1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * RT-Mutexes: simple blocking mutual exclusion locks with PI support 4 * 5 * started by Ingo Molnar and Thomas Gleixner. 6 * 7 * Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 8 * Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com> 9 * Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt 10 * Copyright (C) 2006 Esben Nielsen 11 * 12 * See Documentation/locking/rt-mutex-design.rst for details. 13 */ 14 #include <linux/spinlock.h> 15 #include <linux/export.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/rt.h> 18 #include <linux/sched/deadline.h> 19 #include <linux/sched/wake_q.h> 20 #include <linux/sched/debug.h> 21 #include <linux/timer.h> 22 23 #include "rtmutex_common.h" 24 25 /* 26 * lock->owner state tracking: 27 * 28 * lock->owner holds the task_struct pointer of the owner. Bit 0 29 * is used to keep track of the "lock has waiters" state. 30 * 31 * owner bit0 32 * NULL 0 lock is free (fast acquire possible) 33 * NULL 1 lock is free and has waiters and the top waiter 34 * is going to take the lock* 35 * taskpointer 0 lock is held (fast release possible) 36 * taskpointer 1 lock is held and has waiters** 37 * 38 * The fast atomic compare exchange based acquire and release is only 39 * possible when bit 0 of lock->owner is 0. 40 * 41 * (*) It also can be a transitional state when grabbing the lock 42 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock, 43 * we need to set the bit0 before looking at the lock, and the owner may be 44 * NULL in this small time, hence this can be a transitional state. 45 * 46 * (**) There is a small time when bit 0 is set but there are no 47 * waiters. This can happen when grabbing the lock in the slow path. 48 * To prevent a cmpxchg of the owner releasing the lock, we need to 49 * set this bit before looking at the lock. 50 */ 51 52 static __always_inline void 53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner) 54 { 55 unsigned long val = (unsigned long)owner; 56 57 if (rt_mutex_has_waiters(lock)) 58 val |= RT_MUTEX_HAS_WAITERS; 59 60 WRITE_ONCE(lock->owner, (struct task_struct *)val); 61 } 62 63 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex *lock) 64 { 65 lock->owner = (struct task_struct *) 66 ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS); 67 } 68 69 static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex *lock) 70 { 71 unsigned long owner, *p = (unsigned long *) &lock->owner; 72 73 if (rt_mutex_has_waiters(lock)) 74 return; 75 76 /* 77 * The rbtree has no waiters enqueued, now make sure that the 78 * lock->owner still has the waiters bit set, otherwise the 79 * following can happen: 80 * 81 * CPU 0 CPU 1 CPU2 82 * l->owner=T1 83 * rt_mutex_lock(l) 84 * lock(l->lock) 85 * l->owner = T1 | HAS_WAITERS; 86 * enqueue(T2) 87 * boost() 88 * unlock(l->lock) 89 * block() 90 * 91 * rt_mutex_lock(l) 92 * lock(l->lock) 93 * l->owner = T1 | HAS_WAITERS; 94 * enqueue(T3) 95 * boost() 96 * unlock(l->lock) 97 * block() 98 * signal(->T2) signal(->T3) 99 * lock(l->lock) 100 * dequeue(T2) 101 * deboost() 102 * unlock(l->lock) 103 * lock(l->lock) 104 * dequeue(T3) 105 * ==> wait list is empty 106 * deboost() 107 * unlock(l->lock) 108 * lock(l->lock) 109 * fixup_rt_mutex_waiters() 110 * if (wait_list_empty(l) { 111 * l->owner = owner 112 * owner = l->owner & ~HAS_WAITERS; 113 * ==> l->owner = T1 114 * } 115 * lock(l->lock) 116 * rt_mutex_unlock(l) fixup_rt_mutex_waiters() 117 * if (wait_list_empty(l) { 118 * owner = l->owner & ~HAS_WAITERS; 119 * cmpxchg(l->owner, T1, NULL) 120 * ===> Success (l->owner = NULL) 121 * 122 * l->owner = owner 123 * ==> l->owner = T1 124 * } 125 * 126 * With the check for the waiter bit in place T3 on CPU2 will not 127 * overwrite. All tasks fiddling with the waiters bit are 128 * serialized by l->lock, so nothing else can modify the waiters 129 * bit. If the bit is set then nothing can change l->owner either 130 * so the simple RMW is safe. The cmpxchg() will simply fail if it 131 * happens in the middle of the RMW because the waiters bit is 132 * still set. 133 */ 134 owner = READ_ONCE(*p); 135 if (owner & RT_MUTEX_HAS_WAITERS) 136 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS); 137 } 138 139 /* 140 * We can speed up the acquire/release, if there's no debugging state to be 141 * set up. 142 */ 143 #ifndef CONFIG_DEBUG_RT_MUTEXES 144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c) 145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c) 146 147 /* 148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force 149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such 150 * relaxed semantics suffice. 151 */ 152 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 153 { 154 unsigned long owner, *p = (unsigned long *) &lock->owner; 155 156 do { 157 owner = *p; 158 } while (cmpxchg_relaxed(p, owner, 159 owner | RT_MUTEX_HAS_WAITERS) != owner); 160 } 161 162 /* 163 * Safe fastpath aware unlock: 164 * 1) Clear the waiters bit 165 * 2) Drop lock->wait_lock 166 * 3) Try to unlock the lock with cmpxchg 167 */ 168 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, 169 unsigned long flags) 170 __releases(lock->wait_lock) 171 { 172 struct task_struct *owner = rt_mutex_owner(lock); 173 174 clear_rt_mutex_waiters(lock); 175 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 176 /* 177 * If a new waiter comes in between the unlock and the cmpxchg 178 * we have two situations: 179 * 180 * unlock(wait_lock); 181 * lock(wait_lock); 182 * cmpxchg(p, owner, 0) == owner 183 * mark_rt_mutex_waiters(lock); 184 * acquire(lock); 185 * or: 186 * 187 * unlock(wait_lock); 188 * lock(wait_lock); 189 * mark_rt_mutex_waiters(lock); 190 * 191 * cmpxchg(p, owner, 0) != owner 192 * enqueue_waiter(); 193 * unlock(wait_lock); 194 * lock(wait_lock); 195 * wake waiter(); 196 * unlock(wait_lock); 197 * lock(wait_lock); 198 * acquire(lock); 199 */ 200 return rt_mutex_cmpxchg_release(lock, owner, NULL); 201 } 202 203 #else 204 # define rt_mutex_cmpxchg_acquire(l,c,n) (0) 205 # define rt_mutex_cmpxchg_release(l,c,n) (0) 206 207 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex *lock) 208 { 209 lock->owner = (struct task_struct *) 210 ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS); 211 } 212 213 /* 214 * Simple slow path only version: lock->owner is protected by lock->wait_lock. 215 */ 216 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex *lock, 217 unsigned long flags) 218 __releases(lock->wait_lock) 219 { 220 lock->owner = NULL; 221 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 222 return true; 223 } 224 #endif 225 226 /* 227 * Only use with rt_mutex_waiter_{less,equal}() 228 */ 229 #define task_to_waiter(p) \ 230 &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline } 231 232 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left, 233 struct rt_mutex_waiter *right) 234 { 235 if (left->prio < right->prio) 236 return 1; 237 238 /* 239 * If both waiters have dl_prio(), we check the deadlines of the 240 * associated tasks. 241 * If left waiter has a dl_prio(), and we didn't return 1 above, 242 * then right waiter has a dl_prio() too. 243 */ 244 if (dl_prio(left->prio)) 245 return dl_time_before(left->deadline, right->deadline); 246 247 return 0; 248 } 249 250 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left, 251 struct rt_mutex_waiter *right) 252 { 253 if (left->prio != right->prio) 254 return 0; 255 256 /* 257 * If both waiters have dl_prio(), we check the deadlines of the 258 * associated tasks. 259 * If left waiter has a dl_prio(), and we didn't return 0 above, 260 * then right waiter has a dl_prio() too. 261 */ 262 if (dl_prio(left->prio)) 263 return left->deadline == right->deadline; 264 265 return 1; 266 } 267 268 #define __node_2_waiter(node) \ 269 rb_entry((node), struct rt_mutex_waiter, tree_entry) 270 271 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b) 272 { 273 return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b)); 274 } 275 276 static __always_inline void 277 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 278 { 279 rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less); 280 } 281 282 static __always_inline void 283 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter) 284 { 285 if (RB_EMPTY_NODE(&waiter->tree_entry)) 286 return; 287 288 rb_erase_cached(&waiter->tree_entry, &lock->waiters); 289 RB_CLEAR_NODE(&waiter->tree_entry); 290 } 291 292 #define __node_2_pi_waiter(node) \ 293 rb_entry((node), struct rt_mutex_waiter, pi_tree_entry) 294 295 static __always_inline bool 296 __pi_waiter_less(struct rb_node *a, const struct rb_node *b) 297 { 298 return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b)); 299 } 300 301 static __always_inline void 302 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 303 { 304 rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less); 305 } 306 307 static __always_inline void 308 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter) 309 { 310 if (RB_EMPTY_NODE(&waiter->pi_tree_entry)) 311 return; 312 313 rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters); 314 RB_CLEAR_NODE(&waiter->pi_tree_entry); 315 } 316 317 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p) 318 { 319 struct task_struct *pi_task = NULL; 320 321 lockdep_assert_held(&p->pi_lock); 322 323 if (task_has_pi_waiters(p)) 324 pi_task = task_top_pi_waiter(p)->task; 325 326 rt_mutex_setprio(p, pi_task); 327 } 328 329 /* 330 * Deadlock detection is conditional: 331 * 332 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted 333 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK. 334 * 335 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always 336 * conducted independent of the detect argument. 337 * 338 * If the waiter argument is NULL this indicates the deboost path and 339 * deadlock detection is disabled independent of the detect argument 340 * and the config settings. 341 */ 342 static __always_inline bool 343 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter, 344 enum rtmutex_chainwalk chwalk) 345 { 346 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEX)) 347 return waiter != NULL; 348 return chwalk == RT_MUTEX_FULL_CHAINWALK; 349 } 350 351 /* 352 * Max number of times we'll walk the boosting chain: 353 */ 354 int max_lock_depth = 1024; 355 356 static __always_inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p) 357 { 358 return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL; 359 } 360 361 /* 362 * Adjust the priority chain. Also used for deadlock detection. 363 * Decreases task's usage by one - may thus free the task. 364 * 365 * @task: the task owning the mutex (owner) for which a chain walk is 366 * probably needed 367 * @chwalk: do we have to carry out deadlock detection? 368 * @orig_lock: the mutex (can be NULL if we are walking the chain to recheck 369 * things for a task that has just got its priority adjusted, and 370 * is waiting on a mutex) 371 * @next_lock: the mutex on which the owner of @orig_lock was blocked before 372 * we dropped its pi_lock. Is never dereferenced, only used for 373 * comparison to detect lock chain changes. 374 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated 375 * its priority to the mutex owner (can be NULL in the case 376 * depicted above or if the top waiter is gone away and we are 377 * actually deboosting the owner) 378 * @top_task: the current top waiter 379 * 380 * Returns 0 or -EDEADLK. 381 * 382 * Chain walk basics and protection scope 383 * 384 * [R] refcount on task 385 * [P] task->pi_lock held 386 * [L] rtmutex->wait_lock held 387 * 388 * Step Description Protected by 389 * function arguments: 390 * @task [R] 391 * @orig_lock if != NULL @top_task is blocked on it 392 * @next_lock Unprotected. Cannot be 393 * dereferenced. Only used for 394 * comparison. 395 * @orig_waiter if != NULL @top_task is blocked on it 396 * @top_task current, or in case of proxy 397 * locking protected by calling 398 * code 399 * again: 400 * loop_sanity_check(); 401 * retry: 402 * [1] lock(task->pi_lock); [R] acquire [P] 403 * [2] waiter = task->pi_blocked_on; [P] 404 * [3] check_exit_conditions_1(); [P] 405 * [4] lock = waiter->lock; [P] 406 * [5] if (!try_lock(lock->wait_lock)) { [P] try to acquire [L] 407 * unlock(task->pi_lock); release [P] 408 * goto retry; 409 * } 410 * [6] check_exit_conditions_2(); [P] + [L] 411 * [7] requeue_lock_waiter(lock, waiter); [P] + [L] 412 * [8] unlock(task->pi_lock); release [P] 413 * put_task_struct(task); release [R] 414 * [9] check_exit_conditions_3(); [L] 415 * [10] task = owner(lock); [L] 416 * get_task_struct(task); [L] acquire [R] 417 * lock(task->pi_lock); [L] acquire [P] 418 * [11] requeue_pi_waiter(tsk, waiters(lock));[P] + [L] 419 * [12] check_exit_conditions_4(); [P] + [L] 420 * [13] unlock(task->pi_lock); release [P] 421 * unlock(lock->wait_lock); release [L] 422 * goto again; 423 */ 424 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task, 425 enum rtmutex_chainwalk chwalk, 426 struct rt_mutex *orig_lock, 427 struct rt_mutex *next_lock, 428 struct rt_mutex_waiter *orig_waiter, 429 struct task_struct *top_task) 430 { 431 struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter; 432 struct rt_mutex_waiter *prerequeue_top_waiter; 433 int ret = 0, depth = 0; 434 struct rt_mutex *lock; 435 bool detect_deadlock; 436 bool requeue = true; 437 438 detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk); 439 440 /* 441 * The (de)boosting is a step by step approach with a lot of 442 * pitfalls. We want this to be preemptible and we want hold a 443 * maximum of two locks per step. So we have to check 444 * carefully whether things change under us. 445 */ 446 again: 447 /* 448 * We limit the lock chain length for each invocation. 449 */ 450 if (++depth > max_lock_depth) { 451 static int prev_max; 452 453 /* 454 * Print this only once. If the admin changes the limit, 455 * print a new message when reaching the limit again. 456 */ 457 if (prev_max != max_lock_depth) { 458 prev_max = max_lock_depth; 459 printk(KERN_WARNING "Maximum lock depth %d reached " 460 "task: %s (%d)\n", max_lock_depth, 461 top_task->comm, task_pid_nr(top_task)); 462 } 463 put_task_struct(task); 464 465 return -EDEADLK; 466 } 467 468 /* 469 * We are fully preemptible here and only hold the refcount on 470 * @task. So everything can have changed under us since the 471 * caller or our own code below (goto retry/again) dropped all 472 * locks. 473 */ 474 retry: 475 /* 476 * [1] Task cannot go away as we did a get_task() before ! 477 */ 478 raw_spin_lock_irq(&task->pi_lock); 479 480 /* 481 * [2] Get the waiter on which @task is blocked on. 482 */ 483 waiter = task->pi_blocked_on; 484 485 /* 486 * [3] check_exit_conditions_1() protected by task->pi_lock. 487 */ 488 489 /* 490 * Check whether the end of the boosting chain has been 491 * reached or the state of the chain has changed while we 492 * dropped the locks. 493 */ 494 if (!waiter) 495 goto out_unlock_pi; 496 497 /* 498 * Check the orig_waiter state. After we dropped the locks, 499 * the previous owner of the lock might have released the lock. 500 */ 501 if (orig_waiter && !rt_mutex_owner(orig_lock)) 502 goto out_unlock_pi; 503 504 /* 505 * We dropped all locks after taking a refcount on @task, so 506 * the task might have moved on in the lock chain or even left 507 * the chain completely and blocks now on an unrelated lock or 508 * on @orig_lock. 509 * 510 * We stored the lock on which @task was blocked in @next_lock, 511 * so we can detect the chain change. 512 */ 513 if (next_lock != waiter->lock) 514 goto out_unlock_pi; 515 516 /* 517 * Drop out, when the task has no waiters. Note, 518 * top_waiter can be NULL, when we are in the deboosting 519 * mode! 520 */ 521 if (top_waiter) { 522 if (!task_has_pi_waiters(task)) 523 goto out_unlock_pi; 524 /* 525 * If deadlock detection is off, we stop here if we 526 * are not the top pi waiter of the task. If deadlock 527 * detection is enabled we continue, but stop the 528 * requeueing in the chain walk. 529 */ 530 if (top_waiter != task_top_pi_waiter(task)) { 531 if (!detect_deadlock) 532 goto out_unlock_pi; 533 else 534 requeue = false; 535 } 536 } 537 538 /* 539 * If the waiter priority is the same as the task priority 540 * then there is no further priority adjustment necessary. If 541 * deadlock detection is off, we stop the chain walk. If its 542 * enabled we continue, but stop the requeueing in the chain 543 * walk. 544 */ 545 if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 546 if (!detect_deadlock) 547 goto out_unlock_pi; 548 else 549 requeue = false; 550 } 551 552 /* 553 * [4] Get the next lock 554 */ 555 lock = waiter->lock; 556 /* 557 * [5] We need to trylock here as we are holding task->pi_lock, 558 * which is the reverse lock order versus the other rtmutex 559 * operations. 560 */ 561 if (!raw_spin_trylock(&lock->wait_lock)) { 562 raw_spin_unlock_irq(&task->pi_lock); 563 cpu_relax(); 564 goto retry; 565 } 566 567 /* 568 * [6] check_exit_conditions_2() protected by task->pi_lock and 569 * lock->wait_lock. 570 * 571 * Deadlock detection. If the lock is the same as the original 572 * lock which caused us to walk the lock chain or if the 573 * current lock is owned by the task which initiated the chain 574 * walk, we detected a deadlock. 575 */ 576 if (lock == orig_lock || rt_mutex_owner(lock) == top_task) { 577 raw_spin_unlock(&lock->wait_lock); 578 ret = -EDEADLK; 579 goto out_unlock_pi; 580 } 581 582 /* 583 * If we just follow the lock chain for deadlock detection, no 584 * need to do all the requeue operations. To avoid a truckload 585 * of conditionals around the various places below, just do the 586 * minimum chain walk checks. 587 */ 588 if (!requeue) { 589 /* 590 * No requeue[7] here. Just release @task [8] 591 */ 592 raw_spin_unlock(&task->pi_lock); 593 put_task_struct(task); 594 595 /* 596 * [9] check_exit_conditions_3 protected by lock->wait_lock. 597 * If there is no owner of the lock, end of chain. 598 */ 599 if (!rt_mutex_owner(lock)) { 600 raw_spin_unlock_irq(&lock->wait_lock); 601 return 0; 602 } 603 604 /* [10] Grab the next task, i.e. owner of @lock */ 605 task = get_task_struct(rt_mutex_owner(lock)); 606 raw_spin_lock(&task->pi_lock); 607 608 /* 609 * No requeue [11] here. We just do deadlock detection. 610 * 611 * [12] Store whether owner is blocked 612 * itself. Decision is made after dropping the locks 613 */ 614 next_lock = task_blocked_on_lock(task); 615 /* 616 * Get the top waiter for the next iteration 617 */ 618 top_waiter = rt_mutex_top_waiter(lock); 619 620 /* [13] Drop locks */ 621 raw_spin_unlock(&task->pi_lock); 622 raw_spin_unlock_irq(&lock->wait_lock); 623 624 /* If owner is not blocked, end of chain. */ 625 if (!next_lock) 626 goto out_put_task; 627 goto again; 628 } 629 630 /* 631 * Store the current top waiter before doing the requeue 632 * operation on @lock. We need it for the boost/deboost 633 * decision below. 634 */ 635 prerequeue_top_waiter = rt_mutex_top_waiter(lock); 636 637 /* [7] Requeue the waiter in the lock waiter tree. */ 638 rt_mutex_dequeue(lock, waiter); 639 640 /* 641 * Update the waiter prio fields now that we're dequeued. 642 * 643 * These values can have changed through either: 644 * 645 * sys_sched_set_scheduler() / sys_sched_setattr() 646 * 647 * or 648 * 649 * DL CBS enforcement advancing the effective deadline. 650 * 651 * Even though pi_waiters also uses these fields, and that tree is only 652 * updated in [11], we can do this here, since we hold [L], which 653 * serializes all pi_waiters access and rb_erase() does not care about 654 * the values of the node being removed. 655 */ 656 waiter->prio = task->prio; 657 waiter->deadline = task->dl.deadline; 658 659 rt_mutex_enqueue(lock, waiter); 660 661 /* [8] Release the task */ 662 raw_spin_unlock(&task->pi_lock); 663 put_task_struct(task); 664 665 /* 666 * [9] check_exit_conditions_3 protected by lock->wait_lock. 667 * 668 * We must abort the chain walk if there is no lock owner even 669 * in the dead lock detection case, as we have nothing to 670 * follow here. This is the end of the chain we are walking. 671 */ 672 if (!rt_mutex_owner(lock)) { 673 /* 674 * If the requeue [7] above changed the top waiter, 675 * then we need to wake the new top waiter up to try 676 * to get the lock. 677 */ 678 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock)) 679 wake_up_process(rt_mutex_top_waiter(lock)->task); 680 raw_spin_unlock_irq(&lock->wait_lock); 681 return 0; 682 } 683 684 /* [10] Grab the next task, i.e. the owner of @lock */ 685 task = get_task_struct(rt_mutex_owner(lock)); 686 raw_spin_lock(&task->pi_lock); 687 688 /* [11] requeue the pi waiters if necessary */ 689 if (waiter == rt_mutex_top_waiter(lock)) { 690 /* 691 * The waiter became the new top (highest priority) 692 * waiter on the lock. Replace the previous top waiter 693 * in the owner tasks pi waiters tree with this waiter 694 * and adjust the priority of the owner. 695 */ 696 rt_mutex_dequeue_pi(task, prerequeue_top_waiter); 697 rt_mutex_enqueue_pi(task, waiter); 698 rt_mutex_adjust_prio(task); 699 700 } else if (prerequeue_top_waiter == waiter) { 701 /* 702 * The waiter was the top waiter on the lock, but is 703 * no longer the top priority waiter. Replace waiter in 704 * the owner tasks pi waiters tree with the new top 705 * (highest priority) waiter and adjust the priority 706 * of the owner. 707 * The new top waiter is stored in @waiter so that 708 * @waiter == @top_waiter evaluates to true below and 709 * we continue to deboost the rest of the chain. 710 */ 711 rt_mutex_dequeue_pi(task, waiter); 712 waiter = rt_mutex_top_waiter(lock); 713 rt_mutex_enqueue_pi(task, waiter); 714 rt_mutex_adjust_prio(task); 715 } else { 716 /* 717 * Nothing changed. No need to do any priority 718 * adjustment. 719 */ 720 } 721 722 /* 723 * [12] check_exit_conditions_4() protected by task->pi_lock 724 * and lock->wait_lock. The actual decisions are made after we 725 * dropped the locks. 726 * 727 * Check whether the task which owns the current lock is pi 728 * blocked itself. If yes we store a pointer to the lock for 729 * the lock chain change detection above. After we dropped 730 * task->pi_lock next_lock cannot be dereferenced anymore. 731 */ 732 next_lock = task_blocked_on_lock(task); 733 /* 734 * Store the top waiter of @lock for the end of chain walk 735 * decision below. 736 */ 737 top_waiter = rt_mutex_top_waiter(lock); 738 739 /* [13] Drop the locks */ 740 raw_spin_unlock(&task->pi_lock); 741 raw_spin_unlock_irq(&lock->wait_lock); 742 743 /* 744 * Make the actual exit decisions [12], based on the stored 745 * values. 746 * 747 * We reached the end of the lock chain. Stop right here. No 748 * point to go back just to figure that out. 749 */ 750 if (!next_lock) 751 goto out_put_task; 752 753 /* 754 * If the current waiter is not the top waiter on the lock, 755 * then we can stop the chain walk here if we are not in full 756 * deadlock detection mode. 757 */ 758 if (!detect_deadlock && waiter != top_waiter) 759 goto out_put_task; 760 761 goto again; 762 763 out_unlock_pi: 764 raw_spin_unlock_irq(&task->pi_lock); 765 out_put_task: 766 put_task_struct(task); 767 768 return ret; 769 } 770 771 /* 772 * Try to take an rt-mutex 773 * 774 * Must be called with lock->wait_lock held and interrupts disabled 775 * 776 * @lock: The lock to be acquired. 777 * @task: The task which wants to acquire the lock 778 * @waiter: The waiter that is queued to the lock's wait tree if the 779 * callsite called task_blocked_on_lock(), otherwise NULL 780 */ 781 static int __sched 782 try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task, 783 struct rt_mutex_waiter *waiter) 784 { 785 lockdep_assert_held(&lock->wait_lock); 786 787 /* 788 * Before testing whether we can acquire @lock, we set the 789 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all 790 * other tasks which try to modify @lock into the slow path 791 * and they serialize on @lock->wait_lock. 792 * 793 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state 794 * as explained at the top of this file if and only if: 795 * 796 * - There is a lock owner. The caller must fixup the 797 * transient state if it does a trylock or leaves the lock 798 * function due to a signal or timeout. 799 * 800 * - @task acquires the lock and there are no other 801 * waiters. This is undone in rt_mutex_set_owner(@task) at 802 * the end of this function. 803 */ 804 mark_rt_mutex_waiters(lock); 805 806 /* 807 * If @lock has an owner, give up. 808 */ 809 if (rt_mutex_owner(lock)) 810 return 0; 811 812 /* 813 * If @waiter != NULL, @task has already enqueued the waiter 814 * into @lock waiter tree. If @waiter == NULL then this is a 815 * trylock attempt. 816 */ 817 if (waiter) { 818 /* 819 * If waiter is not the highest priority waiter of 820 * @lock, give up. 821 */ 822 if (waiter != rt_mutex_top_waiter(lock)) 823 return 0; 824 825 /* 826 * We can acquire the lock. Remove the waiter from the 827 * lock waiters tree. 828 */ 829 rt_mutex_dequeue(lock, waiter); 830 831 } else { 832 /* 833 * If the lock has waiters already we check whether @task is 834 * eligible to take over the lock. 835 * 836 * If there are no other waiters, @task can acquire 837 * the lock. @task->pi_blocked_on is NULL, so it does 838 * not need to be dequeued. 839 */ 840 if (rt_mutex_has_waiters(lock)) { 841 /* 842 * If @task->prio is greater than or equal to 843 * the top waiter priority (kernel view), 844 * @task lost. 845 */ 846 if (!rt_mutex_waiter_less(task_to_waiter(task), 847 rt_mutex_top_waiter(lock))) 848 return 0; 849 850 /* 851 * The current top waiter stays enqueued. We 852 * don't have to change anything in the lock 853 * waiters order. 854 */ 855 } else { 856 /* 857 * No waiters. Take the lock without the 858 * pi_lock dance.@task->pi_blocked_on is NULL 859 * and we have no waiters to enqueue in @task 860 * pi waiters tree. 861 */ 862 goto takeit; 863 } 864 } 865 866 /* 867 * Clear @task->pi_blocked_on. Requires protection by 868 * @task->pi_lock. Redundant operation for the @waiter == NULL 869 * case, but conditionals are more expensive than a redundant 870 * store. 871 */ 872 raw_spin_lock(&task->pi_lock); 873 task->pi_blocked_on = NULL; 874 /* 875 * Finish the lock acquisition. @task is the new owner. If 876 * other waiters exist we have to insert the highest priority 877 * waiter into @task->pi_waiters tree. 878 */ 879 if (rt_mutex_has_waiters(lock)) 880 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock)); 881 raw_spin_unlock(&task->pi_lock); 882 883 takeit: 884 /* 885 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there 886 * are still waiters or clears it. 887 */ 888 rt_mutex_set_owner(lock, task); 889 890 return 1; 891 } 892 893 /* 894 * Task blocks on lock. 895 * 896 * Prepare waiter and propagate pi chain 897 * 898 * This must be called with lock->wait_lock held and interrupts disabled 899 */ 900 static int __sched task_blocks_on_rt_mutex(struct rt_mutex *lock, 901 struct rt_mutex_waiter *waiter, 902 struct task_struct *task, 903 enum rtmutex_chainwalk chwalk) 904 { 905 struct task_struct *owner = rt_mutex_owner(lock); 906 struct rt_mutex_waiter *top_waiter = waiter; 907 struct rt_mutex *next_lock; 908 int chain_walk = 0, res; 909 910 lockdep_assert_held(&lock->wait_lock); 911 912 /* 913 * Early deadlock detection. We really don't want the task to 914 * enqueue on itself just to untangle the mess later. It's not 915 * only an optimization. We drop the locks, so another waiter 916 * can come in before the chain walk detects the deadlock. So 917 * the other will detect the deadlock and return -EDEADLOCK, 918 * which is wrong, as the other waiter is not in a deadlock 919 * situation. 920 */ 921 if (owner == task) 922 return -EDEADLK; 923 924 raw_spin_lock(&task->pi_lock); 925 waiter->task = task; 926 waiter->lock = lock; 927 waiter->prio = task->prio; 928 waiter->deadline = task->dl.deadline; 929 930 /* Get the top priority waiter on the lock */ 931 if (rt_mutex_has_waiters(lock)) 932 top_waiter = rt_mutex_top_waiter(lock); 933 rt_mutex_enqueue(lock, waiter); 934 935 task->pi_blocked_on = waiter; 936 937 raw_spin_unlock(&task->pi_lock); 938 939 if (!owner) 940 return 0; 941 942 raw_spin_lock(&owner->pi_lock); 943 if (waiter == rt_mutex_top_waiter(lock)) { 944 rt_mutex_dequeue_pi(owner, top_waiter); 945 rt_mutex_enqueue_pi(owner, waiter); 946 947 rt_mutex_adjust_prio(owner); 948 if (owner->pi_blocked_on) 949 chain_walk = 1; 950 } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) { 951 chain_walk = 1; 952 } 953 954 /* Store the lock on which owner is blocked or NULL */ 955 next_lock = task_blocked_on_lock(owner); 956 957 raw_spin_unlock(&owner->pi_lock); 958 /* 959 * Even if full deadlock detection is on, if the owner is not 960 * blocked itself, we can avoid finding this out in the chain 961 * walk. 962 */ 963 if (!chain_walk || !next_lock) 964 return 0; 965 966 /* 967 * The owner can't disappear while holding a lock, 968 * so the owner struct is protected by wait_lock. 969 * Gets dropped in rt_mutex_adjust_prio_chain()! 970 */ 971 get_task_struct(owner); 972 973 raw_spin_unlock_irq(&lock->wait_lock); 974 975 res = rt_mutex_adjust_prio_chain(owner, chwalk, lock, 976 next_lock, waiter, task); 977 978 raw_spin_lock_irq(&lock->wait_lock); 979 980 return res; 981 } 982 983 /* 984 * Remove the top waiter from the current tasks pi waiter tree and 985 * queue it up. 986 * 987 * Called with lock->wait_lock held and interrupts disabled. 988 */ 989 static void __sched mark_wakeup_next_waiter(struct wake_q_head *wake_q, 990 struct rt_mutex *lock) 991 { 992 struct rt_mutex_waiter *waiter; 993 994 raw_spin_lock(¤t->pi_lock); 995 996 waiter = rt_mutex_top_waiter(lock); 997 998 /* 999 * Remove it from current->pi_waiters and deboost. 1000 * 1001 * We must in fact deboost here in order to ensure we call 1002 * rt_mutex_setprio() to update p->pi_top_task before the 1003 * task unblocks. 1004 */ 1005 rt_mutex_dequeue_pi(current, waiter); 1006 rt_mutex_adjust_prio(current); 1007 1008 /* 1009 * As we are waking up the top waiter, and the waiter stays 1010 * queued on the lock until it gets the lock, this lock 1011 * obviously has waiters. Just set the bit here and this has 1012 * the added benefit of forcing all new tasks into the 1013 * slow path making sure no task of lower priority than 1014 * the top waiter can steal this lock. 1015 */ 1016 lock->owner = (void *) RT_MUTEX_HAS_WAITERS; 1017 1018 /* 1019 * We deboosted before waking the top waiter task such that we don't 1020 * run two tasks with the 'same' priority (and ensure the 1021 * p->pi_top_task pointer points to a blocked task). This however can 1022 * lead to priority inversion if we would get preempted after the 1023 * deboost but before waking our donor task, hence the preempt_disable() 1024 * before unlock. 1025 * 1026 * Pairs with preempt_enable() in rt_mutex_postunlock(); 1027 */ 1028 preempt_disable(); 1029 wake_q_add(wake_q, waiter->task); 1030 raw_spin_unlock(¤t->pi_lock); 1031 } 1032 1033 /* 1034 * Remove a waiter from a lock and give up 1035 * 1036 * Must be called with lock->wait_lock held and interrupts disabled. I must 1037 * have just failed to try_to_take_rt_mutex(). 1038 */ 1039 static void __sched remove_waiter(struct rt_mutex *lock, 1040 struct rt_mutex_waiter *waiter) 1041 { 1042 bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock)); 1043 struct task_struct *owner = rt_mutex_owner(lock); 1044 struct rt_mutex *next_lock; 1045 1046 lockdep_assert_held(&lock->wait_lock); 1047 1048 raw_spin_lock(¤t->pi_lock); 1049 rt_mutex_dequeue(lock, waiter); 1050 current->pi_blocked_on = NULL; 1051 raw_spin_unlock(¤t->pi_lock); 1052 1053 /* 1054 * Only update priority if the waiter was the highest priority 1055 * waiter of the lock and there is an owner to update. 1056 */ 1057 if (!owner || !is_top_waiter) 1058 return; 1059 1060 raw_spin_lock(&owner->pi_lock); 1061 1062 rt_mutex_dequeue_pi(owner, waiter); 1063 1064 if (rt_mutex_has_waiters(lock)) 1065 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock)); 1066 1067 rt_mutex_adjust_prio(owner); 1068 1069 /* Store the lock on which owner is blocked or NULL */ 1070 next_lock = task_blocked_on_lock(owner); 1071 1072 raw_spin_unlock(&owner->pi_lock); 1073 1074 /* 1075 * Don't walk the chain, if the owner task is not blocked 1076 * itself. 1077 */ 1078 if (!next_lock) 1079 return; 1080 1081 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1082 get_task_struct(owner); 1083 1084 raw_spin_unlock_irq(&lock->wait_lock); 1085 1086 rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock, 1087 next_lock, NULL, current); 1088 1089 raw_spin_lock_irq(&lock->wait_lock); 1090 } 1091 1092 /* 1093 * Recheck the pi chain, in case we got a priority setting 1094 * 1095 * Called from sched_setscheduler 1096 */ 1097 void __sched rt_mutex_adjust_pi(struct task_struct *task) 1098 { 1099 struct rt_mutex_waiter *waiter; 1100 struct rt_mutex *next_lock; 1101 unsigned long flags; 1102 1103 raw_spin_lock_irqsave(&task->pi_lock, flags); 1104 1105 waiter = task->pi_blocked_on; 1106 if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) { 1107 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1108 return; 1109 } 1110 next_lock = waiter->lock; 1111 raw_spin_unlock_irqrestore(&task->pi_lock, flags); 1112 1113 /* gets dropped in rt_mutex_adjust_prio_chain()! */ 1114 get_task_struct(task); 1115 1116 rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL, 1117 next_lock, NULL, task); 1118 } 1119 1120 void __sched rt_mutex_init_waiter(struct rt_mutex_waiter *waiter) 1121 { 1122 debug_rt_mutex_init_waiter(waiter); 1123 RB_CLEAR_NODE(&waiter->pi_tree_entry); 1124 RB_CLEAR_NODE(&waiter->tree_entry); 1125 waiter->task = NULL; 1126 } 1127 1128 /** 1129 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop 1130 * @lock: the rt_mutex to take 1131 * @state: the state the task should block in (TASK_INTERRUPTIBLE 1132 * or TASK_UNINTERRUPTIBLE) 1133 * @timeout: the pre-initialized and started timer, or NULL for none 1134 * @waiter: the pre-initialized rt_mutex_waiter 1135 * 1136 * Must be called with lock->wait_lock held and interrupts disabled 1137 */ 1138 static int __sched __rt_mutex_slowlock(struct rt_mutex *lock, int state, 1139 struct hrtimer_sleeper *timeout, 1140 struct rt_mutex_waiter *waiter) 1141 { 1142 int ret = 0; 1143 1144 for (;;) { 1145 /* Try to acquire the lock: */ 1146 if (try_to_take_rt_mutex(lock, current, waiter)) 1147 break; 1148 1149 if (timeout && !timeout->task) { 1150 ret = -ETIMEDOUT; 1151 break; 1152 } 1153 if (signal_pending_state(state, current)) { 1154 ret = -EINTR; 1155 break; 1156 } 1157 1158 raw_spin_unlock_irq(&lock->wait_lock); 1159 1160 schedule(); 1161 1162 raw_spin_lock_irq(&lock->wait_lock); 1163 set_current_state(state); 1164 } 1165 1166 __set_current_state(TASK_RUNNING); 1167 return ret; 1168 } 1169 1170 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock, 1171 struct rt_mutex_waiter *w) 1172 { 1173 /* 1174 * If the result is not -EDEADLOCK or the caller requested 1175 * deadlock detection, nothing to do here. 1176 */ 1177 if (res != -EDEADLOCK || detect_deadlock) 1178 return; 1179 1180 /* 1181 * Yell loudly and stop the task right here. 1182 */ 1183 WARN(1, "rtmutex deadlock detected\n"); 1184 while (1) { 1185 set_current_state(TASK_INTERRUPTIBLE); 1186 schedule(); 1187 } 1188 } 1189 1190 /* 1191 * Slow path lock function: 1192 */ 1193 static int __sched rt_mutex_slowlock(struct rt_mutex *lock, int state, 1194 struct hrtimer_sleeper *timeout, 1195 enum rtmutex_chainwalk chwalk) 1196 { 1197 struct rt_mutex_waiter waiter; 1198 unsigned long flags; 1199 int ret = 0; 1200 1201 rt_mutex_init_waiter(&waiter); 1202 1203 /* 1204 * Technically we could use raw_spin_[un]lock_irq() here, but this can 1205 * be called in early boot if the cmpxchg() fast path is disabled 1206 * (debug, no architecture support). In this case we will acquire the 1207 * rtmutex with lock->wait_lock held. But we cannot unconditionally 1208 * enable interrupts in that early boot case. So we need to use the 1209 * irqsave/restore variants. 1210 */ 1211 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1212 1213 /* Try to acquire the lock again: */ 1214 if (try_to_take_rt_mutex(lock, current, NULL)) { 1215 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1216 return 0; 1217 } 1218 1219 set_current_state(state); 1220 1221 /* Setup the timer, when timeout != NULL */ 1222 if (unlikely(timeout)) 1223 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS); 1224 1225 ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk); 1226 1227 if (likely(!ret)) 1228 /* sleep on the mutex */ 1229 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter); 1230 1231 if (unlikely(ret)) { 1232 __set_current_state(TASK_RUNNING); 1233 remove_waiter(lock, &waiter); 1234 rt_mutex_handle_deadlock(ret, chwalk, &waiter); 1235 } 1236 1237 /* 1238 * try_to_take_rt_mutex() sets the waiter bit 1239 * unconditionally. We might have to fix that up. 1240 */ 1241 fixup_rt_mutex_waiters(lock); 1242 1243 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1244 1245 /* Remove pending timer: */ 1246 if (unlikely(timeout)) 1247 hrtimer_cancel(&timeout->timer); 1248 1249 debug_rt_mutex_free_waiter(&waiter); 1250 1251 return ret; 1252 } 1253 1254 static int __sched __rt_mutex_slowtrylock(struct rt_mutex *lock) 1255 { 1256 int ret = try_to_take_rt_mutex(lock, current, NULL); 1257 1258 /* 1259 * try_to_take_rt_mutex() sets the lock waiters bit 1260 * unconditionally. Clean this up. 1261 */ 1262 fixup_rt_mutex_waiters(lock); 1263 1264 return ret; 1265 } 1266 1267 /* 1268 * Slow path try-lock function: 1269 */ 1270 static int __sched rt_mutex_slowtrylock(struct rt_mutex *lock) 1271 { 1272 unsigned long flags; 1273 int ret; 1274 1275 /* 1276 * If the lock already has an owner we fail to get the lock. 1277 * This can be done without taking the @lock->wait_lock as 1278 * it is only being read, and this is a trylock anyway. 1279 */ 1280 if (rt_mutex_owner(lock)) 1281 return 0; 1282 1283 /* 1284 * The mutex has currently no owner. Lock the wait lock and try to 1285 * acquire the lock. We use irqsave here to support early boot calls. 1286 */ 1287 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1288 1289 ret = __rt_mutex_slowtrylock(lock); 1290 1291 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1292 1293 return ret; 1294 } 1295 1296 /* 1297 * Performs the wakeup of the top-waiter and re-enables preemption. 1298 */ 1299 void __sched rt_mutex_postunlock(struct wake_q_head *wake_q) 1300 { 1301 wake_up_q(wake_q); 1302 1303 /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */ 1304 preempt_enable(); 1305 } 1306 1307 /* 1308 * Slow path to release a rt-mutex. 1309 * 1310 * Return whether the current task needs to call rt_mutex_postunlock(). 1311 */ 1312 static void __sched rt_mutex_slowunlock(struct rt_mutex *lock) 1313 { 1314 DEFINE_WAKE_Q(wake_q); 1315 unsigned long flags; 1316 1317 /* irqsave required to support early boot calls */ 1318 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1319 1320 debug_rt_mutex_unlock(lock); 1321 1322 /* 1323 * We must be careful here if the fast path is enabled. If we 1324 * have no waiters queued we cannot set owner to NULL here 1325 * because of: 1326 * 1327 * foo->lock->owner = NULL; 1328 * rtmutex_lock(foo->lock); <- fast path 1329 * free = atomic_dec_and_test(foo->refcnt); 1330 * rtmutex_unlock(foo->lock); <- fast path 1331 * if (free) 1332 * kfree(foo); 1333 * raw_spin_unlock(foo->lock->wait_lock); 1334 * 1335 * So for the fastpath enabled kernel: 1336 * 1337 * Nothing can set the waiters bit as long as we hold 1338 * lock->wait_lock. So we do the following sequence: 1339 * 1340 * owner = rt_mutex_owner(lock); 1341 * clear_rt_mutex_waiters(lock); 1342 * raw_spin_unlock(&lock->wait_lock); 1343 * if (cmpxchg(&lock->owner, owner, 0) == owner) 1344 * return; 1345 * goto retry; 1346 * 1347 * The fastpath disabled variant is simple as all access to 1348 * lock->owner is serialized by lock->wait_lock: 1349 * 1350 * lock->owner = NULL; 1351 * raw_spin_unlock(&lock->wait_lock); 1352 */ 1353 while (!rt_mutex_has_waiters(lock)) { 1354 /* Drops lock->wait_lock ! */ 1355 if (unlock_rt_mutex_safe(lock, flags) == true) 1356 return; 1357 /* Relock the rtmutex and try again */ 1358 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1359 } 1360 1361 /* 1362 * The wakeup next waiter path does not suffer from the above 1363 * race. See the comments there. 1364 * 1365 * Queue the next waiter for wakeup once we release the wait_lock. 1366 */ 1367 mark_wakeup_next_waiter(&wake_q, lock); 1368 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1369 1370 rt_mutex_postunlock(&wake_q); 1371 } 1372 1373 /* 1374 * debug aware fast / slowpath lock,trylock,unlock 1375 * 1376 * The atomic acquire/release ops are compiled away, when either the 1377 * architecture does not support cmpxchg or when debugging is enabled. 1378 */ 1379 static __always_inline int __rt_mutex_lock(struct rt_mutex *lock, long state, 1380 unsigned int subclass) 1381 { 1382 int ret; 1383 1384 might_sleep(); 1385 mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_); 1386 1387 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1388 return 0; 1389 1390 ret = rt_mutex_slowlock(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK); 1391 if (ret) 1392 mutex_release(&lock->dep_map, _RET_IP_); 1393 return ret; 1394 } 1395 1396 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1397 /** 1398 * rt_mutex_lock_nested - lock a rt_mutex 1399 * 1400 * @lock: the rt_mutex to be locked 1401 * @subclass: the lockdep subclass 1402 */ 1403 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass) 1404 { 1405 __rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass); 1406 } 1407 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested); 1408 1409 #else /* !CONFIG_DEBUG_LOCK_ALLOC */ 1410 1411 /** 1412 * rt_mutex_lock - lock a rt_mutex 1413 * 1414 * @lock: the rt_mutex to be locked 1415 */ 1416 void __sched rt_mutex_lock(struct rt_mutex *lock) 1417 { 1418 __rt_mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0); 1419 } 1420 EXPORT_SYMBOL_GPL(rt_mutex_lock); 1421 #endif 1422 1423 /** 1424 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible 1425 * 1426 * @lock: the rt_mutex to be locked 1427 * 1428 * Returns: 1429 * 0 on success 1430 * -EINTR when interrupted by a signal 1431 */ 1432 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock) 1433 { 1434 return __rt_mutex_lock(lock, TASK_INTERRUPTIBLE, 0); 1435 } 1436 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible); 1437 1438 /** 1439 * rt_mutex_trylock - try to lock a rt_mutex 1440 * 1441 * @lock: the rt_mutex to be locked 1442 * 1443 * This function can only be called in thread context. It's safe to call it 1444 * from atomic regions, but not from hard or soft interrupt context. 1445 * 1446 * Returns: 1447 * 1 on success 1448 * 0 on contention 1449 */ 1450 int __sched rt_mutex_trylock(struct rt_mutex *lock) 1451 { 1452 int ret; 1453 1454 if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES) && WARN_ON_ONCE(!in_task())) 1455 return 0; 1456 1457 /* 1458 * No lockdep annotation required because lockdep disables the fast 1459 * path. 1460 */ 1461 if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) 1462 return 1; 1463 1464 ret = rt_mutex_slowtrylock(lock); 1465 if (ret) 1466 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1467 1468 return ret; 1469 } 1470 EXPORT_SYMBOL_GPL(rt_mutex_trylock); 1471 1472 /** 1473 * rt_mutex_unlock - unlock a rt_mutex 1474 * 1475 * @lock: the rt_mutex to be unlocked 1476 */ 1477 void __sched rt_mutex_unlock(struct rt_mutex *lock) 1478 { 1479 mutex_release(&lock->dep_map, _RET_IP_); 1480 if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) 1481 return; 1482 1483 rt_mutex_slowunlock(lock); 1484 } 1485 EXPORT_SYMBOL_GPL(rt_mutex_unlock); 1486 1487 /* 1488 * Futex variants, must not use fastpath. 1489 */ 1490 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock) 1491 { 1492 return rt_mutex_slowtrylock(lock); 1493 } 1494 1495 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock) 1496 { 1497 return __rt_mutex_slowtrylock(lock); 1498 } 1499 1500 /** 1501 * __rt_mutex_futex_unlock - Futex variant, that since futex variants 1502 * do not use the fast-path, can be simple and will not need to retry. 1503 * 1504 * @lock: The rt_mutex to be unlocked 1505 * @wake_q: The wake queue head from which to get the next lock waiter 1506 */ 1507 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock, 1508 struct wake_q_head *wake_q) 1509 { 1510 lockdep_assert_held(&lock->wait_lock); 1511 1512 debug_rt_mutex_unlock(lock); 1513 1514 if (!rt_mutex_has_waiters(lock)) { 1515 lock->owner = NULL; 1516 return false; /* done */ 1517 } 1518 1519 /* 1520 * We've already deboosted, mark_wakeup_next_waiter() will 1521 * retain preempt_disabled when we drop the wait_lock, to 1522 * avoid inversion prior to the wakeup. preempt_disable() 1523 * therein pairs with rt_mutex_postunlock(). 1524 */ 1525 mark_wakeup_next_waiter(wake_q, lock); 1526 1527 return true; /* call postunlock() */ 1528 } 1529 1530 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock) 1531 { 1532 DEFINE_WAKE_Q(wake_q); 1533 unsigned long flags; 1534 bool postunlock; 1535 1536 raw_spin_lock_irqsave(&lock->wait_lock, flags); 1537 postunlock = __rt_mutex_futex_unlock(lock, &wake_q); 1538 raw_spin_unlock_irqrestore(&lock->wait_lock, flags); 1539 1540 if (postunlock) 1541 rt_mutex_postunlock(&wake_q); 1542 } 1543 1544 /** 1545 * __rt_mutex_init - initialize the rt_mutex 1546 * 1547 * @lock: The rt_mutex to be initialized 1548 * @name: The lock name used for debugging 1549 * @key: The lock class key used for debugging 1550 * 1551 * Initialize the rt_mutex to unlocked state. 1552 * 1553 * Initializing of a locked rt_mutex is not allowed 1554 */ 1555 void __sched __rt_mutex_init(struct rt_mutex *lock, const char *name, 1556 struct lock_class_key *key) 1557 { 1558 debug_check_no_locks_freed((void *)lock, sizeof(*lock)); 1559 lockdep_init_map(&lock->dep_map, name, key, 0); 1560 1561 __rt_mutex_basic_init(lock); 1562 } 1563 EXPORT_SYMBOL_GPL(__rt_mutex_init); 1564 1565 /** 1566 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a 1567 * proxy owner 1568 * 1569 * @lock: the rt_mutex to be locked 1570 * @proxy_owner:the task to set as owner 1571 * 1572 * No locking. Caller has to do serializing itself 1573 * 1574 * Special API call for PI-futex support. This initializes the rtmutex and 1575 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not 1576 * possible at this point because the pi_state which contains the rtmutex 1577 * is not yet visible to other tasks. 1578 */ 1579 void __sched rt_mutex_init_proxy_locked(struct rt_mutex *lock, 1580 struct task_struct *proxy_owner) 1581 { 1582 __rt_mutex_basic_init(lock); 1583 rt_mutex_set_owner(lock, proxy_owner); 1584 } 1585 1586 /** 1587 * rt_mutex_proxy_unlock - release a lock on behalf of owner 1588 * 1589 * @lock: the rt_mutex to be locked 1590 * 1591 * No locking. Caller has to do serializing itself 1592 * 1593 * Special API call for PI-futex support. This merrily cleans up the rtmutex 1594 * (debugging) state. Concurrent operations on this rt_mutex are not 1595 * possible because it belongs to the pi_state which is about to be freed 1596 * and it is not longer visible to other tasks. 1597 */ 1598 void __sched rt_mutex_proxy_unlock(struct rt_mutex *lock) 1599 { 1600 debug_rt_mutex_proxy_unlock(lock); 1601 rt_mutex_set_owner(lock, NULL); 1602 } 1603 1604 /** 1605 * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1606 * @lock: the rt_mutex to take 1607 * @waiter: the pre-initialized rt_mutex_waiter 1608 * @task: the task to prepare 1609 * 1610 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 1611 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 1612 * 1613 * NOTE: does _NOT_ remove the @waiter on failure; must either call 1614 * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this. 1615 * 1616 * Returns: 1617 * 0 - task blocked on lock 1618 * 1 - acquired the lock for task, caller should wake it up 1619 * <0 - error 1620 * 1621 * Special API call for PI-futex support. 1622 */ 1623 int __sched __rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1624 struct rt_mutex_waiter *waiter, 1625 struct task_struct *task) 1626 { 1627 int ret; 1628 1629 lockdep_assert_held(&lock->wait_lock); 1630 1631 if (try_to_take_rt_mutex(lock, task, NULL)) 1632 return 1; 1633 1634 /* We enforce deadlock detection for futexes */ 1635 ret = task_blocks_on_rt_mutex(lock, waiter, task, 1636 RT_MUTEX_FULL_CHAINWALK); 1637 1638 if (ret && !rt_mutex_owner(lock)) { 1639 /* 1640 * Reset the return value. We might have 1641 * returned with -EDEADLK and the owner 1642 * released the lock while we were walking the 1643 * pi chain. Let the waiter sort it out. 1644 */ 1645 ret = 0; 1646 } 1647 1648 return ret; 1649 } 1650 1651 /** 1652 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task 1653 * @lock: the rt_mutex to take 1654 * @waiter: the pre-initialized rt_mutex_waiter 1655 * @task: the task to prepare 1656 * 1657 * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock 1658 * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that. 1659 * 1660 * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter 1661 * on failure. 1662 * 1663 * Returns: 1664 * 0 - task blocked on lock 1665 * 1 - acquired the lock for task, caller should wake it up 1666 * <0 - error 1667 * 1668 * Special API call for PI-futex support. 1669 */ 1670 int __sched rt_mutex_start_proxy_lock(struct rt_mutex *lock, 1671 struct rt_mutex_waiter *waiter, 1672 struct task_struct *task) 1673 { 1674 int ret; 1675 1676 raw_spin_lock_irq(&lock->wait_lock); 1677 ret = __rt_mutex_start_proxy_lock(lock, waiter, task); 1678 if (unlikely(ret)) 1679 remove_waiter(lock, waiter); 1680 raw_spin_unlock_irq(&lock->wait_lock); 1681 1682 return ret; 1683 } 1684 1685 /** 1686 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition 1687 * @lock: the rt_mutex we were woken on 1688 * @to: the timeout, null if none. hrtimer should already have 1689 * been started. 1690 * @waiter: the pre-initialized rt_mutex_waiter 1691 * 1692 * Wait for the lock acquisition started on our behalf by 1693 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call 1694 * rt_mutex_cleanup_proxy_lock(). 1695 * 1696 * Returns: 1697 * 0 - success 1698 * <0 - error, one of -EINTR, -ETIMEDOUT 1699 * 1700 * Special API call for PI-futex support 1701 */ 1702 int __sched rt_mutex_wait_proxy_lock(struct rt_mutex *lock, 1703 struct hrtimer_sleeper *to, 1704 struct rt_mutex_waiter *waiter) 1705 { 1706 int ret; 1707 1708 raw_spin_lock_irq(&lock->wait_lock); 1709 /* sleep on the mutex */ 1710 set_current_state(TASK_INTERRUPTIBLE); 1711 ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter); 1712 /* 1713 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1714 * have to fix that up. 1715 */ 1716 fixup_rt_mutex_waiters(lock); 1717 raw_spin_unlock_irq(&lock->wait_lock); 1718 1719 return ret; 1720 } 1721 1722 /** 1723 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition 1724 * @lock: the rt_mutex we were woken on 1725 * @waiter: the pre-initialized rt_mutex_waiter 1726 * 1727 * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or 1728 * rt_mutex_wait_proxy_lock(). 1729 * 1730 * Unless we acquired the lock; we're still enqueued on the wait-list and can 1731 * in fact still be granted ownership until we're removed. Therefore we can 1732 * find we are in fact the owner and must disregard the 1733 * rt_mutex_wait_proxy_lock() failure. 1734 * 1735 * Returns: 1736 * true - did the cleanup, we done. 1737 * false - we acquired the lock after rt_mutex_wait_proxy_lock() returned, 1738 * caller should disregards its return value. 1739 * 1740 * Special API call for PI-futex support 1741 */ 1742 bool __sched rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock, 1743 struct rt_mutex_waiter *waiter) 1744 { 1745 bool cleanup = false; 1746 1747 raw_spin_lock_irq(&lock->wait_lock); 1748 /* 1749 * Do an unconditional try-lock, this deals with the lock stealing 1750 * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter() 1751 * sets a NULL owner. 1752 * 1753 * We're not interested in the return value, because the subsequent 1754 * test on rt_mutex_owner() will infer that. If the trylock succeeded, 1755 * we will own the lock and it will have removed the waiter. If we 1756 * failed the trylock, we're still not owner and we need to remove 1757 * ourselves. 1758 */ 1759 try_to_take_rt_mutex(lock, current, waiter); 1760 /* 1761 * Unless we're the owner; we're still enqueued on the wait_list. 1762 * So check if we became owner, if not, take us off the wait_list. 1763 */ 1764 if (rt_mutex_owner(lock) != current) { 1765 remove_waiter(lock, waiter); 1766 cleanup = true; 1767 } 1768 /* 1769 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might 1770 * have to fix that up. 1771 */ 1772 fixup_rt_mutex_waiters(lock); 1773 1774 raw_spin_unlock_irq(&lock->wait_lock); 1775 1776 return cleanup; 1777 } 1778 1779 #ifdef CONFIG_DEBUG_RT_MUTEXES 1780 void rt_mutex_debug_task_free(struct task_struct *task) 1781 { 1782 DEBUG_LOCKS_WARN_ON(!RB_EMPTY_ROOT(&task->pi_waiters.rb_root)); 1783 DEBUG_LOCKS_WARN_ON(task->pi_blocked_on); 1784 } 1785 #endif 1786