xref: /linux/kernel/locking/rtmutex.c (revision bdd1a21b52557ea8f61d0a5dc2f77151b576eb70)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  *
12  *  See Documentation/locking/rt-mutex-design.rst for details.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22 
23 #include "rtmutex_common.h"
24 
25 /*
26  * lock->owner state tracking:
27  *
28  * lock->owner holds the task_struct pointer of the owner. Bit 0
29  * is used to keep track of the "lock has waiters" state.
30  *
31  * owner	bit0
32  * NULL		0	lock is free (fast acquire possible)
33  * NULL		1	lock is free and has waiters and the top waiter
34  *				is going to take the lock*
35  * taskpointer	0	lock is held (fast release possible)
36  * taskpointer	1	lock is held and has waiters**
37  *
38  * The fast atomic compare exchange based acquire and release is only
39  * possible when bit 0 of lock->owner is 0.
40  *
41  * (*) It also can be a transitional state when grabbing the lock
42  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43  * we need to set the bit0 before looking at the lock, and the owner may be
44  * NULL in this small time, hence this can be a transitional state.
45  *
46  * (**) There is a small time when bit 0 is set but there are no
47  * waiters. This can happen when grabbing the lock in the slow path.
48  * To prevent a cmpxchg of the owner releasing the lock, we need to
49  * set this bit before looking at the lock.
50  */
51 
52 static __always_inline void
53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55 	unsigned long val = (unsigned long)owner;
56 
57 	if (rt_mutex_has_waiters(lock))
58 		val |= RT_MUTEX_HAS_WAITERS;
59 
60 	WRITE_ONCE(lock->owner, (struct task_struct *)val);
61 }
62 
63 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65 	lock->owner = (struct task_struct *)
66 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68 
69 static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71 	unsigned long owner, *p = (unsigned long *) &lock->owner;
72 
73 	if (rt_mutex_has_waiters(lock))
74 		return;
75 
76 	/*
77 	 * The rbtree has no waiters enqueued, now make sure that the
78 	 * lock->owner still has the waiters bit set, otherwise the
79 	 * following can happen:
80 	 *
81 	 * CPU 0	CPU 1		CPU2
82 	 * l->owner=T1
83 	 *		rt_mutex_lock(l)
84 	 *		lock(l->lock)
85 	 *		l->owner = T1 | HAS_WAITERS;
86 	 *		enqueue(T2)
87 	 *		boost()
88 	 *		  unlock(l->lock)
89 	 *		block()
90 	 *
91 	 *				rt_mutex_lock(l)
92 	 *				lock(l->lock)
93 	 *				l->owner = T1 | HAS_WAITERS;
94 	 *				enqueue(T3)
95 	 *				boost()
96 	 *				  unlock(l->lock)
97 	 *				block()
98 	 *		signal(->T2)	signal(->T3)
99 	 *		lock(l->lock)
100 	 *		dequeue(T2)
101 	 *		deboost()
102 	 *		  unlock(l->lock)
103 	 *				lock(l->lock)
104 	 *				dequeue(T3)
105 	 *				 ==> wait list is empty
106 	 *				deboost()
107 	 *				 unlock(l->lock)
108 	 *		lock(l->lock)
109 	 *		fixup_rt_mutex_waiters()
110 	 *		  if (wait_list_empty(l) {
111 	 *		    l->owner = owner
112 	 *		    owner = l->owner & ~HAS_WAITERS;
113 	 *		      ==> l->owner = T1
114 	 *		  }
115 	 *				lock(l->lock)
116 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
117 	 *				  if (wait_list_empty(l) {
118 	 *				    owner = l->owner & ~HAS_WAITERS;
119 	 * cmpxchg(l->owner, T1, NULL)
120 	 *  ===> Success (l->owner = NULL)
121 	 *
122 	 *				    l->owner = owner
123 	 *				      ==> l->owner = T1
124 	 *				  }
125 	 *
126 	 * With the check for the waiter bit in place T3 on CPU2 will not
127 	 * overwrite. All tasks fiddling with the waiters bit are
128 	 * serialized by l->lock, so nothing else can modify the waiters
129 	 * bit. If the bit is set then nothing can change l->owner either
130 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
131 	 * happens in the middle of the RMW because the waiters bit is
132 	 * still set.
133 	 */
134 	owner = READ_ONCE(*p);
135 	if (owner & RT_MUTEX_HAS_WAITERS)
136 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138 
139 /*
140  * We can speed up the acquire/release, if there's no debugging state to be
141  * set up.
142  */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146 
147 /*
148  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150  * relaxed semantics suffice.
151  */
152 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154 	unsigned long owner, *p = (unsigned long *) &lock->owner;
155 
156 	do {
157 		owner = *p;
158 	} while (cmpxchg_relaxed(p, owner,
159 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161 
162 /*
163  * Safe fastpath aware unlock:
164  * 1) Clear the waiters bit
165  * 2) Drop lock->wait_lock
166  * 3) Try to unlock the lock with cmpxchg
167  */
168 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169 						 unsigned long flags)
170 	__releases(lock->wait_lock)
171 {
172 	struct task_struct *owner = rt_mutex_owner(lock);
173 
174 	clear_rt_mutex_waiters(lock);
175 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176 	/*
177 	 * If a new waiter comes in between the unlock and the cmpxchg
178 	 * we have two situations:
179 	 *
180 	 * unlock(wait_lock);
181 	 *					lock(wait_lock);
182 	 * cmpxchg(p, owner, 0) == owner
183 	 *					mark_rt_mutex_waiters(lock);
184 	 *					acquire(lock);
185 	 * or:
186 	 *
187 	 * unlock(wait_lock);
188 	 *					lock(wait_lock);
189 	 *					mark_rt_mutex_waiters(lock);
190 	 *
191 	 * cmpxchg(p, owner, 0) != owner
192 	 *					enqueue_waiter();
193 	 *					unlock(wait_lock);
194 	 * lock(wait_lock);
195 	 * wake waiter();
196 	 * unlock(wait_lock);
197 	 *					lock(wait_lock);
198 	 *					acquire(lock);
199 	 */
200 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202 
203 #else
204 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
205 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
206 
207 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208 {
209 	lock->owner = (struct task_struct *)
210 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211 }
212 
213 /*
214  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215  */
216 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 						 unsigned long flags)
218 	__releases(lock->wait_lock)
219 {
220 	lock->owner = NULL;
221 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 	return true;
223 }
224 #endif
225 
226 /*
227  * Only use with rt_mutex_waiter_{less,equal}()
228  */
229 #define task_to_waiter(p)	\
230 	&(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231 
232 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
233 						struct rt_mutex_waiter *right)
234 {
235 	if (left->prio < right->prio)
236 		return 1;
237 
238 	/*
239 	 * If both waiters have dl_prio(), we check the deadlines of the
240 	 * associated tasks.
241 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
242 	 * then right waiter has a dl_prio() too.
243 	 */
244 	if (dl_prio(left->prio))
245 		return dl_time_before(left->deadline, right->deadline);
246 
247 	return 0;
248 }
249 
250 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
251 						 struct rt_mutex_waiter *right)
252 {
253 	if (left->prio != right->prio)
254 		return 0;
255 
256 	/*
257 	 * If both waiters have dl_prio(), we check the deadlines of the
258 	 * associated tasks.
259 	 * If left waiter has a dl_prio(), and we didn't return 0 above,
260 	 * then right waiter has a dl_prio() too.
261 	 */
262 	if (dl_prio(left->prio))
263 		return left->deadline == right->deadline;
264 
265 	return 1;
266 }
267 
268 #define __node_2_waiter(node) \
269 	rb_entry((node), struct rt_mutex_waiter, tree_entry)
270 
271 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
272 {
273 	return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
274 }
275 
276 static __always_inline void
277 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
278 {
279 	rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
280 }
281 
282 static __always_inline void
283 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
284 {
285 	if (RB_EMPTY_NODE(&waiter->tree_entry))
286 		return;
287 
288 	rb_erase_cached(&waiter->tree_entry, &lock->waiters);
289 	RB_CLEAR_NODE(&waiter->tree_entry);
290 }
291 
292 #define __node_2_pi_waiter(node) \
293 	rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
294 
295 static __always_inline bool
296 __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
297 {
298 	return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
299 }
300 
301 static __always_inline void
302 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
303 {
304 	rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
305 }
306 
307 static __always_inline void
308 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
309 {
310 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
311 		return;
312 
313 	rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
314 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
315 }
316 
317 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
318 {
319 	struct task_struct *pi_task = NULL;
320 
321 	lockdep_assert_held(&p->pi_lock);
322 
323 	if (task_has_pi_waiters(p))
324 		pi_task = task_top_pi_waiter(p)->task;
325 
326 	rt_mutex_setprio(p, pi_task);
327 }
328 
329 /*
330  * Deadlock detection is conditional:
331  *
332  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
333  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
334  *
335  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
336  * conducted independent of the detect argument.
337  *
338  * If the waiter argument is NULL this indicates the deboost path and
339  * deadlock detection is disabled independent of the detect argument
340  * and the config settings.
341  */
342 static __always_inline bool
343 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
344 			      enum rtmutex_chainwalk chwalk)
345 {
346 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEX))
347 		return waiter != NULL;
348 	return chwalk == RT_MUTEX_FULL_CHAINWALK;
349 }
350 
351 /*
352  * Max number of times we'll walk the boosting chain:
353  */
354 int max_lock_depth = 1024;
355 
356 static __always_inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
357 {
358 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
359 }
360 
361 /*
362  * Adjust the priority chain. Also used for deadlock detection.
363  * Decreases task's usage by one - may thus free the task.
364  *
365  * @task:	the task owning the mutex (owner) for which a chain walk is
366  *		probably needed
367  * @chwalk:	do we have to carry out deadlock detection?
368  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
369  *		things for a task that has just got its priority adjusted, and
370  *		is waiting on a mutex)
371  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
372  *		we dropped its pi_lock. Is never dereferenced, only used for
373  *		comparison to detect lock chain changes.
374  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
375  *		its priority to the mutex owner (can be NULL in the case
376  *		depicted above or if the top waiter is gone away and we are
377  *		actually deboosting the owner)
378  * @top_task:	the current top waiter
379  *
380  * Returns 0 or -EDEADLK.
381  *
382  * Chain walk basics and protection scope
383  *
384  * [R] refcount on task
385  * [P] task->pi_lock held
386  * [L] rtmutex->wait_lock held
387  *
388  * Step	Description				Protected by
389  *	function arguments:
390  *	@task					[R]
391  *	@orig_lock if != NULL			@top_task is blocked on it
392  *	@next_lock				Unprotected. Cannot be
393  *						dereferenced. Only used for
394  *						comparison.
395  *	@orig_waiter if != NULL			@top_task is blocked on it
396  *	@top_task				current, or in case of proxy
397  *						locking protected by calling
398  *						code
399  *	again:
400  *	  loop_sanity_check();
401  *	retry:
402  * [1]	  lock(task->pi_lock);			[R] acquire [P]
403  * [2]	  waiter = task->pi_blocked_on;		[P]
404  * [3]	  check_exit_conditions_1();		[P]
405  * [4]	  lock = waiter->lock;			[P]
406  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
407  *	    unlock(task->pi_lock);		release [P]
408  *	    goto retry;
409  *	  }
410  * [6]	  check_exit_conditions_2();		[P] + [L]
411  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
412  * [8]	  unlock(task->pi_lock);		release [P]
413  *	  put_task_struct(task);		release [R]
414  * [9]	  check_exit_conditions_3();		[L]
415  * [10]	  task = owner(lock);			[L]
416  *	  get_task_struct(task);		[L] acquire [R]
417  *	  lock(task->pi_lock);			[L] acquire [P]
418  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
419  * [12]	  check_exit_conditions_4();		[P] + [L]
420  * [13]	  unlock(task->pi_lock);		release [P]
421  *	  unlock(lock->wait_lock);		release [L]
422  *	  goto again;
423  */
424 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
425 					      enum rtmutex_chainwalk chwalk,
426 					      struct rt_mutex *orig_lock,
427 					      struct rt_mutex *next_lock,
428 					      struct rt_mutex_waiter *orig_waiter,
429 					      struct task_struct *top_task)
430 {
431 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
432 	struct rt_mutex_waiter *prerequeue_top_waiter;
433 	int ret = 0, depth = 0;
434 	struct rt_mutex *lock;
435 	bool detect_deadlock;
436 	bool requeue = true;
437 
438 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
439 
440 	/*
441 	 * The (de)boosting is a step by step approach with a lot of
442 	 * pitfalls. We want this to be preemptible and we want hold a
443 	 * maximum of two locks per step. So we have to check
444 	 * carefully whether things change under us.
445 	 */
446  again:
447 	/*
448 	 * We limit the lock chain length for each invocation.
449 	 */
450 	if (++depth > max_lock_depth) {
451 		static int prev_max;
452 
453 		/*
454 		 * Print this only once. If the admin changes the limit,
455 		 * print a new message when reaching the limit again.
456 		 */
457 		if (prev_max != max_lock_depth) {
458 			prev_max = max_lock_depth;
459 			printk(KERN_WARNING "Maximum lock depth %d reached "
460 			       "task: %s (%d)\n", max_lock_depth,
461 			       top_task->comm, task_pid_nr(top_task));
462 		}
463 		put_task_struct(task);
464 
465 		return -EDEADLK;
466 	}
467 
468 	/*
469 	 * We are fully preemptible here and only hold the refcount on
470 	 * @task. So everything can have changed under us since the
471 	 * caller or our own code below (goto retry/again) dropped all
472 	 * locks.
473 	 */
474  retry:
475 	/*
476 	 * [1] Task cannot go away as we did a get_task() before !
477 	 */
478 	raw_spin_lock_irq(&task->pi_lock);
479 
480 	/*
481 	 * [2] Get the waiter on which @task is blocked on.
482 	 */
483 	waiter = task->pi_blocked_on;
484 
485 	/*
486 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
487 	 */
488 
489 	/*
490 	 * Check whether the end of the boosting chain has been
491 	 * reached or the state of the chain has changed while we
492 	 * dropped the locks.
493 	 */
494 	if (!waiter)
495 		goto out_unlock_pi;
496 
497 	/*
498 	 * Check the orig_waiter state. After we dropped the locks,
499 	 * the previous owner of the lock might have released the lock.
500 	 */
501 	if (orig_waiter && !rt_mutex_owner(orig_lock))
502 		goto out_unlock_pi;
503 
504 	/*
505 	 * We dropped all locks after taking a refcount on @task, so
506 	 * the task might have moved on in the lock chain or even left
507 	 * the chain completely and blocks now on an unrelated lock or
508 	 * on @orig_lock.
509 	 *
510 	 * We stored the lock on which @task was blocked in @next_lock,
511 	 * so we can detect the chain change.
512 	 */
513 	if (next_lock != waiter->lock)
514 		goto out_unlock_pi;
515 
516 	/*
517 	 * Drop out, when the task has no waiters. Note,
518 	 * top_waiter can be NULL, when we are in the deboosting
519 	 * mode!
520 	 */
521 	if (top_waiter) {
522 		if (!task_has_pi_waiters(task))
523 			goto out_unlock_pi;
524 		/*
525 		 * If deadlock detection is off, we stop here if we
526 		 * are not the top pi waiter of the task. If deadlock
527 		 * detection is enabled we continue, but stop the
528 		 * requeueing in the chain walk.
529 		 */
530 		if (top_waiter != task_top_pi_waiter(task)) {
531 			if (!detect_deadlock)
532 				goto out_unlock_pi;
533 			else
534 				requeue = false;
535 		}
536 	}
537 
538 	/*
539 	 * If the waiter priority is the same as the task priority
540 	 * then there is no further priority adjustment necessary.  If
541 	 * deadlock detection is off, we stop the chain walk. If its
542 	 * enabled we continue, but stop the requeueing in the chain
543 	 * walk.
544 	 */
545 	if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
546 		if (!detect_deadlock)
547 			goto out_unlock_pi;
548 		else
549 			requeue = false;
550 	}
551 
552 	/*
553 	 * [4] Get the next lock
554 	 */
555 	lock = waiter->lock;
556 	/*
557 	 * [5] We need to trylock here as we are holding task->pi_lock,
558 	 * which is the reverse lock order versus the other rtmutex
559 	 * operations.
560 	 */
561 	if (!raw_spin_trylock(&lock->wait_lock)) {
562 		raw_spin_unlock_irq(&task->pi_lock);
563 		cpu_relax();
564 		goto retry;
565 	}
566 
567 	/*
568 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
569 	 * lock->wait_lock.
570 	 *
571 	 * Deadlock detection. If the lock is the same as the original
572 	 * lock which caused us to walk the lock chain or if the
573 	 * current lock is owned by the task which initiated the chain
574 	 * walk, we detected a deadlock.
575 	 */
576 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
577 		raw_spin_unlock(&lock->wait_lock);
578 		ret = -EDEADLK;
579 		goto out_unlock_pi;
580 	}
581 
582 	/*
583 	 * If we just follow the lock chain for deadlock detection, no
584 	 * need to do all the requeue operations. To avoid a truckload
585 	 * of conditionals around the various places below, just do the
586 	 * minimum chain walk checks.
587 	 */
588 	if (!requeue) {
589 		/*
590 		 * No requeue[7] here. Just release @task [8]
591 		 */
592 		raw_spin_unlock(&task->pi_lock);
593 		put_task_struct(task);
594 
595 		/*
596 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
597 		 * If there is no owner of the lock, end of chain.
598 		 */
599 		if (!rt_mutex_owner(lock)) {
600 			raw_spin_unlock_irq(&lock->wait_lock);
601 			return 0;
602 		}
603 
604 		/* [10] Grab the next task, i.e. owner of @lock */
605 		task = get_task_struct(rt_mutex_owner(lock));
606 		raw_spin_lock(&task->pi_lock);
607 
608 		/*
609 		 * No requeue [11] here. We just do deadlock detection.
610 		 *
611 		 * [12] Store whether owner is blocked
612 		 * itself. Decision is made after dropping the locks
613 		 */
614 		next_lock = task_blocked_on_lock(task);
615 		/*
616 		 * Get the top waiter for the next iteration
617 		 */
618 		top_waiter = rt_mutex_top_waiter(lock);
619 
620 		/* [13] Drop locks */
621 		raw_spin_unlock(&task->pi_lock);
622 		raw_spin_unlock_irq(&lock->wait_lock);
623 
624 		/* If owner is not blocked, end of chain. */
625 		if (!next_lock)
626 			goto out_put_task;
627 		goto again;
628 	}
629 
630 	/*
631 	 * Store the current top waiter before doing the requeue
632 	 * operation on @lock. We need it for the boost/deboost
633 	 * decision below.
634 	 */
635 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
636 
637 	/* [7] Requeue the waiter in the lock waiter tree. */
638 	rt_mutex_dequeue(lock, waiter);
639 
640 	/*
641 	 * Update the waiter prio fields now that we're dequeued.
642 	 *
643 	 * These values can have changed through either:
644 	 *
645 	 *   sys_sched_set_scheduler() / sys_sched_setattr()
646 	 *
647 	 * or
648 	 *
649 	 *   DL CBS enforcement advancing the effective deadline.
650 	 *
651 	 * Even though pi_waiters also uses these fields, and that tree is only
652 	 * updated in [11], we can do this here, since we hold [L], which
653 	 * serializes all pi_waiters access and rb_erase() does not care about
654 	 * the values of the node being removed.
655 	 */
656 	waiter->prio = task->prio;
657 	waiter->deadline = task->dl.deadline;
658 
659 	rt_mutex_enqueue(lock, waiter);
660 
661 	/* [8] Release the task */
662 	raw_spin_unlock(&task->pi_lock);
663 	put_task_struct(task);
664 
665 	/*
666 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
667 	 *
668 	 * We must abort the chain walk if there is no lock owner even
669 	 * in the dead lock detection case, as we have nothing to
670 	 * follow here. This is the end of the chain we are walking.
671 	 */
672 	if (!rt_mutex_owner(lock)) {
673 		/*
674 		 * If the requeue [7] above changed the top waiter,
675 		 * then we need to wake the new top waiter up to try
676 		 * to get the lock.
677 		 */
678 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
679 			wake_up_process(rt_mutex_top_waiter(lock)->task);
680 		raw_spin_unlock_irq(&lock->wait_lock);
681 		return 0;
682 	}
683 
684 	/* [10] Grab the next task, i.e. the owner of @lock */
685 	task = get_task_struct(rt_mutex_owner(lock));
686 	raw_spin_lock(&task->pi_lock);
687 
688 	/* [11] requeue the pi waiters if necessary */
689 	if (waiter == rt_mutex_top_waiter(lock)) {
690 		/*
691 		 * The waiter became the new top (highest priority)
692 		 * waiter on the lock. Replace the previous top waiter
693 		 * in the owner tasks pi waiters tree with this waiter
694 		 * and adjust the priority of the owner.
695 		 */
696 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
697 		rt_mutex_enqueue_pi(task, waiter);
698 		rt_mutex_adjust_prio(task);
699 
700 	} else if (prerequeue_top_waiter == waiter) {
701 		/*
702 		 * The waiter was the top waiter on the lock, but is
703 		 * no longer the top priority waiter. Replace waiter in
704 		 * the owner tasks pi waiters tree with the new top
705 		 * (highest priority) waiter and adjust the priority
706 		 * of the owner.
707 		 * The new top waiter is stored in @waiter so that
708 		 * @waiter == @top_waiter evaluates to true below and
709 		 * we continue to deboost the rest of the chain.
710 		 */
711 		rt_mutex_dequeue_pi(task, waiter);
712 		waiter = rt_mutex_top_waiter(lock);
713 		rt_mutex_enqueue_pi(task, waiter);
714 		rt_mutex_adjust_prio(task);
715 	} else {
716 		/*
717 		 * Nothing changed. No need to do any priority
718 		 * adjustment.
719 		 */
720 	}
721 
722 	/*
723 	 * [12] check_exit_conditions_4() protected by task->pi_lock
724 	 * and lock->wait_lock. The actual decisions are made after we
725 	 * dropped the locks.
726 	 *
727 	 * Check whether the task which owns the current lock is pi
728 	 * blocked itself. If yes we store a pointer to the lock for
729 	 * the lock chain change detection above. After we dropped
730 	 * task->pi_lock next_lock cannot be dereferenced anymore.
731 	 */
732 	next_lock = task_blocked_on_lock(task);
733 	/*
734 	 * Store the top waiter of @lock for the end of chain walk
735 	 * decision below.
736 	 */
737 	top_waiter = rt_mutex_top_waiter(lock);
738 
739 	/* [13] Drop the locks */
740 	raw_spin_unlock(&task->pi_lock);
741 	raw_spin_unlock_irq(&lock->wait_lock);
742 
743 	/*
744 	 * Make the actual exit decisions [12], based on the stored
745 	 * values.
746 	 *
747 	 * We reached the end of the lock chain. Stop right here. No
748 	 * point to go back just to figure that out.
749 	 */
750 	if (!next_lock)
751 		goto out_put_task;
752 
753 	/*
754 	 * If the current waiter is not the top waiter on the lock,
755 	 * then we can stop the chain walk here if we are not in full
756 	 * deadlock detection mode.
757 	 */
758 	if (!detect_deadlock && waiter != top_waiter)
759 		goto out_put_task;
760 
761 	goto again;
762 
763  out_unlock_pi:
764 	raw_spin_unlock_irq(&task->pi_lock);
765  out_put_task:
766 	put_task_struct(task);
767 
768 	return ret;
769 }
770 
771 /*
772  * Try to take an rt-mutex
773  *
774  * Must be called with lock->wait_lock held and interrupts disabled
775  *
776  * @lock:   The lock to be acquired.
777  * @task:   The task which wants to acquire the lock
778  * @waiter: The waiter that is queued to the lock's wait tree if the
779  *	    callsite called task_blocked_on_lock(), otherwise NULL
780  */
781 static int __sched
782 try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
783 		     struct rt_mutex_waiter *waiter)
784 {
785 	lockdep_assert_held(&lock->wait_lock);
786 
787 	/*
788 	 * Before testing whether we can acquire @lock, we set the
789 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
790 	 * other tasks which try to modify @lock into the slow path
791 	 * and they serialize on @lock->wait_lock.
792 	 *
793 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
794 	 * as explained at the top of this file if and only if:
795 	 *
796 	 * - There is a lock owner. The caller must fixup the
797 	 *   transient state if it does a trylock or leaves the lock
798 	 *   function due to a signal or timeout.
799 	 *
800 	 * - @task acquires the lock and there are no other
801 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
802 	 *   the end of this function.
803 	 */
804 	mark_rt_mutex_waiters(lock);
805 
806 	/*
807 	 * If @lock has an owner, give up.
808 	 */
809 	if (rt_mutex_owner(lock))
810 		return 0;
811 
812 	/*
813 	 * If @waiter != NULL, @task has already enqueued the waiter
814 	 * into @lock waiter tree. If @waiter == NULL then this is a
815 	 * trylock attempt.
816 	 */
817 	if (waiter) {
818 		/*
819 		 * If waiter is not the highest priority waiter of
820 		 * @lock, give up.
821 		 */
822 		if (waiter != rt_mutex_top_waiter(lock))
823 			return 0;
824 
825 		/*
826 		 * We can acquire the lock. Remove the waiter from the
827 		 * lock waiters tree.
828 		 */
829 		rt_mutex_dequeue(lock, waiter);
830 
831 	} else {
832 		/*
833 		 * If the lock has waiters already we check whether @task is
834 		 * eligible to take over the lock.
835 		 *
836 		 * If there are no other waiters, @task can acquire
837 		 * the lock.  @task->pi_blocked_on is NULL, so it does
838 		 * not need to be dequeued.
839 		 */
840 		if (rt_mutex_has_waiters(lock)) {
841 			/*
842 			 * If @task->prio is greater than or equal to
843 			 * the top waiter priority (kernel view),
844 			 * @task lost.
845 			 */
846 			if (!rt_mutex_waiter_less(task_to_waiter(task),
847 						  rt_mutex_top_waiter(lock)))
848 				return 0;
849 
850 			/*
851 			 * The current top waiter stays enqueued. We
852 			 * don't have to change anything in the lock
853 			 * waiters order.
854 			 */
855 		} else {
856 			/*
857 			 * No waiters. Take the lock without the
858 			 * pi_lock dance.@task->pi_blocked_on is NULL
859 			 * and we have no waiters to enqueue in @task
860 			 * pi waiters tree.
861 			 */
862 			goto takeit;
863 		}
864 	}
865 
866 	/*
867 	 * Clear @task->pi_blocked_on. Requires protection by
868 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
869 	 * case, but conditionals are more expensive than a redundant
870 	 * store.
871 	 */
872 	raw_spin_lock(&task->pi_lock);
873 	task->pi_blocked_on = NULL;
874 	/*
875 	 * Finish the lock acquisition. @task is the new owner. If
876 	 * other waiters exist we have to insert the highest priority
877 	 * waiter into @task->pi_waiters tree.
878 	 */
879 	if (rt_mutex_has_waiters(lock))
880 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
881 	raw_spin_unlock(&task->pi_lock);
882 
883 takeit:
884 	/*
885 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
886 	 * are still waiters or clears it.
887 	 */
888 	rt_mutex_set_owner(lock, task);
889 
890 	return 1;
891 }
892 
893 /*
894  * Task blocks on lock.
895  *
896  * Prepare waiter and propagate pi chain
897  *
898  * This must be called with lock->wait_lock held and interrupts disabled
899  */
900 static int __sched task_blocks_on_rt_mutex(struct rt_mutex *lock,
901 					   struct rt_mutex_waiter *waiter,
902 					   struct task_struct *task,
903 					   enum rtmutex_chainwalk chwalk)
904 {
905 	struct task_struct *owner = rt_mutex_owner(lock);
906 	struct rt_mutex_waiter *top_waiter = waiter;
907 	struct rt_mutex *next_lock;
908 	int chain_walk = 0, res;
909 
910 	lockdep_assert_held(&lock->wait_lock);
911 
912 	/*
913 	 * Early deadlock detection. We really don't want the task to
914 	 * enqueue on itself just to untangle the mess later. It's not
915 	 * only an optimization. We drop the locks, so another waiter
916 	 * can come in before the chain walk detects the deadlock. So
917 	 * the other will detect the deadlock and return -EDEADLOCK,
918 	 * which is wrong, as the other waiter is not in a deadlock
919 	 * situation.
920 	 */
921 	if (owner == task)
922 		return -EDEADLK;
923 
924 	raw_spin_lock(&task->pi_lock);
925 	waiter->task = task;
926 	waiter->lock = lock;
927 	waiter->prio = task->prio;
928 	waiter->deadline = task->dl.deadline;
929 
930 	/* Get the top priority waiter on the lock */
931 	if (rt_mutex_has_waiters(lock))
932 		top_waiter = rt_mutex_top_waiter(lock);
933 	rt_mutex_enqueue(lock, waiter);
934 
935 	task->pi_blocked_on = waiter;
936 
937 	raw_spin_unlock(&task->pi_lock);
938 
939 	if (!owner)
940 		return 0;
941 
942 	raw_spin_lock(&owner->pi_lock);
943 	if (waiter == rt_mutex_top_waiter(lock)) {
944 		rt_mutex_dequeue_pi(owner, top_waiter);
945 		rt_mutex_enqueue_pi(owner, waiter);
946 
947 		rt_mutex_adjust_prio(owner);
948 		if (owner->pi_blocked_on)
949 			chain_walk = 1;
950 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
951 		chain_walk = 1;
952 	}
953 
954 	/* Store the lock on which owner is blocked or NULL */
955 	next_lock = task_blocked_on_lock(owner);
956 
957 	raw_spin_unlock(&owner->pi_lock);
958 	/*
959 	 * Even if full deadlock detection is on, if the owner is not
960 	 * blocked itself, we can avoid finding this out in the chain
961 	 * walk.
962 	 */
963 	if (!chain_walk || !next_lock)
964 		return 0;
965 
966 	/*
967 	 * The owner can't disappear while holding a lock,
968 	 * so the owner struct is protected by wait_lock.
969 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
970 	 */
971 	get_task_struct(owner);
972 
973 	raw_spin_unlock_irq(&lock->wait_lock);
974 
975 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
976 					 next_lock, waiter, task);
977 
978 	raw_spin_lock_irq(&lock->wait_lock);
979 
980 	return res;
981 }
982 
983 /*
984  * Remove the top waiter from the current tasks pi waiter tree and
985  * queue it up.
986  *
987  * Called with lock->wait_lock held and interrupts disabled.
988  */
989 static void __sched mark_wakeup_next_waiter(struct wake_q_head *wake_q,
990 					    struct rt_mutex *lock)
991 {
992 	struct rt_mutex_waiter *waiter;
993 
994 	raw_spin_lock(&current->pi_lock);
995 
996 	waiter = rt_mutex_top_waiter(lock);
997 
998 	/*
999 	 * Remove it from current->pi_waiters and deboost.
1000 	 *
1001 	 * We must in fact deboost here in order to ensure we call
1002 	 * rt_mutex_setprio() to update p->pi_top_task before the
1003 	 * task unblocks.
1004 	 */
1005 	rt_mutex_dequeue_pi(current, waiter);
1006 	rt_mutex_adjust_prio(current);
1007 
1008 	/*
1009 	 * As we are waking up the top waiter, and the waiter stays
1010 	 * queued on the lock until it gets the lock, this lock
1011 	 * obviously has waiters. Just set the bit here and this has
1012 	 * the added benefit of forcing all new tasks into the
1013 	 * slow path making sure no task of lower priority than
1014 	 * the top waiter can steal this lock.
1015 	 */
1016 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1017 
1018 	/*
1019 	 * We deboosted before waking the top waiter task such that we don't
1020 	 * run two tasks with the 'same' priority (and ensure the
1021 	 * p->pi_top_task pointer points to a blocked task). This however can
1022 	 * lead to priority inversion if we would get preempted after the
1023 	 * deboost but before waking our donor task, hence the preempt_disable()
1024 	 * before unlock.
1025 	 *
1026 	 * Pairs with preempt_enable() in rt_mutex_postunlock();
1027 	 */
1028 	preempt_disable();
1029 	wake_q_add(wake_q, waiter->task);
1030 	raw_spin_unlock(&current->pi_lock);
1031 }
1032 
1033 /*
1034  * Remove a waiter from a lock and give up
1035  *
1036  * Must be called with lock->wait_lock held and interrupts disabled. I must
1037  * have just failed to try_to_take_rt_mutex().
1038  */
1039 static void __sched remove_waiter(struct rt_mutex *lock,
1040 				  struct rt_mutex_waiter *waiter)
1041 {
1042 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1043 	struct task_struct *owner = rt_mutex_owner(lock);
1044 	struct rt_mutex *next_lock;
1045 
1046 	lockdep_assert_held(&lock->wait_lock);
1047 
1048 	raw_spin_lock(&current->pi_lock);
1049 	rt_mutex_dequeue(lock, waiter);
1050 	current->pi_blocked_on = NULL;
1051 	raw_spin_unlock(&current->pi_lock);
1052 
1053 	/*
1054 	 * Only update priority if the waiter was the highest priority
1055 	 * waiter of the lock and there is an owner to update.
1056 	 */
1057 	if (!owner || !is_top_waiter)
1058 		return;
1059 
1060 	raw_spin_lock(&owner->pi_lock);
1061 
1062 	rt_mutex_dequeue_pi(owner, waiter);
1063 
1064 	if (rt_mutex_has_waiters(lock))
1065 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1066 
1067 	rt_mutex_adjust_prio(owner);
1068 
1069 	/* Store the lock on which owner is blocked or NULL */
1070 	next_lock = task_blocked_on_lock(owner);
1071 
1072 	raw_spin_unlock(&owner->pi_lock);
1073 
1074 	/*
1075 	 * Don't walk the chain, if the owner task is not blocked
1076 	 * itself.
1077 	 */
1078 	if (!next_lock)
1079 		return;
1080 
1081 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1082 	get_task_struct(owner);
1083 
1084 	raw_spin_unlock_irq(&lock->wait_lock);
1085 
1086 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1087 				   next_lock, NULL, current);
1088 
1089 	raw_spin_lock_irq(&lock->wait_lock);
1090 }
1091 
1092 /*
1093  * Recheck the pi chain, in case we got a priority setting
1094  *
1095  * Called from sched_setscheduler
1096  */
1097 void __sched rt_mutex_adjust_pi(struct task_struct *task)
1098 {
1099 	struct rt_mutex_waiter *waiter;
1100 	struct rt_mutex *next_lock;
1101 	unsigned long flags;
1102 
1103 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1104 
1105 	waiter = task->pi_blocked_on;
1106 	if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1107 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1108 		return;
1109 	}
1110 	next_lock = waiter->lock;
1111 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1112 
1113 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1114 	get_task_struct(task);
1115 
1116 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1117 				   next_lock, NULL, task);
1118 }
1119 
1120 void __sched rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1121 {
1122 	debug_rt_mutex_init_waiter(waiter);
1123 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
1124 	RB_CLEAR_NODE(&waiter->tree_entry);
1125 	waiter->task = NULL;
1126 }
1127 
1128 /**
1129  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1130  * @lock:		 the rt_mutex to take
1131  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1132  *			 or TASK_UNINTERRUPTIBLE)
1133  * @timeout:		 the pre-initialized and started timer, or NULL for none
1134  * @waiter:		 the pre-initialized rt_mutex_waiter
1135  *
1136  * Must be called with lock->wait_lock held and interrupts disabled
1137  */
1138 static int __sched __rt_mutex_slowlock(struct rt_mutex *lock, unsigned int state,
1139 				       struct hrtimer_sleeper *timeout,
1140 				       struct rt_mutex_waiter *waiter)
1141 {
1142 	int ret = 0;
1143 
1144 	for (;;) {
1145 		/* Try to acquire the lock: */
1146 		if (try_to_take_rt_mutex(lock, current, waiter))
1147 			break;
1148 
1149 		if (timeout && !timeout->task) {
1150 			ret = -ETIMEDOUT;
1151 			break;
1152 		}
1153 		if (signal_pending_state(state, current)) {
1154 			ret = -EINTR;
1155 			break;
1156 		}
1157 
1158 		raw_spin_unlock_irq(&lock->wait_lock);
1159 
1160 		schedule();
1161 
1162 		raw_spin_lock_irq(&lock->wait_lock);
1163 		set_current_state(state);
1164 	}
1165 
1166 	__set_current_state(TASK_RUNNING);
1167 	return ret;
1168 }
1169 
1170 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1171 					     struct rt_mutex_waiter *w)
1172 {
1173 	/*
1174 	 * If the result is not -EDEADLOCK or the caller requested
1175 	 * deadlock detection, nothing to do here.
1176 	 */
1177 	if (res != -EDEADLOCK || detect_deadlock)
1178 		return;
1179 
1180 	/*
1181 	 * Yell loudly and stop the task right here.
1182 	 */
1183 	WARN(1, "rtmutex deadlock detected\n");
1184 	while (1) {
1185 		set_current_state(TASK_INTERRUPTIBLE);
1186 		schedule();
1187 	}
1188 }
1189 
1190 /*
1191  * Slow path lock function:
1192  */
1193 static int __sched rt_mutex_slowlock(struct rt_mutex *lock, unsigned int state,
1194 				     struct hrtimer_sleeper *timeout,
1195 				     enum rtmutex_chainwalk chwalk)
1196 {
1197 	struct rt_mutex_waiter waiter;
1198 	unsigned long flags;
1199 	int ret = 0;
1200 
1201 	rt_mutex_init_waiter(&waiter);
1202 
1203 	/*
1204 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1205 	 * be called in early boot if the cmpxchg() fast path is disabled
1206 	 * (debug, no architecture support). In this case we will acquire the
1207 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1208 	 * enable interrupts in that early boot case. So we need to use the
1209 	 * irqsave/restore variants.
1210 	 */
1211 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1212 
1213 	/* Try to acquire the lock again: */
1214 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1215 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1216 		return 0;
1217 	}
1218 
1219 	set_current_state(state);
1220 
1221 	/* Setup the timer, when timeout != NULL */
1222 	if (unlikely(timeout))
1223 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1224 
1225 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1226 
1227 	if (likely(!ret))
1228 		/* sleep on the mutex */
1229 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1230 
1231 	if (unlikely(ret)) {
1232 		__set_current_state(TASK_RUNNING);
1233 		remove_waiter(lock, &waiter);
1234 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1235 	}
1236 
1237 	/*
1238 	 * try_to_take_rt_mutex() sets the waiter bit
1239 	 * unconditionally. We might have to fix that up.
1240 	 */
1241 	fixup_rt_mutex_waiters(lock);
1242 
1243 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1244 
1245 	/* Remove pending timer: */
1246 	if (unlikely(timeout))
1247 		hrtimer_cancel(&timeout->timer);
1248 
1249 	debug_rt_mutex_free_waiter(&waiter);
1250 
1251 	return ret;
1252 }
1253 
1254 static int __sched __rt_mutex_slowtrylock(struct rt_mutex *lock)
1255 {
1256 	int ret = try_to_take_rt_mutex(lock, current, NULL);
1257 
1258 	/*
1259 	 * try_to_take_rt_mutex() sets the lock waiters bit
1260 	 * unconditionally. Clean this up.
1261 	 */
1262 	fixup_rt_mutex_waiters(lock);
1263 
1264 	return ret;
1265 }
1266 
1267 /*
1268  * Slow path try-lock function:
1269  */
1270 static int __sched rt_mutex_slowtrylock(struct rt_mutex *lock)
1271 {
1272 	unsigned long flags;
1273 	int ret;
1274 
1275 	/*
1276 	 * If the lock already has an owner we fail to get the lock.
1277 	 * This can be done without taking the @lock->wait_lock as
1278 	 * it is only being read, and this is a trylock anyway.
1279 	 */
1280 	if (rt_mutex_owner(lock))
1281 		return 0;
1282 
1283 	/*
1284 	 * The mutex has currently no owner. Lock the wait lock and try to
1285 	 * acquire the lock. We use irqsave here to support early boot calls.
1286 	 */
1287 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1288 
1289 	ret = __rt_mutex_slowtrylock(lock);
1290 
1291 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1292 
1293 	return ret;
1294 }
1295 
1296 /*
1297  * Performs the wakeup of the top-waiter and re-enables preemption.
1298  */
1299 void __sched rt_mutex_postunlock(struct wake_q_head *wake_q)
1300 {
1301 	wake_up_q(wake_q);
1302 
1303 	/* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
1304 	preempt_enable();
1305 }
1306 
1307 /*
1308  * Slow path to release a rt-mutex.
1309  *
1310  * Return whether the current task needs to call rt_mutex_postunlock().
1311  */
1312 static void __sched rt_mutex_slowunlock(struct rt_mutex *lock)
1313 {
1314 	DEFINE_WAKE_Q(wake_q);
1315 	unsigned long flags;
1316 
1317 	/* irqsave required to support early boot calls */
1318 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1319 
1320 	debug_rt_mutex_unlock(lock);
1321 
1322 	/*
1323 	 * We must be careful here if the fast path is enabled. If we
1324 	 * have no waiters queued we cannot set owner to NULL here
1325 	 * because of:
1326 	 *
1327 	 * foo->lock->owner = NULL;
1328 	 *			rtmutex_lock(foo->lock);   <- fast path
1329 	 *			free = atomic_dec_and_test(foo->refcnt);
1330 	 *			rtmutex_unlock(foo->lock); <- fast path
1331 	 *			if (free)
1332 	 *				kfree(foo);
1333 	 * raw_spin_unlock(foo->lock->wait_lock);
1334 	 *
1335 	 * So for the fastpath enabled kernel:
1336 	 *
1337 	 * Nothing can set the waiters bit as long as we hold
1338 	 * lock->wait_lock. So we do the following sequence:
1339 	 *
1340 	 *	owner = rt_mutex_owner(lock);
1341 	 *	clear_rt_mutex_waiters(lock);
1342 	 *	raw_spin_unlock(&lock->wait_lock);
1343 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1344 	 *		return;
1345 	 *	goto retry;
1346 	 *
1347 	 * The fastpath disabled variant is simple as all access to
1348 	 * lock->owner is serialized by lock->wait_lock:
1349 	 *
1350 	 *	lock->owner = NULL;
1351 	 *	raw_spin_unlock(&lock->wait_lock);
1352 	 */
1353 	while (!rt_mutex_has_waiters(lock)) {
1354 		/* Drops lock->wait_lock ! */
1355 		if (unlock_rt_mutex_safe(lock, flags) == true)
1356 			return;
1357 		/* Relock the rtmutex and try again */
1358 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1359 	}
1360 
1361 	/*
1362 	 * The wakeup next waiter path does not suffer from the above
1363 	 * race. See the comments there.
1364 	 *
1365 	 * Queue the next waiter for wakeup once we release the wait_lock.
1366 	 */
1367 	mark_wakeup_next_waiter(&wake_q, lock);
1368 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1369 
1370 	rt_mutex_postunlock(&wake_q);
1371 }
1372 
1373 /*
1374  * debug aware fast / slowpath lock,trylock,unlock
1375  *
1376  * The atomic acquire/release ops are compiled away, when either the
1377  * architecture does not support cmpxchg or when debugging is enabled.
1378  */
1379 static __always_inline int __rt_mutex_lock(struct rt_mutex *lock, long state,
1380 					   unsigned int subclass)
1381 {
1382 	int ret;
1383 
1384 	might_sleep();
1385 	mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1386 
1387 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1388 		return 0;
1389 
1390 	ret = rt_mutex_slowlock(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1391 	if (ret)
1392 		mutex_release(&lock->dep_map, _RET_IP_);
1393 	return ret;
1394 }
1395 
1396 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1397 /**
1398  * rt_mutex_lock_nested - lock a rt_mutex
1399  *
1400  * @lock: the rt_mutex to be locked
1401  * @subclass: the lockdep subclass
1402  */
1403 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1404 {
1405 	__rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass);
1406 }
1407 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1408 
1409 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1410 
1411 /**
1412  * rt_mutex_lock - lock a rt_mutex
1413  *
1414  * @lock: the rt_mutex to be locked
1415  */
1416 void __sched rt_mutex_lock(struct rt_mutex *lock)
1417 {
1418 	__rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0);
1419 }
1420 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1421 #endif
1422 
1423 /**
1424  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1425  *
1426  * @lock:		the rt_mutex to be locked
1427  *
1428  * Returns:
1429  *  0		on success
1430  * -EINTR	when interrupted by a signal
1431  */
1432 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1433 {
1434 	return __rt_mutex_lock(lock, TASK_INTERRUPTIBLE, 0);
1435 }
1436 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1437 
1438 /**
1439  * rt_mutex_trylock - try to lock a rt_mutex
1440  *
1441  * @lock:	the rt_mutex to be locked
1442  *
1443  * This function can only be called in thread context. It's safe to call it
1444  * from atomic regions, but not from hard or soft interrupt context.
1445  *
1446  * Returns:
1447  *  1 on success
1448  *  0 on contention
1449  */
1450 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1451 {
1452 	int ret;
1453 
1454 	if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task()))
1455 		return 0;
1456 
1457 	/*
1458 	 * No lockdep annotation required because lockdep disables the fast
1459 	 * path.
1460 	 */
1461 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1462 		return 1;
1463 
1464 	ret = rt_mutex_slowtrylock(lock);
1465 	if (ret)
1466 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1467 
1468 	return ret;
1469 }
1470 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1471 
1472 /**
1473  * rt_mutex_unlock - unlock a rt_mutex
1474  *
1475  * @lock: the rt_mutex to be unlocked
1476  */
1477 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1478 {
1479 	mutex_release(&lock->dep_map, _RET_IP_);
1480 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1481 		return;
1482 
1483 	rt_mutex_slowunlock(lock);
1484 }
1485 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1486 
1487 /*
1488  * Futex variants, must not use fastpath.
1489  */
1490 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1491 {
1492 	return rt_mutex_slowtrylock(lock);
1493 }
1494 
1495 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1496 {
1497 	return __rt_mutex_slowtrylock(lock);
1498 }
1499 
1500 /**
1501  * __rt_mutex_futex_unlock - Futex variant, that since futex variants
1502  * do not use the fast-path, can be simple and will not need to retry.
1503  *
1504  * @lock:	The rt_mutex to be unlocked
1505  * @wake_q:	The wake queue head from which to get the next lock waiter
1506  */
1507 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1508 				     struct wake_q_head *wake_q)
1509 {
1510 	lockdep_assert_held(&lock->wait_lock);
1511 
1512 	debug_rt_mutex_unlock(lock);
1513 
1514 	if (!rt_mutex_has_waiters(lock)) {
1515 		lock->owner = NULL;
1516 		return false; /* done */
1517 	}
1518 
1519 	/*
1520 	 * We've already deboosted, mark_wakeup_next_waiter() will
1521 	 * retain preempt_disabled when we drop the wait_lock, to
1522 	 * avoid inversion prior to the wakeup.  preempt_disable()
1523 	 * therein pairs with rt_mutex_postunlock().
1524 	 */
1525 	mark_wakeup_next_waiter(wake_q, lock);
1526 
1527 	return true; /* call postunlock() */
1528 }
1529 
1530 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1531 {
1532 	DEFINE_WAKE_Q(wake_q);
1533 	unsigned long flags;
1534 	bool postunlock;
1535 
1536 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1537 	postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1538 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1539 
1540 	if (postunlock)
1541 		rt_mutex_postunlock(&wake_q);
1542 }
1543 
1544 /**
1545  * __rt_mutex_init - initialize the rt_mutex
1546  *
1547  * @lock:	The rt_mutex to be initialized
1548  * @name:	The lock name used for debugging
1549  * @key:	The lock class key used for debugging
1550  *
1551  * Initialize the rt_mutex to unlocked state.
1552  *
1553  * Initializing of a locked rt_mutex is not allowed
1554  */
1555 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name,
1556 		     struct lock_class_key *key)
1557 {
1558 	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
1559 	lockdep_init_map(&lock->dep_map, name, key, 0);
1560 
1561 	__rt_mutex_basic_init(lock);
1562 }
1563 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1564 
1565 /**
1566  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1567  *				proxy owner
1568  *
1569  * @lock:	the rt_mutex to be locked
1570  * @proxy_owner:the task to set as owner
1571  *
1572  * No locking. Caller has to do serializing itself
1573  *
1574  * Special API call for PI-futex support. This initializes the rtmutex and
1575  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1576  * possible at this point because the pi_state which contains the rtmutex
1577  * is not yet visible to other tasks.
1578  */
1579 void __sched rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1580 					struct task_struct *proxy_owner)
1581 {
1582 	__rt_mutex_basic_init(lock);
1583 	rt_mutex_set_owner(lock, proxy_owner);
1584 }
1585 
1586 /**
1587  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1588  *
1589  * @lock:	the rt_mutex to be locked
1590  *
1591  * No locking. Caller has to do serializing itself
1592  *
1593  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1594  * (debugging) state. Concurrent operations on this rt_mutex are not
1595  * possible because it belongs to the pi_state which is about to be freed
1596  * and it is not longer visible to other tasks.
1597  */
1598 void __sched rt_mutex_proxy_unlock(struct rt_mutex *lock)
1599 {
1600 	debug_rt_mutex_proxy_unlock(lock);
1601 	rt_mutex_set_owner(lock, NULL);
1602 }
1603 
1604 /**
1605  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1606  * @lock:		the rt_mutex to take
1607  * @waiter:		the pre-initialized rt_mutex_waiter
1608  * @task:		the task to prepare
1609  *
1610  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1611  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1612  *
1613  * NOTE: does _NOT_ remove the @waiter on failure; must either call
1614  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1615  *
1616  * Returns:
1617  *  0 - task blocked on lock
1618  *  1 - acquired the lock for task, caller should wake it up
1619  * <0 - error
1620  *
1621  * Special API call for PI-futex support.
1622  */
1623 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1624 					struct rt_mutex_waiter *waiter,
1625 					struct task_struct *task)
1626 {
1627 	int ret;
1628 
1629 	lockdep_assert_held(&lock->wait_lock);
1630 
1631 	if (try_to_take_rt_mutex(lock, task, NULL))
1632 		return 1;
1633 
1634 	/* We enforce deadlock detection for futexes */
1635 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1636 				      RT_MUTEX_FULL_CHAINWALK);
1637 
1638 	if (ret && !rt_mutex_owner(lock)) {
1639 		/*
1640 		 * Reset the return value. We might have
1641 		 * returned with -EDEADLK and the owner
1642 		 * released the lock while we were walking the
1643 		 * pi chain.  Let the waiter sort it out.
1644 		 */
1645 		ret = 0;
1646 	}
1647 
1648 	return ret;
1649 }
1650 
1651 /**
1652  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1653  * @lock:		the rt_mutex to take
1654  * @waiter:		the pre-initialized rt_mutex_waiter
1655  * @task:		the task to prepare
1656  *
1657  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1658  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1659  *
1660  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1661  * on failure.
1662  *
1663  * Returns:
1664  *  0 - task blocked on lock
1665  *  1 - acquired the lock for task, caller should wake it up
1666  * <0 - error
1667  *
1668  * Special API call for PI-futex support.
1669  */
1670 int __sched rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1671 				      struct rt_mutex_waiter *waiter,
1672 				      struct task_struct *task)
1673 {
1674 	int ret;
1675 
1676 	raw_spin_lock_irq(&lock->wait_lock);
1677 	ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1678 	if (unlikely(ret))
1679 		remove_waiter(lock, waiter);
1680 	raw_spin_unlock_irq(&lock->wait_lock);
1681 
1682 	return ret;
1683 }
1684 
1685 /**
1686  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1687  * @lock:		the rt_mutex we were woken on
1688  * @to:			the timeout, null if none. hrtimer should already have
1689  *			been started.
1690  * @waiter:		the pre-initialized rt_mutex_waiter
1691  *
1692  * Wait for the lock acquisition started on our behalf by
1693  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1694  * rt_mutex_cleanup_proxy_lock().
1695  *
1696  * Returns:
1697  *  0 - success
1698  * <0 - error, one of -EINTR, -ETIMEDOUT
1699  *
1700  * Special API call for PI-futex support
1701  */
1702 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1703 				     struct hrtimer_sleeper *to,
1704 				     struct rt_mutex_waiter *waiter)
1705 {
1706 	int ret;
1707 
1708 	raw_spin_lock_irq(&lock->wait_lock);
1709 	/* sleep on the mutex */
1710 	set_current_state(TASK_INTERRUPTIBLE);
1711 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1712 	/*
1713 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1714 	 * have to fix that up.
1715 	 */
1716 	fixup_rt_mutex_waiters(lock);
1717 	raw_spin_unlock_irq(&lock->wait_lock);
1718 
1719 	return ret;
1720 }
1721 
1722 /**
1723  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1724  * @lock:		the rt_mutex we were woken on
1725  * @waiter:		the pre-initialized rt_mutex_waiter
1726  *
1727  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1728  * rt_mutex_wait_proxy_lock().
1729  *
1730  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1731  * in fact still be granted ownership until we're removed. Therefore we can
1732  * find we are in fact the owner and must disregard the
1733  * rt_mutex_wait_proxy_lock() failure.
1734  *
1735  * Returns:
1736  *  true  - did the cleanup, we done.
1737  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1738  *          caller should disregards its return value.
1739  *
1740  * Special API call for PI-futex support
1741  */
1742 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1743 					 struct rt_mutex_waiter *waiter)
1744 {
1745 	bool cleanup = false;
1746 
1747 	raw_spin_lock_irq(&lock->wait_lock);
1748 	/*
1749 	 * Do an unconditional try-lock, this deals with the lock stealing
1750 	 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1751 	 * sets a NULL owner.
1752 	 *
1753 	 * We're not interested in the return value, because the subsequent
1754 	 * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1755 	 * we will own the lock and it will have removed the waiter. If we
1756 	 * failed the trylock, we're still not owner and we need to remove
1757 	 * ourselves.
1758 	 */
1759 	try_to_take_rt_mutex(lock, current, waiter);
1760 	/*
1761 	 * Unless we're the owner; we're still enqueued on the wait_list.
1762 	 * So check if we became owner, if not, take us off the wait_list.
1763 	 */
1764 	if (rt_mutex_owner(lock) != current) {
1765 		remove_waiter(lock, waiter);
1766 		cleanup = true;
1767 	}
1768 	/*
1769 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1770 	 * have to fix that up.
1771 	 */
1772 	fixup_rt_mutex_waiters(lock);
1773 
1774 	raw_spin_unlock_irq(&lock->wait_lock);
1775 
1776 	return cleanup;
1777 }
1778 
1779 #ifdef CONFIG_DEBUG_RT_MUTEXES
1780 void rt_mutex_debug_task_free(struct task_struct *task)
1781 {
1782 	DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root));
1783 	DEBUG_LOCKS_WARN_ON(task->pi_blocked_on);
1784 }
1785 #endif
1786