678 * of the owner. 679 * The new top waiter is stored in @waiter so that 680 * @waiter == @top_waiter evaluates to true below and 681 * we continue to deboost the rest of the chain. 682 */ 683 rt_mutex_dequeue_pi(task, waiter); 684 waiter = rt_mutex_top_waiter(lock); 685 rt_mutex_enqueue_pi(task, waiter); 686 __rt_mutex_adjust_prio(task); 687 } else { 688 /* 689 * Nothing changed. No need to do any priority 690 * adjustment. 691 */ 692 } 693 694 /* 695 * [12] check_exit_conditions_4() protected by task->pi_lock 696 * and lock->wait_lock. The actual decisions are made after we 697 * dropped the locks. 698 * 699 * Check whether the task which owns the current lock is pi 700 * blocked itself. If yes we store a pointer to the lock for 701 * the lock chain change detection above. After we dropped 702 * task->pi_lock next_lock cannot be dereferenced anymore. 703 */ 704 next_lock = task_blocked_on_lock(task); 705 /* 706 * Store the top waiter of @lock for the end of chain walk 707 * decision below. 708 */ 709 top_waiter = rt_mutex_top_waiter(lock); 710 711 /* [13] Drop the locks */ 712 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 713 raw_spin_unlock(&lock->wait_lock); 714 715 /* 716 * Make the actual exit decisions [12], based on the stored 717 * values. 718 * 719 * We reached the end of the lock chain. Stop right here. No 720 * point to go back just to figure that out. 721 */ 722 if (!next_lock) 723 goto out_put_task; 724 725 /* 726 * If the current waiter is not the top waiter on the lock, 727 * then we can stop the chain walk here if we are not in full 728 * deadlock detection mode. 729 */ 730 if (!detect_deadlock && waiter != top_waiter) 731 goto out_put_task; 732 733 goto again; 734 735 out_unlock_pi: 736 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 737 out_put_task: 738 put_task_struct(task); 739 740 return ret; 741 } 742 743 /* 744 * Try to take an rt-mutex 745 * 746 * Must be called with lock->wait_lock held. 747 * 748 * @lock: The lock to be acquired. 749 * @task: The task which wants to acquire the lock 750 * @waiter: The waiter that is queued to the lock's wait tree if the 751 * callsite called task_blocked_on_lock(), otherwise NULL 752 */ 753 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 754 struct rt_mutex_waiter *waiter) 755 { 756 unsigned long flags; 757 758 /* 759 * Before testing whether we can acquire @lock, we set the 760 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all 761 * other tasks which try to modify @lock into the slow path 762 * and they serialize on @lock->wait_lock. 763 * 764 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state 765 * as explained at the top of this file if and only if: 766 * 767 * - There is a lock owner. The caller must fixup the 768 * transient state if it does a trylock or leaves the lock 769 * function due to a signal or timeout. 770 * 771 * - @task acquires the lock and there are no other 772 * waiters. This is undone in rt_mutex_set_owner(@task) at 773 * the end of this function. 774 */ 775 mark_rt_mutex_waiters(lock); 776 777 /* 778 * If @lock has an owner, give up. 779 */ 780 if (rt_mutex_owner(lock)) 781 return 0; 782 783 /* 784 * If @waiter != NULL, @task has already enqueued the waiter 785 * into @lock waiter tree. If @waiter == NULL then this is a 786 * trylock attempt. 787 */ 788 if (waiter) { 789 /* 790 * If waiter is not the highest priority waiter of 791 * @lock, give up. 792 */ 793 if (waiter != rt_mutex_top_waiter(lock)) 794 return 0; 795 796 /* 797 * We can acquire the lock. Remove the waiter from the 798 * lock waiters tree. 799 */ 800 rt_mutex_dequeue(lock, waiter); 801 802 } else { 803 /* 804 * If the lock has waiters already we check whether @task is 805 * eligible to take over the lock. 806 * 807 * If there are no other waiters, @task can acquire 808 * the lock. @task->pi_blocked_on is NULL, so it does 809 * not need to be dequeued. 810 */ 811 if (rt_mutex_has_waiters(lock)) { 812 /* 813 * If @task->prio is greater than or equal to 814 * the top waiter priority (kernel view), 815 * @task lost. 816 */ 817 if (task->prio >= rt_mutex_top_waiter(lock)->prio) 818 return 0; 819 820 /* 821 * The current top waiter stays enqueued. We 822 * don't have to change anything in the lock 823 * waiters order. 824 */ 825 } else { 826 /* 827 * No waiters. Take the lock without the 828 * pi_lock dance.@task->pi_blocked_on is NULL 829 * and we have no waiters to enqueue in @task 830 * pi waiters tree. 831 */ 832 goto takeit; 833 } 834 } 835 836 /* 837 * Clear @task->pi_blocked_on. Requires protection by 838 * @task->pi_lock. Redundant operation for the @waiter == NULL 839 * case, but conditionals are more expensive than a redundant 840 * store. 841 */ 842 raw_spin_lock_irqsave(&task->pi_lock, flags); 843 task->pi_blocked_on = NULL; 844 /* 845 * Finish the lock acquisition. @task is the new owner. If 846 * other waiters exist we have to insert the highest priority 847 * waiter into @task->pi_waiters tree. 848 */ 849 if (rt_mutex_has_waiters(lock)) 850 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock)); 851 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 852 853 takeit: 854 /* We got the lock. */ 855 debug_rt_mutex_lock(lock); 856 857 /* 858 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there 859 * are still waiters or clears it. 860 */ 861 rt_mutex_set_owner(lock, task); 862 863 rt_mutex_deadlock_account_lock(lock, task); 864 865 return 1; 866 } 867 868 /* 869 * Task blocks on lock. 870 * 871 * Prepare waiter and propagate pi chain 872 * 873 * This must be called with lock->wait_lock held. 874 */ 875 static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 876 struct rt_mutex_waiter *waiter, 877 struct task_struct *task, 878 enum rtmutex_chainwalk chwalk) 879 { 880 struct task_struct *owner = rt_mutex_owner(lock); 881 struct rt_mutex_waiter *top_waiter = waiter; 882 struct rt_mutex *next_lock; 883 int chain_walk = 0, res; 884 unsigned long flags; 885 886 /* 887 * Early deadlock detection. We really don't want the task to 888 * enqueue on itself just to untangle the mess later. It's not 889 * only an optimization. We drop the locks, so another waiter 890 * can come in before the chain walk detects the deadlock. So 891 * the other will detect the deadlock and return -EDEADLOCK, 892 * which is wrong, as the other waiter is not in a deadlock 893 * situation. 894 */ 895 if (owner == task) 896 return -EDEADLK; 897 898 raw_spin_lock_irqsave(&task->pi_lock, flags); 899 __rt_mutex_adjust_prio(task); 900 waiter->task = task; 901 waiter->lock = lock; 902 waiter->prio = task->prio; 903 904 /* Get the top priority waiter on the lock */ 905 if (rt_mutex_has_waiters(lock)) 906 top_waiter = rt_mutex_top_waiter(lock); 907 rt_mutex_enqueue(lock, waiter); 908 909 task->pi_blocked_on = waiter; 910 911 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 912 913 if (!owner) 914 return 0; 915 916 raw_spin_lock_irqsave(&owner->pi_lock, flags); 917 if (waiter == rt_mutex_top_waiter(lock)) { 918 rt_mutex_dequeue_pi(owner, top_waiter); 919 rt_mutex_enqueue_pi(owner, waiter); 920 921 __rt_mutex_adjust_prio(owner); 922 if (owner->pi_blocked_on) 923 chain_walk = 1; 924 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { 925 chain_walk = 1; 926 } 927 928 /* Store the lock on which owner is blocked or NULL */ 929 next_lock = task_blocked_on_lock(owner); 930 931 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 932 /* 933 * Even if full deadlock detection is on, if the owner is not 934 * blocked itself, we can avoid finding this out in the chain 935 * walk. 936 */ 937 if (!chain_walk || !next_lock) 938 return 0; 939 940 /* 941 * The owner can't disappear while holding a lock, 942 * so the owner struct is protected by wait_lock. 943 * Gets dropped in rt_mutex_adjust_prio_chain()! 944 */ 945 get_task_struct(owner); 946 947 raw_spin_unlock(&lock->wait_lock); 948 949 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock, 950 next_lock, waiter, task); 951 952 raw_spin_lock(&lock->wait_lock); 953 954 return res; 955 } 956 957 /* 958 * Remove the top waiter from the current tasks pi waiter tree and 959 * queue it up. 960 * 961 * Called with lock->wait_lock held. 962 */ 963 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q, 964 struct rt_mutex *lock) 965 { 966 struct rt_mutex_waiter *waiter; 967 unsigned long flags; 968 969 raw_spin_lock_irqsave(¤t->pi_lock, flags); 970 971 waiter = rt_mutex_top_waiter(lock); 972 973 /* 974 * Remove it from current->pi_waiters. We do not adjust a 975 * possible priority boost right now. We execute wakeup in the 976 * boosted mode and go back to normal after releasing 977 * lock->wait_lock. 978 */ 979 rt_mutex_dequeue_pi(current, waiter); 980 981 /* 982 * As we are waking up the top waiter, and the waiter stays 983 * queued on the lock until it gets the lock, this lock 984 * obviously has waiters. Just set the bit here and this has 985 * the added benefit of forcing all new tasks into the 986 * slow path making sure no task of lower priority than 987 * the top waiter can steal this lock. 988 */ 989 lock->owner = (void *) RT_MUTEX_HAS_WAITERS; 990 991 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 992 993 wake_q_add(wake_q, waiter->task); 994 } 995 996 /* 997 * Remove a waiter from a lock and give up 998 * 999 * Must be called with lock->wait_lock held and 1000 * have just failed to try_to_take_rt_mutex(). 1001 */ 1002 static void remove_waiter(struct rt_mutex *lock, 1003 struct rt_mutex_waiter *waiter) 1004 { 1005 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); 1006 struct task_struct *owner = rt_mutex_owner(lock); 1007 struct rt_mutex *next_lock; 1008 unsigned long flags; 1009 1010 raw_spin_lock_irqsave(¤t->pi_lock, flags); 1011 rt_mutex_dequeue(lock, waiter); 1012 current->pi_blocked_on = NULL; 1013 raw_spin_unlock_irqrestore(¤t->pi_lock, flags); 1014 1015 /* 1016 * Only update priority if the waiter was the highest priority 1017 * waiter of the lock and there is an owner to update. 1018 */ 1019 if (!owner || !is_top_waiter) 1020 return; 1021 1022 raw_spin_lock_irqsave(&owner->pi_lock, flags); 1023 1024 rt_mutex_dequeue_pi(owner, waiter); 1025 1026 if (rt_mutex_has_waiters(lock)) 1027 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); 1028 1029 __rt_mutex_adjust_prio(owner); 1030 1031 /* Store the lock on which owner is blocked or NULL */ 1032 next_lock = task_blocked_on_lock(owner); 1033 1034 raw_spin_unlock_irqrestore(&owner->pi_lock, flags); 1035 1036 /* 1037 * Don't walk the chain, if the owner task is not blocked 1038 * itself. 1039 */ 1040 if (!next_lock) 1041 return; 1042 1043 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1044 get_task_struct(owner); 1045 1046 raw_spin_unlock(&lock->wait_lock); 1047 1048 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, 1049 next_lock, NULL, current); 1050 1051 raw_spin_lock(&lock->wait_lock); 1052 } 1053 1054 /* 1055 * Recheck the pi chain, in case we got a priority setting 1056 * 1057 * Called from sched_setscheduler 1058 */ 1059 void rt_mutex_adjust_pi(struct task_struct *task) 1060 { 1061 struct rt_mutex_waiter *waiter; 1062 struct rt_mutex *next_lock; 1063 unsigned long flags; 1064 1065 raw_spin_lock_irqsave(&task->pi_lock, flags); 1066 1067 waiter = task->pi_blocked_on; 1068 if (!waiter || (waiter->prio == task->prio && 1069 !dl_prio(task->prio))) { 1070 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1071 return; 1072 } 1073 next_lock = waiter->lock; 1074 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1075 1076 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1077 get_task_struct(task); 1078 1079 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 1080 next_lock, NULL, task); 1081 } 1082 1083 /** 1084 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 1085 * @lock: the rt_mutex to take 1086 * @state: the state the task should block in (TASK_INTERRUPTIBLE 1087 * or TASK_UNINTERRUPTIBLE) 1088 * @timeout: the pre-initialized and started timer, or NULL for none 1089 * @waiter: the pre-initialized rt_mutex_waiter 1090 * 1091 * lock->wait_lock must be held by the caller. 1092 */ 1093 static int __sched 1094 __rt_mutex_slowlock(struct rt_mutex *lock, int state, 1095 struct hrtimer_sleeper *timeout, 1096 struct rt_mutex_waiter *waiter) 1097 { 1098 int ret = 0; 1099 1100 for (;;) { 1101 /* Try to acquire the lock: */ 1102 if (try_to_take_rt_mutex(lock, current, waiter)) 1103 break; 1104 1105 /* 1106 * TASK_INTERRUPTIBLE checks for signals and 1107 * timeout. Ignored otherwise. 1108 */ 1109 if (unlikely(state == TASK_INTERRUPTIBLE)) { 1110 /* Signal pending? */ 1111 if (signal_pending(current)) 1112 ret = -EINTR; 1113 if (timeout && !timeout->task) 1114 ret = -ETIMEDOUT; 1115 if (ret) 1116 break; 1117 } 1118 1119 raw_spin_unlock(&lock->wait_lock); 1120 1121 debug_rt_mutex_print_deadlock(waiter); 1122 1123 schedule(); 1124 1125 raw_spin_lock(&lock->wait_lock); 1126 set_current_state(state); 1127 } 1128 1129 __set_current_state(TASK_RUNNING); 1130 return ret; 1131 } 1132 1133 static void rt_mutex_handle_deadlock(int res, int detect_deadlock, 1134 struct rt_mutex_waiter *w) 1135 { 1136 /* 1137 * If the result is not -EDEADLOCK or the caller requested 1138 * deadlock detection, nothing to do here. 1139 */ 1140 if (res != -EDEADLOCK || detect_deadlock) 1141 return; 1142 1143 /* 1144 * Yell lowdly and stop the task right here. 1145 */ 1146 rt_mutex_print_deadlock(w); 1147 while (1) { 1148 set_current_state(TASK_INTERRUPTIBLE); 1149 schedule(); 1150 } 1151 } 1152 1153 /* 1154 * Slow path lock function: 1155 */ 1156 static int __sched 1157 rt_mutex_slowlock(struct rt_mutex *lock, int state, 1158 struct hrtimer_sleeper *timeout, 1159 enum rtmutex_chainwalk chwalk) 1160 { 1161 struct rt_mutex_waiter waiter; 1162 int ret = 0; 1163 1164 debug_rt_mutex_init_waiter(&waiter); 1165 RB_CLEAR_NODE(&waiter.pi_tree_entry); 1166 RB_CLEAR_NODE(&waiter.tree_entry); 1167 1168 raw_spin_lock(&lock->wait_lock); 1169 1170 /* Try to acquire the lock again: */ 1171 if (try_to_take_rt_mutex(lock, current, NULL)) { 1172 raw_spin_unlock(&lock->wait_lock); 1173 return 0; 1174 } 1175 1176 set_current_state(state); 1177 1178 /* Setup the timer, when timeout != NULL */ 1179 if (unlikely(timeout)) 1180 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 1181 1182 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk); 1183 1184 if (likely(!ret)) 1185 /* sleep on the mutex */ 1186 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 1187 1188 if (unlikely(ret)) { 1189 __set_current_state(TASK_RUNNING); 1190 if (rt_mutex_has_waiters(lock)) 1191 remove_waiter(lock, &waiter); 1192 rt_mutex_handle_deadlock(ret, chwalk, &waiter); 1193 } 1194 1195 /* 1196 * try_to_take_rt_mutex() sets the waiter bit 1197 * unconditionally. We might have to fix that up. 1198 */ 1199 fixup_rt_mutex_waiters(lock); 1200 1201 raw_spin_unlock(&lock->wait_lock); 1202 1203 /* Remove pending timer: */ 1204 if (unlikely(timeout)) 1205 hrtimer_cancel(&timeout->timer); 1206 1207 debug_rt_mutex_free_waiter(&waiter); 1208 1209 return ret; 1210 } 1211 1212 /* 1213 * Slow path try-lock function: 1214 */ 1215 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock) 1216 { 1217 int ret; 1218 1219 /* 1220 * If the lock already has an owner we fail to get the lock. 1221 * This can be done without taking the @lock->wait_lock as 1222 * it is only being read, and this is a trylock anyway. 1223 */ 1224 if (rt_mutex_owner(lock)) 1225 return 0; 1226 1227 /* 1228 * The mutex has currently no owner. Lock the wait lock and 1229 * try to acquire the lock. 1230 */ 1231 raw_spin_lock(&lock->wait_lock); 1232 1233 ret = try_to_take_rt_mutex(lock, current, NULL); 1234 1235 /* 1236 * try_to_take_rt_mutex() sets the lock waiters bit 1237 * unconditionally. Clean this up. 1238 */ 1239 fixup_rt_mutex_waiters(lock); 1240 1241 raw_spin_unlock(&lock->wait_lock); 1242 1243 return ret; 1244 } 1245 1246 /* 1247 * Slow path to release a rt-mutex. 1248 * Return whether the current task needs to undo a potential priority boosting. 1249 */ 1250 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock, 1251 struct wake_q_head *wake_q) 1252 { 1253 raw_spin_lock(&lock->wait_lock); 1254 1255 debug_rt_mutex_unlock(lock); 1256 1257 rt_mutex_deadlock_account_unlock(current); 1258 1259 /* 1260 * We must be careful here if the fast path is enabled. If we 1261 * have no waiters queued we cannot set owner to NULL here 1262 * because of: 1263 * 1264 * foo->lock->owner = NULL; 1265 * rtmutex_lock(foo->lock); <- fast path 1266 * free = atomic_dec_and_test(foo->refcnt); 1267 * rtmutex_unlock(foo->lock); <- fast path 1268 * if (free) 1269 * kfree(foo); 1270 * raw_spin_unlock(foo->lock->wait_lock); 1271 * 1272 * So for the fastpath enabled kernel: 1273 * 1274 * Nothing can set the waiters bit as long as we hold 1275 * lock->wait_lock. So we do the following sequence: 1276 * 1277 * owner = rt_mutex_owner(lock); 1278 * clear_rt_mutex_waiters(lock); 1279 * raw_spin_unlock(&lock->wait_lock); 1280 * if (cmpxchg(&lock->owner, owner, 0) == owner) 1281 * return; 1282 * goto retry; 1283 * 1284 * The fastpath disabled variant is simple as all access to 1285 * lock->owner is serialized by lock->wait_lock: 1286 * 1287 * lock->owner = NULL; 1288 * raw_spin_unlock(&lock->wait_lock); 1289 */ 1290 while (!rt_mutex_has_waiters(lock)) { 1291 /* Drops lock->wait_lock ! */ 1292 if (unlock_rt_mutex_safe(lock) == true) 1293 return false; 1294 /* Relock the rtmutex and try again */ 1295 raw_spin_lock(&lock->wait_lock); 1296 } 1297 1298 /* 1299 * The wakeup next waiter path does not suffer from the above 1300 * race. See the comments there. 1301 * 1302 * Queue the next waiter for wakeup once we release the wait_lock. 1303 */ 1304 mark_wakeup_next_waiter(wake_q, lock); 1305 1306 raw_spin_unlock(&lock->wait_lock); 1307 1308 /* check PI boosting */ 1309 return true; 1310 } 1311 1312 /* 1313 * debug aware fast / slowpath lock,trylock,unlock 1314 * 1315 * The atomic acquire/release ops are compiled away, when either the 1316 * architecture does not support cmpxchg or when debugging is enabled. 1317 */ 1318 static inline int 1319 rt_mutex_fastlock(struct rt_mutex *lock, int state, 1320 int (*slowfn)(struct rt_mutex *lock, int state, 1321 struct hrtimer_sleeper *timeout, 1322 enum rtmutex_chainwalk chwalk)) 1323 { 1324 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { 1325 rt_mutex_deadlock_account_lock(lock, current); 1326 return 0; 1327 } else 1328 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK); 1329 } 1330 1331 static inline int 1332 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 1333 struct hrtimer_sleeper *timeout, 1334 enum rtmutex_chainwalk chwalk, 1335 int (*slowfn)(struct rt_mutex *lock, int state, 1336 struct hrtimer_sleeper *timeout, 1337 enum rtmutex_chainwalk chwalk)) 1338 { 1339 if (chwalk == RT_MUTEX_MIN_CHAINWALK && 1340 likely(rt_mutex_cmpxchg(lock, NULL, current))) { 1341 rt_mutex_deadlock_account_lock(lock, current); 1342 return 0; 1343 } else 1344 return slowfn(lock, state, timeout, chwalk); 1345 } 1346 1347 static inline int 1348 rt_mutex_fasttrylock(struct rt_mutex *lock, 1349 int (*slowfn)(struct rt_mutex *lock)) 1350 { 1351 if (likely(rt_mutex_cmpxchg(lock, NULL, current))) { 1352 rt_mutex_deadlock_account_lock(lock, current); 1353 return 1; 1354 } 1355 return slowfn(lock); 1356 } 1357 1358 static inline void 1359 rt_mutex_fastunlock(struct rt_mutex *lock, 1360 bool (*slowfn)(struct rt_mutex *lock, 1361 struct wake_q_head *wqh)) 1362 { 1363 WAKE_Q(wake_q); 1364 1365 if (likely(rt_mutex_cmpxchg(lock, current, NULL))) { 1366 rt_mutex_deadlock_account_unlock(current); 1367 1368 } else { 1369 bool deboost = slowfn(lock, &wake_q); 1370 1371 wake_up_q(&wake_q); 1372 1373 /* Undo pi boosting if necessary: */ 1374 if (deboost) 1375 rt_mutex_adjust_prio(current); 1376 } 1377 } 1378 1379 /** 1380 * rt_mutex_lock - lock a rt_mutex 1381 * 1382 * @lock: the rt_mutex to be locked 1383 */ 1384 void __sched rt_mutex_lock(struct rt_mutex *lock) 1385 { 1386 might_sleep(); 1387 1388 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); 1389 } 1390 EXPORT_SYMBOL_GPL(rt_mutex_lock); 1391 1392 /** 1393 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 1394 * 1395 * @lock: the rt_mutex to be locked 1396 * 1397 * Returns: 1398 * 0 on success 1399 * -EINTR when interrupted by a signal 1400 */ 1401 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 1402 { 1403 might_sleep(); 1404 1405 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock); 1406 } 1407 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 1408 1409 /* 1410 * Futex variant with full deadlock detection. 1411 */ 1412 int rt_mutex_timed_futex_lock(struct rt_mutex *lock, 1413 struct hrtimer_sleeper *timeout) 1414 { 1415 might_sleep(); 1416 1417 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 1418 RT_MUTEX_FULL_CHAINWALK, 1419 rt_mutex_slowlock); 1420 } 1421 1422 /** 1423 * rt_mutex_timed_lock - lock a rt_mutex interruptible 1424 * the timeout structure is provided 1425 * by the caller 1426 * 1427 * @lock: the rt_mutex to be locked 1428 * @timeout: timeout structure or NULL (no timeout) 1429 * 1430 * Returns: 1431 * 0 on success 1432 * -EINTR when interrupted by a signal 1433 * -ETIMEDOUT when the timeout expired 1434 */ 1435 int 1436 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout) 1437 { 1438 might_sleep(); 1439 1440 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 1441 RT_MUTEX_MIN_CHAINWALK, 1442 rt_mutex_slowlock); 1443 } 1444 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 1445 1446 /** 1447 * rt_mutex_trylock - try to lock a rt_mutex 1448 * 1449 * @lock: the rt_mutex to be locked 1450 * 1451 * This function can only be called in thread context. It's safe to 1452 * call it from atomic regions, but not from hard interrupt or soft 1453 * interrupt context. 1454 * 1455 * Returns 1 on success and 0 on contention 1456 */ 1457 int __sched rt_mutex_trylock(struct rt_mutex *lock) 1458 { 1459 if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq())) 1460 return 0; 1461 1462 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 1463 } 1464 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 1465 1466 /** 1467 * rt_mutex_unlock - unlock a rt_mutex 1468 * 1469 * @lock: the rt_mutex to be unlocked 1470 */ 1471 void __sched rt_mutex_unlock(struct rt_mutex *lock) 1472 { 1473 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 1474 } 1475 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 1476 1477 /** 1478 * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock 1479 * @lock: the rt_mutex to be unlocked 1480 * 1481 * Returns: true/false indicating whether priority adjustment is 1482 * required or not. 1483 */ 1484 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock, 1485 struct wake_q_head *wqh) 1486 { 1487 if (likely(rt_mutex_cmpxchg(lock, current, NULL))) { 1488 rt_mutex_deadlock_account_unlock(current); 1489 return false; 1490 } 1491 return rt_mutex_slowunlock(lock, wqh); 1492 } 1493 1494 /** 1495 * rt_mutex_destroy - mark a mutex unusable 1496 * @lock: the mutex to be destroyed 1497 * 1498 * This function marks the mutex uninitialized, and any subsequent 1499 * use of the mutex is forbidden. The mutex must not be locked when 1500 * this function is called. 1501 */ 1502 void rt_mutex_destroy(struct rt_mutex *lock) 1503 { 1504 WARN_ON(rt_mutex_is_locked(lock)); 1505 #ifdef CONFIG_DEBUG_RT_MUTEXES 1506 lock->magic = NULL; 1507 #endif 1508 } 1509 1510 EXPORT_SYMBOL_GPL(rt_mutex_destroy); 1511 1512 /** 1513 * __rt_mutex_init - initialize the rt lock 1514 * 1515 * @lock: the rt lock to be initialized 1516 * 1517 * Initialize the rt lock to unlocked state. 1518 * 1519 * Initializing of a locked rt lock is not allowed 1520 */ 1521 void __rt_mutex_init(struct rt_mutex *lock, const char *name) 1522 { 1523 lock->owner = NULL; 1524 raw_spin_lock_init(&lock->wait_lock); 1525 lock->waiters = RB_ROOT; 1526 lock->waiters_leftmost = NULL; 1527 1528 debug_rt_mutex_init(lock, name); 1529 } 1530 EXPORT_SYMBOL_GPL(__rt_mutex_init); 1531 1532 /** 1533 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 1534 * proxy owner 1535 * 1536 * @lock: the rt_mutex to be locked 1537 * @proxy_owner:the task to set as owner 1538 * 1539 * No locking. Caller has to do serializing itself 1540 * Special API call for PI-futex support 1541 */ 1542 void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 1543 struct task_struct *proxy_owner) 1544 { 1545 __rt_mutex_init(lock, NULL); 1546 debug_rt_mutex_proxy_lock(lock, proxy_owner); 1547 rt_mutex_set_owner(lock, proxy_owner); 1548 rt_mutex_deadlock_account_lock(lock, proxy_owner); 1549 } 1550 1551 /** 1552 * rt_mutex_proxy_unlock - release a lock on behalf of owner 1553 * 1554 * @lock: the rt_mutex to be locked 1555 * 1556 * No locking. Caller has to do serializing itself 1557 * Special API call for PI-futex support 1558 */ 1559 void rt_mutex_proxy_unlock(struct rt_mutex *lock, 1560 struct task_struct *proxy_owner) 1561 { 1562 debug_rt_mutex_proxy_unlock(lock); 1563 rt_mutex_set_owner(lock, NULL); 1564 rt_mutex_deadlock_account_unlock(proxy_owner); 1565 } 1566 1567 /** 1568 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1569 * @lock: the rt_mutex to take 1570 * @waiter: the pre-initialized rt_mutex_waiter 1571 * @task: the task to prepare 1572 * 1573 * Returns: 1574 * 0 - task blocked on lock 1575 * 1 - acquired the lock for task, caller should wake it up 1576 * <0 - error 1577 * 1578 * Special API call for FUTEX_REQUEUE_PI support. 1579 */ 1580 int rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1581 struct rt_mutex_waiter *waiter, 1582 struct task_struct *task) 1583 { 1584 int ret; 1585 1586 raw_spin_lock(&lock->wait_lock); 1587 1588 if (try_to_take_rt_mutex(lock, task, NULL)) { 1589 raw_spin_unlock(&lock->wait_lock); 1590 return 1; 1591 } 1592 1593 /* We enforce deadlock detection for futexes */ 1594 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1595 RT_MUTEX_FULL_CHAINWALK); 1596 1597 if (ret && !rt_mutex_owner(lock)) { 1598 /* 1599 * Reset the return value. We might have 1600 * returned with -EDEADLK and the owner 1601 * released the lock while we were walking the 1602 * pi chain. Let the waiter sort it out. 1603 */ 1604 ret = 0; 1605 } 1606 1607 if (unlikely(ret)) 1608 remove_waiter(lock, waiter); 1609 1610 raw_spin_unlock(&lock->wait_lock); 1611 1612 debug_rt_mutex_print_deadlock(waiter); 1613 1614 return ret; 1615 } 1616 1617 /** 1618 * rt_mutex_next_owner - return the next owner of the lock 1619 * 1620 * @lock: the rt lock query 1621 * 1622 * Returns the next owner of the lock or NULL 1623 * 1624 * Caller has to serialize against other accessors to the lock 1625 * itself. 1626 * 1627 * Special API call for PI-futex support 1628 */ 1629 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 1630 { 1631 if (!rt_mutex_has_waiters(lock)) 1632 return NULL; 1633 1634 return rt_mutex_top_waiter(lock)->task; 1635 } 1636 1637 /** 1638 * rt_mutex_finish_proxy_lock() - Complete lock acquisition 1639 * @lock: the rt_mutex we were woken on 1640 * @to: the timeout, null if none. hrtimer should already have 1641 * been started. 1642 * @waiter: the pre-initialized rt_mutex_waiter 1643 * 1644 * Complete the lock acquisition started our behalf by another thread. 1645 * 1646 * Returns: 1647 * 0 - success 1648 * <0 - error, one of -EINTR, -ETIMEDOUT 1649 * 1650 * Special API call for PI-futex requeue support 1651 */ 1652 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock, 1653 struct hrtimer_sleeper *to, 1654 struct rt_mutex_waiter *waiter) 1655 { 1656 int ret; 1657 1658 raw_spin_lock(&lock->wait_lock); 1659 1660 set_current_state(TASK_INTERRUPTIBLE); 1661 1662 /* sleep on the mutex */ 1663 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1664 1665 if (unlikely(ret)) 1666 remove_waiter(lock, waiter); 1667 1668 /* 1669 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1670 * have to fix that up. 1671 */ 1672 fixup_rt_mutex_waiters(lock); 1673 1674 raw_spin_unlock(&lock->wait_lock); 1675 1676 return ret; 1677 } 1678