xref: /linux/kernel/locking/rtmutex.c (revision 4cf421e55d69016989548e0fb8585e69f54bd283)
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/sched/wake_q.h>
19 #include <linux/timer.h>
20 
21 #include "rtmutex_common.h"
22 
23 /*
24  * lock->owner state tracking:
25  *
26  * lock->owner holds the task_struct pointer of the owner. Bit 0
27  * is used to keep track of the "lock has waiters" state.
28  *
29  * owner	bit0
30  * NULL		0	lock is free (fast acquire possible)
31  * NULL		1	lock is free and has waiters and the top waiter
32  *				is going to take the lock*
33  * taskpointer	0	lock is held (fast release possible)
34  * taskpointer	1	lock is held and has waiters**
35  *
36  * The fast atomic compare exchange based acquire and release is only
37  * possible when bit 0 of lock->owner is 0.
38  *
39  * (*) It also can be a transitional state when grabbing the lock
40  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
41  * we need to set the bit0 before looking at the lock, and the owner may be
42  * NULL in this small time, hence this can be a transitional state.
43  *
44  * (**) There is a small time when bit 0 is set but there are no
45  * waiters. This can happen when grabbing the lock in the slow path.
46  * To prevent a cmpxchg of the owner releasing the lock, we need to
47  * set this bit before looking at the lock.
48  */
49 
50 static void
51 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
52 {
53 	unsigned long val = (unsigned long)owner;
54 
55 	if (rt_mutex_has_waiters(lock))
56 		val |= RT_MUTEX_HAS_WAITERS;
57 
58 	lock->owner = (struct task_struct *)val;
59 }
60 
61 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
62 {
63 	lock->owner = (struct task_struct *)
64 			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
65 }
66 
67 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
68 {
69 	unsigned long owner, *p = (unsigned long *) &lock->owner;
70 
71 	if (rt_mutex_has_waiters(lock))
72 		return;
73 
74 	/*
75 	 * The rbtree has no waiters enqueued, now make sure that the
76 	 * lock->owner still has the waiters bit set, otherwise the
77 	 * following can happen:
78 	 *
79 	 * CPU 0	CPU 1		CPU2
80 	 * l->owner=T1
81 	 *		rt_mutex_lock(l)
82 	 *		lock(l->lock)
83 	 *		l->owner = T1 | HAS_WAITERS;
84 	 *		enqueue(T2)
85 	 *		boost()
86 	 *		  unlock(l->lock)
87 	 *		block()
88 	 *
89 	 *				rt_mutex_lock(l)
90 	 *				lock(l->lock)
91 	 *				l->owner = T1 | HAS_WAITERS;
92 	 *				enqueue(T3)
93 	 *				boost()
94 	 *				  unlock(l->lock)
95 	 *				block()
96 	 *		signal(->T2)	signal(->T3)
97 	 *		lock(l->lock)
98 	 *		dequeue(T2)
99 	 *		deboost()
100 	 *		  unlock(l->lock)
101 	 *				lock(l->lock)
102 	 *				dequeue(T3)
103 	 *				 ==> wait list is empty
104 	 *				deboost()
105 	 *				 unlock(l->lock)
106 	 *		lock(l->lock)
107 	 *		fixup_rt_mutex_waiters()
108 	 *		  if (wait_list_empty(l) {
109 	 *		    l->owner = owner
110 	 *		    owner = l->owner & ~HAS_WAITERS;
111 	 *		      ==> l->owner = T1
112 	 *		  }
113 	 *				lock(l->lock)
114 	 * rt_mutex_unlock(l)		fixup_rt_mutex_waiters()
115 	 *				  if (wait_list_empty(l) {
116 	 *				    owner = l->owner & ~HAS_WAITERS;
117 	 * cmpxchg(l->owner, T1, NULL)
118 	 *  ===> Success (l->owner = NULL)
119 	 *
120 	 *				    l->owner = owner
121 	 *				      ==> l->owner = T1
122 	 *				  }
123 	 *
124 	 * With the check for the waiter bit in place T3 on CPU2 will not
125 	 * overwrite. All tasks fiddling with the waiters bit are
126 	 * serialized by l->lock, so nothing else can modify the waiters
127 	 * bit. If the bit is set then nothing can change l->owner either
128 	 * so the simple RMW is safe. The cmpxchg() will simply fail if it
129 	 * happens in the middle of the RMW because the waiters bit is
130 	 * still set.
131 	 */
132 	owner = READ_ONCE(*p);
133 	if (owner & RT_MUTEX_HAS_WAITERS)
134 		WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
135 }
136 
137 /*
138  * We can speed up the acquire/release, if there's no debugging state to be
139  * set up.
140  */
141 #ifndef CONFIG_DEBUG_RT_MUTEXES
142 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
143 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
144 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
145 
146 /*
147  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
148  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
149  * relaxed semantics suffice.
150  */
151 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
152 {
153 	unsigned long owner, *p = (unsigned long *) &lock->owner;
154 
155 	do {
156 		owner = *p;
157 	} while (cmpxchg_relaxed(p, owner,
158 				 owner | RT_MUTEX_HAS_WAITERS) != owner);
159 }
160 
161 /*
162  * Safe fastpath aware unlock:
163  * 1) Clear the waiters bit
164  * 2) Drop lock->wait_lock
165  * 3) Try to unlock the lock with cmpxchg
166  */
167 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
168 					unsigned long flags)
169 	__releases(lock->wait_lock)
170 {
171 	struct task_struct *owner = rt_mutex_owner(lock);
172 
173 	clear_rt_mutex_waiters(lock);
174 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
175 	/*
176 	 * If a new waiter comes in between the unlock and the cmpxchg
177 	 * we have two situations:
178 	 *
179 	 * unlock(wait_lock);
180 	 *					lock(wait_lock);
181 	 * cmpxchg(p, owner, 0) == owner
182 	 *					mark_rt_mutex_waiters(lock);
183 	 *					acquire(lock);
184 	 * or:
185 	 *
186 	 * unlock(wait_lock);
187 	 *					lock(wait_lock);
188 	 *					mark_rt_mutex_waiters(lock);
189 	 *
190 	 * cmpxchg(p, owner, 0) != owner
191 	 *					enqueue_waiter();
192 	 *					unlock(wait_lock);
193 	 * lock(wait_lock);
194 	 * wake waiter();
195 	 * unlock(wait_lock);
196 	 *					lock(wait_lock);
197 	 *					acquire(lock);
198 	 */
199 	return rt_mutex_cmpxchg_release(lock, owner, NULL);
200 }
201 
202 #else
203 # define rt_mutex_cmpxchg_relaxed(l,c,n)	(0)
204 # define rt_mutex_cmpxchg_acquire(l,c,n)	(0)
205 # define rt_mutex_cmpxchg_release(l,c,n)	(0)
206 
207 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208 {
209 	lock->owner = (struct task_struct *)
210 			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211 }
212 
213 /*
214  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215  */
216 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217 					unsigned long flags)
218 	__releases(lock->wait_lock)
219 {
220 	lock->owner = NULL;
221 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222 	return true;
223 }
224 #endif
225 
226 static inline int
227 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
228 		     struct rt_mutex_waiter *right)
229 {
230 	if (left->prio < right->prio)
231 		return 1;
232 
233 	/*
234 	 * If both waiters have dl_prio(), we check the deadlines of the
235 	 * associated tasks.
236 	 * If left waiter has a dl_prio(), and we didn't return 1 above,
237 	 * then right waiter has a dl_prio() too.
238 	 */
239 	if (dl_prio(left->prio))
240 		return dl_time_before(left->task->dl.deadline,
241 				      right->task->dl.deadline);
242 
243 	return 0;
244 }
245 
246 static void
247 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
248 {
249 	struct rb_node **link = &lock->waiters.rb_node;
250 	struct rb_node *parent = NULL;
251 	struct rt_mutex_waiter *entry;
252 	int leftmost = 1;
253 
254 	while (*link) {
255 		parent = *link;
256 		entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
257 		if (rt_mutex_waiter_less(waiter, entry)) {
258 			link = &parent->rb_left;
259 		} else {
260 			link = &parent->rb_right;
261 			leftmost = 0;
262 		}
263 	}
264 
265 	if (leftmost)
266 		lock->waiters_leftmost = &waiter->tree_entry;
267 
268 	rb_link_node(&waiter->tree_entry, parent, link);
269 	rb_insert_color(&waiter->tree_entry, &lock->waiters);
270 }
271 
272 static void
273 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
274 {
275 	if (RB_EMPTY_NODE(&waiter->tree_entry))
276 		return;
277 
278 	if (lock->waiters_leftmost == &waiter->tree_entry)
279 		lock->waiters_leftmost = rb_next(&waiter->tree_entry);
280 
281 	rb_erase(&waiter->tree_entry, &lock->waiters);
282 	RB_CLEAR_NODE(&waiter->tree_entry);
283 }
284 
285 static void
286 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
287 {
288 	struct rb_node **link = &task->pi_waiters.rb_node;
289 	struct rb_node *parent = NULL;
290 	struct rt_mutex_waiter *entry;
291 	int leftmost = 1;
292 
293 	while (*link) {
294 		parent = *link;
295 		entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
296 		if (rt_mutex_waiter_less(waiter, entry)) {
297 			link = &parent->rb_left;
298 		} else {
299 			link = &parent->rb_right;
300 			leftmost = 0;
301 		}
302 	}
303 
304 	if (leftmost)
305 		task->pi_waiters_leftmost = &waiter->pi_tree_entry;
306 
307 	rb_link_node(&waiter->pi_tree_entry, parent, link);
308 	rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
309 }
310 
311 static void
312 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
313 {
314 	if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
315 		return;
316 
317 	if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
318 		task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
319 
320 	rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
321 	RB_CLEAR_NODE(&waiter->pi_tree_entry);
322 }
323 
324 /*
325  * Calculate task priority from the waiter tree priority
326  *
327  * Return task->normal_prio when the waiter tree is empty or when
328  * the waiter is not allowed to do priority boosting
329  */
330 int rt_mutex_getprio(struct task_struct *task)
331 {
332 	if (likely(!task_has_pi_waiters(task)))
333 		return task->normal_prio;
334 
335 	return min(task_top_pi_waiter(task)->prio,
336 		   task->normal_prio);
337 }
338 
339 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
340 {
341 	if (likely(!task_has_pi_waiters(task)))
342 		return NULL;
343 
344 	return task_top_pi_waiter(task)->task;
345 }
346 
347 /*
348  * Called by sched_setscheduler() to get the priority which will be
349  * effective after the change.
350  */
351 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
352 {
353 	if (!task_has_pi_waiters(task))
354 		return newprio;
355 
356 	if (task_top_pi_waiter(task)->task->prio <= newprio)
357 		return task_top_pi_waiter(task)->task->prio;
358 	return newprio;
359 }
360 
361 /*
362  * Adjust the priority of a task, after its pi_waiters got modified.
363  *
364  * This can be both boosting and unboosting. task->pi_lock must be held.
365  */
366 static void __rt_mutex_adjust_prio(struct task_struct *task)
367 {
368 	int prio = rt_mutex_getprio(task);
369 
370 	if (task->prio != prio || dl_prio(prio))
371 		rt_mutex_setprio(task, prio);
372 }
373 
374 /*
375  * Adjust task priority (undo boosting). Called from the exit path of
376  * rt_mutex_slowunlock() and rt_mutex_slowlock().
377  *
378  * (Note: We do this outside of the protection of lock->wait_lock to
379  * allow the lock to be taken while or before we readjust the priority
380  * of task. We do not use the spin_xx_mutex() variants here as we are
381  * outside of the debug path.)
382  */
383 void rt_mutex_adjust_prio(struct task_struct *task)
384 {
385 	unsigned long flags;
386 
387 	raw_spin_lock_irqsave(&task->pi_lock, flags);
388 	__rt_mutex_adjust_prio(task);
389 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
390 }
391 
392 /*
393  * Deadlock detection is conditional:
394  *
395  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
396  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
397  *
398  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
399  * conducted independent of the detect argument.
400  *
401  * If the waiter argument is NULL this indicates the deboost path and
402  * deadlock detection is disabled independent of the detect argument
403  * and the config settings.
404  */
405 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
406 					  enum rtmutex_chainwalk chwalk)
407 {
408 	/*
409 	 * This is just a wrapper function for the following call,
410 	 * because debug_rt_mutex_detect_deadlock() smells like a magic
411 	 * debug feature and I wanted to keep the cond function in the
412 	 * main source file along with the comments instead of having
413 	 * two of the same in the headers.
414 	 */
415 	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
416 }
417 
418 /*
419  * Max number of times we'll walk the boosting chain:
420  */
421 int max_lock_depth = 1024;
422 
423 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
424 {
425 	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
426 }
427 
428 /*
429  * Adjust the priority chain. Also used for deadlock detection.
430  * Decreases task's usage by one - may thus free the task.
431  *
432  * @task:	the task owning the mutex (owner) for which a chain walk is
433  *		probably needed
434  * @chwalk:	do we have to carry out deadlock detection?
435  * @orig_lock:	the mutex (can be NULL if we are walking the chain to recheck
436  *		things for a task that has just got its priority adjusted, and
437  *		is waiting on a mutex)
438  * @next_lock:	the mutex on which the owner of @orig_lock was blocked before
439  *		we dropped its pi_lock. Is never dereferenced, only used for
440  *		comparison to detect lock chain changes.
441  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
442  *		its priority to the mutex owner (can be NULL in the case
443  *		depicted above or if the top waiter is gone away and we are
444  *		actually deboosting the owner)
445  * @top_task:	the current top waiter
446  *
447  * Returns 0 or -EDEADLK.
448  *
449  * Chain walk basics and protection scope
450  *
451  * [R] refcount on task
452  * [P] task->pi_lock held
453  * [L] rtmutex->wait_lock held
454  *
455  * Step	Description				Protected by
456  *	function arguments:
457  *	@task					[R]
458  *	@orig_lock if != NULL			@top_task is blocked on it
459  *	@next_lock				Unprotected. Cannot be
460  *						dereferenced. Only used for
461  *						comparison.
462  *	@orig_waiter if != NULL			@top_task is blocked on it
463  *	@top_task				current, or in case of proxy
464  *						locking protected by calling
465  *						code
466  *	again:
467  *	  loop_sanity_check();
468  *	retry:
469  * [1]	  lock(task->pi_lock);			[R] acquire [P]
470  * [2]	  waiter = task->pi_blocked_on;		[P]
471  * [3]	  check_exit_conditions_1();		[P]
472  * [4]	  lock = waiter->lock;			[P]
473  * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
474  *	    unlock(task->pi_lock);		release [P]
475  *	    goto retry;
476  *	  }
477  * [6]	  check_exit_conditions_2();		[P] + [L]
478  * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
479  * [8]	  unlock(task->pi_lock);		release [P]
480  *	  put_task_struct(task);		release [R]
481  * [9]	  check_exit_conditions_3();		[L]
482  * [10]	  task = owner(lock);			[L]
483  *	  get_task_struct(task);		[L] acquire [R]
484  *	  lock(task->pi_lock);			[L] acquire [P]
485  * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
486  * [12]	  check_exit_conditions_4();		[P] + [L]
487  * [13]	  unlock(task->pi_lock);		release [P]
488  *	  unlock(lock->wait_lock);		release [L]
489  *	  goto again;
490  */
491 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
492 				      enum rtmutex_chainwalk chwalk,
493 				      struct rt_mutex *orig_lock,
494 				      struct rt_mutex *next_lock,
495 				      struct rt_mutex_waiter *orig_waiter,
496 				      struct task_struct *top_task)
497 {
498 	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
499 	struct rt_mutex_waiter *prerequeue_top_waiter;
500 	int ret = 0, depth = 0;
501 	struct rt_mutex *lock;
502 	bool detect_deadlock;
503 	bool requeue = true;
504 
505 	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
506 
507 	/*
508 	 * The (de)boosting is a step by step approach with a lot of
509 	 * pitfalls. We want this to be preemptible and we want hold a
510 	 * maximum of two locks per step. So we have to check
511 	 * carefully whether things change under us.
512 	 */
513  again:
514 	/*
515 	 * We limit the lock chain length for each invocation.
516 	 */
517 	if (++depth > max_lock_depth) {
518 		static int prev_max;
519 
520 		/*
521 		 * Print this only once. If the admin changes the limit,
522 		 * print a new message when reaching the limit again.
523 		 */
524 		if (prev_max != max_lock_depth) {
525 			prev_max = max_lock_depth;
526 			printk(KERN_WARNING "Maximum lock depth %d reached "
527 			       "task: %s (%d)\n", max_lock_depth,
528 			       top_task->comm, task_pid_nr(top_task));
529 		}
530 		put_task_struct(task);
531 
532 		return -EDEADLK;
533 	}
534 
535 	/*
536 	 * We are fully preemptible here and only hold the refcount on
537 	 * @task. So everything can have changed under us since the
538 	 * caller or our own code below (goto retry/again) dropped all
539 	 * locks.
540 	 */
541  retry:
542 	/*
543 	 * [1] Task cannot go away as we did a get_task() before !
544 	 */
545 	raw_spin_lock_irq(&task->pi_lock);
546 
547 	/*
548 	 * [2] Get the waiter on which @task is blocked on.
549 	 */
550 	waiter = task->pi_blocked_on;
551 
552 	/*
553 	 * [3] check_exit_conditions_1() protected by task->pi_lock.
554 	 */
555 
556 	/*
557 	 * Check whether the end of the boosting chain has been
558 	 * reached or the state of the chain has changed while we
559 	 * dropped the locks.
560 	 */
561 	if (!waiter)
562 		goto out_unlock_pi;
563 
564 	/*
565 	 * Check the orig_waiter state. After we dropped the locks,
566 	 * the previous owner of the lock might have released the lock.
567 	 */
568 	if (orig_waiter && !rt_mutex_owner(orig_lock))
569 		goto out_unlock_pi;
570 
571 	/*
572 	 * We dropped all locks after taking a refcount on @task, so
573 	 * the task might have moved on in the lock chain or even left
574 	 * the chain completely and blocks now on an unrelated lock or
575 	 * on @orig_lock.
576 	 *
577 	 * We stored the lock on which @task was blocked in @next_lock,
578 	 * so we can detect the chain change.
579 	 */
580 	if (next_lock != waiter->lock)
581 		goto out_unlock_pi;
582 
583 	/*
584 	 * Drop out, when the task has no waiters. Note,
585 	 * top_waiter can be NULL, when we are in the deboosting
586 	 * mode!
587 	 */
588 	if (top_waiter) {
589 		if (!task_has_pi_waiters(task))
590 			goto out_unlock_pi;
591 		/*
592 		 * If deadlock detection is off, we stop here if we
593 		 * are not the top pi waiter of the task. If deadlock
594 		 * detection is enabled we continue, but stop the
595 		 * requeueing in the chain walk.
596 		 */
597 		if (top_waiter != task_top_pi_waiter(task)) {
598 			if (!detect_deadlock)
599 				goto out_unlock_pi;
600 			else
601 				requeue = false;
602 		}
603 	}
604 
605 	/*
606 	 * If the waiter priority is the same as the task priority
607 	 * then there is no further priority adjustment necessary.  If
608 	 * deadlock detection is off, we stop the chain walk. If its
609 	 * enabled we continue, but stop the requeueing in the chain
610 	 * walk.
611 	 */
612 	if (waiter->prio == task->prio) {
613 		if (!detect_deadlock)
614 			goto out_unlock_pi;
615 		else
616 			requeue = false;
617 	}
618 
619 	/*
620 	 * [4] Get the next lock
621 	 */
622 	lock = waiter->lock;
623 	/*
624 	 * [5] We need to trylock here as we are holding task->pi_lock,
625 	 * which is the reverse lock order versus the other rtmutex
626 	 * operations.
627 	 */
628 	if (!raw_spin_trylock(&lock->wait_lock)) {
629 		raw_spin_unlock_irq(&task->pi_lock);
630 		cpu_relax();
631 		goto retry;
632 	}
633 
634 	/*
635 	 * [6] check_exit_conditions_2() protected by task->pi_lock and
636 	 * lock->wait_lock.
637 	 *
638 	 * Deadlock detection. If the lock is the same as the original
639 	 * lock which caused us to walk the lock chain or if the
640 	 * current lock is owned by the task which initiated the chain
641 	 * walk, we detected a deadlock.
642 	 */
643 	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
644 		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
645 		raw_spin_unlock(&lock->wait_lock);
646 		ret = -EDEADLK;
647 		goto out_unlock_pi;
648 	}
649 
650 	/*
651 	 * If we just follow the lock chain for deadlock detection, no
652 	 * need to do all the requeue operations. To avoid a truckload
653 	 * of conditionals around the various places below, just do the
654 	 * minimum chain walk checks.
655 	 */
656 	if (!requeue) {
657 		/*
658 		 * No requeue[7] here. Just release @task [8]
659 		 */
660 		raw_spin_unlock(&task->pi_lock);
661 		put_task_struct(task);
662 
663 		/*
664 		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
665 		 * If there is no owner of the lock, end of chain.
666 		 */
667 		if (!rt_mutex_owner(lock)) {
668 			raw_spin_unlock_irq(&lock->wait_lock);
669 			return 0;
670 		}
671 
672 		/* [10] Grab the next task, i.e. owner of @lock */
673 		task = rt_mutex_owner(lock);
674 		get_task_struct(task);
675 		raw_spin_lock(&task->pi_lock);
676 
677 		/*
678 		 * No requeue [11] here. We just do deadlock detection.
679 		 *
680 		 * [12] Store whether owner is blocked
681 		 * itself. Decision is made after dropping the locks
682 		 */
683 		next_lock = task_blocked_on_lock(task);
684 		/*
685 		 * Get the top waiter for the next iteration
686 		 */
687 		top_waiter = rt_mutex_top_waiter(lock);
688 
689 		/* [13] Drop locks */
690 		raw_spin_unlock(&task->pi_lock);
691 		raw_spin_unlock_irq(&lock->wait_lock);
692 
693 		/* If owner is not blocked, end of chain. */
694 		if (!next_lock)
695 			goto out_put_task;
696 		goto again;
697 	}
698 
699 	/*
700 	 * Store the current top waiter before doing the requeue
701 	 * operation on @lock. We need it for the boost/deboost
702 	 * decision below.
703 	 */
704 	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
705 
706 	/* [7] Requeue the waiter in the lock waiter tree. */
707 	rt_mutex_dequeue(lock, waiter);
708 	waiter->prio = task->prio;
709 	rt_mutex_enqueue(lock, waiter);
710 
711 	/* [8] Release the task */
712 	raw_spin_unlock(&task->pi_lock);
713 	put_task_struct(task);
714 
715 	/*
716 	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
717 	 *
718 	 * We must abort the chain walk if there is no lock owner even
719 	 * in the dead lock detection case, as we have nothing to
720 	 * follow here. This is the end of the chain we are walking.
721 	 */
722 	if (!rt_mutex_owner(lock)) {
723 		/*
724 		 * If the requeue [7] above changed the top waiter,
725 		 * then we need to wake the new top waiter up to try
726 		 * to get the lock.
727 		 */
728 		if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
729 			wake_up_process(rt_mutex_top_waiter(lock)->task);
730 		raw_spin_unlock_irq(&lock->wait_lock);
731 		return 0;
732 	}
733 
734 	/* [10] Grab the next task, i.e. the owner of @lock */
735 	task = rt_mutex_owner(lock);
736 	get_task_struct(task);
737 	raw_spin_lock(&task->pi_lock);
738 
739 	/* [11] requeue the pi waiters if necessary */
740 	if (waiter == rt_mutex_top_waiter(lock)) {
741 		/*
742 		 * The waiter became the new top (highest priority)
743 		 * waiter on the lock. Replace the previous top waiter
744 		 * in the owner tasks pi waiters tree with this waiter
745 		 * and adjust the priority of the owner.
746 		 */
747 		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
748 		rt_mutex_enqueue_pi(task, waiter);
749 		__rt_mutex_adjust_prio(task);
750 
751 	} else if (prerequeue_top_waiter == waiter) {
752 		/*
753 		 * The waiter was the top waiter on the lock, but is
754 		 * no longer the top prority waiter. Replace waiter in
755 		 * the owner tasks pi waiters tree with the new top
756 		 * (highest priority) waiter and adjust the priority
757 		 * of the owner.
758 		 * The new top waiter is stored in @waiter so that
759 		 * @waiter == @top_waiter evaluates to true below and
760 		 * we continue to deboost the rest of the chain.
761 		 */
762 		rt_mutex_dequeue_pi(task, waiter);
763 		waiter = rt_mutex_top_waiter(lock);
764 		rt_mutex_enqueue_pi(task, waiter);
765 		__rt_mutex_adjust_prio(task);
766 	} else {
767 		/*
768 		 * Nothing changed. No need to do any priority
769 		 * adjustment.
770 		 */
771 	}
772 
773 	/*
774 	 * [12] check_exit_conditions_4() protected by task->pi_lock
775 	 * and lock->wait_lock. The actual decisions are made after we
776 	 * dropped the locks.
777 	 *
778 	 * Check whether the task which owns the current lock is pi
779 	 * blocked itself. If yes we store a pointer to the lock for
780 	 * the lock chain change detection above. After we dropped
781 	 * task->pi_lock next_lock cannot be dereferenced anymore.
782 	 */
783 	next_lock = task_blocked_on_lock(task);
784 	/*
785 	 * Store the top waiter of @lock for the end of chain walk
786 	 * decision below.
787 	 */
788 	top_waiter = rt_mutex_top_waiter(lock);
789 
790 	/* [13] Drop the locks */
791 	raw_spin_unlock(&task->pi_lock);
792 	raw_spin_unlock_irq(&lock->wait_lock);
793 
794 	/*
795 	 * Make the actual exit decisions [12], based on the stored
796 	 * values.
797 	 *
798 	 * We reached the end of the lock chain. Stop right here. No
799 	 * point to go back just to figure that out.
800 	 */
801 	if (!next_lock)
802 		goto out_put_task;
803 
804 	/*
805 	 * If the current waiter is not the top waiter on the lock,
806 	 * then we can stop the chain walk here if we are not in full
807 	 * deadlock detection mode.
808 	 */
809 	if (!detect_deadlock && waiter != top_waiter)
810 		goto out_put_task;
811 
812 	goto again;
813 
814  out_unlock_pi:
815 	raw_spin_unlock_irq(&task->pi_lock);
816  out_put_task:
817 	put_task_struct(task);
818 
819 	return ret;
820 }
821 
822 /*
823  * Try to take an rt-mutex
824  *
825  * Must be called with lock->wait_lock held and interrupts disabled
826  *
827  * @lock:   The lock to be acquired.
828  * @task:   The task which wants to acquire the lock
829  * @waiter: The waiter that is queued to the lock's wait tree if the
830  *	    callsite called task_blocked_on_lock(), otherwise NULL
831  */
832 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
833 				struct rt_mutex_waiter *waiter)
834 {
835 	/*
836 	 * Before testing whether we can acquire @lock, we set the
837 	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
838 	 * other tasks which try to modify @lock into the slow path
839 	 * and they serialize on @lock->wait_lock.
840 	 *
841 	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
842 	 * as explained at the top of this file if and only if:
843 	 *
844 	 * - There is a lock owner. The caller must fixup the
845 	 *   transient state if it does a trylock or leaves the lock
846 	 *   function due to a signal or timeout.
847 	 *
848 	 * - @task acquires the lock and there are no other
849 	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
850 	 *   the end of this function.
851 	 */
852 	mark_rt_mutex_waiters(lock);
853 
854 	/*
855 	 * If @lock has an owner, give up.
856 	 */
857 	if (rt_mutex_owner(lock))
858 		return 0;
859 
860 	/*
861 	 * If @waiter != NULL, @task has already enqueued the waiter
862 	 * into @lock waiter tree. If @waiter == NULL then this is a
863 	 * trylock attempt.
864 	 */
865 	if (waiter) {
866 		/*
867 		 * If waiter is not the highest priority waiter of
868 		 * @lock, give up.
869 		 */
870 		if (waiter != rt_mutex_top_waiter(lock))
871 			return 0;
872 
873 		/*
874 		 * We can acquire the lock. Remove the waiter from the
875 		 * lock waiters tree.
876 		 */
877 		rt_mutex_dequeue(lock, waiter);
878 
879 	} else {
880 		/*
881 		 * If the lock has waiters already we check whether @task is
882 		 * eligible to take over the lock.
883 		 *
884 		 * If there are no other waiters, @task can acquire
885 		 * the lock.  @task->pi_blocked_on is NULL, so it does
886 		 * not need to be dequeued.
887 		 */
888 		if (rt_mutex_has_waiters(lock)) {
889 			/*
890 			 * If @task->prio is greater than or equal to
891 			 * the top waiter priority (kernel view),
892 			 * @task lost.
893 			 */
894 			if (task->prio >= rt_mutex_top_waiter(lock)->prio)
895 				return 0;
896 
897 			/*
898 			 * The current top waiter stays enqueued. We
899 			 * don't have to change anything in the lock
900 			 * waiters order.
901 			 */
902 		} else {
903 			/*
904 			 * No waiters. Take the lock without the
905 			 * pi_lock dance.@task->pi_blocked_on is NULL
906 			 * and we have no waiters to enqueue in @task
907 			 * pi waiters tree.
908 			 */
909 			goto takeit;
910 		}
911 	}
912 
913 	/*
914 	 * Clear @task->pi_blocked_on. Requires protection by
915 	 * @task->pi_lock. Redundant operation for the @waiter == NULL
916 	 * case, but conditionals are more expensive than a redundant
917 	 * store.
918 	 */
919 	raw_spin_lock(&task->pi_lock);
920 	task->pi_blocked_on = NULL;
921 	/*
922 	 * Finish the lock acquisition. @task is the new owner. If
923 	 * other waiters exist we have to insert the highest priority
924 	 * waiter into @task->pi_waiters tree.
925 	 */
926 	if (rt_mutex_has_waiters(lock))
927 		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
928 	raw_spin_unlock(&task->pi_lock);
929 
930 takeit:
931 	/* We got the lock. */
932 	debug_rt_mutex_lock(lock);
933 
934 	/*
935 	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
936 	 * are still waiters or clears it.
937 	 */
938 	rt_mutex_set_owner(lock, task);
939 
940 	rt_mutex_deadlock_account_lock(lock, task);
941 
942 	return 1;
943 }
944 
945 /*
946  * Task blocks on lock.
947  *
948  * Prepare waiter and propagate pi chain
949  *
950  * This must be called with lock->wait_lock held and interrupts disabled
951  */
952 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
953 				   struct rt_mutex_waiter *waiter,
954 				   struct task_struct *task,
955 				   enum rtmutex_chainwalk chwalk)
956 {
957 	struct task_struct *owner = rt_mutex_owner(lock);
958 	struct rt_mutex_waiter *top_waiter = waiter;
959 	struct rt_mutex *next_lock;
960 	int chain_walk = 0, res;
961 
962 	/*
963 	 * Early deadlock detection. We really don't want the task to
964 	 * enqueue on itself just to untangle the mess later. It's not
965 	 * only an optimization. We drop the locks, so another waiter
966 	 * can come in before the chain walk detects the deadlock. So
967 	 * the other will detect the deadlock and return -EDEADLOCK,
968 	 * which is wrong, as the other waiter is not in a deadlock
969 	 * situation.
970 	 */
971 	if (owner == task)
972 		return -EDEADLK;
973 
974 	raw_spin_lock(&task->pi_lock);
975 	__rt_mutex_adjust_prio(task);
976 	waiter->task = task;
977 	waiter->lock = lock;
978 	waiter->prio = task->prio;
979 
980 	/* Get the top priority waiter on the lock */
981 	if (rt_mutex_has_waiters(lock))
982 		top_waiter = rt_mutex_top_waiter(lock);
983 	rt_mutex_enqueue(lock, waiter);
984 
985 	task->pi_blocked_on = waiter;
986 
987 	raw_spin_unlock(&task->pi_lock);
988 
989 	if (!owner)
990 		return 0;
991 
992 	raw_spin_lock(&owner->pi_lock);
993 	if (waiter == rt_mutex_top_waiter(lock)) {
994 		rt_mutex_dequeue_pi(owner, top_waiter);
995 		rt_mutex_enqueue_pi(owner, waiter);
996 
997 		__rt_mutex_adjust_prio(owner);
998 		if (owner->pi_blocked_on)
999 			chain_walk = 1;
1000 	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1001 		chain_walk = 1;
1002 	}
1003 
1004 	/* Store the lock on which owner is blocked or NULL */
1005 	next_lock = task_blocked_on_lock(owner);
1006 
1007 	raw_spin_unlock(&owner->pi_lock);
1008 	/*
1009 	 * Even if full deadlock detection is on, if the owner is not
1010 	 * blocked itself, we can avoid finding this out in the chain
1011 	 * walk.
1012 	 */
1013 	if (!chain_walk || !next_lock)
1014 		return 0;
1015 
1016 	/*
1017 	 * The owner can't disappear while holding a lock,
1018 	 * so the owner struct is protected by wait_lock.
1019 	 * Gets dropped in rt_mutex_adjust_prio_chain()!
1020 	 */
1021 	get_task_struct(owner);
1022 
1023 	raw_spin_unlock_irq(&lock->wait_lock);
1024 
1025 	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1026 					 next_lock, waiter, task);
1027 
1028 	raw_spin_lock_irq(&lock->wait_lock);
1029 
1030 	return res;
1031 }
1032 
1033 /*
1034  * Remove the top waiter from the current tasks pi waiter tree and
1035  * queue it up.
1036  *
1037  * Called with lock->wait_lock held and interrupts disabled.
1038  */
1039 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1040 				    struct rt_mutex *lock)
1041 {
1042 	struct rt_mutex_waiter *waiter;
1043 
1044 	raw_spin_lock(&current->pi_lock);
1045 
1046 	waiter = rt_mutex_top_waiter(lock);
1047 
1048 	/*
1049 	 * Remove it from current->pi_waiters. We do not adjust a
1050 	 * possible priority boost right now. We execute wakeup in the
1051 	 * boosted mode and go back to normal after releasing
1052 	 * lock->wait_lock.
1053 	 */
1054 	rt_mutex_dequeue_pi(current, waiter);
1055 
1056 	/*
1057 	 * As we are waking up the top waiter, and the waiter stays
1058 	 * queued on the lock until it gets the lock, this lock
1059 	 * obviously has waiters. Just set the bit here and this has
1060 	 * the added benefit of forcing all new tasks into the
1061 	 * slow path making sure no task of lower priority than
1062 	 * the top waiter can steal this lock.
1063 	 */
1064 	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1065 
1066 	raw_spin_unlock(&current->pi_lock);
1067 
1068 	wake_q_add(wake_q, waiter->task);
1069 }
1070 
1071 /*
1072  * Remove a waiter from a lock and give up
1073  *
1074  * Must be called with lock->wait_lock held and interrupts disabled. I must
1075  * have just failed to try_to_take_rt_mutex().
1076  */
1077 static void remove_waiter(struct rt_mutex *lock,
1078 			  struct rt_mutex_waiter *waiter)
1079 {
1080 	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1081 	struct task_struct *owner = rt_mutex_owner(lock);
1082 	struct rt_mutex *next_lock;
1083 
1084 	raw_spin_lock(&current->pi_lock);
1085 	rt_mutex_dequeue(lock, waiter);
1086 	current->pi_blocked_on = NULL;
1087 	raw_spin_unlock(&current->pi_lock);
1088 
1089 	/*
1090 	 * Only update priority if the waiter was the highest priority
1091 	 * waiter of the lock and there is an owner to update.
1092 	 */
1093 	if (!owner || !is_top_waiter)
1094 		return;
1095 
1096 	raw_spin_lock(&owner->pi_lock);
1097 
1098 	rt_mutex_dequeue_pi(owner, waiter);
1099 
1100 	if (rt_mutex_has_waiters(lock))
1101 		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1102 
1103 	__rt_mutex_adjust_prio(owner);
1104 
1105 	/* Store the lock on which owner is blocked or NULL */
1106 	next_lock = task_blocked_on_lock(owner);
1107 
1108 	raw_spin_unlock(&owner->pi_lock);
1109 
1110 	/*
1111 	 * Don't walk the chain, if the owner task is not blocked
1112 	 * itself.
1113 	 */
1114 	if (!next_lock)
1115 		return;
1116 
1117 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1118 	get_task_struct(owner);
1119 
1120 	raw_spin_unlock_irq(&lock->wait_lock);
1121 
1122 	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1123 				   next_lock, NULL, current);
1124 
1125 	raw_spin_lock_irq(&lock->wait_lock);
1126 }
1127 
1128 /*
1129  * Recheck the pi chain, in case we got a priority setting
1130  *
1131  * Called from sched_setscheduler
1132  */
1133 void rt_mutex_adjust_pi(struct task_struct *task)
1134 {
1135 	struct rt_mutex_waiter *waiter;
1136 	struct rt_mutex *next_lock;
1137 	unsigned long flags;
1138 
1139 	raw_spin_lock_irqsave(&task->pi_lock, flags);
1140 
1141 	waiter = task->pi_blocked_on;
1142 	if (!waiter || (waiter->prio == task->prio &&
1143 			!dl_prio(task->prio))) {
1144 		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1145 		return;
1146 	}
1147 	next_lock = waiter->lock;
1148 	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1149 
1150 	/* gets dropped in rt_mutex_adjust_prio_chain()! */
1151 	get_task_struct(task);
1152 
1153 	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1154 				   next_lock, NULL, task);
1155 }
1156 
1157 /**
1158  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1159  * @lock:		 the rt_mutex to take
1160  * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
1161  *			 or TASK_UNINTERRUPTIBLE)
1162  * @timeout:		 the pre-initialized and started timer, or NULL for none
1163  * @waiter:		 the pre-initialized rt_mutex_waiter
1164  *
1165  * Must be called with lock->wait_lock held and interrupts disabled
1166  */
1167 static int __sched
1168 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1169 		    struct hrtimer_sleeper *timeout,
1170 		    struct rt_mutex_waiter *waiter)
1171 {
1172 	int ret = 0;
1173 
1174 	for (;;) {
1175 		/* Try to acquire the lock: */
1176 		if (try_to_take_rt_mutex(lock, current, waiter))
1177 			break;
1178 
1179 		/*
1180 		 * TASK_INTERRUPTIBLE checks for signals and
1181 		 * timeout. Ignored otherwise.
1182 		 */
1183 		if (likely(state == TASK_INTERRUPTIBLE)) {
1184 			/* Signal pending? */
1185 			if (signal_pending(current))
1186 				ret = -EINTR;
1187 			if (timeout && !timeout->task)
1188 				ret = -ETIMEDOUT;
1189 			if (ret)
1190 				break;
1191 		}
1192 
1193 		raw_spin_unlock_irq(&lock->wait_lock);
1194 
1195 		debug_rt_mutex_print_deadlock(waiter);
1196 
1197 		schedule();
1198 
1199 		raw_spin_lock_irq(&lock->wait_lock);
1200 		set_current_state(state);
1201 	}
1202 
1203 	__set_current_state(TASK_RUNNING);
1204 	return ret;
1205 }
1206 
1207 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1208 				     struct rt_mutex_waiter *w)
1209 {
1210 	/*
1211 	 * If the result is not -EDEADLOCK or the caller requested
1212 	 * deadlock detection, nothing to do here.
1213 	 */
1214 	if (res != -EDEADLOCK || detect_deadlock)
1215 		return;
1216 
1217 	/*
1218 	 * Yell lowdly and stop the task right here.
1219 	 */
1220 	rt_mutex_print_deadlock(w);
1221 	while (1) {
1222 		set_current_state(TASK_INTERRUPTIBLE);
1223 		schedule();
1224 	}
1225 }
1226 
1227 /*
1228  * Slow path lock function:
1229  */
1230 static int __sched
1231 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1232 		  struct hrtimer_sleeper *timeout,
1233 		  enum rtmutex_chainwalk chwalk)
1234 {
1235 	struct rt_mutex_waiter waiter;
1236 	unsigned long flags;
1237 	int ret = 0;
1238 
1239 	debug_rt_mutex_init_waiter(&waiter);
1240 	RB_CLEAR_NODE(&waiter.pi_tree_entry);
1241 	RB_CLEAR_NODE(&waiter.tree_entry);
1242 
1243 	/*
1244 	 * Technically we could use raw_spin_[un]lock_irq() here, but this can
1245 	 * be called in early boot if the cmpxchg() fast path is disabled
1246 	 * (debug, no architecture support). In this case we will acquire the
1247 	 * rtmutex with lock->wait_lock held. But we cannot unconditionally
1248 	 * enable interrupts in that early boot case. So we need to use the
1249 	 * irqsave/restore variants.
1250 	 */
1251 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1252 
1253 	/* Try to acquire the lock again: */
1254 	if (try_to_take_rt_mutex(lock, current, NULL)) {
1255 		raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1256 		return 0;
1257 	}
1258 
1259 	set_current_state(state);
1260 
1261 	/* Setup the timer, when timeout != NULL */
1262 	if (unlikely(timeout))
1263 		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1264 
1265 	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1266 
1267 	if (likely(!ret))
1268 		/* sleep on the mutex */
1269 		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1270 
1271 	if (unlikely(ret)) {
1272 		__set_current_state(TASK_RUNNING);
1273 		if (rt_mutex_has_waiters(lock))
1274 			remove_waiter(lock, &waiter);
1275 		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1276 	}
1277 
1278 	/*
1279 	 * try_to_take_rt_mutex() sets the waiter bit
1280 	 * unconditionally. We might have to fix that up.
1281 	 */
1282 	fixup_rt_mutex_waiters(lock);
1283 
1284 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1285 
1286 	/* Remove pending timer: */
1287 	if (unlikely(timeout))
1288 		hrtimer_cancel(&timeout->timer);
1289 
1290 	debug_rt_mutex_free_waiter(&waiter);
1291 
1292 	return ret;
1293 }
1294 
1295 /*
1296  * Slow path try-lock function:
1297  */
1298 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1299 {
1300 	unsigned long flags;
1301 	int ret;
1302 
1303 	/*
1304 	 * If the lock already has an owner we fail to get the lock.
1305 	 * This can be done without taking the @lock->wait_lock as
1306 	 * it is only being read, and this is a trylock anyway.
1307 	 */
1308 	if (rt_mutex_owner(lock))
1309 		return 0;
1310 
1311 	/*
1312 	 * The mutex has currently no owner. Lock the wait lock and try to
1313 	 * acquire the lock. We use irqsave here to support early boot calls.
1314 	 */
1315 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1316 
1317 	ret = try_to_take_rt_mutex(lock, current, NULL);
1318 
1319 	/*
1320 	 * try_to_take_rt_mutex() sets the lock waiters bit
1321 	 * unconditionally. Clean this up.
1322 	 */
1323 	fixup_rt_mutex_waiters(lock);
1324 
1325 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1326 
1327 	return ret;
1328 }
1329 
1330 /*
1331  * Slow path to release a rt-mutex.
1332  * Return whether the current task needs to undo a potential priority boosting.
1333  */
1334 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1335 					struct wake_q_head *wake_q)
1336 {
1337 	unsigned long flags;
1338 
1339 	/* irqsave required to support early boot calls */
1340 	raw_spin_lock_irqsave(&lock->wait_lock, flags);
1341 
1342 	debug_rt_mutex_unlock(lock);
1343 
1344 	rt_mutex_deadlock_account_unlock(current);
1345 
1346 	/*
1347 	 * We must be careful here if the fast path is enabled. If we
1348 	 * have no waiters queued we cannot set owner to NULL here
1349 	 * because of:
1350 	 *
1351 	 * foo->lock->owner = NULL;
1352 	 *			rtmutex_lock(foo->lock);   <- fast path
1353 	 *			free = atomic_dec_and_test(foo->refcnt);
1354 	 *			rtmutex_unlock(foo->lock); <- fast path
1355 	 *			if (free)
1356 	 *				kfree(foo);
1357 	 * raw_spin_unlock(foo->lock->wait_lock);
1358 	 *
1359 	 * So for the fastpath enabled kernel:
1360 	 *
1361 	 * Nothing can set the waiters bit as long as we hold
1362 	 * lock->wait_lock. So we do the following sequence:
1363 	 *
1364 	 *	owner = rt_mutex_owner(lock);
1365 	 *	clear_rt_mutex_waiters(lock);
1366 	 *	raw_spin_unlock(&lock->wait_lock);
1367 	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
1368 	 *		return;
1369 	 *	goto retry;
1370 	 *
1371 	 * The fastpath disabled variant is simple as all access to
1372 	 * lock->owner is serialized by lock->wait_lock:
1373 	 *
1374 	 *	lock->owner = NULL;
1375 	 *	raw_spin_unlock(&lock->wait_lock);
1376 	 */
1377 	while (!rt_mutex_has_waiters(lock)) {
1378 		/* Drops lock->wait_lock ! */
1379 		if (unlock_rt_mutex_safe(lock, flags) == true)
1380 			return false;
1381 		/* Relock the rtmutex and try again */
1382 		raw_spin_lock_irqsave(&lock->wait_lock, flags);
1383 	}
1384 
1385 	/*
1386 	 * The wakeup next waiter path does not suffer from the above
1387 	 * race. See the comments there.
1388 	 *
1389 	 * Queue the next waiter for wakeup once we release the wait_lock.
1390 	 */
1391 	mark_wakeup_next_waiter(wake_q, lock);
1392 
1393 	raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1394 
1395 	/* check PI boosting */
1396 	return true;
1397 }
1398 
1399 /*
1400  * debug aware fast / slowpath lock,trylock,unlock
1401  *
1402  * The atomic acquire/release ops are compiled away, when either the
1403  * architecture does not support cmpxchg or when debugging is enabled.
1404  */
1405 static inline int
1406 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1407 		  int (*slowfn)(struct rt_mutex *lock, int state,
1408 				struct hrtimer_sleeper *timeout,
1409 				enum rtmutex_chainwalk chwalk))
1410 {
1411 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1412 		rt_mutex_deadlock_account_lock(lock, current);
1413 		return 0;
1414 	} else
1415 		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1416 }
1417 
1418 static inline int
1419 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1420 			struct hrtimer_sleeper *timeout,
1421 			enum rtmutex_chainwalk chwalk,
1422 			int (*slowfn)(struct rt_mutex *lock, int state,
1423 				      struct hrtimer_sleeper *timeout,
1424 				      enum rtmutex_chainwalk chwalk))
1425 {
1426 	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1427 	    likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1428 		rt_mutex_deadlock_account_lock(lock, current);
1429 		return 0;
1430 	} else
1431 		return slowfn(lock, state, timeout, chwalk);
1432 }
1433 
1434 static inline int
1435 rt_mutex_fasttrylock(struct rt_mutex *lock,
1436 		     int (*slowfn)(struct rt_mutex *lock))
1437 {
1438 	if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1439 		rt_mutex_deadlock_account_lock(lock, current);
1440 		return 1;
1441 	}
1442 	return slowfn(lock);
1443 }
1444 
1445 static inline void
1446 rt_mutex_fastunlock(struct rt_mutex *lock,
1447 		    bool (*slowfn)(struct rt_mutex *lock,
1448 				   struct wake_q_head *wqh))
1449 {
1450 	DEFINE_WAKE_Q(wake_q);
1451 
1452 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1453 		rt_mutex_deadlock_account_unlock(current);
1454 
1455 	} else {
1456 		bool deboost = slowfn(lock, &wake_q);
1457 
1458 		wake_up_q(&wake_q);
1459 
1460 		/* Undo pi boosting if necessary: */
1461 		if (deboost)
1462 			rt_mutex_adjust_prio(current);
1463 	}
1464 }
1465 
1466 /**
1467  * rt_mutex_lock - lock a rt_mutex
1468  *
1469  * @lock: the rt_mutex to be locked
1470  */
1471 void __sched rt_mutex_lock(struct rt_mutex *lock)
1472 {
1473 	might_sleep();
1474 
1475 	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1476 }
1477 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1478 
1479 /**
1480  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1481  *
1482  * @lock:		the rt_mutex to be locked
1483  *
1484  * Returns:
1485  *  0		on success
1486  * -EINTR	when interrupted by a signal
1487  */
1488 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1489 {
1490 	might_sleep();
1491 
1492 	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1493 }
1494 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1495 
1496 /*
1497  * Futex variant with full deadlock detection.
1498  */
1499 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1500 			      struct hrtimer_sleeper *timeout)
1501 {
1502 	might_sleep();
1503 
1504 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1505 				       RT_MUTEX_FULL_CHAINWALK,
1506 				       rt_mutex_slowlock);
1507 }
1508 
1509 /**
1510  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1511  *			the timeout structure is provided
1512  *			by the caller
1513  *
1514  * @lock:		the rt_mutex to be locked
1515  * @timeout:		timeout structure or NULL (no timeout)
1516  *
1517  * Returns:
1518  *  0		on success
1519  * -EINTR	when interrupted by a signal
1520  * -ETIMEDOUT	when the timeout expired
1521  */
1522 int
1523 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1524 {
1525 	might_sleep();
1526 
1527 	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1528 				       RT_MUTEX_MIN_CHAINWALK,
1529 				       rt_mutex_slowlock);
1530 }
1531 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1532 
1533 /**
1534  * rt_mutex_trylock - try to lock a rt_mutex
1535  *
1536  * @lock:	the rt_mutex to be locked
1537  *
1538  * This function can only be called in thread context. It's safe to
1539  * call it from atomic regions, but not from hard interrupt or soft
1540  * interrupt context.
1541  *
1542  * Returns 1 on success and 0 on contention
1543  */
1544 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1545 {
1546 	if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1547 		return 0;
1548 
1549 	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1550 }
1551 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1552 
1553 /**
1554  * rt_mutex_unlock - unlock a rt_mutex
1555  *
1556  * @lock: the rt_mutex to be unlocked
1557  */
1558 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1559 {
1560 	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1561 }
1562 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1563 
1564 /**
1565  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1566  * @lock: the rt_mutex to be unlocked
1567  *
1568  * Returns: true/false indicating whether priority adjustment is
1569  * required or not.
1570  */
1571 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1572 				   struct wake_q_head *wqh)
1573 {
1574 	if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1575 		rt_mutex_deadlock_account_unlock(current);
1576 		return false;
1577 	}
1578 	return rt_mutex_slowunlock(lock, wqh);
1579 }
1580 
1581 /**
1582  * rt_mutex_destroy - mark a mutex unusable
1583  * @lock: the mutex to be destroyed
1584  *
1585  * This function marks the mutex uninitialized, and any subsequent
1586  * use of the mutex is forbidden. The mutex must not be locked when
1587  * this function is called.
1588  */
1589 void rt_mutex_destroy(struct rt_mutex *lock)
1590 {
1591 	WARN_ON(rt_mutex_is_locked(lock));
1592 #ifdef CONFIG_DEBUG_RT_MUTEXES
1593 	lock->magic = NULL;
1594 #endif
1595 }
1596 
1597 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1598 
1599 /**
1600  * __rt_mutex_init - initialize the rt lock
1601  *
1602  * @lock: the rt lock to be initialized
1603  *
1604  * Initialize the rt lock to unlocked state.
1605  *
1606  * Initializing of a locked rt lock is not allowed
1607  */
1608 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1609 {
1610 	lock->owner = NULL;
1611 	raw_spin_lock_init(&lock->wait_lock);
1612 	lock->waiters = RB_ROOT;
1613 	lock->waiters_leftmost = NULL;
1614 
1615 	debug_rt_mutex_init(lock, name);
1616 }
1617 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1618 
1619 /**
1620  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1621  *				proxy owner
1622  *
1623  * @lock:	the rt_mutex to be locked
1624  * @proxy_owner:the task to set as owner
1625  *
1626  * No locking. Caller has to do serializing itself
1627  *
1628  * Special API call for PI-futex support. This initializes the rtmutex and
1629  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1630  * possible at this point because the pi_state which contains the rtmutex
1631  * is not yet visible to other tasks.
1632  */
1633 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1634 				struct task_struct *proxy_owner)
1635 {
1636 	__rt_mutex_init(lock, NULL);
1637 	debug_rt_mutex_proxy_lock(lock, proxy_owner);
1638 	rt_mutex_set_owner(lock, proxy_owner);
1639 	rt_mutex_deadlock_account_lock(lock, proxy_owner);
1640 }
1641 
1642 /**
1643  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1644  *
1645  * @lock:	the rt_mutex to be locked
1646  *
1647  * No locking. Caller has to do serializing itself
1648  *
1649  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1650  * (debugging) state. Concurrent operations on this rt_mutex are not
1651  * possible because it belongs to the pi_state which is about to be freed
1652  * and it is not longer visible to other tasks.
1653  */
1654 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1655 			   struct task_struct *proxy_owner)
1656 {
1657 	debug_rt_mutex_proxy_unlock(lock);
1658 	rt_mutex_set_owner(lock, NULL);
1659 	rt_mutex_deadlock_account_unlock(proxy_owner);
1660 }
1661 
1662 /**
1663  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1664  * @lock:		the rt_mutex to take
1665  * @waiter:		the pre-initialized rt_mutex_waiter
1666  * @task:		the task to prepare
1667  *
1668  * Returns:
1669  *  0 - task blocked on lock
1670  *  1 - acquired the lock for task, caller should wake it up
1671  * <0 - error
1672  *
1673  * Special API call for FUTEX_REQUEUE_PI support.
1674  */
1675 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1676 			      struct rt_mutex_waiter *waiter,
1677 			      struct task_struct *task)
1678 {
1679 	int ret;
1680 
1681 	raw_spin_lock_irq(&lock->wait_lock);
1682 
1683 	if (try_to_take_rt_mutex(lock, task, NULL)) {
1684 		raw_spin_unlock_irq(&lock->wait_lock);
1685 		return 1;
1686 	}
1687 
1688 	/* We enforce deadlock detection for futexes */
1689 	ret = task_blocks_on_rt_mutex(lock, waiter, task,
1690 				      RT_MUTEX_FULL_CHAINWALK);
1691 
1692 	if (ret && !rt_mutex_owner(lock)) {
1693 		/*
1694 		 * Reset the return value. We might have
1695 		 * returned with -EDEADLK and the owner
1696 		 * released the lock while we were walking the
1697 		 * pi chain.  Let the waiter sort it out.
1698 		 */
1699 		ret = 0;
1700 	}
1701 
1702 	if (unlikely(ret))
1703 		remove_waiter(lock, waiter);
1704 
1705 	raw_spin_unlock_irq(&lock->wait_lock);
1706 
1707 	debug_rt_mutex_print_deadlock(waiter);
1708 
1709 	return ret;
1710 }
1711 
1712 /**
1713  * rt_mutex_next_owner - return the next owner of the lock
1714  *
1715  * @lock: the rt lock query
1716  *
1717  * Returns the next owner of the lock or NULL
1718  *
1719  * Caller has to serialize against other accessors to the lock
1720  * itself.
1721  *
1722  * Special API call for PI-futex support
1723  */
1724 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1725 {
1726 	if (!rt_mutex_has_waiters(lock))
1727 		return NULL;
1728 
1729 	return rt_mutex_top_waiter(lock)->task;
1730 }
1731 
1732 /**
1733  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1734  * @lock:		the rt_mutex we were woken on
1735  * @to:			the timeout, null if none. hrtimer should already have
1736  *			been started.
1737  * @waiter:		the pre-initialized rt_mutex_waiter
1738  *
1739  * Complete the lock acquisition started our behalf by another thread.
1740  *
1741  * Returns:
1742  *  0 - success
1743  * <0 - error, one of -EINTR, -ETIMEDOUT
1744  *
1745  * Special API call for PI-futex requeue support
1746  */
1747 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1748 			       struct hrtimer_sleeper *to,
1749 			       struct rt_mutex_waiter *waiter)
1750 {
1751 	int ret;
1752 
1753 	raw_spin_lock_irq(&lock->wait_lock);
1754 
1755 	set_current_state(TASK_INTERRUPTIBLE);
1756 
1757 	/* sleep on the mutex */
1758 	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1759 
1760 	if (unlikely(ret))
1761 		remove_waiter(lock, waiter);
1762 
1763 	/*
1764 	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1765 	 * have to fix that up.
1766 	 */
1767 	fixup_rt_mutex_waiters(lock);
1768 
1769 	raw_spin_unlock_irq(&lock->wait_lock);
1770 
1771 	return ret;
1772 }
1773