1 /* 2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 3 * 4 * started by Ingo Molnar and Thomas Gleixner. 5 * 6 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 7 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 8 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 9 * Copyright (C) 2006 Esben Nielsen 10 * 11 * See Documentation/locking/rt-mutex-design.txt for details. 12 */ 13 #include <linux/spinlock.h> 14 #include <linux/export.h> 15 #include <linux/sched.h> 16 #include <linux/sched/rt.h> 17 #include <linux/sched/deadline.h> 18 #include <linux/timer.h> 19 20 #include "rtmutex_common.h" 21 22 /* 23 * lock->owner state tracking: 24 * 25 * lock->owner holds the task_struct pointer of the owner. Bit 0 26 * is used to keep track of the "lock has waiters" state. 27 * 28 * owner bit0 29 * NULL 0 lock is free (fast acquire possible) 30 * NULL 1 lock is free and has waiters and the top waiter 31 * is going to take the lock* 32 * taskpointer 0 lock is held (fast release possible) 33 * taskpointer 1 lock is held and has waiters** 34 * 35 * The fast atomic compare exchange based acquire and release is only 36 * possible when bit 0 of lock->owner is 0. 37 * 38 * (*) It also can be a transitional state when grabbing the lock 39 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 40 * we need to set the bit0 before looking at the lock, and the owner may be 41 * NULL in this small time, hence this can be a transitional state. 42 * 43 * (**) There is a small time when bit 0 is set but there are no 44 * waiters. This can happen when grabbing the lock in the slow path. 45 * To prevent a cmpxchg of the owner releasing the lock, we need to 46 * set this bit before looking at the lock. 47 */ 48 49 static void 50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 51 { 52 unsigned long val = (unsigned long)owner; 53 54 if (rt_mutex_has_waiters(lock)) 55 val |= RT_MUTEX_HAS_WAITERS; 56 57 lock->owner = (struct task_struct *)val; 58 } 59 60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 61 { 62 lock->owner = (struct task_struct *) 63 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 64 } 65 66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock) 67 { 68 if (!rt_mutex_has_waiters(lock)) 69 clear_rt_mutex_waiters(lock); 70 } 71 72 /* 73 * We can speed up the acquire/release, if there's no debugging state to be 74 * set up. 75 */ 76 #ifndef CONFIG_DEBUG_RT_MUTEXES 77 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c) 78 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c) 79 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c) 80 81 /* 82 * Callers must hold the ->wait_lock -- which is the whole purpose as we force 83 * all future threads that attempt to [Rmw] the lock to the slowpath. As such 84 * relaxed semantics suffice. 85 */ 86 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 87 { 88 unsigned long owner, *p = (unsigned long *) &lock->owner; 89 90 do { 91 owner = *p; 92 } while (cmpxchg_relaxed(p, owner, 93 owner | RT_MUTEX_HAS_WAITERS) != owner); 94 } 95 96 /* 97 * Safe fastpath aware unlock: 98 * 1) Clear the waiters bit 99 * 2) Drop lock->wait_lock 100 * 3) Try to unlock the lock with cmpxchg 101 */ 102 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, 103 unsigned long flags) 104 __releases(lock->wait_lock) 105 { 106 struct task_struct *owner = rt_mutex_owner(lock); 107 108 clear_rt_mutex_waiters(lock); 109 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 110 /* 111 * If a new waiter comes in between the unlock and the cmpxchg 112 * we have two situations: 113 * 114 * unlock(wait_lock); 115 * lock(wait_lock); 116 * cmpxchg(p, owner, 0) == owner 117 * mark_rt_mutex_waiters(lock); 118 * acquire(lock); 119 * or: 120 * 121 * unlock(wait_lock); 122 * lock(wait_lock); 123 * mark_rt_mutex_waiters(lock); 124 * 125 * cmpxchg(p, owner, 0) != owner 126 * enqueue_waiter(); 127 * unlock(wait_lock); 128 * lock(wait_lock); 129 * wake waiter(); 130 * unlock(wait_lock); 131 * lock(wait_lock); 132 * acquire(lock); 133 */ 134 return rt_mutex_cmpxchg_release(lock, owner, NULL); 135 } 136 137 #else 138 # define rt_mutex_cmpxchg_relaxed(l,c,n) (0) 139 # define rt_mutex_cmpxchg_acquire(l,c,n) (0) 140 # define rt_mutex_cmpxchg_release(l,c,n) (0) 141 142 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 143 { 144 lock->owner = (struct task_struct *) 145 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 146 } 147 148 /* 149 * Simple slow path only version: lock->owner is protected by lock->wait_lock. 150 */ 151 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, 152 unsigned long flags) 153 __releases(lock->wait_lock) 154 { 155 lock->owner = NULL; 156 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 157 return true; 158 } 159 #endif 160 161 static inline int 162 rt_mutex_waiter_less(struct rt_mutex_waiter *left, 163 struct rt_mutex_waiter *right) 164 { 165 if (left->prio < right->prio) 166 return 1; 167 168 /* 169 * If both waiters have dl_prio(), we check the deadlines of the 170 * associated tasks. 171 * If left waiter has a dl_prio(), and we didn't return 1 above, 172 * then right waiter has a dl_prio() too. 173 */ 174 if (dl_prio(left->prio)) 175 return dl_time_before(left->task->dl.deadline, 176 right->task->dl.deadline); 177 178 return 0; 179 } 180 181 static void 182 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 183 { 184 struct rb_node **link = &lock->waiters.rb_node; 185 struct rb_node *parent = NULL; 186 struct rt_mutex_waiter *entry; 187 int leftmost = 1; 188 189 while (*link) { 190 parent = *link; 191 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry); 192 if (rt_mutex_waiter_less(waiter, entry)) { 193 link = &parent->rb_left; 194 } else { 195 link = &parent->rb_right; 196 leftmost = 0; 197 } 198 } 199 200 if (leftmost) 201 lock->waiters_leftmost = &waiter->tree_entry; 202 203 rb_link_node(&waiter->tree_entry, parent, link); 204 rb_insert_color(&waiter->tree_entry, &lock->waiters); 205 } 206 207 static void 208 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 209 { 210 if (RB_EMPTY_NODE(&waiter->tree_entry)) 211 return; 212 213 if (lock->waiters_leftmost == &waiter->tree_entry) 214 lock->waiters_leftmost = rb_next(&waiter->tree_entry); 215 216 rb_erase(&waiter->tree_entry, &lock->waiters); 217 RB_CLEAR_NODE(&waiter->tree_entry); 218 } 219 220 static void 221 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 222 { 223 struct rb_node **link = &task->pi_waiters.rb_node; 224 struct rb_node *parent = NULL; 225 struct rt_mutex_waiter *entry; 226 int leftmost = 1; 227 228 while (*link) { 229 parent = *link; 230 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry); 231 if (rt_mutex_waiter_less(waiter, entry)) { 232 link = &parent->rb_left; 233 } else { 234 link = &parent->rb_right; 235 leftmost = 0; 236 } 237 } 238 239 if (leftmost) 240 task->pi_waiters_leftmost = &waiter->pi_tree_entry; 241 242 rb_link_node(&waiter->pi_tree_entry, parent, link); 243 rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters); 244 } 245 246 static void 247 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 248 { 249 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 250 return; 251 252 if (task->pi_waiters_leftmost == &waiter->pi_tree_entry) 253 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry); 254 255 rb_erase(&waiter->pi_tree_entry, &task->pi_waiters); 256 RB_CLEAR_NODE(&waiter->pi_tree_entry); 257 } 258 259 /* 260 * Calculate task priority from the waiter tree priority 261 * 262 * Return task->normal_prio when the waiter tree is empty or when 263 * the waiter is not allowed to do priority boosting 264 */ 265 int rt_mutex_getprio(struct task_struct *task) 266 { 267 if (likely(!task_has_pi_waiters(task))) 268 return task->normal_prio; 269 270 return min(task_top_pi_waiter(task)->prio, 271 task->normal_prio); 272 } 273 274 struct task_struct *rt_mutex_get_top_task(struct task_struct *task) 275 { 276 if (likely(!task_has_pi_waiters(task))) 277 return NULL; 278 279 return task_top_pi_waiter(task)->task; 280 } 281 282 /* 283 * Called by sched_setscheduler() to get the priority which will be 284 * effective after the change. 285 */ 286 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio) 287 { 288 if (!task_has_pi_waiters(task)) 289 return newprio; 290 291 if (task_top_pi_waiter(task)->task->prio <= newprio) 292 return task_top_pi_waiter(task)->task->prio; 293 return newprio; 294 } 295 296 /* 297 * Adjust the priority of a task, after its pi_waiters got modified. 298 * 299 * This can be both boosting and unboosting. task->pi_lock must be held. 300 */ 301 static void __rt_mutex_adjust_prio(struct task_struct *task) 302 { 303 int prio = rt_mutex_getprio(task); 304 305 if (task->prio != prio || dl_prio(prio)) 306 rt_mutex_setprio(task, prio); 307 } 308 309 /* 310 * Adjust task priority (undo boosting). Called from the exit path of 311 * rt_mutex_slowunlock() and rt_mutex_slowlock(). 312 * 313 * (Note: We do this outside of the protection of lock->wait_lock to 314 * allow the lock to be taken while or before we readjust the priority 315 * of task. We do not use the spin_xx_mutex() variants here as we are 316 * outside of the debug path.) 317 */ 318 void rt_mutex_adjust_prio(struct task_struct *task) 319 { 320 unsigned long flags; 321 322 raw_spin_lock_irqsave(&task->pi_lock, flags); 323 __rt_mutex_adjust_prio(task); 324 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 325 } 326 327 /* 328 * Deadlock detection is conditional: 329 * 330 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted 331 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. 332 * 333 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always 334 * conducted independent of the detect argument. 335 * 336 * If the waiter argument is NULL this indicates the deboost path and 337 * deadlock detection is disabled independent of the detect argument 338 * and the config settings. 339 */ 340 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, 341 enum rtmutex_chainwalk chwalk) 342 { 343 /* 344 * This is just a wrapper function for the following call, 345 * because debug_rt_mutex_detect_deadlock() smells like a magic 346 * debug feature and I wanted to keep the cond function in the 347 * main source file along with the comments instead of having 348 * two of the same in the headers. 349 */ 350 return debug_rt_mutex_detect_deadlock(waiter, chwalk); 351 } 352 353 /* 354 * Max number of times we'll walk the boosting chain: 355 */ 356 int max_lock_depth = 1024; 357 358 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) 359 { 360 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; 361 } 362 363 /* 364 * Adjust the priority chain. Also used for deadlock detection. 365 * Decreases task's usage by one - may thus free the task. 366 * 367 * @task: the task owning the mutex (owner) for which a chain walk is 368 * probably needed 369 * @chwalk: do we have to carry out deadlock detection? 370 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 371 * things for a task that has just got its priority adjusted, and 372 * is waiting on a mutex) 373 * @next_lock: the mutex on which the owner of @orig_lock was blocked before 374 * we dropped its pi_lock. Is never dereferenced, only used for 375 * comparison to detect lock chain changes. 376 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 377 * its priority to the mutex owner (can be NULL in the case 378 * depicted above or if the top waiter is gone away and we are 379 * actually deboosting the owner) 380 * @top_task: the current top waiter 381 * 382 * Returns 0 or -EDEADLK. 383 * 384 * Chain walk basics and protection scope 385 * 386 * [R] refcount on task 387 * [P] task->pi_lock held 388 * [L] rtmutex->wait_lock held 389 * 390 * Step Description Protected by 391 * function arguments: 392 * @task [R] 393 * @orig_lock if != NULL @top_task is blocked on it 394 * @next_lock Unprotected. Cannot be 395 * dereferenced. Only used for 396 * comparison. 397 * @orig_waiter if != NULL @top_task is blocked on it 398 * @top_task current, or in case of proxy 399 * locking protected by calling 400 * code 401 * again: 402 * loop_sanity_check(); 403 * retry: 404 * [1] lock(task->pi_lock); [R] acquire [P] 405 * [2] waiter = task->pi_blocked_on; [P] 406 * [3] check_exit_conditions_1(); [P] 407 * [4] lock = waiter->lock; [P] 408 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L] 409 * unlock(task->pi_lock); release [P] 410 * goto retry; 411 * } 412 * [6] check_exit_conditions_2(); [P] + [L] 413 * [7] requeue_lock_waiter(lock, waiter); [P] + [L] 414 * [8] unlock(task->pi_lock); release [P] 415 * put_task_struct(task); release [R] 416 * [9] check_exit_conditions_3(); [L] 417 * [10] task = owner(lock); [L] 418 * get_task_struct(task); [L] acquire [R] 419 * lock(task->pi_lock); [L] acquire [P] 420 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L] 421 * [12] check_exit_conditions_4(); [P] + [L] 422 * [13] unlock(task->pi_lock); release [P] 423 * unlock(lock->wait_lock); release [L] 424 * goto again; 425 */ 426 static int rt_mutex_adjust_prio_chain(struct task_struct *task, 427 enum rtmutex_chainwalk chwalk, 428 struct rt_mutex *orig_lock, 429 struct rt_mutex *next_lock, 430 struct rt_mutex_waiter *orig_waiter, 431 struct task_struct *top_task) 432 { 433 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 434 struct rt_mutex_waiter *prerequeue_top_waiter; 435 int ret = 0, depth = 0; 436 struct rt_mutex *lock; 437 bool detect_deadlock; 438 bool requeue = true; 439 440 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk); 441 442 /* 443 * The (de)boosting is a step by step approach with a lot of 444 * pitfalls. We want this to be preemptible and we want hold a 445 * maximum of two locks per step. So we have to check 446 * carefully whether things change under us. 447 */ 448 again: 449 /* 450 * We limit the lock chain length for each invocation. 451 */ 452 if (++depth > max_lock_depth) { 453 static int prev_max; 454 455 /* 456 * Print this only once. If the admin changes the limit, 457 * print a new message when reaching the limit again. 458 */ 459 if (prev_max != max_lock_depth) { 460 prev_max = max_lock_depth; 461 printk(KERN_WARNING "Maximum lock depth %d reached " 462 "task: %s (%d)\n", max_lock_depth, 463 top_task->comm, task_pid_nr(top_task)); 464 } 465 put_task_struct(task); 466 467 return -EDEADLK; 468 } 469 470 /* 471 * We are fully preemptible here and only hold the refcount on 472 * @task. So everything can have changed under us since the 473 * caller or our own code below (goto retry/again) dropped all 474 * locks. 475 */ 476 retry: 477 /* 478 * [1] Task cannot go away as we did a get_task() before ! 479 */ 480 raw_spin_lock_irq(&task->pi_lock); 481 482 /* 483 * [2] Get the waiter on which @task is blocked on. 484 */ 485 waiter = task->pi_blocked_on; 486 487 /* 488 * [3] check_exit_conditions_1() protected by task->pi_lock. 489 */ 490 491 /* 492 * Check whether the end of the boosting chain has been 493 * reached or the state of the chain has changed while we 494 * dropped the locks. 495 */ 496 if (!waiter) 497 goto out_unlock_pi; 498 499 /* 500 * Check the orig_waiter state. After we dropped the locks, 501 * the previous owner of the lock might have released the lock. 502 */ 503 if (orig_waiter && !rt_mutex_owner(orig_lock)) 504 goto out_unlock_pi; 505 506 /* 507 * We dropped all locks after taking a refcount on @task, so 508 * the task might have moved on in the lock chain or even left 509 * the chain completely and blocks now on an unrelated lock or 510 * on @orig_lock. 511 * 512 * We stored the lock on which @task was blocked in @next_lock, 513 * so we can detect the chain change. 514 */ 515 if (next_lock != waiter->lock) 516 goto out_unlock_pi; 517 518 /* 519 * Drop out, when the task has no waiters. Note, 520 * top_waiter can be NULL, when we are in the deboosting 521 * mode! 522 */ 523 if (top_waiter) { 524 if (!task_has_pi_waiters(task)) 525 goto out_unlock_pi; 526 /* 527 * If deadlock detection is off, we stop here if we 528 * are not the top pi waiter of the task. If deadlock 529 * detection is enabled we continue, but stop the 530 * requeueing in the chain walk. 531 */ 532 if (top_waiter != task_top_pi_waiter(task)) { 533 if (!detect_deadlock) 534 goto out_unlock_pi; 535 else 536 requeue = false; 537 } 538 } 539 540 /* 541 * If the waiter priority is the same as the task priority 542 * then there is no further priority adjustment necessary. If 543 * deadlock detection is off, we stop the chain walk. If its 544 * enabled we continue, but stop the requeueing in the chain 545 * walk. 546 */ 547 if (waiter->prio == task->prio) { 548 if (!detect_deadlock) 549 goto out_unlock_pi; 550 else 551 requeue = false; 552 } 553 554 /* 555 * [4] Get the next lock 556 */ 557 lock = waiter->lock; 558 /* 559 * [5] We need to trylock here as we are holding task->pi_lock, 560 * which is the reverse lock order versus the other rtmutex 561 * operations. 562 */ 563 if (!raw_spin_trylock(&lock->wait_lock)) { 564 raw_spin_unlock_irq(&task->pi_lock); 565 cpu_relax(); 566 goto retry; 567 } 568 569 /* 570 * [6] check_exit_conditions_2() protected by task->pi_lock and 571 * lock->wait_lock. 572 * 573 * Deadlock detection. If the lock is the same as the original 574 * lock which caused us to walk the lock chain or if the 575 * current lock is owned by the task which initiated the chain 576 * walk, we detected a deadlock. 577 */ 578 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 579 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock); 580 raw_spin_unlock(&lock->wait_lock); 581 ret = -EDEADLK; 582 goto out_unlock_pi; 583 } 584 585 /* 586 * If we just follow the lock chain for deadlock detection, no 587 * need to do all the requeue operations. To avoid a truckload 588 * of conditionals around the various places below, just do the 589 * minimum chain walk checks. 590 */ 591 if (!requeue) { 592 /* 593 * No requeue[7] here. Just release @task [8] 594 */ 595 raw_spin_unlock(&task->pi_lock); 596 put_task_struct(task); 597 598 /* 599 * [9] check_exit_conditions_3 protected by lock->wait_lock. 600 * If there is no owner of the lock, end of chain. 601 */ 602 if (!rt_mutex_owner(lock)) { 603 raw_spin_unlock_irq(&lock->wait_lock); 604 return 0; 605 } 606 607 /* [10] Grab the next task, i.e. owner of @lock */ 608 task = rt_mutex_owner(lock); 609 get_task_struct(task); 610 raw_spin_lock(&task->pi_lock); 611 612 /* 613 * No requeue [11] here. We just do deadlock detection. 614 * 615 * [12] Store whether owner is blocked 616 * itself. Decision is made after dropping the locks 617 */ 618 next_lock = task_blocked_on_lock(task); 619 /* 620 * Get the top waiter for the next iteration 621 */ 622 top_waiter = rt_mutex_top_waiter(lock); 623 624 /* [13] Drop locks */ 625 raw_spin_unlock(&task->pi_lock); 626 raw_spin_unlock_irq(&lock->wait_lock); 627 628 /* If owner is not blocked, end of chain. */ 629 if (!next_lock) 630 goto out_put_task; 631 goto again; 632 } 633 634 /* 635 * Store the current top waiter before doing the requeue 636 * operation on @lock. We need it for the boost/deboost 637 * decision below. 638 */ 639 prerequeue_top_waiter = rt_mutex_top_waiter(lock); 640 641 /* [7] Requeue the waiter in the lock waiter tree. */ 642 rt_mutex_dequeue(lock, waiter); 643 waiter->prio = task->prio; 644 rt_mutex_enqueue(lock, waiter); 645 646 /* [8] Release the task */ 647 raw_spin_unlock(&task->pi_lock); 648 put_task_struct(task); 649 650 /* 651 * [9] check_exit_conditions_3 protected by lock->wait_lock. 652 * 653 * We must abort the chain walk if there is no lock owner even 654 * in the dead lock detection case, as we have nothing to 655 * follow here. This is the end of the chain we are walking. 656 */ 657 if (!rt_mutex_owner(lock)) { 658 /* 659 * If the requeue [7] above changed the top waiter, 660 * then we need to wake the new top waiter up to try 661 * to get the lock. 662 */ 663 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) 664 wake_up_process(rt_mutex_top_waiter(lock)->task); 665 raw_spin_unlock_irq(&lock->wait_lock); 666 return 0; 667 } 668 669 /* [10] Grab the next task, i.e. the owner of @lock */ 670 task = rt_mutex_owner(lock); 671 get_task_struct(task); 672 raw_spin_lock(&task->pi_lock); 673 674 /* [11] requeue the pi waiters if necessary */ 675 if (waiter == rt_mutex_top_waiter(lock)) { 676 /* 677 * The waiter became the new top (highest priority) 678 * waiter on the lock. Replace the previous top waiter 679 * in the owner tasks pi waiters tree with this waiter 680 * and adjust the priority of the owner. 681 */ 682 rt_mutex_dequeue_pi(task, prerequeue_top_waiter); 683 rt_mutex_enqueue_pi(task, waiter); 684 __rt_mutex_adjust_prio(task); 685 686 } else if (prerequeue_top_waiter == waiter) { 687 /* 688 * The waiter was the top waiter on the lock, but is 689 * no longer the top prority waiter. Replace waiter in 690 * the owner tasks pi waiters tree with the new top 691 * (highest priority) waiter and adjust the priority 692 * of the owner. 693 * The new top waiter is stored in @waiter so that 694 * @waiter == @top_waiter evaluates to true below and 695 * we continue to deboost the rest of the chain. 696 */ 697 rt_mutex_dequeue_pi(task, waiter); 698 waiter = rt_mutex_top_waiter(lock); 699 rt_mutex_enqueue_pi(task, waiter); 700 __rt_mutex_adjust_prio(task); 701 } else { 702 /* 703 * Nothing changed. No need to do any priority 704 * adjustment. 705 */ 706 } 707 708 /* 709 * [12] check_exit_conditions_4() protected by task->pi_lock 710 * and lock->wait_lock. The actual decisions are made after we 711 * dropped the locks. 712 * 713 * Check whether the task which owns the current lock is pi 714 * blocked itself. If yes we store a pointer to the lock for 715 * the lock chain change detection above. After we dropped 716 * task->pi_lock next_lock cannot be dereferenced anymore. 717 */ 718 next_lock = task_blocked_on_lock(task); 719 /* 720 * Store the top waiter of @lock for the end of chain walk 721 * decision below. 722 */ 723 top_waiter = rt_mutex_top_waiter(lock); 724 725 /* [13] Drop the locks */ 726 raw_spin_unlock(&task->pi_lock); 727 raw_spin_unlock_irq(&lock->wait_lock); 728 729 /* 730 * Make the actual exit decisions [12], based on the stored 731 * values. 732 * 733 * We reached the end of the lock chain. Stop right here. No 734 * point to go back just to figure that out. 735 */ 736 if (!next_lock) 737 goto out_put_task; 738 739 /* 740 * If the current waiter is not the top waiter on the lock, 741 * then we can stop the chain walk here if we are not in full 742 * deadlock detection mode. 743 */ 744 if (!detect_deadlock && waiter != top_waiter) 745 goto out_put_task; 746 747 goto again; 748 749 out_unlock_pi: 750 raw_spin_unlock_irq(&task->pi_lock); 751 out_put_task: 752 put_task_struct(task); 753 754 return ret; 755 } 756 757 /* 758 * Try to take an rt-mutex 759 * 760 * Must be called with lock->wait_lock held and interrupts disabled 761 * 762 * @lock: The lock to be acquired. 763 * @task: The task which wants to acquire the lock 764 * @waiter: The waiter that is queued to the lock's wait tree if the 765 * callsite called task_blocked_on_lock(), otherwise NULL 766 */ 767 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 768 struct rt_mutex_waiter *waiter) 769 { 770 /* 771 * Before testing whether we can acquire @lock, we set the 772 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all 773 * other tasks which try to modify @lock into the slow path 774 * and they serialize on @lock->wait_lock. 775 * 776 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state 777 * as explained at the top of this file if and only if: 778 * 779 * - There is a lock owner. The caller must fixup the 780 * transient state if it does a trylock or leaves the lock 781 * function due to a signal or timeout. 782 * 783 * - @task acquires the lock and there are no other 784 * waiters. This is undone in rt_mutex_set_owner(@task) at 785 * the end of this function. 786 */ 787 mark_rt_mutex_waiters(lock); 788 789 /* 790 * If @lock has an owner, give up. 791 */ 792 if (rt_mutex_owner(lock)) 793 return 0; 794 795 /* 796 * If @waiter != NULL, @task has already enqueued the waiter 797 * into @lock waiter tree. If @waiter == NULL then this is a 798 * trylock attempt. 799 */ 800 if (waiter) { 801 /* 802 * If waiter is not the highest priority waiter of 803 * @lock, give up. 804 */ 805 if (waiter != rt_mutex_top_waiter(lock)) 806 return 0; 807 808 /* 809 * We can acquire the lock. Remove the waiter from the 810 * lock waiters tree. 811 */ 812 rt_mutex_dequeue(lock, waiter); 813 814 } else { 815 /* 816 * If the lock has waiters already we check whether @task is 817 * eligible to take over the lock. 818 * 819 * If there are no other waiters, @task can acquire 820 * the lock. @task->pi_blocked_on is NULL, so it does 821 * not need to be dequeued. 822 */ 823 if (rt_mutex_has_waiters(lock)) { 824 /* 825 * If @task->prio is greater than or equal to 826 * the top waiter priority (kernel view), 827 * @task lost. 828 */ 829 if (task->prio >= rt_mutex_top_waiter(lock)->prio) 830 return 0; 831 832 /* 833 * The current top waiter stays enqueued. We 834 * don't have to change anything in the lock 835 * waiters order. 836 */ 837 } else { 838 /* 839 * No waiters. Take the lock without the 840 * pi_lock dance.@task->pi_blocked_on is NULL 841 * and we have no waiters to enqueue in @task 842 * pi waiters tree. 843 */ 844 goto takeit; 845 } 846 } 847 848 /* 849 * Clear @task->pi_blocked_on. Requires protection by 850 * @task->pi_lock. Redundant operation for the @waiter == NULL 851 * case, but conditionals are more expensive than a redundant 852 * store. 853 */ 854 raw_spin_lock(&task->pi_lock); 855 task->pi_blocked_on = NULL; 856 /* 857 * Finish the lock acquisition. @task is the new owner. If 858 * other waiters exist we have to insert the highest priority 859 * waiter into @task->pi_waiters tree. 860 */ 861 if (rt_mutex_has_waiters(lock)) 862 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock)); 863 raw_spin_unlock(&task->pi_lock); 864 865 takeit: 866 /* We got the lock. */ 867 debug_rt_mutex_lock(lock); 868 869 /* 870 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there 871 * are still waiters or clears it. 872 */ 873 rt_mutex_set_owner(lock, task); 874 875 rt_mutex_deadlock_account_lock(lock, task); 876 877 return 1; 878 } 879 880 /* 881 * Task blocks on lock. 882 * 883 * Prepare waiter and propagate pi chain 884 * 885 * This must be called with lock->wait_lock held and interrupts disabled 886 */ 887 static int task_blocks_on_rt_mutex(struct rt_mutex *lock, 888 struct rt_mutex_waiter *waiter, 889 struct task_struct *task, 890 enum rtmutex_chainwalk chwalk) 891 { 892 struct task_struct *owner = rt_mutex_owner(lock); 893 struct rt_mutex_waiter *top_waiter = waiter; 894 struct rt_mutex *next_lock; 895 int chain_walk = 0, res; 896 897 /* 898 * Early deadlock detection. We really don't want the task to 899 * enqueue on itself just to untangle the mess later. It's not 900 * only an optimization. We drop the locks, so another waiter 901 * can come in before the chain walk detects the deadlock. So 902 * the other will detect the deadlock and return -EDEADLOCK, 903 * which is wrong, as the other waiter is not in a deadlock 904 * situation. 905 */ 906 if (owner == task) 907 return -EDEADLK; 908 909 raw_spin_lock(&task->pi_lock); 910 __rt_mutex_adjust_prio(task); 911 waiter->task = task; 912 waiter->lock = lock; 913 waiter->prio = task->prio; 914 915 /* Get the top priority waiter on the lock */ 916 if (rt_mutex_has_waiters(lock)) 917 top_waiter = rt_mutex_top_waiter(lock); 918 rt_mutex_enqueue(lock, waiter); 919 920 task->pi_blocked_on = waiter; 921 922 raw_spin_unlock(&task->pi_lock); 923 924 if (!owner) 925 return 0; 926 927 raw_spin_lock(&owner->pi_lock); 928 if (waiter == rt_mutex_top_waiter(lock)) { 929 rt_mutex_dequeue_pi(owner, top_waiter); 930 rt_mutex_enqueue_pi(owner, waiter); 931 932 __rt_mutex_adjust_prio(owner); 933 if (owner->pi_blocked_on) 934 chain_walk = 1; 935 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { 936 chain_walk = 1; 937 } 938 939 /* Store the lock on which owner is blocked or NULL */ 940 next_lock = task_blocked_on_lock(owner); 941 942 raw_spin_unlock(&owner->pi_lock); 943 /* 944 * Even if full deadlock detection is on, if the owner is not 945 * blocked itself, we can avoid finding this out in the chain 946 * walk. 947 */ 948 if (!chain_walk || !next_lock) 949 return 0; 950 951 /* 952 * The owner can't disappear while holding a lock, 953 * so the owner struct is protected by wait_lock. 954 * Gets dropped in rt_mutex_adjust_prio_chain()! 955 */ 956 get_task_struct(owner); 957 958 raw_spin_unlock_irq(&lock->wait_lock); 959 960 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock, 961 next_lock, waiter, task); 962 963 raw_spin_lock_irq(&lock->wait_lock); 964 965 return res; 966 } 967 968 /* 969 * Remove the top waiter from the current tasks pi waiter tree and 970 * queue it up. 971 * 972 * Called with lock->wait_lock held and interrupts disabled. 973 */ 974 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q, 975 struct rt_mutex *lock) 976 { 977 struct rt_mutex_waiter *waiter; 978 979 raw_spin_lock(¤t->pi_lock); 980 981 waiter = rt_mutex_top_waiter(lock); 982 983 /* 984 * Remove it from current->pi_waiters. We do not adjust a 985 * possible priority boost right now. We execute wakeup in the 986 * boosted mode and go back to normal after releasing 987 * lock->wait_lock. 988 */ 989 rt_mutex_dequeue_pi(current, waiter); 990 991 /* 992 * As we are waking up the top waiter, and the waiter stays 993 * queued on the lock until it gets the lock, this lock 994 * obviously has waiters. Just set the bit here and this has 995 * the added benefit of forcing all new tasks into the 996 * slow path making sure no task of lower priority than 997 * the top waiter can steal this lock. 998 */ 999 lock->owner = (void *) RT_MUTEX_HAS_WAITERS; 1000 1001 raw_spin_unlock(¤t->pi_lock); 1002 1003 wake_q_add(wake_q, waiter->task); 1004 } 1005 1006 /* 1007 * Remove a waiter from a lock and give up 1008 * 1009 * Must be called with lock->wait_lock held and interrupts disabled. I must 1010 * have just failed to try_to_take_rt_mutex(). 1011 */ 1012 static void remove_waiter(struct rt_mutex *lock, 1013 struct rt_mutex_waiter *waiter) 1014 { 1015 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); 1016 struct task_struct *owner = rt_mutex_owner(lock); 1017 struct rt_mutex *next_lock; 1018 1019 raw_spin_lock(¤t->pi_lock); 1020 rt_mutex_dequeue(lock, waiter); 1021 current->pi_blocked_on = NULL; 1022 raw_spin_unlock(¤t->pi_lock); 1023 1024 /* 1025 * Only update priority if the waiter was the highest priority 1026 * waiter of the lock and there is an owner to update. 1027 */ 1028 if (!owner || !is_top_waiter) 1029 return; 1030 1031 raw_spin_lock(&owner->pi_lock); 1032 1033 rt_mutex_dequeue_pi(owner, waiter); 1034 1035 if (rt_mutex_has_waiters(lock)) 1036 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); 1037 1038 __rt_mutex_adjust_prio(owner); 1039 1040 /* Store the lock on which owner is blocked or NULL */ 1041 next_lock = task_blocked_on_lock(owner); 1042 1043 raw_spin_unlock(&owner->pi_lock); 1044 1045 /* 1046 * Don't walk the chain, if the owner task is not blocked 1047 * itself. 1048 */ 1049 if (!next_lock) 1050 return; 1051 1052 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1053 get_task_struct(owner); 1054 1055 raw_spin_unlock_irq(&lock->wait_lock); 1056 1057 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, 1058 next_lock, NULL, current); 1059 1060 raw_spin_lock_irq(&lock->wait_lock); 1061 } 1062 1063 /* 1064 * Recheck the pi chain, in case we got a priority setting 1065 * 1066 * Called from sched_setscheduler 1067 */ 1068 void rt_mutex_adjust_pi(struct task_struct *task) 1069 { 1070 struct rt_mutex_waiter *waiter; 1071 struct rt_mutex *next_lock; 1072 unsigned long flags; 1073 1074 raw_spin_lock_irqsave(&task->pi_lock, flags); 1075 1076 waiter = task->pi_blocked_on; 1077 if (!waiter || (waiter->prio == task->prio && 1078 !dl_prio(task->prio))) { 1079 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1080 return; 1081 } 1082 next_lock = waiter->lock; 1083 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1084 1085 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1086 get_task_struct(task); 1087 1088 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 1089 next_lock, NULL, task); 1090 } 1091 1092 /** 1093 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 1094 * @lock: the rt_mutex to take 1095 * @state: the state the task should block in (TASK_INTERRUPTIBLE 1096 * or TASK_UNINTERRUPTIBLE) 1097 * @timeout: the pre-initialized and started timer, or NULL for none 1098 * @waiter: the pre-initialized rt_mutex_waiter 1099 * 1100 * Must be called with lock->wait_lock held and interrupts disabled 1101 */ 1102 static int __sched 1103 __rt_mutex_slowlock(struct rt_mutex *lock, int state, 1104 struct hrtimer_sleeper *timeout, 1105 struct rt_mutex_waiter *waiter) 1106 { 1107 int ret = 0; 1108 1109 for (;;) { 1110 /* Try to acquire the lock: */ 1111 if (try_to_take_rt_mutex(lock, current, waiter)) 1112 break; 1113 1114 /* 1115 * TASK_INTERRUPTIBLE checks for signals and 1116 * timeout. Ignored otherwise. 1117 */ 1118 if (unlikely(state == TASK_INTERRUPTIBLE)) { 1119 /* Signal pending? */ 1120 if (signal_pending(current)) 1121 ret = -EINTR; 1122 if (timeout && !timeout->task) 1123 ret = -ETIMEDOUT; 1124 if (ret) 1125 break; 1126 } 1127 1128 raw_spin_unlock_irq(&lock->wait_lock); 1129 1130 debug_rt_mutex_print_deadlock(waiter); 1131 1132 schedule(); 1133 1134 raw_spin_lock_irq(&lock->wait_lock); 1135 set_current_state(state); 1136 } 1137 1138 __set_current_state(TASK_RUNNING); 1139 return ret; 1140 } 1141 1142 static void rt_mutex_handle_deadlock(int res, int detect_deadlock, 1143 struct rt_mutex_waiter *w) 1144 { 1145 /* 1146 * If the result is not -EDEADLOCK or the caller requested 1147 * deadlock detection, nothing to do here. 1148 */ 1149 if (res != -EDEADLOCK || detect_deadlock) 1150 return; 1151 1152 /* 1153 * Yell lowdly and stop the task right here. 1154 */ 1155 rt_mutex_print_deadlock(w); 1156 while (1) { 1157 set_current_state(TASK_INTERRUPTIBLE); 1158 schedule(); 1159 } 1160 } 1161 1162 /* 1163 * Slow path lock function: 1164 */ 1165 static int __sched 1166 rt_mutex_slowlock(struct rt_mutex *lock, int state, 1167 struct hrtimer_sleeper *timeout, 1168 enum rtmutex_chainwalk chwalk) 1169 { 1170 struct rt_mutex_waiter waiter; 1171 unsigned long flags; 1172 int ret = 0; 1173 1174 debug_rt_mutex_init_waiter(&waiter); 1175 RB_CLEAR_NODE(&waiter.pi_tree_entry); 1176 RB_CLEAR_NODE(&waiter.tree_entry); 1177 1178 /* 1179 * Technically we could use raw_spin_[un]lock_irq() here, but this can 1180 * be called in early boot if the cmpxchg() fast path is disabled 1181 * (debug, no architecture support). In this case we will acquire the 1182 * rtmutex with lock->wait_lock held. But we cannot unconditionally 1183 * enable interrupts in that early boot case. So we need to use the 1184 * irqsave/restore variants. 1185 */ 1186 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1187 1188 /* Try to acquire the lock again: */ 1189 if (try_to_take_rt_mutex(lock, current, NULL)) { 1190 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1191 return 0; 1192 } 1193 1194 set_current_state(state); 1195 1196 /* Setup the timer, when timeout != NULL */ 1197 if (unlikely(timeout)) 1198 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 1199 1200 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk); 1201 1202 if (likely(!ret)) 1203 /* sleep on the mutex */ 1204 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 1205 1206 if (unlikely(ret)) { 1207 __set_current_state(TASK_RUNNING); 1208 if (rt_mutex_has_waiters(lock)) 1209 remove_waiter(lock, &waiter); 1210 rt_mutex_handle_deadlock(ret, chwalk, &waiter); 1211 } 1212 1213 /* 1214 * try_to_take_rt_mutex() sets the waiter bit 1215 * unconditionally. We might have to fix that up. 1216 */ 1217 fixup_rt_mutex_waiters(lock); 1218 1219 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1220 1221 /* Remove pending timer: */ 1222 if (unlikely(timeout)) 1223 hrtimer_cancel(&timeout->timer); 1224 1225 debug_rt_mutex_free_waiter(&waiter); 1226 1227 return ret; 1228 } 1229 1230 /* 1231 * Slow path try-lock function: 1232 */ 1233 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock) 1234 { 1235 unsigned long flags; 1236 int ret; 1237 1238 /* 1239 * If the lock already has an owner we fail to get the lock. 1240 * This can be done without taking the @lock->wait_lock as 1241 * it is only being read, and this is a trylock anyway. 1242 */ 1243 if (rt_mutex_owner(lock)) 1244 return 0; 1245 1246 /* 1247 * The mutex has currently no owner. Lock the wait lock and try to 1248 * acquire the lock. We use irqsave here to support early boot calls. 1249 */ 1250 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1251 1252 ret = try_to_take_rt_mutex(lock, current, NULL); 1253 1254 /* 1255 * try_to_take_rt_mutex() sets the lock waiters bit 1256 * unconditionally. Clean this up. 1257 */ 1258 fixup_rt_mutex_waiters(lock); 1259 1260 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1261 1262 return ret; 1263 } 1264 1265 /* 1266 * Slow path to release a rt-mutex. 1267 * Return whether the current task needs to undo a potential priority boosting. 1268 */ 1269 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock, 1270 struct wake_q_head *wake_q) 1271 { 1272 unsigned long flags; 1273 1274 /* irqsave required to support early boot calls */ 1275 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1276 1277 debug_rt_mutex_unlock(lock); 1278 1279 rt_mutex_deadlock_account_unlock(current); 1280 1281 /* 1282 * We must be careful here if the fast path is enabled. If we 1283 * have no waiters queued we cannot set owner to NULL here 1284 * because of: 1285 * 1286 * foo->lock->owner = NULL; 1287 * rtmutex_lock(foo->lock); <- fast path 1288 * free = atomic_dec_and_test(foo->refcnt); 1289 * rtmutex_unlock(foo->lock); <- fast path 1290 * if (free) 1291 * kfree(foo); 1292 * raw_spin_unlock(foo->lock->wait_lock); 1293 * 1294 * So for the fastpath enabled kernel: 1295 * 1296 * Nothing can set the waiters bit as long as we hold 1297 * lock->wait_lock. So we do the following sequence: 1298 * 1299 * owner = rt_mutex_owner(lock); 1300 * clear_rt_mutex_waiters(lock); 1301 * raw_spin_unlock(&lock->wait_lock); 1302 * if (cmpxchg(&lock->owner, owner, 0) == owner) 1303 * return; 1304 * goto retry; 1305 * 1306 * The fastpath disabled variant is simple as all access to 1307 * lock->owner is serialized by lock->wait_lock: 1308 * 1309 * lock->owner = NULL; 1310 * raw_spin_unlock(&lock->wait_lock); 1311 */ 1312 while (!rt_mutex_has_waiters(lock)) { 1313 /* Drops lock->wait_lock ! */ 1314 if (unlock_rt_mutex_safe(lock, flags) == true) 1315 return false; 1316 /* Relock the rtmutex and try again */ 1317 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1318 } 1319 1320 /* 1321 * The wakeup next waiter path does not suffer from the above 1322 * race. See the comments there. 1323 * 1324 * Queue the next waiter for wakeup once we release the wait_lock. 1325 */ 1326 mark_wakeup_next_waiter(wake_q, lock); 1327 1328 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1329 1330 /* check PI boosting */ 1331 return true; 1332 } 1333 1334 /* 1335 * debug aware fast / slowpath lock,trylock,unlock 1336 * 1337 * The atomic acquire/release ops are compiled away, when either the 1338 * architecture does not support cmpxchg or when debugging is enabled. 1339 */ 1340 static inline int 1341 rt_mutex_fastlock(struct rt_mutex *lock, int state, 1342 int (*slowfn)(struct rt_mutex *lock, int state, 1343 struct hrtimer_sleeper *timeout, 1344 enum rtmutex_chainwalk chwalk)) 1345 { 1346 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) { 1347 rt_mutex_deadlock_account_lock(lock, current); 1348 return 0; 1349 } else 1350 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK); 1351 } 1352 1353 static inline int 1354 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state, 1355 struct hrtimer_sleeper *timeout, 1356 enum rtmutex_chainwalk chwalk, 1357 int (*slowfn)(struct rt_mutex *lock, int state, 1358 struct hrtimer_sleeper *timeout, 1359 enum rtmutex_chainwalk chwalk)) 1360 { 1361 if (chwalk == RT_MUTEX_MIN_CHAINWALK && 1362 likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) { 1363 rt_mutex_deadlock_account_lock(lock, current); 1364 return 0; 1365 } else 1366 return slowfn(lock, state, timeout, chwalk); 1367 } 1368 1369 static inline int 1370 rt_mutex_fasttrylock(struct rt_mutex *lock, 1371 int (*slowfn)(struct rt_mutex *lock)) 1372 { 1373 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) { 1374 rt_mutex_deadlock_account_lock(lock, current); 1375 return 1; 1376 } 1377 return slowfn(lock); 1378 } 1379 1380 static inline void 1381 rt_mutex_fastunlock(struct rt_mutex *lock, 1382 bool (*slowfn)(struct rt_mutex *lock, 1383 struct wake_q_head *wqh)) 1384 { 1385 WAKE_Q(wake_q); 1386 1387 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) { 1388 rt_mutex_deadlock_account_unlock(current); 1389 1390 } else { 1391 bool deboost = slowfn(lock, &wake_q); 1392 1393 wake_up_q(&wake_q); 1394 1395 /* Undo pi boosting if necessary: */ 1396 if (deboost) 1397 rt_mutex_adjust_prio(current); 1398 } 1399 } 1400 1401 /** 1402 * rt_mutex_lock - lock a rt_mutex 1403 * 1404 * @lock: the rt_mutex to be locked 1405 */ 1406 void __sched rt_mutex_lock(struct rt_mutex *lock) 1407 { 1408 might_sleep(); 1409 1410 rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock); 1411 } 1412 EXPORT_SYMBOL_GPL(rt_mutex_lock); 1413 1414 /** 1415 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 1416 * 1417 * @lock: the rt_mutex to be locked 1418 * 1419 * Returns: 1420 * 0 on success 1421 * -EINTR when interrupted by a signal 1422 */ 1423 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 1424 { 1425 might_sleep(); 1426 1427 return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock); 1428 } 1429 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 1430 1431 /* 1432 * Futex variant with full deadlock detection. 1433 */ 1434 int rt_mutex_timed_futex_lock(struct rt_mutex *lock, 1435 struct hrtimer_sleeper *timeout) 1436 { 1437 might_sleep(); 1438 1439 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 1440 RT_MUTEX_FULL_CHAINWALK, 1441 rt_mutex_slowlock); 1442 } 1443 1444 /** 1445 * rt_mutex_timed_lock - lock a rt_mutex interruptible 1446 * the timeout structure is provided 1447 * by the caller 1448 * 1449 * @lock: the rt_mutex to be locked 1450 * @timeout: timeout structure or NULL (no timeout) 1451 * 1452 * Returns: 1453 * 0 on success 1454 * -EINTR when interrupted by a signal 1455 * -ETIMEDOUT when the timeout expired 1456 */ 1457 int 1458 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout) 1459 { 1460 might_sleep(); 1461 1462 return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout, 1463 RT_MUTEX_MIN_CHAINWALK, 1464 rt_mutex_slowlock); 1465 } 1466 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock); 1467 1468 /** 1469 * rt_mutex_trylock - try to lock a rt_mutex 1470 * 1471 * @lock: the rt_mutex to be locked 1472 * 1473 * This function can only be called in thread context. It's safe to 1474 * call it from atomic regions, but not from hard interrupt or soft 1475 * interrupt context. 1476 * 1477 * Returns 1 on success and 0 on contention 1478 */ 1479 int __sched rt_mutex_trylock(struct rt_mutex *lock) 1480 { 1481 if (WARN_ON(in_irq() || in_nmi() || in_serving_softirq())) 1482 return 0; 1483 1484 return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock); 1485 } 1486 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 1487 1488 /** 1489 * rt_mutex_unlock - unlock a rt_mutex 1490 * 1491 * @lock: the rt_mutex to be unlocked 1492 */ 1493 void __sched rt_mutex_unlock(struct rt_mutex *lock) 1494 { 1495 rt_mutex_fastunlock(lock, rt_mutex_slowunlock); 1496 } 1497 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 1498 1499 /** 1500 * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock 1501 * @lock: the rt_mutex to be unlocked 1502 * 1503 * Returns: true/false indicating whether priority adjustment is 1504 * required or not. 1505 */ 1506 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock, 1507 struct wake_q_head *wqh) 1508 { 1509 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) { 1510 rt_mutex_deadlock_account_unlock(current); 1511 return false; 1512 } 1513 return rt_mutex_slowunlock(lock, wqh); 1514 } 1515 1516 /** 1517 * rt_mutex_destroy - mark a mutex unusable 1518 * @lock: the mutex to be destroyed 1519 * 1520 * This function marks the mutex uninitialized, and any subsequent 1521 * use of the mutex is forbidden. The mutex must not be locked when 1522 * this function is called. 1523 */ 1524 void rt_mutex_destroy(struct rt_mutex *lock) 1525 { 1526 WARN_ON(rt_mutex_is_locked(lock)); 1527 #ifdef CONFIG_DEBUG_RT_MUTEXES 1528 lock->magic = NULL; 1529 #endif 1530 } 1531 1532 EXPORT_SYMBOL_GPL(rt_mutex_destroy); 1533 1534 /** 1535 * __rt_mutex_init - initialize the rt lock 1536 * 1537 * @lock: the rt lock to be initialized 1538 * 1539 * Initialize the rt lock to unlocked state. 1540 * 1541 * Initializing of a locked rt lock is not allowed 1542 */ 1543 void __rt_mutex_init(struct rt_mutex *lock, const char *name) 1544 { 1545 lock->owner = NULL; 1546 raw_spin_lock_init(&lock->wait_lock); 1547 lock->waiters = RB_ROOT; 1548 lock->waiters_leftmost = NULL; 1549 1550 debug_rt_mutex_init(lock, name); 1551 } 1552 EXPORT_SYMBOL_GPL(__rt_mutex_init); 1553 1554 /** 1555 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 1556 * proxy owner 1557 * 1558 * @lock: the rt_mutex to be locked 1559 * @proxy_owner:the task to set as owner 1560 * 1561 * No locking. Caller has to do serializing itself 1562 * Special API call for PI-futex support 1563 */ 1564 void rt_mutex_init_proxy_locked(struct rt_mutex *lock, 1565 struct task_struct *proxy_owner) 1566 { 1567 __rt_mutex_init(lock, NULL); 1568 debug_rt_mutex_proxy_lock(lock, proxy_owner); 1569 rt_mutex_set_owner(lock, proxy_owner); 1570 rt_mutex_deadlock_account_lock(lock, proxy_owner); 1571 } 1572 1573 /** 1574 * rt_mutex_proxy_unlock - release a lock on behalf of owner 1575 * 1576 * @lock: the rt_mutex to be locked 1577 * 1578 * No locking. Caller has to do serializing itself 1579 * Special API call for PI-futex support 1580 */ 1581 void rt_mutex_proxy_unlock(struct rt_mutex *lock, 1582 struct task_struct *proxy_owner) 1583 { 1584 debug_rt_mutex_proxy_unlock(lock); 1585 rt_mutex_set_owner(lock, NULL); 1586 rt_mutex_deadlock_account_unlock(proxy_owner); 1587 } 1588 1589 /** 1590 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1591 * @lock: the rt_mutex to take 1592 * @waiter: the pre-initialized rt_mutex_waiter 1593 * @task: the task to prepare 1594 * 1595 * Returns: 1596 * 0 - task blocked on lock 1597 * 1 - acquired the lock for task, caller should wake it up 1598 * <0 - error 1599 * 1600 * Special API call for FUTEX_REQUEUE_PI support. 1601 */ 1602 int rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1603 struct rt_mutex_waiter *waiter, 1604 struct task_struct *task) 1605 { 1606 int ret; 1607 1608 raw_spin_lock_irq(&lock->wait_lock); 1609 1610 if (try_to_take_rt_mutex(lock, task, NULL)) { 1611 raw_spin_unlock_irq(&lock->wait_lock); 1612 return 1; 1613 } 1614 1615 /* We enforce deadlock detection for futexes */ 1616 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1617 RT_MUTEX_FULL_CHAINWALK); 1618 1619 if (ret && !rt_mutex_owner(lock)) { 1620 /* 1621 * Reset the return value. We might have 1622 * returned with -EDEADLK and the owner 1623 * released the lock while we were walking the 1624 * pi chain. Let the waiter sort it out. 1625 */ 1626 ret = 0; 1627 } 1628 1629 if (unlikely(ret)) 1630 remove_waiter(lock, waiter); 1631 1632 raw_spin_unlock_irq(&lock->wait_lock); 1633 1634 debug_rt_mutex_print_deadlock(waiter); 1635 1636 return ret; 1637 } 1638 1639 /** 1640 * rt_mutex_next_owner - return the next owner of the lock 1641 * 1642 * @lock: the rt lock query 1643 * 1644 * Returns the next owner of the lock or NULL 1645 * 1646 * Caller has to serialize against other accessors to the lock 1647 * itself. 1648 * 1649 * Special API call for PI-futex support 1650 */ 1651 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock) 1652 { 1653 if (!rt_mutex_has_waiters(lock)) 1654 return NULL; 1655 1656 return rt_mutex_top_waiter(lock)->task; 1657 } 1658 1659 /** 1660 * rt_mutex_finish_proxy_lock() - Complete lock acquisition 1661 * @lock: the rt_mutex we were woken on 1662 * @to: the timeout, null if none. hrtimer should already have 1663 * been started. 1664 * @waiter: the pre-initialized rt_mutex_waiter 1665 * 1666 * Complete the lock acquisition started our behalf by another thread. 1667 * 1668 * Returns: 1669 * 0 - success 1670 * <0 - error, one of -EINTR, -ETIMEDOUT 1671 * 1672 * Special API call for PI-futex requeue support 1673 */ 1674 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock, 1675 struct hrtimer_sleeper *to, 1676 struct rt_mutex_waiter *waiter) 1677 { 1678 int ret; 1679 1680 raw_spin_lock_irq(&lock->wait_lock); 1681 1682 set_current_state(TASK_INTERRUPTIBLE); 1683 1684 /* sleep on the mutex */ 1685 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1686 1687 if (unlikely(ret)) 1688 remove_waiter(lock, waiter); 1689 1690 /* 1691 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1692 * have to fix that up. 1693 */ 1694 fixup_rt_mutex_waiters(lock); 1695 1696 raw_spin_unlock_irq(&lock->wait_lock); 1697 1698 return ret; 1699 } 1700